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FAQ Computation Time Depends on the Structure of the Hypergraph

Consider the following FAQ expression over the Boolean semiring:

Φ() =
∨

(x1,...,x5)∈
∏

i∈[5] Dom(Xi )

ψ12(x1, x2) ∧ ψ23(x2, x3) ∧ ψ34(x3, x4) ∧ ψ15(x1, x5)

Φ asks whether there is a tuple (x1, . . . , x5) such that ψij (xi , xj ) = true
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5

Hypergraph of Φ, all edges are binary

ψ12(x1, x2)

ψ23(x2, x3)

ψ34(x3, x4)

ψ15(x1, x5)

Possible bottom-up evaluation strategy

Evaluation strategy known for decades under different names:

• Message passing (in AI literature; Pearl’83)

• Semi-join reduction (in DB literature; Yannakakis’82; discussed in course)
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Hypergraph of Φ, all edges are binary

ψ12(x1, x2)

ψ23(x2, x3)
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Possible bottom-up evaluation strategy

@ψ34 Send up its x3-values:

V34→23(x3) =
∨
x4

ψ34(x3, x4)

@ψ23 Send up its x2-values that are paired with x3 common to V34→23(x3) and ψ23:

V23→12(x2) =
∨
x3

ψ23(x2, x3) ∧ V34→23(x3)

@ψ15 Send up its x1-values:

V15→12(x1) =
∨
x5

ψ15(x1, x5)

@ψ12 Is there a pair (x1, x2) of ψ12 with x1 also in V15→12 and x2 also in V23→12?

Φ() =
∨

x1,x2

ψ12(x1, x2) ∧ V15→12(x1) ∧ V23→12(x2)
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Computation Time
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Hypergraph of Φ, all edges are binary

ψ12(x1, x2)

ψ23(x2, x3)

ψ34(x3, x4)

ψ15(x1, x5)

Possible bottom-up evaluation strategy

All computation steps are local and their cost upper bounded by the factor sizes

• Typical assumption: |ψij | ≤ N for some value N

• We pass along at most N values between factors

• Local computation is just filtering local values with incoming values

• Overall: linear computation time – This is the best in worst case



FAQ Computation for a Different Hypergraph

Now, consider a slightly different FAQ Φ′: Same as Φ but X4 = X1

Φ′() =
∨

x1,x2,x3,x5

ψ12(x1, x2) ∧ ψ23(x2, x3) ∧ ψ13(x1, x3) ∧ ψ15(x1, x5)

1 5

2 3

Hypergraph of Φ′, all edges are binary

ψ12(x1, x2)

ψ23(x2, x3)

ψ13(x1, x3)

ψ15(x1, x5)

Possible bottom-up evaluation strategy

Computation not anymore local!

• x1 needs to be propagated from ψ13 through ψ23 to ψ12

• ψ23 does not have x1, so it receives it and forwards it further

• This incurs the cost of carrying x1 values along two computation steps

⇒ O(N2) complexity (we will later learn how to do it in O(N1.5))
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2 3

Hypergraph of Φ′, all edges are binary

ψ12(x1, x2)

ψ23(x2, x3)

ψ13(x1, x3)

ψ15(x1, x5)

Possible bottom-up evaluation strategy

@ψ13 Send up (x1, x3)-values:

V13→23(x1, x3) = ψ13(x1, x3)

@ψ23 Send up (x1, x2) if there is x3 such that V13→23(x1, x3) and ψ23(x2, x3):

V23→12(x1, x2) =
∨
x3

ψ23(x2, x3) ∧ V13→23(x1, x3) Cost: O(N2)

@ψ15 Send up its x1-values:

V15→12(x1) =
∨
x5

ψ15(x1, x5)

@ψ12 Is there (x1, x2) in ψ12 and in V23→12 such that x1 is also in V15→12?

Φ′() =
∨

x1,x2

ψ12(x1, x2) ∧ V15→12(x1) ∧ V23→12(x1, x2)
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Why is the Cost of the Second FAQ Higher than of the First One?

1

2

3

4

5

Acyclic Hypergraph

1 5

2 3

Cyclic Hypergraph

• Left: Only push up information of size < N that is local at factor

• Right: Need to remember longer distance information and push it along

• The difference is reflected in the computational complexity: O(N) vs O(N2)

1. Can we distinguish syntactically the acyclic from the cyclic hypergraphs?

2. Can we “transform” cyclic hypergraphs into acyclic ones?
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Answer to Question 1: Acyclic Hypergraphs (Overview)

Several acyclicity notions exist. Studied in this course: α-acyclic & β-acyclic

FAQs without free variables can be computed in:

• Linear time in the size of input factors if its hypergraph is α-acyclic

Assumption: Each factor ψS represented as list of tuples xS with ψS(xS) 6= 0

• Linear time in the size of input factors if its hypergraph is β-acyclic

Assumption: Each factor represented compactly as box, e.g., for (#)SAT

FAQs with free variables:

• In principle as above, BUT hypergraph is also free-connex

• Linear time for precomputation

• Then output the answer in constant time per tuple (enumeration delay)

• ⇒ Linear time in input size plus output size



Answer to Question 2: Hypertree Decompositions (Overview)

Hypertree decompositions

• Transform an arbitrary hypergraph into a hypertree

• Measure of how close the hypergraph is to a hypertree: width

• Complexity of transformation is O(Nw ), where

• N is the maximal size of an input factor

• w is the width of the hypergraph

• Once we have a hypertree −→ see answer to Question 1



Hypertree Decompositions



Hypertree Decompositions: Definition

A hypertree decomposition T of a hypergraph H = (V, E) is a pair (T , χ) with:

• T is a tree

• χ is a function mapping each node in T to a subset of V called bag

Properties of a decomposition T = (T , χ):

• Coverage: ∀e ∈ E , there is a node t ∈ T such that e ⊆ χ(t)

• Connectivity: ∀v ∈ V : {t | t ∈ T , v ∈ χ(t)} forms a connected subtree in T

Observation: Each node t ∈ T of the hypertree decomposition T represents the

sub-hypergraph H′ of H induced by the nodes χ(t) of H

• The nodes of H′ are χ(t)

• The hyperedges of H′ are H’s hyperedges restricted to the nodes χ(t) of H



Hypertree Decompositions for the Triangle Hypergraph

Triangle query: Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

Task: Construct a hypertree decomposition
with one bag per edge

First trial

1, 2

2, 3

1, 3

E
1 not included in the middle bag

Connectivity violated!

add 1 into the

middle bag

=⇒
1, 2

1, 2, 3

1, 3

remove

redundant bags

=⇒
{1, 2} ⊆ {1, 2, 3}
{1, 3} ⊆ {1, 2, 3}

1, 2, 3

There are five other possibilities. All violate the connectivity condition.

The only hypertree decomposition without redundant bags has only one bag
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Hypertree Decompositions for the Bowtie Hypergraph

1

2

3

4

5

Possible hypertree decompositions

1, 2, 3, 4, 5
1, 2, 3

3, 4, 5

1, 2, 3

3, 4, 5

4, 5

The bag {4, 5} is redundant since it is included in bag {3, 4, 5}.

Redundant bags need not be considered as they add no extra information.
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Hypertree Decompositions for the Grid Hypergraph

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Possible hypertree decompositions

1, 2, 3, 4, 5,
6, 7, 8, 9, 10

6, 7, 8, 9, 10,
11, 12, 13, 14, 15

11, 12, 13, 14, 15,
16, 17, 18, 19, 20

1, 2
6, 7
11,12
16,17

2, 3
7, 8
12,13
17,18

3, 4
8, 9
13,14
18,19

4, 5
9, 10
14,15
19,20
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Hypertree Decompositions for 4-Cycle and 6-Cycle Hypergraphs

4-Cycle Hypertree decompositions

1 2

34

1, 2, 3, 4

1, 2, 4

2, 3, 4

1, 2, 3

1, 3, 4

6-Cycle

a

1 2

3

45

6

1, 2, 6 2, 3, 6

3, 4, 64, 5, 6
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1, 3, 4, 5, 6
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Hypertree Decompositions for Clique and Loomis-Whitney Hypergraphs

Clique of degree n :

Hypergraph
(

[n],
(
[n]
2

))
Clique-6

1 2

3

45

6

Loomis-Whitney of degree n:

Hypergraph
(

[n],
(

[n]
n−1

))
Loomis-Whitney-4

1 2

34

Both hypergraphs only admit the trivial decomposition with one bag
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Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α-acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

• Best decompositions, as no merging of factors in a bag is necessary
• Such decompositions are called Join Trees
• Hypergraphs are α-acyclic precisely when they admit join trees

Hypergraph

Possible hypertree decomposition

1

2

3 4

5

6

1, 2, 3

1, 2, 4 1, 5

5, 6

Question: Are α-acyclic precisely those hypergraphs without cycles?
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α-acyclic Hypergraphs Can Have Cycles IF Covered by Hyperedges

Consider the FAQ:

Φ() =
⊕

x1,x2,x3

ψ123(x1, x2, x3)⊗ ψ12(x1, x2)⊗ ψ13(x1, x3)⊗ ψ23(x2, x3)

Hypergraph Hypertree decompositions

1

2 3

1, 2, 3
1, 2, 3

1, 2 2, 3 1, 3

• Cycle formed by the factors ψ12, ψ13, and ψ23

• BUT covered by the factor ψ123

• We can evaluate Φ efficiently by absorbing each other factor into ψ123

ψ123(x1, x2, x3) := ψ123(x1, x2, x3)⊗ ψij (xi , xj ), (i, j) ∈ {(1, 2), (1, 3), (2, 3)}
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Non-trivial α-Acyclicity Example

Φ() =
⊕

x1,x2,x3,x4

ψ124(x1, x2, x4)⊗ ψ234(x2, x3, x4)⊗

ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ34(x3, x4)⊗ ψ14(x1, x4)

• Cycle formed by the factors ψ12, ψ23, ψ34, and ψ14

• BUT covered by the factors ψ124 and ψ234

• We can evaluate Φ efficiently:

• Absorb the factors ψ12 and ψ14 into the factor ψ124

• Absorb the factors ψ23 and ψ34 into the factor ψ234

• Multiply the factors ψ124 and ψ234 and aggregate away the variables

Hypergraph

Hypertree decompositions (Second is join tree)

1 2

34

1, 2, 4

2, 3, 4

1, 2, 4

1, 2 2, 3, 4 1, 4

3, 4 3, 2
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Further α-acyclicity Examples

Hypergraph

Hypertree decompositions (Join trees)
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The GYO Algorithm

The GYO (Graham, Yu, Ozsoyoglu) algorithm is used to decide α-acyclicity:

Input: Hypergraph H

Output: Hypergraph obtained by repeating the following rules as long as possible:

• Eliminate a node that is contained in only one hyperedge

• Eliminate a hyperedge that is contained in another hyperedge

H is α-acyclic if and only if GYO(H) = (∅, {∅})

In words: H is α-acyclic if and only if the application of GYO to H returns a
hypergraph with no vertices and one empty hyperedge
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The GYO Algorithm: Example 1/3

initial hypergraph H

1 2

3 4

5

6

node 1 removed

2

3 4

5

6

edge {2, 3} removed

2

3 4

5

6

node 3 removed

2

4

5

6

node 6 removed

2

4

5

edge {2, 4} removed

2

4

5

edge {4, 5} removed
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5

node 5 removed

=⇒ GYO(H) = (∅, {∅}) =⇒H is α-acyclic
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Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph H = (V, E)

Algorithm

1 2

3

45

6

1. Compute weighted graph for H

• vertex set: E
• edge set: {(e1, e2) ∈ E2 | e1 ∩ e2 6= ∅}
• weight of an edge (e1, e2): |e1 ∩ e2|

2. Compute a maximum-weight spanning tree,
e.g. using Prim’s Algorithm

• Start with S = {e} for an arbitrary e ∈ E
• While S 6= E :

• choose edge (e1, e2) with
e1 ∈ S, e2 6∈ S with maximal weight

• (e1, e2) becomes spanning tree edge
• set S to S ∪ {e2}

Weighted graph for H:Join tree for H:

S

{1, 2}

{2, 3}

{3, 4}{4, 5}

{5, 6}

{1, 6}

{1, 5, 6} {2, 3, 4}{1, 2, 4, 5}

1

2 1 2 1 1

1

1 2

1 21

1

211

1

1

12 2

2

{1, 5, 6}

{1, 6} {5, 6}
{1, 2, 4, 5}

{1, 2} {4, 5}
{2, 3, 4}

{2, 3} {3, 4}
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e1 ∈ S, e2 6∈ S with maximal weight

• (e1, e2) becomes spanning tree edge
• set S to S ∪ {e2}

Weighted graph for H:Join tree for H:

S

{1, 2}

{2, 3}

{3, 4}{4, 5}

{5, 6}

{1, 6}

{1, 5, 6} {2, 3, 4}{1, 2, 4, 5}
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1 2
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1

12 2

2

{1, 5, 6}

{1, 6} {5, 6}
{1, 2, 4, 5}

{1, 2} {4, 5}
{2, 3, 4}

{2, 3} {3, 4}



Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph H = (V, E) Algorithm

1 2

3

45

6

1. Compute weighted graph for H
• vertex set: E
• edge set: {(e1, e2) ∈ E2 | e1 ∩ e2 6= ∅}
• weight of an edge (e1, e2): |e1 ∩ e2|

2. Compute a maximum-weight spanning tree,
e.g. using Prim’s Algorithm

• Start with S = {e} for an arbitrary e ∈ E
• While S 6= E :

• choose edge (e1, e2) with
e1 ∈ S, e2 6∈ S with maximal weight

• (e1, e2) becomes spanning tree edge
• set S to S ∪ {e2}

Weighted graph for H:Join tree for H:

S

{1, 2}

{2, 3}

{3, 4}{4, 5}

{5, 6}

{1, 6}

{1, 5, 6} {2, 3, 4}{1, 2, 4, 5}
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β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

• α-acyclic hypergraphs may have cycles covered by hyperedges

• The hypergraph without such hyperedges is not α-acyclic

• β-acyclic hypergraphs cannot have cycles

• Removal of any hyperedges preserves β-acyclicity

Hypergraph Hypertree decompositions

1

2 3

1, 2, 3
1, 2, 3

1, 2 1, 3



β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

• α-acyclic hypergraphs may have cycles covered by hyperedges

• The hypergraph without such hyperedges is not α-acyclic

• β-acyclic hypergraphs cannot have cycles

• Removal of any hyperedges preserves β-acyclicity

Hypergraph

Hypertree decompositions
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β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

• α-acyclic hypergraphs may have cycles covered by hyperedges

• The hypergraph without such hyperedges is not α-acyclic

• β-acyclic hypergraphs cannot have cycles

• Removal of any hyperedges preserves β-acyclicity

Hypergraph Hypertree decompositions

1

2 3

1, 2, 3
1, 2, 3

1, 2 1, 3



Free-connex α-Acyclicity

• α-acyclicity is prerequisite to efficient computation

• FAQ compute time also depends on free variables X1, . . . ,Xf

Φ(x[f ]) =

(f+1)⊕
xf+1

· · ·
(n)⊕
xn

⊗
S∈E

ψS(xS)

• Free-connex property: There is a join tree for the hypergraph of Φ, where

• All free variables [f ] appear in nodes that form a connected subtree

• Each bound variable either occurs in nodes without free variables or only in one
node with free variables

• → All bound variables can be aggregated away in linear time

When is an FAQ with hypergraphH and free variables [f ] free-connex α-acyclic?

H remains α-acyclic even after adding the hyperedge [f ] over the free variables



Free-connex α-Acyclicity Example 1/2

α-acyclic hypergraph H

1

2

3 4

5

6

Possible join tree for H

1, 2, 3

1, 2, 4 1, 5

5, 6

choose {3, 4}
as free variables

1

2

3 4

5

6

choose {3, 4}
as free variables

1

2

3 4

5

6

=⇒ Add the hyperedge {3, 4} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic
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=⇒ Add the hyperedge {3, 4} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic



Free-connex α-Acyclicity Example 1/2

α-acyclic hypergraph H

1

2

3 4

5

6

Possible join tree for H

1, 2, 3

1, 2, 4 1, 5

5, 6

choose {3, 4}
as free variables

1

2

3 4

5

6

choose {3, 4}
as free variables

1

2

3 4

5

6

=⇒ Add the hyperedge {3, 4} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic



Free-connex α-Acyclicity Example 2/2

choose {2, 5}
as free variables

1
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3 4

5

6

choose {2, 5}
as free variables

1
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3 4

5

6

=⇒ Add the hyperedge {2, 5} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic

choose {1, 2, 5}
as free variables

1

2

3 4

5

6

Possible join tree for the extended hypergraph

1, 2, 3

1, 2, 4
1, 2, 5

1, 5

5, 6

=⇒ Extended hypergraph α-acyclic

=⇒ Original hypergraph

free-connex α-acyclic



Free-connex α-Acyclicity Example 2/2

choose {2, 5}
as free variables
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=⇒ Add the hyperedge {2, 5} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic

choose {1, 2, 5}
as free variables
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3 4
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6

Possible join tree for the extended hypergraph

1, 2, 3

1, 2, 4
1, 2, 5
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5, 6

=⇒ Extended hypergraph α-acyclic

=⇒ Original hypergraph

free-connex α-acyclic



Free-connex α-Acyclicity Example 2/2

choose {2, 5}
as free variables
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choose {2, 5}
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=⇒ Add the hyperedge {2, 5} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic
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6

Possible join tree for the extended hypergraph

1, 2, 3

1, 2, 4
1, 2, 5

1, 5
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=⇒ Extended hypergraph α-acyclic

=⇒ Original hypergraph
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Free-connex α-Acyclicity Example 2/2

choose {2, 5}
as free variables
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3 4
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choose {2, 5}
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6

=⇒ Add the hyperedge {2, 5} to the hypergraph

=⇒ There is a cycle not covered by a hyperedge

=⇒ Extended hypergraph not α-acyclic

=⇒ No join tree for extended hypergraph

=⇒ Original hypergraph not free-connex α-acyclic
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6

Possible join tree for the extended hypergraph

1, 2, 3

1, 2, 4
1, 2, 5

1, 5

5, 6

=⇒ Extended hypergraph α-acyclic

=⇒ Original hypergraph

free-connex α-acyclic



Landscape of Hypergraph Types

arbitrary

α-acyclic

β-acyclic free-connex
α-acyclic


