Efficient Algorithms for Frequently Asked Questions

4. Hypertree Decompositions

Prof. Dan Olteanu

Data•(Systems+Theory)

March 14, 2022

FAQ Computation Time Depends on the Structure of the Hypergraph

Consider the following FAQ expression over the Boolean semiring:

$$
\Phi()=\bigvee_{\left(x_{1}, \ldots, x_{5}\right) \in \prod_{i \in[5]} \operatorname{Dom}\left(x_{i}\right)} \psi_{12}\left(x_{1}, x_{2}\right) \wedge \psi_{23}\left(x_{2}, x_{3}\right) \wedge \psi_{34}\left(x_{3}, x_{4}\right) \wedge \psi_{15}\left(x_{1}, x_{5}\right)
$$

Φ asks whether there is a tuple $\left(x_{1}, \ldots, x_{5}\right)$ such that $\psi_{i j}\left(x_{i}, x_{j}\right)=$ true

FAQ Computation Time Depends on the Structure of the Hypergraph

Consider the following FAQ expression over the Boolean semiring:

$$
\Phi()=\bigvee_{\left(x_{1}, \ldots, x_{5}\right) \in \prod_{i \in[5]} \operatorname{Dom}\left(x_{i}\right)} \psi_{12}\left(x_{1}, x_{2}\right) \wedge \psi_{23}\left(x_{2}, x_{3}\right) \wedge \psi_{34}\left(x_{3}, x_{4}\right) \wedge \psi_{15}\left(x_{1}, x_{5}\right)
$$

Φ asks whether there is a tuple $\left(x_{1}, \ldots, x_{5}\right)$ such that $\psi_{i j}\left(x_{i}, x_{j}\right)=$ true

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\mid \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Hypergraph of Φ, all edges are binary
Possible bottom-up evaluation strategy

Evaluation strategy known for decades under different names:

- Message passing (in AI literature; Pearl'83)
- Semi-join reduction (in DB literature; Yannakakis'82; discussed in course)

FAQ Computation Time Depends on the Structure of the Hypergraph

Hypergraph of Φ, all edges are binary

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
/ \psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Possible bottom-up evaluation strategy

FAQ Computation Time Depends on the Structure of the Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \\
\mid \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Hypergraph of Φ, all edges are binary
Possible bottom-up evaluation strategy @ ψ_{34} Send up its χ_{3}-values:

$$
V_{34 \rightarrow 23}\left(x_{3}\right)=\bigvee_{x_{4}} \psi_{34}\left(x_{3}, x_{4}\right)
$$

FAQ Computation Time Depends on the Structure of the Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
/ \psi_{23}\left(x_{2}, x_{3}\right) \\
\mid \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Hypergraph of Φ, all edges are binary
Possible bottom-up evaluation strategy
@ ψ_{34} Send up its x_{3}-values:

$$
V_{34 \rightarrow 23}\left(x_{3}\right)=\bigvee_{x_{4}} \psi_{34}\left(x_{3}, x_{4}\right)
$$

@ ψ_{23} Send up its x_{2}-values that are paired with x_{3} common to $V_{34 \rightarrow 23}\left(x_{3}\right)$ and ψ_{23} :

$$
V_{23 \rightarrow 12}\left(x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{34 \rightarrow 23}\left(x_{3}\right)
$$

FAQ Computation Time Depends on the Structure of the Hypergraph

Hypergraph of Φ, all edges are binary

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \\
\mid \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Possible bottom-up evaluation strategy
@ ψ_{34} Send up its x_{3}-values:

$$
V_{34 \rightarrow 23}\left(x_{3}\right)=\bigvee_{x_{4}} \psi_{34}\left(x_{3}, x_{4}\right)
$$

@ ψ_{23} Send up its x_{2}-values that are paired with x_{3} common to $V_{34 \rightarrow 23}\left(x_{3}\right)$ and ψ_{23} :

$$
V_{23 \rightarrow 12}\left(x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{34 \rightarrow 23}\left(x_{3}\right)
$$

@ ψ_{15} Send up its x_{1}-values:

$$
V_{15 \rightarrow 12}\left(x_{1}\right)=\bigvee_{x_{5}} \psi_{15}\left(x_{1}, x_{5}\right)
$$

FAQ Computation Time Depends on the Structure of the Hypergraph

Hypergraph of Φ, all edges are binary

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\langle/| \\
\psi_{23}\left(x_{2}, x_{3}\right) \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Possible bottom-up evaluation strategy
@ ψ_{34} Send up its x_{3}-values:

$$
V_{34 \rightarrow 23}\left(x_{3}\right)=\bigvee_{x_{4}} \psi_{34}\left(x_{3}, x_{4}\right)
$$

@ ψ_{23} Send up its x_{2}-values that are paired with x_{3} common to $V_{34 \rightarrow 23}\left(x_{3}\right)$ and ψ_{23} :

$$
V_{23 \rightarrow 12}\left(x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{34 \rightarrow 23}\left(x_{3}\right)
$$

@ ψ_{15} Send up its x_{1}-values:

$$
V_{15 \rightarrow 12}\left(x_{1}\right)=\bigvee_{x_{5}} \psi_{15}\left(x_{1}, x_{5}\right)
$$

@ ψ_{12} Is there a pair $\left(x_{1}, x_{2}\right)$ of ψ_{12} with x_{1} also in $V_{15 \rightarrow 12}$ and x_{2} also in $V_{23 \rightarrow 12}$?

$$
\Phi()=\bigvee_{x_{1}, x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \wedge V_{15 \rightarrow 12}\left(x_{1}\right) \wedge V_{23 \rightarrow 12}\left(x_{2}\right)
$$

Computation Time

Hypergraph of Φ, all edges are binary

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \\
\psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{34}\left(x_{3}, x_{4}\right)
\end{gathered}
$$

Possible bottom-up evaluation strategy

All computation steps are local and their cost upper bounded by the factor sizes

- Typical assumption: $\left|\psi_{i j}\right| \leq N$ for some value N
- We pass along at most N values between factors
- Local computation is just filtering local values with incoming values
- Overall: linear computation time - This is the best in worst case

FAQ Computation for a Different Hypergraph

Now, consider a slightly different FAQ Φ^{\prime} : Same as Φ but $X_{4}=X_{1}$

$$
\Phi^{\prime}()=\bigvee_{x_{1}, x_{2}, x_{3}, x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \wedge \psi_{23}\left(x_{2}, x_{3}\right) \wedge \psi_{13}\left(x_{1}, x_{3}\right) \wedge \psi_{15}\left(x_{1}, x_{5}\right)
$$

Hypergraph of ϕ^{\prime}, all edges are binary
Possible bottom-up evaluation strategy

FAQ Computation for a Different Hypergraph

Now, consider a slightly different FAQ Φ^{\prime} : Same as Φ but $X_{4}=X_{1}$

$$
\Phi^{\prime}()=\bigvee_{x_{1}, x_{2}, x_{3}, x_{5}} \psi_{12}\left(x_{1}, x_{2}\right) \wedge \psi_{23}\left(x_{2}, x_{3}\right) \wedge \psi_{13}\left(x_{1}, x_{3}\right) \wedge \psi_{15}\left(x_{1}, x_{5}\right)
$$

Hypergraph of Φ^{\prime}, all edges are binary
Possible bottom-up evaluation strategy

Computation not anymore local!

- x_{1} needs to be propagated from ψ_{13} through ψ_{23} to ψ_{12}
- ψ_{23} does not have x_{1}, so it receives it and forwards it further
- This incurs the cost of carrying x_{1} values along two computation steps
$\Rightarrow O\left(N^{2}\right)$ complexity (we will later learn how to do it in $O\left(N^{1.5}\right)$)

FAQ Computation for a Different Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\langle/ \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{13}\left(x_{1}, x_{3}\right)
\end{gathered}
$$

Hypergraph of Φ^{\prime}, all edges are binary

FAQ Computation for a Different Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\mid \\
\psi_{13}\left(x_{1}, x_{3}\right)
\end{gathered}
$$

Hypergraph of Φ^{\prime}, all edges are binary
@ ψ_{13} Send up $\left(x_{1}, x_{3}\right)$-values:

$$
V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)=\psi_{13}\left(x_{1}, x_{3}\right)
$$

FAQ Computation for a Different Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{13}\left(x_{1}, x_{3}\right)
\end{gathered}
$$

Hypergraph of Φ^{\prime}, all edges are binary
@ ψ_{13} Send up $\left(x_{1}, x_{3}\right)$-values:

$$
V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)=\psi_{13}\left(x_{1}, x_{3}\right)
$$

$@ \psi_{23}$ Send up $\left(x_{1}, x_{2}\right)$ if there is x_{3} such that $V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)$ and $\psi_{23}\left(x_{2}, x_{3}\right)$:

$$
V_{23 \rightarrow 12}\left(x_{1}, x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)
$$

Cost: $O\left(N^{2}\right)$

FAQ Computation for a Different Hypergraph

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{13}\left(x_{1}, x_{3}\right)
\end{gathered}
$$

Hypergraph of Φ^{\prime}, all edges are binary
@ ψ_{13} Send up $\left(x_{1}, x_{3}\right)$-values:

$$
V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)=\psi_{13}\left(x_{1}, x_{3}\right)
$$

$@ \psi_{23}$ Send up $\left(x_{1}, x_{2}\right)$ if there is x_{3} such that $V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)$ and $\psi_{23}\left(x_{2}, x_{3}\right)$:

$$
V_{23 \rightarrow 12}\left(x_{1}, x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)
$$

Cost: $O\left(N^{2}\right)$
@ ψ_{15} Send up its x_{1}-values:

$$
V_{15 \rightarrow 12}\left(x_{1}\right)=\bigvee_{x_{5}} \psi_{15}\left(x_{1}, x_{5}\right)
$$

FAQ Computation for a Different Hypergraph

Hypergraph of Φ^{\prime}, all edges are binary

$$
\begin{gathered}
\psi_{12}\left(x_{1}, x_{2}\right) \\
\psi_{23}\left(x_{2}, x_{3}\right) \psi_{15}\left(x_{1}, x_{5}\right) \\
\psi_{13}\left(x_{1}, x_{3}\right)
\end{gathered}
$$

Possible bottom-up evaluation strategy
@ ψ_{13} Send up $\left(x_{1}, x_{3}\right)$-values:

$$
V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)=\psi_{13}\left(x_{1}, x_{3}\right)
$$

@ ψ_{23} Send up $\left(x_{1}, x_{2}\right)$ if there is x_{3} such that $V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)$ and $\psi_{23}\left(x_{2}, x_{3}\right)$:

$$
V_{23 \rightarrow 12}\left(x_{1}, x_{2}\right)=\bigvee_{x_{3}} \psi_{23}\left(x_{2}, x_{3}\right) \wedge V_{13 \rightarrow 23}\left(x_{1}, x_{3}\right)
$$

Cost: $O\left(N^{2}\right)$
@ ψ_{15} Send up its x_{1}-values:

$$
V_{15 \rightarrow 12}\left(x_{1}\right)=\bigvee_{x_{5}} \psi_{15}\left(x_{1}, x_{5}\right)
$$

@ ψ_{12} Is there $\left(x_{1}, x_{2}\right)$ in ψ_{12} and in $V_{23 \rightarrow 12}$ such that x_{1} is also in $V_{15 \rightarrow 12}$?

$$
\Phi^{\prime}()=\bigvee_{x_{1}, x_{2}} \psi_{12}\left(x_{1}, x_{2}\right) \wedge V_{15 \rightarrow 12}\left(x_{1}\right) \wedge V_{23 \rightarrow 12}\left(x_{1}, x_{2}\right)
$$

Why is the Cost of the Second FAQ Higher than of the First One?

Acyclic Hypergraph

Cyclic Hypergraph

- Left: Only push up information of size $<N$ that is local at factor
- Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: $O(N)$ vs $O\left(N^{2}\right)$

Why is the Cost of the Second FAQ Higher than of the First One?

Acyclic Hypergraph

Cyclic Hypergraph

- Left: Only push up information of size $<N$ that is local at factor
- Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: $O(N)$ vs $O\left(N^{2}\right)$

1. Can we distinguish syntactically the acyclic from the cyclic hypergraphs?

Why is the Cost of the Second FAQ Higher than of the First One?

Acyclic Hypergraph

Cyclic Hypergraph

- Left: Only push up information of size $<N$ that is local at factor
- Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: $O(N)$ vs $O\left(N^{2}\right)$

1. Can we distinguish syntactically the acyclic from the cyclic hypergraphs?
2. Can we "transform" cyclic hypergraphs into acyclic ones?

Answer to Question 1: Acyclic Hypergraphs (Overview)

Several acyclicity notions exist. Studied in this course: α-acyclic $\& \beta$-acyclic

FAQs without free variables can be computed in:

- Linear time in the size of input factors if its hypergraph is α-acyclic Assumption: Each factor ψ_{S} represented as list of tuples \mathbf{x}_{S} with $\psi_{S}\left(\mathbf{x}_{S}\right) \neq \mathbf{0}$
- Linear time in the size of input factors if its hypergraph is β-acyclic

Assumption: Each factor represented compactly as box, e.g., for (\#)SAT

FAQs with free variables:

- In principle as above, BUT hypergraph is also free-connex
- Linear time for precomputation
- Then output the answer in constant time per tuple (enumeration delay)
- \Rightarrow Linear time in input size plus output size

Answer to Question 2: Hypertree Decompositions (Overview)

Hypertree decompositions

- Transform an arbitrary hypergraph into a hypertree
- Measure of how close the hypergraph is to a hypertree: width
- Complexity of transformation is $\mathcal{O}\left(N^{w}\right)$, where
- N is the maximal size of an input factor
- w is the width of the hypergraph
- Once we have a hypertree \longrightarrow see answer to Question 1

Hypertree Decompositions

Hypertree Decompositions: Definition

A hypertree decomposition \mathcal{T} of a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ is a pair (T, χ) with:

- T is a tree
- χ is a function mapping each node in T to a subset of \mathcal{V} called bag

Properties of a decomposition $\mathcal{T}=(T, \chi)$:

- Coverage: $\forall e \in \mathcal{E}$, there is a node $t \in T$ such that $e \subseteq \chi(t)$
- Connectivity: $\forall v \in \mathcal{V}:\{t \mid t \in T, v \in \chi(t)\}$ forms a connected subtree in \mathcal{T}

Observation: Each node $t \in T$ of the hypertree decomposition \mathcal{T} represents the sub-hypergraph \mathcal{H}^{\prime} of \mathcal{H} induced by the nodes $\chi(t)$ of \mathcal{H}

- The nodes of \mathcal{H}^{\prime} are $\chi(t)$
- The hyperedges of \mathcal{H}^{\prime} are \mathcal{H} 's hyperedges restricted to the nodes $\chi(t)$ of \mathcal{H}

Hypertree Decompositions for the Triangle Hypergraph

Triangle query: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$

Task: Construct a hypertree decomposition with one bag per edge

Hypertree Decompositions for the Triangle Hypergraph

Triangle query: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$

Task: Construct a hypertree decomposition with one bag per edge

First trial

1 not included in the middle bag
Connectivity violated!

Hypertree Decompositions for the Triangle Hypergraph

Triangle query: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$

Task: Construct a hypertree decomposition with one bag per edge

First trial

1 not included in the middle bag
Connectivity violated!

Hypertree Decompositions for the Triangle Hypergraph

Triangle query: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$

Task: Construct a hypertree decomposition with one bag per edge

First trial

1 not included in the middle bag
Connectivity violated!

Hypertree Decompositions for the Triangle Hypergraph

Triangle query: $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$

Task: Construct a hypertree decomposition with one bag per edge

First trial

1 not included in the middle bag
Connectivity violated!
There are five other possibilities. All violate the connectivity condition.
The only hypertree decomposition without redundant bags has only one bag

Hypertree Decompositions for the Bowtie Hypergraph

Hypertree Decompositions for the Bowtie Hypergraph

Possible hypertree decompositions
$1,2,3,4,5$

Hypertree Decompositions for the Bowtie Hypergraph

Possible hypertree decompositions

Hypertree Decompositions for the Bowtie Hypergraph

Possible hypertree decompositions

The bag $\{4,5\}$ is redundant since it is included in bag $\{3,4,5\}$.
Redundant bags need not be considered as they add no extra information.

Hypertree Decompositions for the Grid Hypergraph

Hypertree Decompositions for the Grid Hypergraph

Possible hypertree decompositions

Hypertree Decompositions for the Grid Hypergraph

Possible hypertree decompositions

Hypertree Decompositions for 4-Cycle and 6-Cycle Hypergraphs

Hypertree decompositions

Hypertree Decompositions for 4-Cycle and 6-Cycle Hypergraphs

Hypertree decompositions

> 6-Cycle

Hypertree Decompositions for Clique and Loomis-Whitney Hypergraphs

Clique of degree n :
Hypergraph $\left([n],\binom{[n]}{2}\right)$
Clique-6

Loomis-Whitney of degree n :
Hypergraph $\left([n],\binom{[n]}{n-1}\right)$
Loomis-Whitney-4

Hypertree Decompositions for Clique and Loomis-Whitney Hypergraphs

Clique of degree n :
Hypergraph $\left([n],\binom{[n]}{2}\right)$
Clique-6

Loomis-Whitney of degree n :
Hypergraph $\left([n],\binom{[n]}{n-1}\right)$
Loomis-Whitney-4

Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α-acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α-acyclic precisely when they admit join trees

Hypergraph

Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α-acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α-acyclic precisely when they admit join trees

Hypergraph

Possible hypertree decomposition

Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α-acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α-acyclic precisely when they admit join trees

Hypergraph

Possible hypertree decomposition

Question: Are α-acyclic precisely those hypergraphs without cycles?

α-acyclic Hypergraphs Can Have Cycles
 Covered by Hyperedges

Consider the FAQ:

$$
\Phi()=\bigoplus_{x_{1}, x_{2}, x_{3}} \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \otimes \psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right)
$$

Hypergraph

Hypertree decompositions

α-acyclic Hypergraphs Can Have Cycles

Consider the FAQ:

$$
\Phi()=\bigoplus_{x_{1}, x_{2}, x_{3}} \psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \otimes \psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right)
$$

Hypergraph
 Hypertree decompositions

- Cycle formed by the factors ψ_{12}, ψ_{13}, and ψ_{23}
- BUT covered by the factor ψ_{123}
- We can evaluate Φ efficiently by absorbing each other factor into ψ_{123} $\psi_{123}\left(x_{1}, x_{2}, x_{3}\right):=\psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \otimes \psi_{i j}\left(x_{i}, x_{j}\right),(i, j) \in\{(1,2),(1,3),(2,3)\}$

Non-trivial α-Acyclicity Example

$$
\begin{aligned}
\Phi()=\bigoplus_{x_{1}, x_{2}, x_{3}, x_{4}} & \psi_{124}\left(x_{1}, x_{2}, x_{4}\right) \otimes \psi_{234}\left(x_{2}, x_{3}, x_{4}\right) \otimes \\
& \psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{34}\left(x_{3}, x_{4}\right) \otimes \psi_{14}\left(x_{1}, x_{4}\right)
\end{aligned}
$$

- Cycle formed by the factors $\psi_{12}, \psi_{23}, \psi_{34}$, and ψ_{14}
- BUT covered by the factors ψ_{124} and ψ_{234}
- We can evaluate Φ efficiently:
- Absorb the factors ψ_{12} and ψ_{14} into the factor ψ_{124}
- Absorb the factors ψ_{23} and ψ_{34} into the factor ψ_{234}
- Multiply the factors ψ_{124} and ψ_{234} and aggregate away the variables

Hypergraph

Non-trivial α-Acyclicity Example

$$
\begin{aligned}
\Phi()=\bigoplus_{x_{1}, x_{2}, x_{3}, x_{4}} & \psi_{124}\left(x_{1}, x_{2}, x_{4}\right) \otimes \psi_{234}\left(x_{2}, x_{3}, x_{4}\right) \otimes \\
& \psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{34}\left(x_{3}, x_{4}\right) \otimes \psi_{14}\left(x_{1}, x_{4}\right)
\end{aligned}
$$

- Cycle formed by the factors $\psi_{12}, \psi_{23}, \psi_{34}$, and ψ_{14}
- BUT covered by the factors ψ_{124} and ψ_{234}
- We can evaluate Φ efficiently:
- Absorb the factors ψ_{12} and ψ_{14} into the factor ψ_{124}
- Absorb the factors ψ_{23} and ψ_{34} into the factor ψ_{234}
- Multiply the factors ψ_{124} and ψ_{234} and aggregate away the variables

Hypergraph
Hypertree decompositions (Second is join tree)

Further α-acyclicity Examples

Hypergraph

Further α-acyclicity Examples

Hypergraph

Hypertree decompositions (Join trees)

Further α-acyclicity Examples

Hypergraph

Hypertree decompositions (Join trees)

Further α-acyclicity Examples

Hypergraph

Hypertree decompositions (Join trees)

The GYO Algorithm

The GYO (Graham, Yu, Ozsoyoglu) algorithm is used to decide α-acyclicity:

Input: Hypergraph \mathcal{H}
Output: Hypergraph obtained by repeating the following rules as long as possible:

- Eliminate a node that is contained in only one hyperedge
- Eliminate a hyperedge that is contained in another hyperedge

The GYO Algorithm

The GYO (Graham, Yu, Ozsoyoglu) algorithm is used to decide α-acyclicity:

Input: Hypergraph \mathcal{H}
Output: Hypergraph obtained by repeating the following rules as long as possible:

- Eliminate a node that is contained in only one hyperedge
- Eliminate a hyperedge that is contained in another hyperedge

$$
\mathcal{H} \text { is } \alpha \text {-acyclic if and only if } \operatorname{GYO}(\mathcal{H})=(\emptyset,\{\emptyset\})
$$

In words: \mathcal{H} is α-acyclic if and only if the application of GYO to \mathcal{H} returns a hypergraph with no vertices and one empty hyperedge

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 1 removed

The GYO Algorithm: Example 1/3

node 1 removed

edge $\{2,3\}$ removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 1 removed

edge $\{2,3\}$ removed

node 3 removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

node 1 removed

edge $\{2,3\}$ removed

node 6 removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

node 1 removed

edge $\{2,3\}$ removed

node 6 removed

edge $\{2,4\}$ removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

edge $\{2,3\}$ removed

edge $\{2,4\}$ removed

edge $\{4,5\}$ removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

edge $\{4,5\}$ removed

node 1 removed

edge $\{2,3\}$ removed

node 6 removed

node 2 removed

edge $\{2,4\}$ removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

edge $\{4,5\}$ removed

node 1 removed

edge $\{2,3\}$ removed

node 6 removed

edge $\{2,4\}$ removed

node 2 removed node 4 removed

The GYO Algorithm: Example 1/3

initial hypergraph \mathcal{H}

node 3 removed

edge $\{4,5\}$ removed

node 1 removed

edge $\{2,3\}$ removed

node 6 removed

node 2 removed

node 4 removed

node 5 removed

$\Longrightarrow \operatorname{GYO}(\mathcal{H})=(\emptyset,\{\emptyset\}) \Longrightarrow \mathcal{H}$ is α-acyclic

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}
node 5 removed

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}
node 5 removed
edge $\{4\}$ removed

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}

node 4 removed

node 5 removed
edge $\{4\}$ removed

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}

node 4 removed

node 5 removed

edge $\{3\}$ removed

edge $\{4\}$ removed

The GYO Algorithm: Example 2/3

initial hypergraph \mathcal{H}

node 4 removed

edge $\{3\}$ removed

$\Longrightarrow \operatorname{GYO}(\mathcal{H}) \neq(\emptyset,\{\emptyset\}) \Longrightarrow \mathcal{H}$ is not α-acyclic
edge $\{4\}$ removed

no more rule applicable

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

edge $\{1,2\}$ removed

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

edge $\{1,2\}$ removed

edge $\{1,3\}$ removed

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

edge $\{1,2\}$ removed

edge $\{1,3\}$ removed

node 1 removed

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

node 1 removed

edge $\{1,2\}$ removed

edge $\{1,3\}$ removed

edge $\{2,3\}$ removed

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

node 1 removed

edge $\{1,2\}$ removed

edge $\{1,3\}$ removed

The GYO Algorithm: Example 3/3

initial hypergraph \mathcal{H}

node 1 removed

edge $\{2,3\}$ removed node 2 removed

$\Longrightarrow \operatorname{GYO}(\mathcal{H})=(\emptyset,\{\emptyset\}) \Longrightarrow \mathcal{H}$ is α-acyclic

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H} - vertex set: \mathcal{E}

Weighted graph for \mathcal{H} :

$$
\begin{array}{llll}
\{1,6\} & \{1,2\} & & \\
& \{1,2,4,5\} & \{2,3\} & \{2,3,4\} \\
& & \\
\{4,5\} & \{3,4\} & &
\end{array}
$$

$\{1,5,6\}$
$\{5,6\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$

Weighted graph for \mathcal{H} :

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

Weighted graph for \mathcal{H} :

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

Weighted graph for \mathcal{H} :

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$

Weighted graph for \mathcal{H} :

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Weighted graph for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

Computing a Join Tree for an α-Acyclic Hypergraph

Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

Join tree for \mathcal{H} :

Algorithm

1. Compute weighted graph for \mathcal{H}

- vertex set: \mathcal{E}
- edge set: $\left\{\left(e_{1}, e_{2}\right) \in \mathcal{E}^{2} \mid e_{1} \cap e_{2} \neq \emptyset\right\}$
- weight of an edge $\left(e_{1}, e_{2}\right):\left|e_{1} \cap e_{2}\right|$

2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

- Start with $S=\{e\}$ for an arbitrary $e \in \mathcal{E}$
- While $S \neq \mathcal{E}$:
- choose edge $\left(e_{1}, e_{2}\right)$ with $e_{1} \in S, e_{2} \notin S$ with maximal weight
- $\left(e_{1}, e_{2}\right)$ becomes spanning tree edge
- set S to $S \cup\left\{e_{2}\right\}$

β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

- α-acyclic hypergraphs may have cycles covered by hyperedges
- The hypergraph without such hyperedges is not α-acyclic
- β-acyclic hypergraphs cannot have cycles
- Removal of any hyperedges preserves β-acyclicity

β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

- α-acyclic hypergraphs may have cycles covered by hyperedges
- The hypergraph without such hyperedges is not α-acyclic
- β-acyclic hypergraphs cannot have cycles
- Removal of any hyperedges preserves β-acyclicity

Hypergraph

β-Acyclicity: Every Subgraph is Acyclic

β-acyclicity is closed under hyperedge removal, α-acyclicity is not closed

- α-acyclic hypergraphs may have cycles covered by hyperedges
- The hypergraph without such hyperedges is not α-acyclic
- β-acyclic hypergraphs cannot have cycles
- Removal of any hyperedges preserves β-acyclicity

Hypergraph

Hypertree decompositions

Free-connex α-Acyclicity

- α-acyclicity is prerequisite to efficient computation
- FAQ compute time also depends on free variables X_{1}, \ldots, X_{f}

$$
\Phi\left(\mathbf{x}_{[f]}\right)=\bigoplus_{x_{f+1}}^{(f+1)} \cdots \bigoplus_{x_{n}}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)
$$

- Free-connex property: There is a join tree for the hypergraph of Φ, where
- All free variables $[f]$ appear in nodes that form a connected subtree
- Each bound variable either occurs in nodes without free variables or only in one node with free variables
- \rightarrow All bound variables can be aggregated away in linear time

When is an FAQ with hypergraph \mathcal{H} and free variables $[f]$ free-connex α-acyclic?
\mathcal{H} remains α-acyclic even after adding the hyperedge $[f]$ over the free variables

Free-connex α-Acyclicity Example 1/2

α-acyclic hypergraph \mathcal{H}

Possible join tree for \mathcal{H}

Free-connex α-Acyclicity Example 1/2

α-acyclic hypergraph \mathcal{H}

Possible join tree for \mathcal{H}

Free-connex α-Acyclicity Example 1/2

α-acyclic hypergraph \mathcal{H}

choose $\{3,4\}$
as free variables

Possible join tree for \mathcal{H}

\Longrightarrow Add the hyperedge $\{3,4\}$ to the hypergraph
\Longrightarrow There is a cycle not covered by a hyperedge
\Longrightarrow Extended hypergraph not α-acyclic
\Longrightarrow No join tree for extended hypergraph
\Longrightarrow Original hypergraph not free-connex α-acyclic

Free-connex α-Acyclicity Example 2/2

Free-connex α-Acyclicity Example 2/2

\Longrightarrow Add the hyperedge $\{2,5\}$ to the hypergraph
\Longrightarrow There is a cycle not covered by a hyperedge
\Longrightarrow Extended hypergraph not α-acyclic
\Longrightarrow No join tree for extended hypergraph
\Longrightarrow Original hypergraph not free-connex α-acyclic

Free-connex α-Acyclicity Example 2/2

\Longrightarrow Add the hyperedge $\{2,5\}$ to the hypergraph
\Longrightarrow There is a cycle not covered by a hyperedge
\Longrightarrow Extended hypergraph not α-acyclic
\Longrightarrow No join tree for extended hypergraph
\Longrightarrow Original hypergraph not free-connex α-acyclic

Free-connex α-Acyclicity Example 2/2

choose $\{2,5\}$
as free variables

\Longrightarrow Add the hyperedge $\{2,5\}$ to the hypergraph
\Longrightarrow There is a cycle not covered by a hyperedge
\Longrightarrow Extended hypergraph not α-acyclic
\Longrightarrow No join tree for extended hypergraph
\Longrightarrow Original hypergraph not free-connex α-acyclic
choose $\{1,2,5\}$
as free variables

Possible join tree for the extended hypergraph

Landscape of Hypergraph Types

