Efficient Algorithms for Frequently Asked Questions

4. Hypertree Decompositions

Prof. Dan Olteanu

March 14, 2022

https://lms.uzh.ch/url/RepositoryEntry/17185308706

Consider the following FAQ expression over the Boolean semiring:

 $\Phi() = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \text{Dom}(X_i)} \psi_{12}(x_1, x_2) \land \psi_{23}(x_2, x_3) \land \psi_{34}(x_3, x_4) \land \psi_{15}(x_1, x_5)$

 Φ asks whether there is a tuple (x_1, \ldots, x_5) such that $\psi_{ij}(x_i, x_j) =$ true

Consider the following FAQ expression over the Boolean semiring:

$$\Phi() = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \text{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{34}(x_3, x_4) \wedge \psi_{15}(x_1, x_5)$$

 Φ asks whether there is a tuple (x_1, \ldots, x_5) such that $\psi_{ij}(x_i, x_j) =$ true

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

Evaluation strategy known for decades under different names:

- Message passing (in Al literature; Pearl'83)
- · Semi-join reduction (in DB literature; Yannakakis'82; discussed in course)

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

 $@\psi_{34}$ Send up its x_3 -values:

$$V_{34\to 23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

 $@\psi_{34}$ Send up its x_3 -values:

$$V_{34\to 23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$

 $@\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\rightarrow 23}(x_3)$ and ψ_{23} :

$$V_{23\to 12}(x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{34\to 23}(x_3)$$

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

 $@\psi_{34}$ Send up its x_3 -values:

$$V_{34\to 23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$

 $@\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\rightarrow 23}(x_3)$ and ψ_{23} :

$$V_{23\to 12}(x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{34\to 23}(x_3)$$

 $@\psi_{15}$ Send up its x_1 -values:

$$V_{15 \to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$

Hypergraph of Φ , all edges are binary

Possible bottom-up evaluation strategy

 $@\psi_{34}$ Send up its x_3 -values:

$$V_{34\to 23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$

 $@\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\rightarrow 23}(x_3)$ and ψ_{23} :

$$V_{23\to 12}(x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{34\to 23}(x_3)$$

 $@\psi_{15}$ Send up its x_1 -values:

$$V_{15\to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$

 $@\psi_{12}$ Is there a pair (x_1, x_2) of ψ_{12} with x_1 also in $V_{15 \rightarrow 12}$ and x_2 also in $V_{23 \rightarrow 12}$?

$$\Phi() = \bigvee_{x_1, x_2} \psi_{12}(x_1, x_2) \wedge V_{15 \to 12}(x_1) \wedge V_{23 \to 12}(x_2)$$

Computation Time

Hypergraph of Φ , all edges are binary

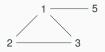
Possible bottom-up evaluation strategy

All computation steps are local and their cost upper bounded by the factor sizes

- Typical assumption: $|\psi_{ij}| \leq N$ for some value N
- We pass along at most N values between factors
- · Local computation is just filtering local values with incoming values
- · Overall: linear computation time This is the best in worst case

Now, consider a slightly different FAQ Φ' : Same as Φ but $X_4 = X_1$

$$\Phi'() = \bigvee_{x_1, x_2, x_3, x_5} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{13}(x_1, x_3) \wedge \psi_{15}(x_1, x_5)$$

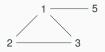


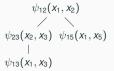
Hypergraph of Φ' , all edges are binary

Possible bottom-up evaluation strategy

Now, consider a slightly different FAQ Φ' : Same as Φ but $X_4 = X_1$

$$\Phi'() = \bigvee_{x_1, x_2, x_3, x_5} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{13}(x_1, x_3) \wedge \psi_{15}(x_1, x_5)$$



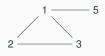


Hypergraph of Φ' , all edges are binary

Possible bottom-up evaluation strategy

Computation not anymore local!

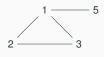
- x_1 needs to be propagated from ψ_{13} through ψ_{23} to ψ_{12}
- ψ_{23} does not have x_1 , so it receives it and forwards it further
- This incurs the cost of carrying x_1 values along two computation steps $\Rightarrow O(N^2)$ complexity (we will later learn how to do it in $O(N^{1.5})$)



$$\begin{array}{c} \psi_{12}(x_1, x_2) \\ \swarrow \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ \downarrow \\ \psi_{13}(x_1, x_3) \end{array}$$

Hypergraph of Φ' , all edges are binary

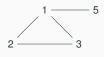
Possible bottom-up evaluation strategy



$$\begin{array}{c} \psi_{12}(x_1, x_2) \\ \swarrow \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ \downarrow \\ \psi_{13}(x_1, x_3) \end{array}$$

Hypergraph of Φ' , all edges are binary @ ψ_{13} Send up (x_1, x_3)-values: Possible bottom-up evaluation strategy

$$V_{13\to 23}(x_1, x_3) = \psi_{13}(x_1, x_3)$$



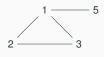
$$\begin{array}{c} \psi_{12}(x_1, x_2) \\ \swarrow \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ \downarrow \\ \psi_{13}(x_1, x_3) \end{array}$$

Hypergraph of Φ' , all edges are binary $@\psi_{13}$ Send up (x_1, x_3) -values:

$$V_{13\to 23}(x_1, x_3) = \psi_{13}(x_1, x_3)$$

 $@\psi_{23}$ Send up (x_1, x_2) if there is x_3 such that $V_{13\to 23}(x_1, x_3)$ and $\psi_{23}(x_2, x_3)$:

$$V_{23\to 12}(x_1, x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{13\to 23}(x_1, x_3)$$
 Cost: $O(N^2)$



$$\begin{array}{c} \psi_{12}(x_1, x_2) \\ \swarrow \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ \downarrow \\ \psi_{13}(x_1, x_3) \end{array}$$

Possible bottom-up evaluation strategy

Hypergraph of Φ' , all edges are binary @ ψ_{13} Send up (x_1, x_3)-values:

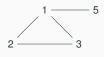
$$V_{13\to 23}(x_1, x_3) = \psi_{13}(x_1, x_3)$$

 $@\psi_{23}$ Send up (x_1, x_2) if there is x_3 such that $V_{13\to 23}(x_1, x_3)$ and $\psi_{23}(x_2, x_3)$:

$$V_{23\to 12}(x_1, x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{13\to 23}(x_1, x_3)$$
 Cost: $O(N^2)$

 $@\psi_{15}$ Send up its x_1 -values:

$$V_{15\to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$



$$\begin{array}{c} \psi_{12}(x_1, x_2) \\ \swarrow \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ \downarrow \\ \psi_{13}(x_1, x_3) \end{array}$$

Hypergraph of Φ' , all edges are binary $@\psi_{13}$ Send up (x_1, x_3) -values:

$$V_{13\to 23}(x_1, x_3) = \psi_{13}(x_1, x_3)$$

 $@\psi_{23}$ Send up (x_1, x_2) if there is x_3 such that $V_{13\to 23}(x_1, x_3)$ and $\psi_{23}(x_2, x_3)$:

$$V_{23\to 12}(x_1, x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{13\to 23}(x_1, x_3)$$
 Cost: $O(N^2)$

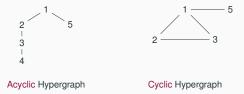
 $@\psi_{15}$ Send up its x_1 -values:

$$V_{15\to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$

 $@\psi_{12}$ Is there (x_1, x_2) in ψ_{12} and in $V_{23 \rightarrow 12}$ such that x_1 is also in $V_{15 \rightarrow 12}$?

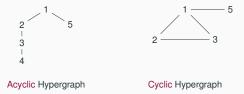
$$\Phi'() = \bigvee_{x_1, x_2} \psi_{12}(x_1, x_2) \wedge V_{15 \to 12}(x_1) \wedge V_{23 \to 12}(x_1, x_2)$$

Why is the Cost of the Second FAQ Higher than of the First One?



- Left: Only push up information of size < N that is local at factor
- · Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: O(N) vs $O(N^2)$

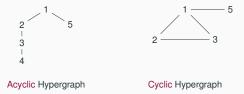
Why is the Cost of the Second FAQ Higher than of the First One?



- Left: Only push up information of size < N that is local at factor
- · Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: O(N) vs $O(N^2)$

1. Can we distinguish syntactically the acyclic from the cyclic hypergraphs?

Why is the Cost of the Second FAQ Higher than of the First One?



- Left: Only push up information of size < N that is local at factor
- · Right: Need to remember longer distance information and push it along
- The difference is reflected in the computational complexity: O(N) vs $O(N^2)$

1. Can we distinguish syntactically the acyclic from the cyclic hypergraphs?

2. Can we "transform" cyclic hypergraphs into acyclic ones?

Answer to Question 1: Acyclic Hypergraphs (Overview)

Several acyclicity notions exist. Studied in this course: α -acyclic & β -acyclic

FAQs without free variables can be computed in:

- Linear time in the size of input factors if its hypergraph is α-acyclic
 Assumption: Each factor ψ_S represented as list of tuples x_S with ψ_S(x_S) ≠ 0
- Linear time in the size of input factors if its hypergraph is β-acyclic
 Assumption: Each factor represented compactly as box, e.g., for (#)SAT

FAQs with free variables:

- In principle as above, BUT hypergraph is also free-connex
- Linear time for precomputation
- Then output the answer in constant time per tuple (enumeration delay)
- \Rightarrow Linear time in input size plus output size

Hypertree decompositions

- Transform an arbitrary hypergraph into a hypertree
- · Measure of how close the hypergraph is to a hypertree: width
- Complexity of transformation is $\mathcal{O}(N^w)$, where
 - N is the maximal size of an input factor
 - *w* is the width of the hypergraph
- Once we have a hypertree \longrightarrow see answer to Question 1

Hypertree Decompositions

A hypertree decomposition \mathcal{T} of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) with:

- T is a tree
- χ is a function mapping each node in T to a subset of $\mathcal V$ called *bag*

Properties of a decomposition $\mathcal{T} = (T, \chi)$:

- *Coverage*: $\forall e \in \mathcal{E}$, there is a node $t \in T$ such that $e \subseteq \chi(t)$
- *Connectivity*: $\forall v \in \mathcal{V} : \{t \mid t \in \mathcal{T}, v \in \chi(t)\}$ forms a connected subtree in \mathcal{T}

<u>Observation</u>: Each node $t \in T$ of the hypertree decomposition T represents the sub-hypergraph \mathcal{H}' of \mathcal{H} induced by the nodes $\chi(t)$ of \mathcal{H}

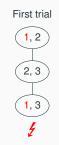
- The nodes of \mathcal{H}' are $\chi(t)$
- The hyperedges of \mathcal{H}' are \mathcal{H} 's hyperedges restricted to the nodes $\chi(t)$ of \mathcal{H}

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

Task: Construct a hypertree decomposition with one bag per edge

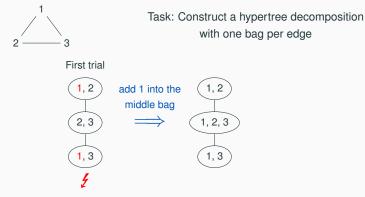
Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

Task: Construct a hypertree decomposition with one bag per edge



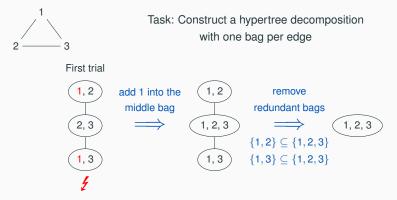
1 not included in the middle bag Connectivity violated!

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$



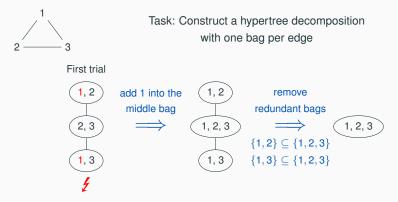
1 not included in the middle bag Connectivity violated!

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$



1 not included in the middle bag Connectivity violated!

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$



1 not included in the middle bag

Connectivity violated!

There are five other possibilities. All violate the connectivity condition.

The only hypertree decomposition without redundant bags has only one bag

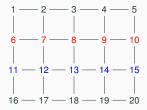
Possible hypertree decompositions

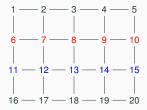
Possible hypertree decompositions

Possible hypertree decompositions

The bag $\{4,5\}$ is redundant since it is included in bag $\{3,4,5\}$.

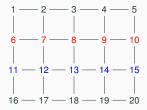
Redundant bags need not be considered as they add no extra information.





Possible hypertree decompositions

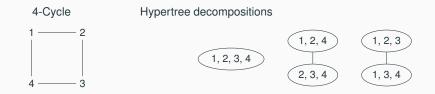




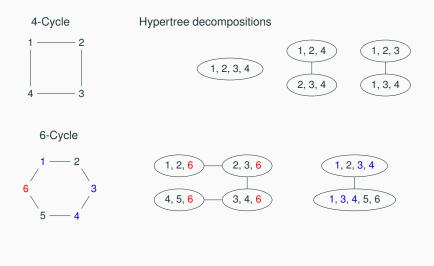
Possible hypertree decompositions



Hypertree Decompositions for 4-Cycle and 6-Cycle Hypergraphs



Hypertree Decompositions for 4-Cycle and 6-Cycle Hypergraphs



Hypertree Decompositions for Clique and Loomis-Whitney Hypergraphs

Clique of degree *n* :

Hypergraph $([n], {[n] \choose 2})$

Loomis-Whitney of degree n:

Hypergraph
$$\left([n], {[n] \choose n-1}\right)$$

Loomis-Whitney-4

Hypertree Decompositions for Clique and Loomis-Whitney Hypergraphs

Clique of degree *n* :

Hypergraph $([n], {[n] \choose 2})$

Loomis-Whitney of degree n:

Hypergraph
$$\left([n], \binom{[n]}{n-1}\right)$$

Loomis-Whitney-4

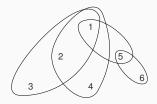
Both hypergraphs only admit the trivial decomposition with one bag

Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α -acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- · Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α -acyclic precisely when they admit join trees

Hypergraph



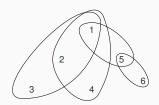
Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α -acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- · Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α -acyclic precisely when they admit join trees

Hypergraph

Possible hypertree decomposition



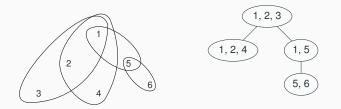
Join Trees: Hypertree Decompositions with One Bag per Hyperedge

α -acyclic hypergraphs admit hypertree decompositions with one bag per hyperdge

- · Best decompositions, as no merging of factors in a bag is necessary
- Such decompositions are called Join Trees
- Hypergraphs are α -acyclic precisely when they admit join trees

Hypergraph

Possible hypertree decomposition



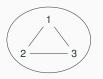
Question: Are α -acyclic precisely those hypergraphs without cycles?

Consider the FAQ:

$$\Phi() = \bigoplus_{x_1, x_2, x_3} \psi_{123}(x_1, x_2, x_3) \otimes \psi_{12}(x_1, x_2) \otimes \psi_{13}(x_1, x_3) \otimes \psi_{23}(x_2, x_3)$$

Hypergraph

Hypertree decompositions



Consider the FAQ:

$$\Phi() = \bigoplus_{x_1, x_2, x_3} \psi_{123}(x_1, x_2, x_3) \otimes \psi_{12}(x_1, x_2) \otimes \psi_{13}(x_1, x_3) \otimes \psi_{23}(x_2, x_3)$$

- Cycle formed by the factors $\psi_{12}, \psi_{13},$ and ψ_{23}
- BUT covered by the factor $\psi_{\rm 123}$
- We can evaluate Φ efficiently by absorbing each other factor into ψ_{123} $\psi_{123}(x_1, x_2, x_3) := \psi_{123}(x_1, x_2, x_3) \otimes \psi_{ij}(x_i, x_j), (i, j) \in \{(1, 2), (1, 3), (2, 3)\}$

$$\Phi() = \bigoplus_{x_1, x_2, x_3, x_4} \psi_{124}(x_1, x_2, x_4) \otimes \psi_{234}(x_2, x_3, x_4) \otimes \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{34}(x_3, x_4) \otimes \psi_{14}(x_1, x_4)$$

- Cycle formed by the factors $\psi_{12}, \psi_{23}, \psi_{34},$ and ψ_{14}
- + BUT covered by the factors $\psi_{\rm 124}$ and $\psi_{\rm 234}$
- We can evaluate Φ efficiently:
 - Absorb the factors ψ_{12} and ψ_{14} into the factor ψ_{124}
 - Absorb the factors $\psi_{\rm 23}$ and $\psi_{\rm 34}$ into the factor $\psi_{\rm 234}$
 - Multiply the factors $\psi_{\rm 124}$ and $\psi_{\rm 234}$ and aggregate away the variables

Hypergraph

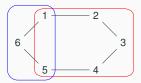
$$\Phi() = \bigoplus_{x_1, x_2, x_3, x_4} \psi_{124}(x_1, x_2, x_4) \otimes \psi_{234}(x_2, x_3, x_4) \otimes \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{34}(x_3, x_4) \otimes \psi_{14}(x_1, x_4)$$

- Cycle formed by the factors $\psi_{12}, \psi_{23}, \psi_{34},$ and ψ_{14}
- BUT covered by the factors $\psi_{\rm 124}$ and $\psi_{\rm 234}$
- We can evaluate Φ efficiently:
 - Absorb the factors ψ_{12} and ψ_{14} into the factor ψ_{124}
 - Absorb the factors $\psi_{\rm 23}$ and $\psi_{\rm 34}$ into the factor $\psi_{\rm 234}$
 - Multiply the factors $\psi_{\rm 124}$ and $\psi_{\rm 234}$ and aggregate away the variables

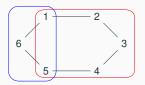
Hypergraph

Hypertree decompositions (Second is join tree)

Hypergraph

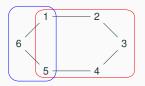


Hypergraph

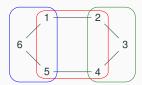


Hypertree decompositions (Join trees)

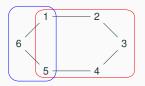
Hypergraph



Hypertree decompositions (Join trees)

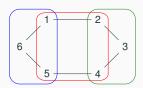


Hypergraph



Hypertree decompositions (Join trees)





The GYO (Graham, Yu, Ozsoyoglu) algorithm is used to decide α -acyclicity:

Input: Hypergraph \mathcal{H}

Output: Hypergraph obtained by repeating the following rules as long as possible:

- · Eliminate a node that is contained in only one hyperedge
- · Eliminate a hyperedge that is contained in another hyperedge

The GYO (Graham, Yu, Ozsoyoglu) algorithm is used to decide α -acyclicity:

Input: Hypergraph ${\cal H}$

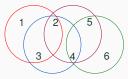
Output: Hypergraph obtained by repeating the following rules as long as possible:

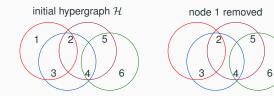
- · Eliminate a node that is contained in only one hyperedge
- Eliminate a hyperedge that is contained in another hyperedge

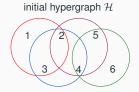
 \mathcal{H} is α -acyclic if and only if $GYO(\mathcal{H}) = (\emptyset, \{\emptyset\})$

In words: \mathcal{H} is α -acyclic if and only if the application of GYO to \mathcal{H} returns a hypergraph with no vertices and one empty hyperedge

initial hypergraph ${\cal H}$

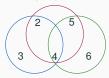


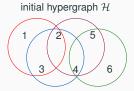




node 1 removed

edge {2,3} removed





node 1 removed

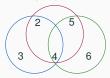
2

3

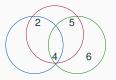
5

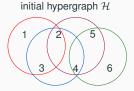
6

edge {2,3} removed



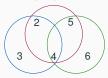
node 3 removed



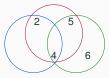


node 1 removed

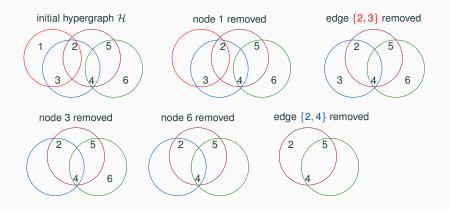
edge {2,3} removed

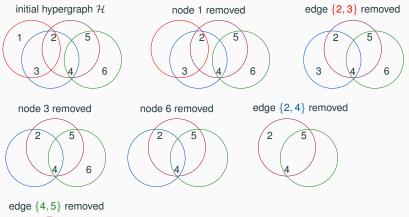


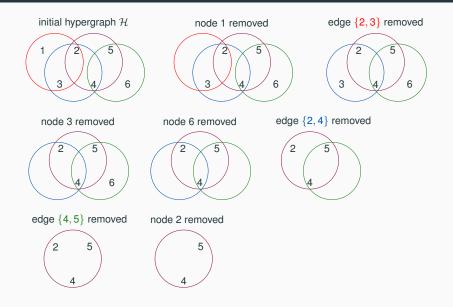
node 3 removed

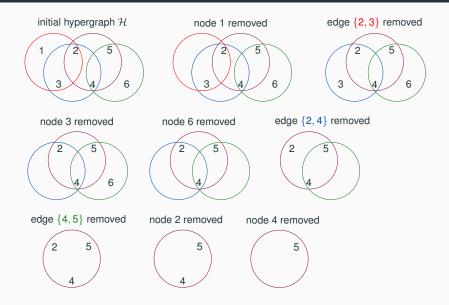


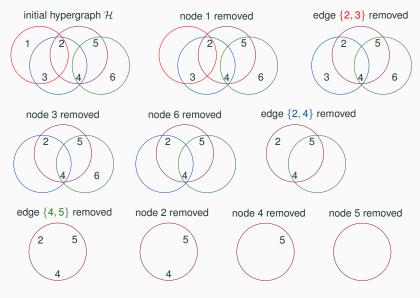
node 6 removed











 $\Longrightarrow \operatorname{GYO}(\mathcal{H}) = (\emptyset, \{\emptyset\}) \Longrightarrow \mathcal{H} \text{ is } \alpha \text{-acyclic}$

initial hypergraph ${\cal H}$

initial hypergraph ${\cal H}$

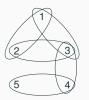
node 5 removed

initial hypergraph ${\cal H}$

node 5 removed

edge {4} removed

initial hypergraph ${\cal H}$



node 5 removed

edge {4} removed

node 4 removed

initial hypergraph ${\cal H}$

node 5 removed

edge $\{4\}$ removed

node 4 removed

edge {3} removed

initial hypergraph ${\cal H}$



node 5 removed

edge $\{4\}$ removed

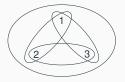
node 4 removed

edge {3} removed

no more rule applicable

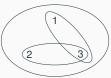
 \Longrightarrow GYO(\mathcal{H}) \neq (\emptyset , { \emptyset }) \Longrightarrow \mathcal{H} is not α -acyclic

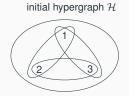
initial hypergraph ${\cal H}$



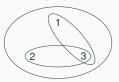
initial hypergraph \mathcal{H}

edge $\{1,2\}$ removed

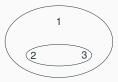


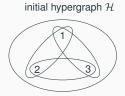


edge $\{1,2\}$ removed

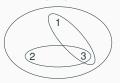


edge $\{1,3\}$ removed

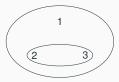




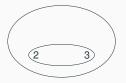
edge $\{1,2\}$ removed



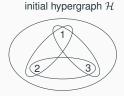
edge $\{1,3\}$ removed



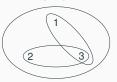
node 1 removed



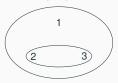
The GYO Algorithm: Example 3/3



edge $\{1,2\}$ removed

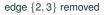


edge $\{1,3\}$ removed

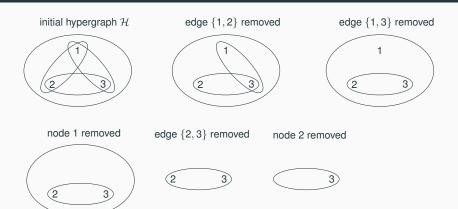


node 1 removed

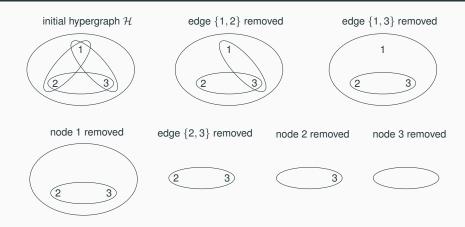
23



The GYO Algorithm: Example 3/3

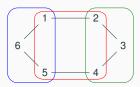


The GYO Algorithm: Example 3/3



 \Longrightarrow GYO(\mathcal{H}) = (\emptyset , { \emptyset }) \Longrightarrow \mathcal{H} is α -acyclic

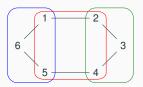
Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$



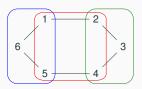
Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

Algorithm

1. Compute weighted graph for \mathcal{H}



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$



Algorithm

- 1. Compute weighted graph for \mathcal{H}
 - vertex set: $\ensuremath{\mathcal{E}}$

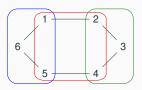
Weighted graph for \mathcal{H} :

{1,6} {1,2}

 $\{1,5,6\} \hspace{1.5cm} \{5,6\} \hspace{1.5cm} \{1,2,4,5\} \hspace{1.5cm} \{2,3\} \hspace{1.5cm} \{2,3,4\}$

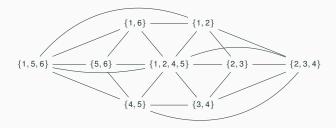
{4,5} {3,4}

Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

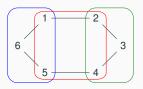


- 1. Compute weighted graph for \mathcal{H}
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$

Weighted graph for \mathcal{H} :

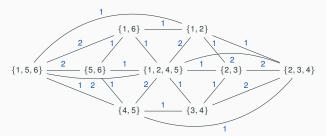


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

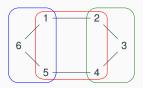


- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$

Weighted graph for \mathcal{H} :



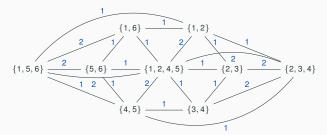
Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$



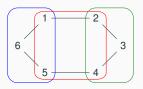
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm

Weighted graph for \mathcal{H} :

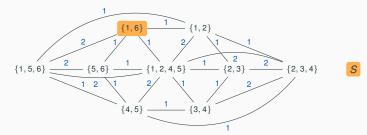


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

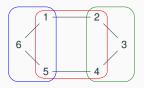


- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$

Weighted graph for \mathcal{H} :

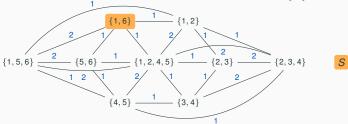


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

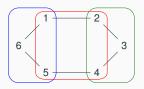


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to S ∪ {e₂}



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

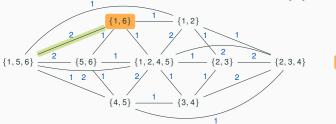


Weighted graph for \mathcal{H} :

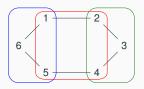
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge

S



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

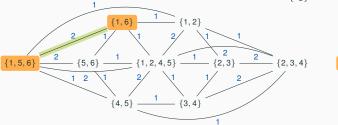


Weighted graph for \mathcal{H} :

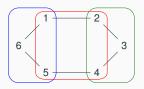
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge

S



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

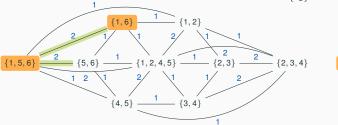


Weighted graph for \mathcal{H} :

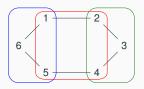
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge

S



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

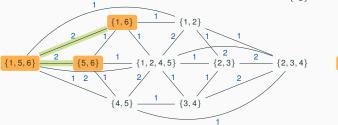


Weighted graph for \mathcal{H} :

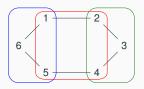
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e₁, e₂) with
 e₁ ∈ S, e₂ ∉ S with maximal weight
 - (e1, e2) becomes spanning tree edge

S



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

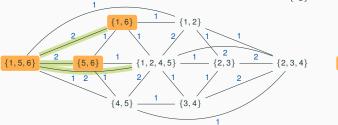


Weighted graph for \mathcal{H} :

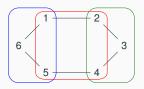
Algorithm

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge

S

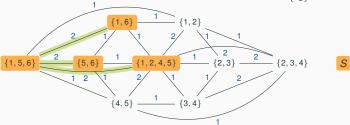


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

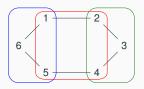


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

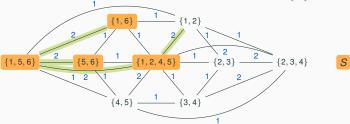


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

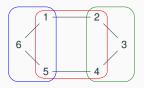


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

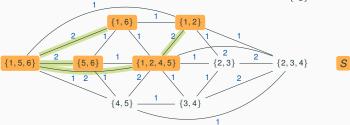


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

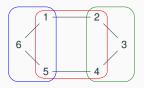


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e₁, e₂) with
 e₁ ∈ S, e₂ ∉ S with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

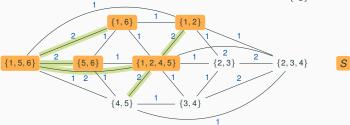


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

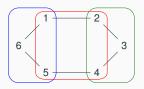


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

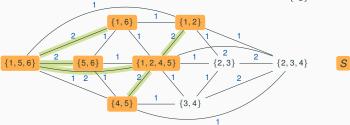


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

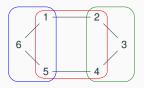


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e₁, e₂) with
 e₁ ∈ S, e₂ ∉ S with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

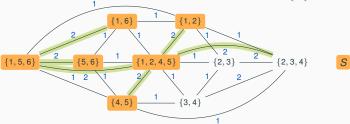


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

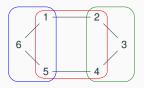


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

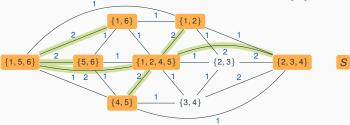


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

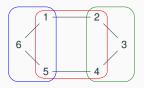


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

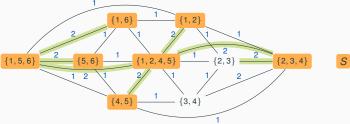


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

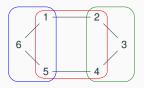


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

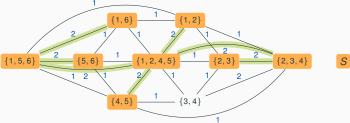


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

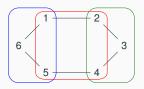


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

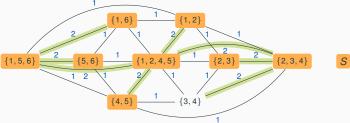


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

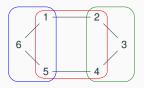


Weighted graph for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

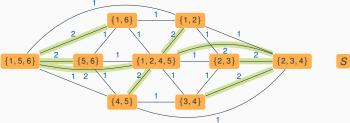


Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$

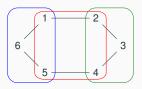


Weighted graph for \mathcal{H} :

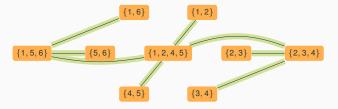
- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$



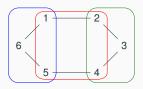
Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$



- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e₁, e₂) with
 e₁ ∈ S, e₂ ∉ S with maximal weight
 - (e1, e2) becomes spanning tree edge
 - set S to S ∪ {e₂}



Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$



Join tree for \mathcal{H} :

- 1. Compute weighted graph for ${\mathcal H}$
 - vertex set: $\ensuremath{\mathcal{E}}$
 - edge set: $\{(e_1, e_2) \in \mathcal{E}^2 \mid e_1 \cap e_2 \neq \emptyset\}$
 - weight of an edge (e_1, e_2) : $|e_1 \cap e_2|$
- 2. Compute a maximum-weight spanning tree, e.g. using Prim's Algorithm
 - Start with $S = \{e\}$ for an arbitrary $e \in \mathcal{E}$
 - While $S \neq \mathcal{E}$:
 - choose edge (e_1, e_2) with $e_1 \in S, e_2 \not\in S$ with maximal weight
 - (e_1, e_2) becomes spanning tree edge
 - set S to $S \cup \{e_2\}$

β-Acyclicity: Every Subgraph is Acyclic

 $\beta\text{-acyclicity}$ is closed under hyperedge removal, $\alpha\text{-acyclicity}$ is not closed

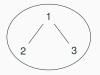
- α -acyclic hypergraphs may have cycles covered by hyperedges
 - The hypergraph without such hyperedges is not $\alpha\text{-acyclic}$
- β -acyclic hypergraphs cannot have cycles
 - Removal of any hyperedges preserves β -acyclicity

β-Acyclicity: Every Subgraph is Acyclic

 $\beta\text{-acyclicity}$ is closed under hyperedge removal, $\alpha\text{-acyclicity}$ is not closed

- α -acyclic hypergraphs may have cycles covered by hyperedges
 - The hypergraph without such hyperedges is not α -acyclic
- β -acyclic hypergraphs cannot have cycles
 - Removal of any hyperedges preserves β -acyclicity

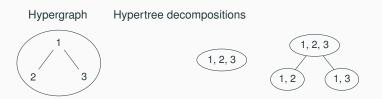
Hypergraph



β-Acyclicity: Every Subgraph is Acyclic

 $\beta\text{-acyclicity}$ is closed under hyperedge removal, $\alpha\text{-acyclicity}$ is not closed

- α -acyclic hypergraphs may have cycles covered by hyperedges
 - The hypergraph without such hyperedges is not $\alpha\text{-acyclic}$
- β -acyclic hypergraphs cannot have cycles
 - Removal of any hyperedges preserves β -acyclicity



Free-connex α -Acyclicity

- α -acyclicity is prerequisite to efficient computation
- FAQ compute time also depends on free variables X₁,..., X_f

$$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{x_{f+1}}^{(f+1)} \cdots \bigoplus_{x_n}^{(n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S)$$

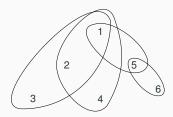
- Free-connex property: There is a join tree for the hypergraph of Φ , where
 - All free variables [f] appear in nodes that form a connected subtree
 - Each bound variable either occurs in nodes without free variables or only in one node with free variables
 - ightarrow All bound variables can be aggregated away in linear time

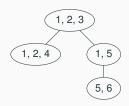
When is an FAQ with hypergraph \mathcal{H} and free variables [f] free-connex α -acyclic?

 \mathcal{H} remains α -acyclic even after adding the hyperedge [f] over the free variables

 α -acyclic hypergraph \mathcal{H}

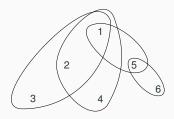
Possible join tree for ${\cal H}$



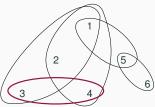


 α -acyclic hypergraph \mathcal{H}

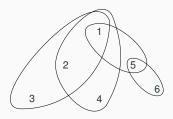
Possible join tree for ${\cal H}$



choose {3,4} as free variables



 α -acyclic hypergraph \mathcal{H}

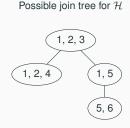


choose $\{3, 4\}$ as free variables

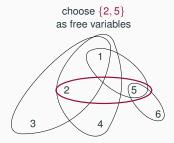
2

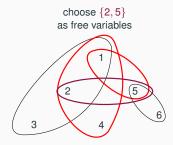
5

6

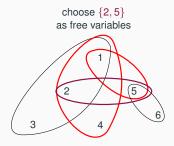


- \implies Add the hyperedge $\{3,4\}$ to the hypergraph
 - \Longrightarrow There is a cycle not covered by a hyperedge
 - \implies Extended hypergraph not α -acyclic
 - \Longrightarrow No join tree for extended hypergraph
 - \implies Original hypergraph not free-connex α -acyclic

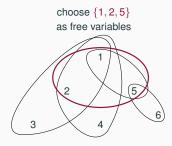


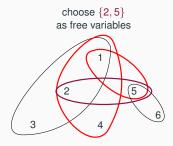


- \Longrightarrow Add the hyperedge $\{2,5\}$ to the hypergraph
- \implies There is a cycle not covered by a hyperedge
- \implies Extended hypergraph not α -acyclic
- \implies No join tree for extended hypergraph
- \implies Original hypergraph not free-connex α -acyclic

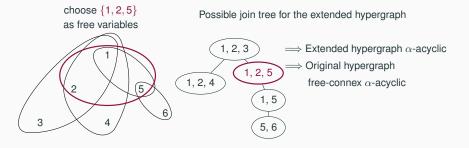


- \Longrightarrow Add the hyperedge $\{2,5\}$ to the hypergraph
- \Longrightarrow There is a cycle not covered by a hyperedge
- \implies Extended hypergraph not α -acyclic
- \implies No join tree for extended hypergraph
- \implies Original hypergraph not free-connex α -acyclic





- \implies Add the hyperedge $\{2,5\}$ to the hypergraph
- \implies There is a cycle not covered by a hyperedge
- \implies Extended hypergraph not α -acyclic
- \implies No join tree for extended hypergraph
- \implies Original hypergraph not free-connex α -acyclic



Landscape of Hypergraph Types

