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1 Introduction

In the past years, micro aerial vehicles (MAVs) stronglyngal in autonomy. This was motivated
through the very wide field of applications for these littlatforms. Commonly associated key-
words are: search and rescue, exploration, surveillamp&udture and inspection. Research in
the field of aerial vehicles evolved incredibly fast. Today\X4 are able to autonomously take
off, land, hover and follow a path using one single camerha®hly exteroceptive sensor [1].

Medium scale aerial vehicles usually have a lot of paylodtkyTcan carry highly accurate
and sophisticated sensors such as long range laser scamigérperformance inertial sensors
and a lot of computation power. In this paper, we focus on l@igit MAVs (around 500g). This
implies many restrictions on the sensor suite one can mauihe vehicle. Also, computation
power is so critical that until today almost all solutionsedea ground station for off-platform
computing. These two main restrictions - sensors and caatipatpower - will stand in the
center of the future research of the community.

Our concern in this contribution lies in the exploitationtbé on board sensors. Our aim is
to use only one exteroceptive low cost and low weight sermoalf tasks: one omnidirectional
camera. In our case, the camera is already used for thedatiati and stabilization of the vehicle.
We use a visual SLAM framework [2] as a base for the visual getion. Having the SLAM
position estimate as controller input we are able to autangty take off, land and follow paths
using only one single camera [1].

Usually (visual) SLAM algorithms manage a map built out offpdeatures. The point cloud
of such a map is neither for a human user nor for standard paitimipg and obstacle avoidance
algorithms of great use. It is thus highly desirable to hawverduitive 3D map instead of an
illegible point cloud. Also, this map shall be available argtiated while the SLAM is running
(i.e. the MAV is flying) in real-time.

We use now the same camera we use for the visual SLAM frametwalso reconstruct in
real-time a textured 3D mesh of the environment for efficeqtloration. In this textured mesh
we can also recognize obstacles and avoid them using sthobatacle avoidance routines and
path planners in 3D. Moreover, the texture on the mesh mapheaysed to facilitate interac-
tion with human operators. Thanks to the texture the opefr&e a good understanding of the
environment.

Note that for localization and stabilization of the vehgcleften a GPS sensor is used for
outdoor scenarios. Even though GPS sensors are lightwasightheir data easily is processable,
we do not rely on this sensor type. We aim at a system able t@tpmdoor and outdoor. Thus
GPS is not an option. Also, GPS signals are highly distoriedtban environments and yield thus
false measurements.

The paper is organized as follows. In section 2 we comparevouk to the current state of
the art. In section 3 we review shortly the framework we aiagifor the feature extraction and
matching. Section 4 is dedicated to the mesh reconstruetiohto the texturing of the mesh.
Then, in section 5, we show the results of the framework wk fariefficient unmanned terrain
exploration. We also shed light to how to use the mesh forofarhous) obstacle avoidance.
Finally we conclude the paper in section 6.



2 Related Work

Map generation in 3D is a well known problem and solutiony waer a large field. The reason

of this huge variation in representing and calculating a tiepin the various different needs of

every application. To our knowledge the real-time dense 2P neconstruction presented here
on low weight MAVs for unknown mid scale GPS denied environteas the first of its kind.

Already in a very early work A. Elfes described the use of @ancy grids for mobile robots

[3]. The author characterized sonar sensors to build anpaery grid using a ground robot. The
idea of occupancy grids is until today wide spread. Recesult® are published by Zask [4].
The authors use a 3D occupancy grid to accurately model tieoeament including obstacles.
The approach uses SIFT features and I1SO surfaces to obtaiatléer free and smooth surface.
The authors claim that the approach runs in real time andpicajple to any other features.
However, they do not discuss the influence of outliers. Megedhe grid has to be manually
initialized in order to fit the scene which shall be mappedrduruntime. A general issue with
occupancy grids is the memory cost. The higher the resolutie more storage is required.
This becomes critical in outdoor scenarios and in 3D mapswdd this problem, our approach
uses only the point features generated by the visual SLANrékgn. This automatically ensures
detailed structure on texture rich surfaces (i.e. whereetingronment changes) and assumes
larger planes on texture-less areas. Thus, the recoristiuturally adapts the degree of details
to its environment.

A dense mapping approach is to use stereo vision. Nowadagie/aee implementations are
capable of building a disparity map in real time. Chen and Xu
[5] used stereo vision to build a 3D map in real time on an autwous land vehicle. They
use again a 3D occupancy grid and GPS information to builcbballly consistent map. Early
research of Lacroix [6] presents a method to build fine ragmiudigital terrain maps on the basis
of a set of low altitude aerial stereo vision images. Theyomatterest points between successive
images to map a large outdoor scenario in fine resolution.riéye generation is done offline.
Dense stereo vision has also been used for pure obstaclgidets [7]. The authors did not
imply the 3D mapping. A general issue with stereo vision & tihe stereo effect vanishes the
shorter the base line gets with respect to the scene deptis. Wé rely on a monocular solution
in which the appropriate base line is provided by the key&drased SLAM framework.

Laser scanners are often used to acquire a very reliableunsgasnt of the environment to
match afterwards the corresponding texture from imagesedaser scan point cloud. Biber [8]
demonstrated this technique for a 3DTV application. Alsiefel et al. showed in [9] how to
solve the problem of underpassings and vertical struciarésge outdoor environments using
multi level surface maps and a SICK laser scanner on a grabad.i_aser scanners are, however,
not an option for MAVs considering the weight and power budgkee same drawbacks also limit
developments using range image cameras [10]. The authonsdgtailed 3D maps which make
these sensors a valid option on high payload vehicles. lcasg weight and power consumption
discard this branch of solutions.

The computer vision community proved the accuracy of 3D metraction by only using
one camera. They apply Structure from Motion (SfM) to mergiitnt camera views to one
3D scenario. However, computational cost is the limitingtda Paalanen et al. [11] select two
image frames out of a monocular SLAM sequence to build a detleseo map. First tests showed
encouraging results for this kind of dense 3D reconstractithe algorithm needs, however,
improvement in its accuracy and is not yet running in reaét{ivut close to it). To our knowledge,
SfM needs still a lot of research to use it in real time for MASAigation and mapping. Simplified
approaches make use of a known model of the environment. Kesap in [12] lines in the
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Fig. 1 Multi Level Surface Map: This technique handles well large¢adsets and vertical structures. Here
an underpassing is correctly modeled whereas a simpletielevaap would have closed the pass-through.
(Courtesy of Triebel et al. [9])

Fig. 2 Screenshot of Klein’s visual SLAM algorithm. On the leftetiracking of the FAST corners can be

observed. This is used for the localization of the cameraedisas for the reconstruction of the 3D mesh map.
In the middle, the 3D point map that was built by the mappingad is shown. The 3-axis coordinate frames
represent the location where new keyframes where addedrigtitepicture shows our airborne vehicle (a

Hummingbird from Ascending Technologies) in hovering state. The dosaking camera is mounted on the

vehicle’s bottom. All three images were taken at same time.

environment to control an MAV. For unknown terrain expldasatthe knowledge of a model is,
however, rarely given.

Our here presented approach is new in several aspects. \Aklate reconstruct a dense map
in real-time purely based on a visual input from one singlmea. With a weight of only 12g
the camera is probably the lightest map building devicelabkd. We ensure low computational
cost by using the same features for building the dense 3D md@rdhe visual navigation and
control. The computational expensive features are onlypeed once. Our mesh based approach
can handle very sparse features for a dense textured 3D rmagsh m

3 Framework

3.1 Description of the Visual SLAM Algorithm

The approach presented here uses the visual SLAM algorithitretn and Murray [2] in order
to localize the MAV and build a dense 3D map with a single cameee Fig. 2). Note that

the authors of [2] state that the framework is only suitalolesmall-scale environments. Our
approach relies thus only on the local environment ratham tn the consistency of the global



map. For visual based navigation, exploration and obstadédance it is indeed sufficient to
have only locally a consistent map. We will discuss this fatgr in section 5.

In summary, Klein and Murray split the simultaneous locatiian and mapping task into two
separately scheduled threads: the tracking thread andapping thread. The tracking thread is
first of all responsible for the tracking of salient featurethe camera image, i.e., it compares the
extracted point features with the stored map and therebynats to determine the position of the
camera. This is done with the following steps: first, a simmpttion model is applied to predict
the new pose of the camera. Then the stored map points aecfadjinto the camera frame and
corresponding features (FAST corners in this case) arelsedr This is also referred to as the
data association procedure. When this is done, the algorifines the orientation and position of
the camera such that the total error between the observatfpatures and the projection of the
map points into the actual frame is minimized. The Mappingdld uses a subset of all camera
images - also called keyframes - to build a 3D point map of tiveosindings. The keyframes
are selected using some heuristic criteria. After adding@wa keyframe, a batch optimization
is applied to the joint state of map points and keyframe poBkis attempts to minimize the
total error between projected map points and the correspgrabservations in the keyframes.
In the computer vision community, this procedure is alsemef to as bundle adjustment. It is
alternately applied to the global or to a local set of map fsoamd keyframes. There are several
important differences between the SLAM algorithm consdenere and the standard approach
(for example by Davison et al. [13] . First of all Kleins algbm does not use any Extended
Kalman Filer based state estimation and does not consigeuarazertainties, be it for the pose
of the camera or for the location of the features. This savied af computational effort that
would occur with the processing of the corresponding datms@lering the uncertainty of the
state could ease the data association process and engeieldep closing. The lack of modeling
uncertainties, however, is compensated by using a vastr@trobfeatures and the local and global
batch optimization. Therefore, despite using a fixed areteftiure matches, the algorithm is still
able to track efficiently the point features and to close fm#&ops. This makes the algorithm
fast and the map very accurate.

3.2 Analysis of the SLAM Algorithm

The main advantage of the thread splitting lies therein liadih the mapping and the tracking
thread can run at different frequencies. Thus, the mapireat is able to apply a much more
powerful and time-consuming algorithm to build its map. Sltaneously, the tracking thread
can estimate the camera pose at a higher frequency. Thisttoagly improve the performance.
Compared to frame-by-frame SLAM, the algorithm of Klein etsaves a lot of computational
effort in that it does not process every single image. Raeity when using a camera with a
wide field of view, consecutive images often contain a lotedundant information. In addi-
tion, for example, when the camera is moving very slowly ot stays at the same position, the
mapping thread does rarely evaluate the images and redghiresonly very little power. This
is the main reason why we chose this SLAM algorithm. When mgpvhe helicopter through a
region, our camera is facing downwards. This increasesuedapping image portion of neigh-
boring keyframes, so that we can even further loosen thadtiesrfor adding keyframes to the
map. In addition, once the MAV has explored a certain regmmnmore new keyframes will be
added within the region boundaries. The computation timearas thus constant. On the other
hand, when exploring new areas the global bundle adjustozenive very expensive, limiting the
number of keyframes to a few hundred on our platform (arouhrd@ m2, depending on the
keyframe heuristics). Another strength of the SLAM aldumitis its robustness against partial



camera occlusion. If a sufficient part (around 50%) of thenpfgatures can still be tracked the
pose estimate is accurate enough to sustain stable MAVatohtraddition, the algorithm will
avoid adding any keyframes in such a situation so as not twjgbthe map. An intricate hur-
dle when using a monocular camera is the lack of any depthnEton. Because of that, the
algorithm must initialize new points based on the obseowatifrom more than one keyframe.
This could motivate the use of a stereo camera. However,dterao camera to bring any further
advantage, the observed scene must be within some range efetteo camera, otherwise the
setup will degenerate to the same performance as a singkeraa@losely linked to this problem
is the unobservability of the map scale, to tackle this wef@med to estimate the map scale by
hand and pass it manually to the controller. On-board iigad-tcale estimation is subject to our
current research.

3.3 Adaptations to the SLAM Algorithm

We adapt some parameters of Klein’s visual SLAM algorithrmtwease its performance within
our framework. First, we use a more conservative keyfrafeeseg heuristic in order to decrease
the number of keyframes added during map expansion. Therebgre able to map much larger
areas before reaching the computational limit. Additignale reduce the number of points being
tracked by the tracking thread from 1000 to 200. This agaireiases the maximal map size and
the frame rate, while keeping the accurate tracking quality the robustness against occlusion.
This leads to a very sparse information for the 3D mesh mapebher, our tests show still very
satisfying results underlining the strength of our apphotor dense textured 3D mesh maps.
To increase the autonomy of the system we write a routinecdratstore and load maps. With
this, we are able to overcome the initialization of the mapraduwhich no position estimate is
available. It provides the possibility to start the helim@drom a small known patch and to skip
the initialization process. Later the loaded map of the patn be expanded by exploring the
environment.

3.4 Implementation of a Visual SLAM Based Controller

In previous work [1] we implemented the above described SL#é&mework in a LQG/LTR
controller for autonomous visual based navigation. We ubkedhose estimation of the SLAM
algorithm as input to the controller. This way, we are ablake off, land and hover. Moving the
hovering set point step by step also allows set point folhgai.e. trajectory following). Figure
3 shows a path flown by the MAV completely autonomously in afoor environment. We will
implement our real-time map generation in the same framev@riginally the framework only
has the sparse 3D point features as a map. We will extentrthieei present work to a textured
3D mesh. This step makes efficient terrain exploration jptessi such as it is often desirable
in disaster areas. By avoiding the MAV flying through the mashhave as well an efficient
possibility of autonomous obstacle avoidance.

4 3D Map Generation
In section 3 we described our framework from previous workcilenables us to fly an MAV

autonomously in unknown terrain. In this section we focushengeneration of the real-time 3D
map. We will first describe the algorithms to build the meshtfie 3D map. Then we highlight
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Fig. 3 Path that the helicopter has flown. This does not represeningrtruth, it is the pose estimation of
the SLAM algorithm. However the attitude of the helicoptendie observed while successfully flying a
rectangular loop and landing on the ground. The RMS valuaepbsition error is 9.95 cm in X, 7.48 cm in
y and 4.23 cm in z. The path has a total length of a little bitertban 10 m in an area of 3.5x2x3m

the texturing procedure and our technique to always havhitiest resolution texture available
on any given mesh triangle.

4.1 3D Mesh Generation from a Point Cloud

Feature extraction and matching have a very high computticost. Hence visual SLAM al-
gorithms typically use as few features as possible. On timraxy, this is unsuitable for 3D
reconstruction. In our approach we show that one can useathe gformation for the SLAM
task as for the 3D reconstruction of the map and thus one sansignificant processing time.
This way the features have only to be extracted and matchesifonboth tasks.

In Figure 4 a sample scene is depicted. For simpler undelisigjimve will refer to this scene
throughout this section. Note that it is a small scale sckoegever, due to our monocular ap-
proach, all techniques and algorithms applied to this seeaegerfectly scalable. That is, huge
terrain captured from far away looks identical to a smaliaier captured from very close - i.e.
the images and thus the map are scale invariant. We will showalgorithms in section 5 in
a mid scale indoor environment. Figure 4(b) shows the in&tiom available in a keyframe of
the SLAM algorithm. The 3D point features can be projectetheo2D image plane in order to
extract the desired texture.

The first step to generate the textured 3D map is to transfoerpoint cloud into a 3D mesh.
Assume the point cloudp;} with M 3D pointsp; representing the initial map constructed by
the visual SLAM algorithm in the start phase. Without anytniegons to the terrain to explore
later on we assume the start area to be relatively flat andettial aehicle in hover mode. The
main map planél is found using a least square method{pn} or a RANSAC algorithm. In our
case the latter one is used to be more robust against ouflieisis done in the given SLAM
framework. All current and future map points are projectedhis main plane to reduce the
dimensionality:

ri=Pxp; (Y

wherep; is a three dimensional point of the current map anid its two dimensional coun-
terpart projected to the main map pladeising the 2x3 projection matriR. Note thatH usually
corresponds to a physical plane in the scene (i.e. table @) flBurthermore, as the camera is
down looking on a helicopter this plane usually is only sliginclinated to the xy-plane in the
camera frame. Thus the two dimensional positions of theifeat; are accurate while the third
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Fig. 4 a) Sample image of the scene mapped for the following iltisin of the algorithm in this section.
The sheets in front of the keyboard are flat and represent &ie planeH whereas the keyboard has a soft
inclination in depth towards the upper part of the image.d®r@ with 3D point features. This represents the
data available in a keyframe of the visual SLAM algorithmcBarojecting a 3D triangle of the meshed map
allows getting the texture for the triangle in question. &lthtat this is the distorted image while for texturing
the mesh we use the undistorted one.

(eliminated by the projection) is very noisy due to the dep@mgulation of the visual SLAM
algorithm.

After the projection a Delaunay Triangulation is run in 2Dasp to generate a 2D mesh.
We use a Sweep algorithm for the triangulation to keep catmr power low. For the Sweep
triangulation, calculation is in the order @f(nlogn) compared to the standard algorithm with
o(n?).

The 3D point cloud of the scene is depicted in Figure 5. Onenct@ the difficulty even a
trained eye has to interpret the scene. Standard path ptaanid obstacle avoidance algorithms
cannot be used. In Figure 6 the generated mesh is shown.tAé&&elaunay Triangulation in 2D
space we add again the third dimension. As equation (1) isweitible (P is not a square matrix
and we therefore have ambiguities in the back projectionpmlg use the edge information of
the Delaunay Triangulation. That is if an edge in the 2D De#suTriangulation is defined by

dog =Tifj @)

we map it to an edge in 3D space according to

daq = PiP} ©)
with ry = P pyx andk € map. This initial 3D mesh is then median filtered in the third
coordinate to remove outliers and noise. The median vakeddsilated using all adjacent vertices
to the center vertex. That is

Pz = mediar{pVpz € dzq = PkPi) (4)
wherepz; denotes the third coordinate of the 3D pomtpreviously eliminated for the De-
launay Triangulation.

At this point standard path planning and obstacle avoidaigarithms could be applied for
enhanced autonomous navigation. The most simple rule f&raole avoidance is to not traverse
the mesh. That is, if the airborne vehicle always stays orséime side of the mesh it will not
crash against an obstacle. Note that thanks to the spassehése point features this rule is
highly robust, however, may be too restrictive in some palér cases. We will discuss this issue
in section 5.
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Fig.5 The 3D point cloud of the sample scene. A trained eye can bpgidpers and the keyboard. However,
usually neither human users nor standard path planning bsthde avoidance algorithms understand the

point cloud

Fig. 6 Applying Delaunay Triangulation to the point cloud revetls real topology of the scene. The ’hill’
represents the keyboard in the sample scene. Note that Wedgmedian filter to the mesh vertices in order
to eliminate outliers. Thus the 3D points may not always hetlee grid. This grid is already sufficient for

path planning and obstacle avoidance.
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4.2 Texturing the 3D Mesh Map

For the user it is important to further augment the map. Onity further map information (i.e.
texture) he can spot areas of interest. This is of great udesaster areas where the MAV au-
tonomously explores the environment - using for exampleapproach in [1] . A user can then
send the MAV to an area of interest to gather even more ddtmifermation.

The projection of the texture to the mesh can be divided imteet steps. First we augment
each keyframe data with the undistorted image. Second veethakthree points of a 3D triangle
of the mesh and project them onto the normalized image pibaeecific keyframe. The texture
of this projected triangle is taken and back-projected &3b mesh triangle.

We constrain the size of the undistorted image to be definedsquare. Note that undis-
torting a wide angle of view image will result in a star likeagle with undefined values along
the bounding box edges. These undefined parts cause issuessiéd by a connecting edge of 2
projected 3D points. Figure 7 illustrates the issue. Cairsitrg the image size has also the effect,
that we limit calculation power to only the necessary pixAldapting the resolution of the image
in the normalized plane allows further control also on thenoey budget.

Fig. 7 a) Distorted image taken by a wide angle of view lens. b) Undisd counterpart. The values in the
black areas are not defined. We only store the part in the negfsdn the keyframe as the texture triangle in
green would cause issues in the back projection to the méshrigsy of Becker)

More formally the texture patch of each keyframe is caladatsing

SPRS

where(x,y) are the normalized image coordinates in the 1 plane of the camera frame
satisfying the condition to be in the red square depicteddnre 7(b).(u,v) are the pixel coordi-
nates in the distorted camera image &nid the intrinsic camera matrix of the calibrated camera.
We use the simple nearest neighbor for pixel interpolaticthé normalized image plane. For the
projection of the 3D triangle vertices to the normalized gaglane and the back-projection of
the texture triangle in the undistorted image back to the ZBmwe use

X X
q=|y|=Qx|Y (6)
1 Z

where (x,y) are the normalized coordinates, (X,Y,Z) the 3D point couatks and Q the
projection matrix obtained from the keyframe pose.
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Since each keyframe has only stored one viewpoint we cheackéoh triangle in which
keyframe all three vertices of the triangle in question asgble. We select the keyframe in
which the vertices are furthest apart of each other whilelsting in the keyframe image (i.e.
we select the keyframe closest to the selected triangle$. difows maximal resolution for the
texture projection and thus most information for the user.

Figure 8 shows two versions of the final textured 3D mesh. guie 8(a) we used a low
resolution undistorted image in order to save memory wiseiredigure 8(b) we doubled the
resolution. Note that higher resolution only affects thenwoey as for each key frame one has to
store this undistorted image. It does barely affect spestksindistorting and saving the image
only takes place once a key frame is created.

(b)

Fig. 8 a) Textured 3D mesh of the sample scene. The keyboard andspgadeont of it are clearly visible,
even though not legible as the resolution of the undistarteje has been chosen low. b) Higher resolution
was chosen here for the undistorted image in each key frawte. tNat the keys of the keyboard are clearly
legible.

To visualize better that the textured map is constructedobseveral triangles we varied
the camera gain and forced the algorithm to take key framéshwdre closer and further away
to reconstruct adjacent triangles. Figure 9 shows a clpsefihe sample scene. Observe that
adjacent triangles were taken from different keyframe siith different gain and from different
distances (thus the resolution is lower or/and the texsidarker in some triangles). The texture,
however, is still very good aligned and shows thus the rotasst of the algorithm.

Finally, Figure 10 shows the depth profile achieved by ourhmet The keyboard is accu-
rately modeled with the 3D mesh and the texture gives the ins®ediately a detailed under-
standing of the whole 3D scene. Note also that some outlenr® (in the flat part in front of the
keyboard) persist despite the median filtering.

Outliers in the map give the user a wrong impression of th@est¢epology and - more
important - let path planners and obstacle avoidance feyftémes are added according to the
distance to the objects and the map is updated and refinedlitime. The closer the camera is
to the object the smaller is the baseline between (newlydddeyframes. This leads to a more
precise map estimation for objects close to the vehiclet Bh# the aerial vehicle approaches
the mesh outliers will be less probable and eventually vao@mnpletely thanks to our median
filtering. Path planners may thus not always find the showtagtto goals further away, however,
obstacle avoidance is always granted to work fine.
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Fig. 9 Close-up of the sample scene. Note the different gains atandies enforced on the key frames taken
for the reconstruction. It shows that even taken the adjesmurce triangles from different key frame views
the texture is well aligned.

Fig. 10 Side view of the sample scene. Observe the accurate depth 8t textured mesh showing in detail
the profile of the keyboard

5 Results on Unmanned Exploration and Obstacle Avoidance

In the previous sections we described our approach to baildtaitive 3D textured mesh map

based on a point cloud from a monoSLAM framework. For illastn purpose we used a hand
held camera and a small sample scene. We can extend our elpgrom the sample scene di-
rectly to a larger environment as a single camera is nottaifielsy scale. Note however that the
algorithm is limited in size of the scene wrt. the number @ftiees as the visual SLAM frame-

work is limited to a finite number of point features and keynies. We use our visual controller
framework to guide an MAV in order to explore the scene whileiding obstacles.
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5.1 Indoor Scenario

Ourindoor test arena is depicted in Figure 5.1. Note that¢hespapers provide both features and
a feedback of the texturing performance of the algorithmc@irse a visual approach without
features will fail. We expanded our visual control framekvdescribed in section 3 so that we
can set new waypoints at runtime (i.e. while the MAV is flyings an aerial vehicle we use
the quadcopter Hummingbird from Ascending Technologiesmed with a 150 degree fisheye
lens on a uEye camera with WVGA resolution and global shufiera test and demonstration
sequence we started the MAV on the table to explore the arégedtoor to the right of the table.
The intuitive 3D mapping ensures that we never hit the boofi¢he table while descending to
the floor and ascending to return to the starting positiorhertable.

Fig. 11 Test arena for our MAV. As test sequence we stared on the &alolélew to the right. As soon as the
textured 3D mesh map indicated us that it is safe to descemdt(at we do not hit the table) we approached
the floor to get a higher resolution of the floor for the map eAfive ascended and returned to the starting
position on the table always using the information of theitiie 3D map.

We performed the described sequence several times andesiectt® nearly 100%. Failures
occurred very rarely and only on low batteries and commuiaicdink losses or security cord
entangling. In Figure 12 we show a sample sequence of a mpsesee. The left part of the left
images (i.e. camera view) is shown in the bottom left parhmright images (i.e. textured 3D
mesh map). In Figure 12(a) the initial map is shown. Note thatterrain is not yet accurate
and the slope between table and floor is not steep enoughisTéiige to lack of 3D points. As
we explore the area in Figure 12(b) the map improves and tile-flor step gets more and
more accurate. The user can navigate the white ball in thetmapt a new waypoint for the
helicopter. In Figure 12(c) we safely navigated the MAV belbe table level near to the floor.
Note that the map got more extended and more detailed thartks keyframe texture selection
procedure described in section 4. Observe also the diffeseim figures 12(c) and 12(d). While
returning, more keyframes were added and allowed thus erbrefiresentation of the map. The
small corrections can be seen in particular around the eafgie® newspapers on the floor. On



14

the last Figure in the sequence one can also see that thelased phe next waypoint just on the
table which allows a safe landing.

In these test sequences the user always sets one waypeirthafother on runtime. It is easy
to implement standard obstacle avoidance and path plambgagithm since the only informa-
tion needed is the mesh surface location with respect toghi&hes location. Both information
is available, the latter by the visual SLAM framework and tbimer by our real time map gen-
eration algorithm. A valid path for the MAV is thus one thaedmot traverse the mesh. This is,
the MAV must stay on the same side of the mesh as it startednduatous exploration will then
consist of flying towards the map borders close to the medhifor higher resolution of the
map.

5.2 Outdoor Scenario

For the outdoor scenario we flew the helicopter through alsriflaige in wintertime. This shows
that even if for the human eye a (snowy) scene may look selitai, visual approaches rarely
lack on features outdoors. Also note again the scalabifiguo approach. We started at the desk
scene, performed indoor tests of a few meters and apply it aaoors over more than 100
meters. We used the same camera as for the indoor sequencgsahbged the platform to the
Ascending Technology’s quadcopter Pelican. Figure 13 shibeflight path through the village.
We flew and mapped a path of over 100 meters at a variable fligighh between 5 and 10
meters. We will pay particular attention to the one house taedcreek labeled in the Figure.
They show on one hand the high accuracy of the 3D map and orttiee ftand also limitations
of our texturing heuristics.

In Figure 14 the start of the mapping sequence is shown. Eondiman eye the scene may
look self similar, however, the vision algorithm easily fnal sufficient amount of stable salient
features. The camera path is plotted as faint triangles emigfint side of the Figure in the 3D
map view. Note also the house in the camera view, it is theéntalseled in Figure 13.

In Figure 15 an overview of the first half of the total path i®wh. As seen in the camera
view in the Figure, the helicopter’s current position istjafter the junction near the bridge.
Observe also the grid lines appearing along the creek, rtisates that the creek’s height wrt.
the rest of the surface is modeled correctly.

In Figure 16 and 17 we examine the 3D modeling and texturiryiracy. On the snow
covered house in Figure 16 there were not many featurescéedrfor the map. In particular the
helicopter did not fly around the house but passed it at a Highde. We have thus most features
on the white roof. This explains why the house is modeled asitevhill rather than as a real
house. This situation is explained in more detail in secii@and Figure 18. Nevertheless, width,
length and height of the house are meshed correctly in theeteative manner as described
in earlier. The creek shown in detail in Figure 17 is less ocedevith snow and has a concave
structure in the non-neglected directions. That is, maagufes have been found and the structure
is not prone to texturing errors. Hence the 3D model of theelces well as the texture reflect the
reality with a very high accuracy.

5.3 Limitation
The above test sequence shows both the strengths and weekioésur approach. The strength

of our approach is that it works in real time and the map cas bHeuadjusted while exploring the
environment. Rough terrain estimations are adjusted apdoved gradually always keeping a
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i)

SiEx &

(c) Map is refined the more we move

Eilicieallirs) =iy

7, 23KF _Camera pos 0284 1002 03447

(d) Landing on table (white ball) after successful expliorat

Fig. 12 The images show a typical test run to explore an unknown @mvient. Left: camera view. Right:
online reconstructed textured 3D mesh map. One observesfthement of the step between table and floor
the more we move and the more information we have about tmewdings. Note that the transition from
the table to the ground is imprecise in the first steps of thienation. However, it is always conservative
such that the vehicle does not crash as long as not travetengesh. Here, the waypoints are set manually
at runtime. However, it is perfectly possible to use any mddinning and obstacle avoidance algorithm since
all information about the mesh is available.
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Fig. 13 Outdoor flight path through the small village. Note the ladgbositions for easier understanding of
the following figures. The path length is over 100m and thénfllgeight varies between 5 and 10m [Google
Maps]

am view

Fig. 14 Start of the mapping sequence. Observe that for the humatheyseene appears fairly self similar.
However, due to the strength of (also faint) sunlight vis@gorithms rarely have difficulties finding salient
features in outdoor scenarios. The camera trajectory teeplan faint triangles in the 3D map view.

conservative security boundary for the flying vehicle. Hagrenot all concave terrain situations
can be recovered. Concave terrain in the dimension whichnggkected during the Delaunay
Triangulation cannot be estimated correctly. In the teguisace for example the empty space
between the table platform and the floor is filled with tri@sgIThe texture is corrupted as only a
few pixels are mapped to that area. This issue can be tacklagdlying methods such as in [9],
however, this has still to be proven to work in real time fol\&AV.

Our algorithm comes also to its limits on sudden terrain gearand occlusions as no visibil-
ity constraints to the 3D point cloud are applied. Figure éBidnstrates the problem. A Feature



Fig. 15 Overview of the first half of the total path. Compare the labddbcations with the ones in Figure 13

am view 3D map
y - e

Map: 185637, ISKF — Camera Pos:

Fig. 16 Side view of the terrain to show the correctly modeled holseadon. Note that even though the 3D
model of the house is very accurate, the texturing indicstese failures. We discuss this issue in section 5.3.
Nevertheless, for autonomous obstacle avoidance and [aathipg the mesh model is sufficiently accurate.

Creek

Map: 19125P. 38KF _ Camers Pos:

Fig. 17 View along the creek. Due to the richness of features in tiea the 3D mesh model is very accurate.

Moreover, thanks to the concave structure in xy-directiontexturing heuristics are prone to errors. Hence,
the 3D model as well as the texture represents the reality higth accuracy. The lines crossing the creek are
the reference lines of the= 0 plane spanned by the vision algorithm.
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F3 is seen by the keyframe KF2 far away. As the keyframe KF1oiec to the features F2 and
F3 the red texture seen by KF1 is taken for texturing the aliogrtriangle. Taking into account
that KF1 does not see the feature F3 an optimized algorithaoidiake KF2's texture. This fail-
ure, however, only affects slightly the visual appeararfcéhn® map, not its topology (i.e. path
planners or obstacle avoidance are not influenced).

KF2

F2

F1 F2 F1

F3 F4 F3 F4

Fig. 18 Selecting the keyframe closest to the triangle in order talgehighest resolution for the mesh map
texture is not always correct. Here, because of not takisipility into account, a wrong texture is mapped
to the slope. It is taken from the closer keyframe KF1 instefatie better choice KF2. This failure, however,
does not affect the map’s topology.

As we do not use GPS to eliminate drifts, the map will neverlbbajly consistent. Making
loops while exploring new terrain minimizes drifts, but da®t eliminate them. Our approach,
however, does not rely on a globally consistent map. The 38hmall locally be accurate enough
to prevent the helicopter to crash against obstacles anatwide the user with detailed informa-
tion. This is because it uses locally extracted point festuin a larger map, the total shape of
the map may differ from reality. But the user and the MAV dhidlve all information needed to
perform path planning, obstacle avoidance and terrairoeabn with respect to the map’s coor-
dinate frame. This leads to the conclusion that for our tadkeally consistant map is sufficient.

Last, itis clear that our vision based framework (the MAV wolier and map reconstruction)
does reach its limitation on texture less scenes. Smalltextee areas can be well handled
assuming they are flat. Note that in our test arena the floortexdare free. However, flying
at around 2m height would have provided enough features fhensurroundings to make our
algorithms already work. Nevertheless, we used texturenavspapers in order to perform our
maneuver - which was approaching the floor. Also in outdoenados usually there are plenty
of features even on cloudy days.

6 Conclusion

In this work we presented a method to reconstruct in real éimi@tuitive dense textured 3D mesh
map out of a sparse point cloud from any given visualSLAM &tgm. Moreover, we showed
successful removal of point feature outliers aid of medilierfng the mesh. The real time map
construction allowed us to iteratively refine, improve artbad the map. As the mesh represents
a conservative boundary to objects and to non traversades dircan directly be used in standard
obstacle avoidance and path planning algorithms. Thisvalfally autonomous efficient terrain
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exploration. It can be applied for autonomous rescue aneBlance tasks as well as in desaster
areas. We proved the feasibility of such an application bywm#y set new waypoints to fly
around obstacles and explore new terrain only having thenstructed mesh map as feedback to
the user.
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