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Abstract

The discrete Fourier Transform (DFT) is an algorithm that can be used to obtain the fre-
quency components of a function dependent of time represented as a set of data samples. It is
the foundation of various modern applications. The fast Fourier Transform (FFT) is a faster
version of this algorithm, which improves the runtime complexity fromO(n2) toO(n∗log(n)),
thus making the algorithm far more accessible for practical use.
In this thesis, different versions of the FFT algorithm are implemented in order to evaluate
their performance in a streaming environment. For this purpose, we built a streaming pipeline
for the sampled input data. The dataset origins from the domain of radio astronomy where the
Fourier Transform is a commonly used algorithm in the process of computing images from
raw data. Cooley-Tukey FFT algorithms are a subset of FFT algorithms that use a divide-
and-conquer approach to improve the runtime complexity. The discussed variations of the
Cooley-Tukey FFT algorithm are Radix-2, Radix-4, and Split Radix. For each algorithm its
explicit definition in the pseudo-code language, the corresponding mathematical equations, as
well as a butterfly flow diagram is presented. We conducted experiments in order to evaluate
each algorithm’s performance both isolated, as well as embedded in the streaming pipeline.
We show that Split-Radix has the lowest amount of complex operations from all of the dis-
cussed algorithms and thus conclude that it should grant the best performance. In an isolated
environment, this hypothesis can be supported by the gathered data over all experiments. The
difference in performance between Split-Radix and Radix-4 converged as the input size was
increased and evaluated to only approximately 1% at an input size of 1024. The same con-
clusion can be drawn from the second experiment, where each of the algorithms has been em-
bedded into the pipeline and the complete dataset has been processed. The Split-Radix FFT
algorithm performed best across all algorithms and parameter settings followed by Radix-4
and Radix-2.



Zusammenfassung

Die diskrete Fourier Transformation ist ein Algorithmus der benutzt werden kann, um die
Frequenz-Komponenten eines Signales zu erhalten, welches als eine Menge von Datenpunkten
dargestellt wird und die Basis vieler moderner Applikationen ist. Unter der schnellen Fourier
Transformation (FFT) versteht sich einen Algorithmus, welcher die Laufzeit Komplexität des
Prozesses von O(n2) zu O(n ∗ log(n)) verbessert, was den Algorithmus für den praktischen
Gebrauch zugänglich macht.

In dieser Arbeit werden verschiedene Versionen eines FFT Algorithmus implementiert, um
deren Laufzeit auf streaming Daten zu evaluieren. Zu diesem Zweck haben wir eine stream-
ing Applikation für ASKAP Calibrated Visibilities Daten entwickelt. Die Daten stammen
aus dem Bereich der Radio-Astronomie, wo die Fourier Transformation oft verwendet wird,
um Bilder aus Rohdaten zu berechnen. Cooley-Tukey FFT Algorithmen sind eine Teilgruppe
von FFT Algorithmen, welche ein ’divide-and-conquer’ Verfahren benutzen und somit eine
verbesserte Laufzeitkomplexität erreichen. In dieser Arbeit werden Radix-2, Radix-4 und
Split-Radix Implementationen untersucht. Für jeden dieser Algorithmen wird jeweils dessen
explizite Definition in Form von Pseudocode, die zugehörige mathematische Herleitung und
ein Schmetterlings-Diagramm präsentiert. Wir haben ein Experiment durchgeführt, um die
Laufzeit der Algorithmen sowohl in einer isolierten Umgebung als auch eingebunden in die
Streaming Umgebung zu evaluieren. Es wird aufgezeigt, dass Split-Radix am wenigsten kom-
plexe Operationen von den drei berücksichtigten Algorithmen hat und schliessen daraus, dass
diese Version die beste Leistung liefern sollte. In einer isolierten Umgebung kann diese Hy-
pothese von den gesammelten Daten unterstützt werden, obwohl der Unterschied zwischen
Radix-4 und Split-Radix marginal ist. Im zweiten Experiment wurde jeder Algorithmus in
die streaming Applikation eingebunden um einen Datensatz zu verarbeiten. Auch in diesem
Experiment stellte sich der Split-Radix Algorithmus als die effizienteste unserer Implementa-
tionen heraus, unabhängig von anderen Parametern der Applikation.

5



Contents
1 Introduction 9

2 The Fourier Transform 10
2.1 The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Streaming Pipeline 14
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Data Stream Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Kafka Producer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Apache Flink Stream Processor . . . . . . . . . . . . . . . . . . . . 17

3.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Complete pipeline example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Fast Fourier Transforms 25
4.1 Radix-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Radix-2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.3 Radix-2 butterfly diagram . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Radix-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Radix-4 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Radix-4 butterfly diagram . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Split Radix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Split-Radix algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Split-Radix butterfly diagram . . . . . . . . . . . . . . . . . . . . . 41

5 Experimental Evaluation 42
5.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 FFT Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Pipeline performance . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 50

7 Appendix 52

6



List of Figures

3.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Structure of one record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Dataset with approximately 33’000 records visualized . . . . . . . . . . . . . 15
3.4 Kafka Example Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 The data model, depicted in the paradigm of a constructor in the Java pro-

gramming language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 A reduced data model with the w dimension removed and only the first values

of all frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 The frequency-matrix data model for example frequency 1. For each coor-

dinate this matrix contains the first value of frequency 1 of records with that
coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 Extracting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Example hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Assigning values to the grid of frequency matrix f1 . . . . . . . . . . . . . . 23
3.12 4-Point Radix-2 FFT Butterfly . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 2-Point Radix-2 FFT Butterfly . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 8-Point Radix-2 FFT Array Division . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Symmetry of exponential function for N =256 . . . . . . . . . . . . . . . . . 28
4.4 8-Point Radix-2 FFT Butterfly . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 64-Point Radix-4 FFT Array Division . . . . . . . . . . . . . . . . . . . . . 31
4.6 Symmetry of exponential function for N =256 . . . . . . . . . . . . . . . . . 33
4.7 4-Point Radix-4 DIT FFT Butterfly . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 16-Point Split-Radix FFT Array Division . . . . . . . . . . . . . . . . . . . 37
4.9 4-Point Split-Radix DIT FFT Butterfly . . . . . . . . . . . . . . . . . . . . . 41

5.1 Experiment results for different input sizes . . . . . . . . . . . . . . . . . . . 46
5.2 Time break down for window sizes of 5, 15, and 30 seconds. . . . . . . . . . 47
5.3 Time break down for grid sizes 64, 256,&1024. . . . . . . . . . . . . . . . . 49

7



List of Tables

3.1 Example dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Operation Count Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Synthetic data performance times in ms. . . . . . . . . . . . . . . . . . . . . 45

8



1 Introduction

Data streaming platforms have become a central part of various technologies that require real-
time processing of continuously generated data. Applications that continuously generate large
amounts of data may benefit from a streaming environment since the generated data can be
processed in real time or with a small delay. Apache Flink is one such framework that provides
functionality for stream processing.

One domain that can benefit from such an environment is Radio Astronomy. The Australian
Square Kilometer Array (ASKAP) is a radio telescope made up of 26 antennas that function
together as a single instrument. According to the Pawsey supercomputing center, which hosts
the generated data, the antennas produce 5.2 terabytes of data per second. This data is pro-
cessed locally and then streamed to the storage hoster at 956 gigabytes for every 12 hours [2].
In this domain, the Fourier Transform is often used in the process of extracting images from
radio astronomy data.

The Fourier Transform describes phase and amplitude for all sinusoid that correspond to
a frequency [4]. For discretely sampled signals, a discrete version of the Fourier Transform
(DFT) has to be used. The fast Fourier Transform (FFT) labels a computationally faster ver-
sion of the traditional DFT, that yields the same results. The goal of this thesis is to evaluate the
performance of three different FFT algorithms on streaming data. The dataset was generated
by the aforementioned ASKAP radio telescope and is stored locally on the same computer that
is used for the experiments. In order to embed the algorithms into a streaming environment,
we built a pipeline that generates a data stream from the dataset, applies the FFT algorithms
and measures their respective performance on inputs of different dimensions. Furthermore
we discuss the performance of the other parts of the pipeline that are necessary to convert the
stream of records into a format that is applicable to the FFTs.
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2 The Fourier Transform
The Fourier Transform has a wide range of applications in digital data and signal processing,
including but not limited to electro acoustic music and audio signal processing, image process-
ing, and pattern recognition [12]. The Fourier transform itself has been used for a long time for
retrieving the frequency components that contribute to and make up a waveform. The Fourier
Transform and its reverse counterpart for a continuous signal are shown in Equation (2.1)

X(f) =

∫ ∞
−∞

x(t)e−i2πftdt

X(f) =

∫ ∞
−∞

x(f)ei2πftdf

(2.1)

with −∞ < f <∞,−∞ < t <∞, and i =
√
−1. Here, the X(f) is the Fourier transformed

output, whereas x corresponds to the input signal in the time- or frequency-domain. This
formula is of limited use for computer systems because it is defined in a continuous domain
for both in- and output. If we want to analyze a sampled signal on a computer system, the
discrete Fourier Transform has to be used, for which the signal has to be transformed to a
discrete domain [3].

2.1 The Discrete Fourier Transform
The discrete Fourier Transform converts a sequence of equally-spaced samples of a function
into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform
(DTFT), which is a complex-valued function of frequency.
According to James W. Cooley and John W. Tukey [6], the DFT is defined as

X(j) =
N−1∑
k=0

x(k) ∗W jk
N , j = 0, 1, ...., N − 1 (2.2)

where x(k) are the complex Fourier coefficients and WN is the principal Nth root of unity.

WN = e−2πi/N = cos(−2π/N) + i sin(−2π/N) (2.3)

The Nth root of unity is a complex number c, that yields 1 when raised by N .
For WN = e−2πi/N this can be shown with the Euler’s identity:

WN
N = e−2πi/N∗N = e−2πi

= cos(−2π) + i ∗ sin(−2π)
= 1

(2.4)
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Algorithm 1 depicts the computation of the DFT for a finite, complex input sequence of
arbitrary length x. Here the letter i refers to the complex number i =

√
−1.

Algorithm 1 dft(x)
N ← x.length
y ← Complex[N ]
for k=0 to N do
sum← 0
for j=0 to N do
w ← e(−2iπ/N)jk

sum+ = x[j] ∗ w
end for
y[k]← sum

end for
return y

As one can notice, this approach to calculate the discrete Fourier Transform requires O(n2)
complex multiplications and additions as well as trigonometrical computations. The latter can
be avoided by pre-computing the sine and cosine values for all necessary values of W . This
can be done by a so called twiddle table, to which we will be referring later in the context
of the FFT. In order to compute the DFT for a two dimensional input like a matrix, we first
need to transform all rows of the input and then all the columns with the aforementioned DFT
procedure. This can be emulated in code by transposing the input matrix after transforming the
rows and then again transforming the rows of the transposed matrix. With dft() denoting the
function for a one dimensional DFT in Algorithm 1 and transpose() being an assumed utility
function for transposing a matrix, this is shown in Algorithm 2. Here, x is a two dimensional
array (matrix) of complex numbers. We assume that we can access the i-th row of the matrix
with x[i] and that we can get the number of rows of a matrix via the .rows property. A two
dimensional FFT works exactly the same, the only difference being the algorithm used for
computing the one dimensional FFTs in the process. Thus the main aspect of interest in this
thesis are the one dimensional FFT implementations because that’s where the performance
differences origin.
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Algorithm 2 dft2d(x)
N ← x.rows
for i=0 to N do
dft(x[i])

end for
transpose(x)
N ← x.rows
for i=0 to N do
dft(x[i])

end for
transpose(x)
return y

2.2 The Fast Fourier Transform
The fast Fourier Transform (FFT) describes a method that allows to efficiently compute the
Fourier Transform over discrete data samples [5]. In 1965 J. W. Cooley and John Tukey
published their paper "An algorithm for the machine calculation of complex Fourier series" [6]
that provided means on how to efficiently calculate the DFT. With their algorithm they were
able to reduce the amount of complex additions and multiplications from O(n2) to O(n ∗
log(n)). This can be seen as a turning point in digital signal processing as well as in certain
areas of numerical analysis [8].

The Cooley-Tukey FFT algorithm falls under the category of the divide-and-conquer algo-
rithms, which rely on (recursively) splitting a problem of size N into n1 subproblems of size
N/n1 = n2 until the solving process is trivial. The term radix denotes an n1 or n2 that is
bounded [7], in our case it is constant. The second important concept used for the algorithm is
the fact that the multiplicand WN = e−2πi/N has symmetric characteristics, which allows for
re-using certain computations. These properties in combination with the divide-and-conquer
approach are the main performance drivers of these algorithms.
The decomposition relies on N being a composite number. If N is a power of some real posi-
tive integer r, it can be decomposed into rlogr N . In [6], James W. Cooley and John W. Tukey
show that by this decomposition, the runtime complexity can be improved from N ∗ N to
N ∗ logrN . In this thesis, we will discuss three different FFT algorithms that use this decom-
position. Generally, a Radix-r Cooley-Tukey FFT algorithm needs an input of sizeN = rlogr N

and recursively divides the input sequence into r sequences of length N/r. Both Radix-2 and
Radix-4 algorithms follow this exact pattern. The Split-Radix algorithm uses the same divide-
and-conquer principles, but differs in the way it divides the input sequence. A Split-Radix
r/s divides the input sequence into multiple different sized sequences of size N/r and N/s.
For this Thesis we implemented a Split-Radix 2/4 algorithm, which divides the input into one
sequence of length N/2 and two sequences of length N/4. In further sections, when the term
Split-Radix is used, it refers to this 2/4 version of the Split-Radix algorithm.
We implemented the algorithms in a recursive manner, which is closely related to the prob-
lem definition and helps translating from the mathematical formulation into a programming
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language. The algorithm can also be computed non-recursively by traversing with a "breadth-
first" tree traversal, as is the case in most traditional implementations [7]. In Chapter 3 we first
present an overview of important concepts in streaming platforms in general, as well as an
introduction into the technologies and software packages used in the context of this work. We
also discuss our implemented pipeline for the ASKAP calibrated visibilities dataset including
a data model, a value deserializer, and transformations which are necessary in order to feed
the data to the FFT algorithms.
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3 Streaming Pipeline

Data streaming platforms allow data records to continuously flow from the data source to
and between applications. A stream processor is embedded in such a platform and performs
operations in real-time or close-to-real-time on the stream of records it receives. There are
many requirements bound to a stream processor due to possible machine or network failures
in distributed systems. It is not only important to restart the process after a failure, but also
to recover the state of the computations in order to continue the process without a loss of
data or computation cycles. Apache Flink1 is a stream processing framework that performs
operations over bounded or unbounded data streams. When a data stream is generated in
real-time it is called unbounded. A data stream may also be generated from a fixed-size
dataset, which is then called a bounded stream. Apache Flink provides features like consistent
and efficient checkpoints in order to guarantee recoverability and maintenance. Checkpoints
store information about the streaming application’s state and allow to recover from the last
checkpoint after a failure. In combination with specific storage systems and stream sources
Flink can guarantee that every record is only processed and written out once [1].
A basic architecture of a streaming platform consists of a data source, a stream processor,
and a data sink. In our case the data is delivered from a fixed-size dataset and thus results in
a bounded stream of records. Figure 3.1 depicts an abstract view of our architecture, where
Apache Kafka serves both as a source as well as a sink for the stream processor built with
Apache Flink. In the following sections we will provide a basic introduction into each of the
technologies used for those roles.

Figure 3.1: Architecture overview

3.1 Dataset
The first part of the architecture and the source of the data stream is the dataset. In the context
of this work a radio astronomy dataset is used, which is called ASKAP calibrated Visibilities.
The data records are complex-valued measurements made by a large array of radio antenna
and are stored by 3D continuous coordinates. Each data-point consists out of its coordinates

1https://flink.apache.org/
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(u, v & w) and a matrix of complex numbers. Each row in the matrix represents a frequency
of the input signal and the columns the values of each frequency.
As an example, for a certain set of coordinates u, v, & w a record can be modeled as shown in
Figure 3.2.

x(u,v,w) = [
[f1_v1, f1_v2, ..., f1_vn],
[f2_v1, f2_v2, ..., f2_vn],
...
[fm_v1, fm_v2, ..., fm_vn]
]

Figure 3.2: Structure of one record

Here fm_vn corresponds to the n− th value of the m− th frequency of the record. One data
record contains roughly 48 frequencies with 4 values each, although the number of frequencies
may vary for some records. The data is stored in the measurementSet (ms) format, a data
format specific for radio astronomy that is based on the paradigm of a relational database. It’s
goal is to allow storage of radioastronomical data including corresponding meta-data while
being efficient in both storage-space and data-maintenance by avoiding data redundancy [9].
When mapped onto a discrete raster, the dataset is relatively sparse, as shown in Figure 3.3,
where the yellow colored points depict a coordinate that is represented in the dataset.

Figure 3.3: Dataset with approximately 33’000 records visualized
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3.2 Data Stream Source
As mentioned in the previous section, the data stream used in our application is generated from
a file in the measurementSet format, contrary to other stream processing structures which
connect to a source which generates data in real-time. Thus there is need for a technology
that creates a reliable data stream from the stationary data. Apache Kafka2 is a streaming
platform that provides this functionality. Apache Kafka can be run in a distributed system
across multiple servers in order to grant scalability for a streaming application. In this work it
is hosted on a local mini-cluster since scalability is not a concern in our context. Kafka stores
data as records, which each consists of a key, a value and a timestamp. It allows to publish or
subscribe to streams of records and store them in a fault-tolerant way. The storage containers
in Kafka are called topics, of which multiple can be hosted by the same cluster. In order to
publish a data stream one has to open one or more topics to which the data is streamed. In the
Kafka API, this is called a producer. When subscribing to a topic we can receive the stream
of records produced to them, while being able to choose if we want the complete stream from
the beginning of the topic or from the moment of subscription, this is called a consumer.
Figure 3.4 shows a schematic of the Kafka cluster used in our application where two topics
are hosted by the same cluster. Multiple producers can publish to the same topic and the same
goes for consumers, which is useful when trying to monitor the pipeline traffic through an
external connection.

Figure 3.4: Kafka Example Usage

As depicted in Figure 3.1 we need two different topics for our pipeline, an input topic
which serves as source for the stream processor and an output topic which serves as a sink.

2https://kafka.apache.org/
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We created those topics by using a slightly customized shell script provided by the installation
of Apache Kafka.

3.2.1 Kafka Producer
In order to publish to the input topic we need to create a producer. Kafka provides APIs for
several languages that allow us to do so. In this section, we will shortly provide means on why
we chose Python as the programming language to achieve this and how it has been done.
As previously mentioned, the dataset is stored in a format specific to radio astronomy, the
measurementSet format. Casacore is a software package that has built-in functionality to read
this format and query the records stored in a file. This can be done with very few lines of
code through python-casacore3, a set of Python bindings for Casacore. The library allows to
read the dataset from the local file system and create an object that serves functionality very
similar to a relational database. This means that we can query the table represented by the
object by using standard SQL statements in order to receive the records in native Python data
types. Most of the attributes can be omitted by the query, as we only need the data values and
the coordinates of each tuple.

With the relevant data extracted from the measurementSet formatted database, we can use
the kafka-python library, which is a Python client for Apache Kafka, to create a producer
and start publishing the records to the input topic. The producer is instantiated through the
provided API, one only needs to provide the networking credentials of the hoster of the topic.
Since the cluster is hosted locally in our case, this is done via localhost. A function that does
this is described in pseudo code in Algorithm 3, where read_data() corresponds to a function
that opens the ms data file, as previously described. Since Python can not serialize complex
numbers into the JSON format, we first need to convert the "DATA" attribute of each record to
a String, which has been omitted in the pseudo-code.

Algorithm 3 producer(x)

data← read_data()
producer ← KafkaProducer(′localhost : port′, serializer)
topic←′ input′
for record in data do
producer.send(topic, ′data′ : record[”DATA”],′ coordinates′ : record[”UVW”])

end for

3.2.2 Apache Flink Stream Processor
After the data is being streamed by the Kafka producer, the next part of the pipeline is the
stream processor, built with Apache Flink in the Java programming language. The stream
processor subscribes to the input topic through a consumer, which is instantiated through the

3http://casacore.github.io/python-casacore/
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Java API for Apache Kafka. An incoming record can be used for computations directly as
it arrives by using an implementation of processFunction, an interface provided by Flink. a
processFunction is individually applied to each record. However since we need a set of records
in order to compute the FFTs, a processWindowfunction is used in our case. The latter allows
to accumulate incoming records for a certain amount of time and then do computations on the
received set of records. The batch of data that arrived during the specified time (window size)
will be later referred to as window. We also created a Kafka producer in the same way as the
consumer and assigned the role of the sink to it. With this configuration we can collect all
values that should be emitted in a container and emit them as a stream to the output topic via
the producer when the window has been processed completely.
Since the data has been serialized in Python we need a custom deserializer to represent the
data in Java. This is achieved by parsing the received string in such a way that it can be cast
onto native Java data-types afterwards. This process is expensive due to the records having
a relatively large DATA attribute. We found that using regular expressions in order to search
and replace certain elements in the string was superior in terms of running time to iterating
over the string as a char array. We created an initial data model including a deserializer to get
the data into a native Java format. This data model solely serves the purpose of storing the
information in Java and is altered later in a second step in order to fit the format we need for
the Fourier Transforms.

This concludes the presentation of our pipeline, as all parts have been introduced. The
complete Streaming pipeline modeled in an activity diagram for further clarifications can be
seen in Figure 3.5. In Section 3.3 we will introduce the format of the dataset and the records
contained in it. We also discuss the transformations made to the records structure in order to
apply the FFTs.
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Figure 3.5: Activity Diagram

3.3 Data Model
The initial model for one record consists of a complex matrix as described in Figure 3.2
and its coordinates in the continuous domain. The coordinates in each dimension reach are
approximately in the range [−2000, 2000]. Recall that the data of a measurement point consists
of m rows (frequencies) and n columns (values). In order to test the performance of the
FFT algorithms, we applied them to the first value of each frequency of each record. This
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public MeasurementData(double u, double v, double w, Complex[][]
data) {

this.u = u;
this.v = v;
this.w= w;
this.data= data;

}

Figure 3.6: The data model, depicted in the paradigm of a constructor in the Java programming
language.

is sufficient since the goal of this Thesis is solely the performance evaluation of the FFT
algorithms. Thus we can reduce the amount of information in our data model by eliminating
all other values. Further we will reduce the third dimension of the data (w-coordinate) in order
to create a 2 dimensional grid by deleting the w coordinate of all records. This results in a
new, simplified version of the data model, as seen in Figure 3.7. Since the FFT algorithms are

x(u,v) = [f1_v1, f2_v1, ..., fm_v1]

Figure 3.7: A reduced data model with the w dimension removed and only the first values of
all frequencies

applied separately for each frequency, it is useful to have all values of that frequency stored in
a separate matrix. Thus we created a second data model, here called FrequencyMatrix, which
represents the first value of one frequency of each record mapped onto a grid of size N = 4r

for some r = 1, 2, 3, ... indexed by the record’s coordinates. This means that every record
will contribute to all frequency matrices. We previously mentioned that each record contains
48 frequencies, thus there will be 48 frequency matrices in total with a dimension of Nx N .
These matrices are initialized at application startup and are available for insertion in constant
time. In the further chapters, the process of calculating the discrete coordinates of a record
and inserting the first value of each frequency in the corresponding frequency matrix will be
referred to as gridding. Figure 3.8 shows an example frequency matrix f1 with a grid size of
n. Here f1_v1(x, y) is the first value of the first frequency of the records, whose continuous
coordinates are mapped onto a discrete set of coordinates (x/y).
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f1 = [
[f1_v1(0,0), f1_v1(1,0), ..., f1_v1(n,0)],
[f1_v1(0,1), f1_v1(1,1), ..., f1_v1(n,1)],
...
[f1_v1(0,n), f1_v1(1,n), ..., f1_v1(n,n)]
]

Figure 3.8: The frequency-matrix data model for example frequency 1. For each coordinate
this matrix contains the first value of frequency 1 of records with that coordinate.

With this final data model, the pipeline for an incoming record with the frequency matrices
initialized can be graphically described in Figure 3.9. Here extracting the data and coordinates
corresponds to deserializing the record from the JSON format. This procedure is invoked
automatically on arrival of a record by the Apache Flink framework by registering a Java class
with the necessary code. The latter three steps are applied once the processWindowFunction
is applied.

Figure 3.9: Extracting process

3.4 Complete pipeline example
To conclude this section, we will present an example for the complete process of streaming and
transforming one set of records based on simplified data. We assume an example dataset where
each record has 2 rows of 4 complex values and that the range of the continuous coordinates
in both dimensions is [0, 10]. Equation (3.1) shows an example record to be processed.

x2.24,8.85 =

(
1.00 + 2.0i −1.12− 7.72i −1.12 + 7.72i 9.09 + 0.0i
3.00 + 4.0i −1.23− 7.88i −1.23 + 7.88i 9.22 + 0.0i

)
(3.1)

In our terms, each row is equivalent to one frequency, thus we will refer to the 2 rows as
frequency 1 and 2 in this example. In our pipeline, only the first value of each frequency is
used for the calculations, thus we can delete all other values of the records. This is shown in
table 3.1 where each record is left with one value per frequency.
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record u v data
1 u1 v1 f1(u1, v1), f2(u1, v1)
2 u2 v2 f1(u2, v2), f2(u2, v2)

3
...

...
...

4 2.24 8.85 1.00 + 2.00i, 3.00 + 4.00i
...

...
...

...

Table 3.1: Example dataset

Each record will be serialized to the JSON format and streamed to the input topic of the
pipeline.

Meanwhile the streaming processor initializes and subscribes to the input topic. The initial-
ization includes preparing 2 frequency matrices, since each record has 2 rows. The dimensions
of the frequency matrices correspond to the grid size we want to use for the FFT computa-
tions. In this example, we will use a grid size of 4 by 4. The streaming processor receives
all streamed records in the time span that has been specified with the time window size. Each
record will be automatically deserialized using a regular expression in order to remove un-
wanted characters in the string and extract the complex values in the correct order. This lets us
instantiate our data model MeasurementData for each record, which is just a representation of
eq. (3.1) in code. Once the time window concludes, all received records will be handed to the
processWindowFunction. This function firstly calculates discrete coordinates in the range of
our specified grid size trough a linear hash function. A hash function suitable for our example
data is presented in fig. 3.10. Here, 4 corresponds to the aforementioned grid dimensions and
10 to the original coordinate range. For our record shown in eq. (3.1) this gives the coordinates
(0/3).

int hash = (int) (coordinate / 10 * 4);

Figure 3.10: Example hash function

With these converted coordinates, we insert the first values of frequency 1 and 2 into the
corresponding frequency matrices at the calculated coordinates as shown in fig. 3.11 for fre-
quency 1. This process will be applied to all records received in the time window.
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Figure 3.11: Assigning values to the grid of frequency matrix f1

After this, the Fourier Transformation will be applied to each frequency matrix and the
transformed matrices are streamed to the output topic, which is the end of our pipeline for this
set of records.
Recall that the two dimensional FFT consists of transforming all rows and all columns of the
matrix. Since the purpose of this section is solely illustrative, we will only show the calcula-
tions for the one dimensional FFT, based on the Radix-2 algorithm explained in the following
chapter. If the reader is not familiar with the Cooley-Tukey Radix-2 FFT algorithm, we rec-
ommend revisiting this example after reading chapter 4.

x(0)

x(2)

x(1)

x(3)

y(0)

y(1)

y(2)

y(3)

W 0
2 −1

W 0
2 −1

W 0
4 −1

W 1
4 −1

Figure 3.12: 4-Point Radix-2 FFT Butterfly

We will use x as our input array here and assume it to be a row of f1 in the two dimensional
FFT process. The Radix-2 FFT algorithm will be described based on the butterfly flow graph
shown in fig. 3.12. In a first step the algorithm recursively divides x into two sub arrays until
the base case of N = 1 is satisfied. At this point we have four 1-point DFTs:

x0, x2, x1, x3

Now the algorithm goes into the combination phase for the bottom-level recursion. The calcu-
lations made in this step correspond to the leftmost butterfly calculations in fig. 3.12. The exact
calculations can be derived from the butterfly flow graph as described in chapter 4, however
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for the 2-point FFT for x(0) and x(2) an example is shown in eq. (3.2)

xt(0) = x(0) + x(2) ∗W
xt(2) = x(0)− x(2) ∗W

(3.2)

This gives us 2 2-point DFTs [xt(0), xt(2)] and [xt(1), xt(3)] which will be returned to the
top-level recursion and combined to a 4-point FFT [y0, y1, y2, y3], as described in the second
part of fig. 3.12 and in eq. (3.3).

y(0) = xt(0) + xt(1) ∗W 0
4

y(1) = xt(2) + xt(3) ∗W 1
4

y(2) = xt(0)− xt(2) ∗W 0
4

y(3) = xt(2)− xt(3) ∗W 1
4

(3.3)

As previously mentioned, this is the last step in the pipeline. When the two dimensional
FFT procedure is finished, the transformed frequency matrices are streamed to the output topic
and once all matrices are transformed the stream processor waits until the next time window
concludes.
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4 Fast Fourier Transforms
In this chapter we will first cover the necessary prerequisites for the different representations
of the FFT algorithms. Secondly we will illustrate how each algorithm can be derived from
the definition of the DFT, as well as how this is translated into a program.

Butterfly Diagrams

In order to describe FFT algorithms, often so called Butterfly Diagrams are being used to
show which point in the input contributes to which point in the output. In Figure 4.1 one can
see an example butterfly for the 2-Point Radix-2 case and in Equation (4.1) its corresponding
equation. Here, x(0) and x(1) correspond to the input points whereas y(0) and y(1) are the
output points. An edge that is labeled with a term like W is multiplied with the value. An
incoming edge that arises from a different input, indicates that the values are added together.
With this notation we can denote the outputs in Figure 4.1 as:

y(0) = x(0) + x(1) ∗W
y(1) = x(0)− x(1) ∗W

(4.1)

x(0)

x(1)

y(0)

y(1)W −1

Figure 4.1: 2-Point Radix-2 FFT Butterfly

Twiddle Factors

The earlier introduced factor W j
N = e−2πij/N is often called Twiddle Factor in the context

of FFTs and is a central part of the Fourier Transform. For example, in a Radix-2 FFT the
twiddle factor has to be computed N

2
∗ log2(N) times, which contributes a notable amount

to the total runtime due to the trigonometrical computations associated with it. Because w is
only dependent on the input length N and the iterator j, it can be computed without knowing
the input data. This allows us to pre-compute W for all necessary values of N and j. Since
every possible value of N is a power of 2, we have to store log2N ∗N values. Because of

W j
N = −W i

N

with j = 1, 2, ..., N/2 − 1 and i = j + N/2 we could reduce this number to log2N ∗ N
2

by
only storing values from N = 0, 1, ..., N/2− 1. This would however require some additional
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statements for each lookup to guarantee that we are using the correct value. We preferred
the ability to make the lookup as simple and quick as possible over the small improvement in
memory space efficiency. Thus we computed the full-length table on initialization and stored
it as twiddleTable. In the algorithms presented later, it is assumed that this has been done
in advance. For any input size N and iterator j, the value for W j

N can be accessed from the
lookup table by twiddleTable[log2N ][j].

Pseudo Code Notation

In this section we will briefly go over the notation used in the presented algorithms. Assign-
ments are denoted using the← sign. Using the keyword Complex on the right side of an as-
signment gives a complex number or an array of complex numbers in the case of Complex[].
Loop boundaries are always including the lower boundary and excluding the upper bound-
ary. Since all of the algorithms are based on complex values, all used arithmetic operations
(∗,+,−) refer to their complex counterparts. For two complex numbersA andB, the complex
addition C = A+B is defined as

C.real = A.real +B.real

C.imag = A.imag +B.imag

and complex multiplication C = A ∗B as

C.real = A.real ∗B.real − A.imag ∗B.imag

C.imag = A.real ∗B.imag + A.imag ∗B.real

Decimation in time vs Decimation in frequency

FFT algorithms can be performed either by Decimation In Time (DIT) or Decimation In Fre-
quency (DIF). Both options lead to the same numerical result, although their respective but-
terflies look differently. All algorithms discussed in this work are DIT implementations. If an
algorithm is considered DIT or DIF is determined by whether n1 or n2, with N = n1 ∗ n2, is
chosen as the radix [7]. FFT algorithms that perform the operations inplace either require the
input array in bit-reversed order in the case of DIT or lead to the output being in bit-reversed1

order in the DIF case. This is not required in the recursive algorithms presented here since the
recursive splitting (e.g. by even or odd indexes in Radix-2) ensures the correct order of the
input.

1The bit-reversed indexing order places the even-indexed elements of an array in the first half of the array and
vice versa for the odd-indexed elements.
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4.1 Radix-2

4.1.1 Theory
The Radix-2 Cooley-Tukey FFT algorithm divides an input sequence of size N into two se-
quences of size N/2. This resolves in a symmetric binary recursion tree, as shown in an
example in Figure 4.2.

0, 1, 2, 3, 4, 5, 6, 7

0, 2, 4, 6

0, 4 2, 6

1, 3, 5, 7

1, 5 3, 7

Figure 4.2: 8-Point Radix-2 FFT Array Division

The input values get assigned to one of the subsequences if their index in the original one is
even and to the other one vice versa. In the following section we will cover how this decom-
position is done mathematically, and how it helps to improve the runtime complexity of the
conventional DFT algorithm. The mathematical derivation for all three algorithms is based on
the calculations shown by William T. Cochran et al. [5].

Firstly, it is important to recall the definition of the DFT as

X(j) =
N−1∑
k=0

x(k) ∗W jk
N , j = 0, 1, ...., N − 1 (4.2)

We can split this into two sums over k = 0, 1, ..., N/2 − 1 for the even- and odd-indexed
input values x(2k) and x(2k + 1):

X(j) =
N−1∑
k=0

x(k) ∗W jk
N =

N/2−1∑
k=0

x(2k) ∗W j2k
N +

N/2−1∑
k=0

x(2k + 1) ∗W j(2k+1)
N (4.3)

Since W j
N is a constant, we can factor it out in the second summation. Note that the 2 in

the exponent of WN is taken into brackets, which is purely cosmetic and helps in making the
further steps clearer.

X(j) =

N/2−1∑
k=0

x(2k) ∗ (W 2
N)

jk +W j
N

N/2−1∑
k=0

x(2k + 1) ∗ (W 2
N)

jk (4.4)
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Now when we recall the definition of WN = e−2πi/N , we can take in the exponent 2 of W 2
N

into the exponential function:

W 2
N = e−2πi/N∗2 = e−2πi/(N/2) = WN/2 (4.5)

Thus we can substitute W 2
N with WN/2 in Equation (4.4):

X(j) =

N/2−1∑
k=0

x(2k) ∗ (WN/2)
jk +W j

N

N/2−1∑
k=0

x(2k + 1) ∗ (WN/2)
jk (4.6)

This corresponds to the original definition of the DFT in Equation (4.2) for both the even-
and the odd-indexed parts. We can express this relation in a more abstract manner as

X(j) = E(j) +W j
N ∗O(j) (4.7)

where E(j) & O(j) denote the DFT of the even/odd-indexed parts of the input sequence.
The real and imaginary values for W j

N are displayed in Figure 4.3. Here it can be seen that
both parts are sinusoids with the same amplitude and a phase shift of N/4. In the Radix-2
case, we are using the fact that W j

N = −W i
N with j = 0, 2, ..., N/2− 1 and i = j +N/2.

Figure 4.3: Symmetry of exponential function for N =256

With this information we can split Equation (4.7) into two parts

X(j1) = E(j1) +W j1
N O(j1) (4.8)

X(j1 +
N

2
) = E(J1)−W j1

N O(j1) (4.9)

for j1 = 0, 1, ..., N
2
− 1.
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4.1.2 Radix-2 algorithm
In this section we will provide a recursive algorithm that calculates the DFT of an one dimen-
sional complex input using the Radix-2 decimation in time Cooley-Tukey FFT. The algorithm
depends on the input length being a power of 2, however this assertion has been omitted in
the presented algorithm for simplicity. Since the input length is being cut in half with every
recursive call, the base case of the recursion is reached when the input length is 1. In this case
we have to perform a 1-point DFT on x[0], which conveniently is just the element itself and
thus just return a new array of complex numbers of size 1 with x[0] in it. In every other case,
the recursion splits the input array x into two separate arrays, of which one contains the even
indexed values of x and the other contains the odd indexed values. The conquer part of the al-
gorithm combines two smaller DFTs into a larger DFT. This part uses Equations (4.8) and (4.9)
and the periodicity ofW j

N to calculate the DFT for the combination of the returned arrays from
two recursive calls. Thanks to the periodicity of W j

N we can assign y[k] and y[k + n/2] at the
same time and thus only have to do N/2 iterations for a DFT of size N . In order to save one
multiplication per iteration we store the second summand from Equation (4.8) as oddVal so
it only has to be calculated once. This approach is also described by R. Neuenfeld et al. [11].
W k
N can be accessed in constant time from the lookup table as described earlier. Without keep-

ing oddV al in memory, this algorithm would lead to N/2 logN times 2 complex multiplies
and 2 complex additions. With the proposed optimization, the amount of multiplies can be
reduced to N

2
logN with the same amount of additions as the original approach.

4.1.3 Radix-2 butterfly diagram
Figure 4.4 shows the flow graph for a complete 8-Point Radix-2 FFT. Going from left to right,
the first set of butterflies represent the combination of 8 1-point DFTs to 4 2-point DFTs. It is
noticeable here, that the input elements are not in the same order as the output elements. The
specific ordering is derived from recursively splitting the input into even- and odd-indexed
sub-arrays as shown in Figure 4.2 and helps keeping the flow-graph clear.

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

y(0)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

W0
2 −1

W0
2 −1

W0
2 −1

W0
2 −1

W0
4 −1

W1
4 −1

W0
4 −1

W1
4 −1

W0
8 −1

W1
8 −1

W2
8 −1

W3
8 −1

Figure 4.4: 8-Point Radix-2 FFT Butterfly
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Algorithm 4 fftRadix2(x)
Require: x.length is power of 2
n← x.length
if n == 1 then

return new Complex[]{x[0]}
end if
even← new Complex[n/2]
odd← new Complex[n/2]
for K=0 to n/2 do
even[k] = x[2 ∗ k]
odd[k] = x[2 ∗ k + 1]

end for
a← fft2(even)
b← fft2(odd)
y ← new Complex[n]
for k=0 to n/2 do
wk ← twiddleTable[log2(n)][k]
oddV al← wk ∗ b[k]
y[k]← a[k] + oddV al
y[k + n/2]← a[k]− oddV al

end for
return y
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4.2 Radix-4

4.2.1 Theory
The Radix-4 case works very similarly to the Radix-2 algorithm described earlier. The al-
gorithm splits the input into 4 smaller arrays of size n/4, calculates the DFT of those and
combines the results to get the DFT of the original input. Thus the input size needs to be a
power of 4. The input is split based on the result of index % 4, with % being the modulus
operator, as shown in Figure 4.5.

0, 1, 2, ..., 63

3, 7, 11, ..., 63

15, 31, 47, 63

11, 27, 43, 59

7, 23, 39, 55

3, 19, 35, 51

2, 6, 10, ..., 62

14, 30, 46, 62

10, 26, 42, 58

6, 22, 38, 54

2, 18, 34, 50

1, 5, 9, ..., 61

13, 29, 45, 61

9, 25, 41, 57

5, 21, 37, 53

1, 17, 33, 49

0, 4, 8, ..., 60

12, 28, 44, 60

8, 24, 40, 56

4, 20, 36, 52

0, 16, 32, 48

Figure 4.5: 64-Point Radix-4 FFT Array Division
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We can derive the Radix-4 FFT in a very similar fashion as the Radix-2 version. With the
original definition of the DFT being

X(j) =
N−1∑
k=0

x(k) ∗W jk
N (4.10)

we can split the sum into four parts that cover all indices of the input sequence

X(j) =

N/4−1∑
k=0

x(4k) ∗W j4k
N +

N/4−1∑
k=0

x(4k + 1) ∗W j(4k+1)
N +

N/4−1∑
k=0

x(4k + 2) ∗W j(4k+2)
N +

N/4−1∑
k=0

x(4k + 3) ∗W j(4k+3)
N

(4.11)

and factor out the twiddle factors in the latter three sums.

X(j) =

N/4−1∑
k=0

x(4k) ∗ (W 4
N)

jk +W j
N

N/4−1∑
k=0

x(4k + 1) ∗ (W 4
N)

jk+

W 2j
N

N/4−1∑
k=0

x(4k + 2) ∗ (W 4
N)

jk +W 3j
N

N/4−1∑
k=0

x(4k + 3) ∗ (W 4
N)

jk

(4.12)

With Equation (4.5) we can reformulate W 4
N to WN/4 at which point each summand is a

complete DFT of the part of the input sequence its indices cover.

X(j) =

N/4−1∑
k=0

x(4k) ∗ (WN/4)
jk +W j

N

N/4−1∑
k=0

x(4k + 1) ∗ (WN/4)
jk+

W 2j
N

N/4−1∑
k=0

x(4k + 2) ∗ (WN/4)
jk +W 3j

N

N/4−1∑
k=0

x(4k + 3) ∗ (WN/4)
jk

(4.13)

This can be stated in a more abstract way as a sum of four DFTs:

X(j) = FIRST (j) +W j
N ∗ SECOND(j) +W 2j

N ∗ THIRD(j) +W 3j
N ∗ FOURTH(j)

(4.14)
Again thanks to the periodicity of WN we can assign four values of the output for the same j.
In Figure 4.6 one can see the values of W256 divided into four equal parts, say n1, n2, n3,
and n4. We can express the values for the latter three based on the values of n1 as shown in
Equation (4.15)

n2.real = n1.imag

n2.imag = −n1.real
n3.real = −n1.real

n3.imag = −n1.imag
n4.real = −n1.imag
n4.imag = n1.real

(4.15)
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Figure 4.6: Symmetry of exponential function for N =256

This is used in the combination part of Algorithm 5, where we pre-compute the values of

X(j) = FIRST (j) +W j
N ∗ SECOND(j) +W 2j

N ∗ THIRD(j) +W 3j
N ∗ FOURTH(j)

for j = 0, 1, ..., N/4 − 1. Thanks to the aforementioned behavior of WN , we can assign
the values for j + k ∗ (N/4), k = 1, 2, 3 in the same operation, simply by modifying the
calculated values so that the periodicity of WN is respected correctly. We can apply some
optimizations similar to what we did in Radix-2 by temporarily storing repeated computations.
With this optimization we need to perform N/4 log4(N) times 8 complex additions and 3
complex multiplies. With some basic algebra we can compare this to the amount of complex
additions of Radix-2:

N

4
log 4(N) ∗ 8 =

N

4

log 2(N)

2
∗ 8 = N log 2(N)

where we see that the amount of additions is the same for both cases. As for the multiplies,
we can do the same:

N

4
log 4(N) ∗ 3 =

N

4

log 2(N)

2
∗ 3 =

3

8
N log 2(N) <

N

2
N log 2(N)

Thus Radix-4 saves 1
8
N log 2(N) complex multiplications as compared to Radix-2.

4.2.2 Radix-4 algorithm
The recursive Radix-4 decimation in time algorithm works in a very similar way as the Radix-
2 version. At first, we cover the base case of N = 1 and return the 1-point DFT in an array
of size 1. If the the base case is not satisfied, N has to be of some power of 4 since this is
a precondition of the algorithm and we only divide the length by exactly 4. Because of this
assumption we can split x into 4 equally long parts, as also shown in Figure 4.5 and recursively
calculate the DFT of all subsequences. The logic of the combination phase strictly corresponds
to the butterfly shown in Figure 4.7. In a software implementation of the algorithm, some
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optimizations can be made here in order to minimize the amount of complex additions and
multiplications. We can temporarily store a+ c and a− c and use the result in the assignments
to y since both of those terms are evaluated twice otherwise. The variables a, b, c, d are the
result of the same optimization done in Radix-2 with the oddVal variable. In the butterfly in
Figure 4.7 one can clearly see that all of these values are necessary for all 4 assigned values,
making these assignments beneficial in terms of operation count. Also since a multiplication
of a complex number with i is the same as switching real and imaginary parts of the number
and a multiplication of the new real part with −1, we can directly express these operations of
the butterfly by a new complex number and avoid a complex multiplication. It is worth to note
that since the multiplication with i is rather trivial it might arguably be faster than a constructor
call for a complex number, however we found that there was no significant difference in the
measured time for both variants in our environment. Steven G. Johnson and Matteo Frigo [10]
also argue, that these operations can be regarded as free, since they can be avoided by doing
additions instead of subtractions or vice versa.
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Algorithm 5 fftRadix4(x)
Require: x.length is power of 4
n← x.length
log2n← log2(n)
n4← n/4
if n == 1 then

return new Complex[]{x[0]}
end if
first← new Complex[n/4]
second← new Complex[n/4]
third← new Complex[n/4]
fourth← new Complex[n/4]
for K=0 to n4 do
first[k]← x[4 ∗ k]
second[k]← x[4 ∗ k + 1]
third[k]← x[4 ∗ k + 2]
fourth[k]← x[4 ∗ k + 3]

end for
q ← fft2(first)
r ← fft2(second)
s← fft2(third)
t← fft2(fourth)
y ← new Complex[n]
for k=0 to n4 do
wk ← twiddleTable[log2n][k]
wk2← twiddleTable[log2n][2 ∗ k]
wk3← twiddleTable[log2n][3 ∗ k]
a← q[k]
b← r[k] ∗ wk
c← s[k] ∗ wk2
d← t[k] ∗ wk3
y[k]← a+ b+ c+ d
y[k + n4]← a+ Complex(b.imag,−b.real)− c+ Complex(−d.imag, d.real)
y[k + 2 ∗ n4]← a− b+ c− d
y[k + 3 ∗ n4]← a+ Complex(−b.imag, b.real)− c+ Complex(d.imag,−d.real)

end for
return y
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4.2.3 Radix-4 butterfly diagram
The butterfly in Figure 4.7 for a Radix-4 DIT FFT requires three different values for W k

N

where k corresponds to j in Equation (4.14). The summands are multiplicated by i,−i, 1,−1
based on which output a specific edge contributes to in order to satisfy the properties stated in
Equation (4.15).

x(0)

x(1)

x(2)

x(3)

y(0)

y(1)

y(2)

y(3)

W1k
N

W2k
N

W3k
N

−i

−1
i

−1

−1

i
−1

−i

Figure 4.7: 4-Point Radix-4 DIT FFT Butterfly

Equation (4.16) expresses the butterfly mathematically. In this form it is clearly visible
where there is room for optimization since factors like x(1) ∗W k

N are calculated three times
over the course of all assignments.

y(0) = x(0) + x(1) + x(2) + x(3)

y(1) = x(0)− i ∗ x(1) ∗W k
N − x(2) ∗W 2k

N + i ∗ x(3) ∗W 3k
N

y(2) = x(0)− x(1) ∗W k
N + x(2) ∗W 2k

N − x(3) ∗W 3k
N

y(3) = x(0) + i ∗ x(1) ∗W k
N − x(2) ∗W 2k

N − i ∗ x(3) ∗W 3k
N

(4.16)
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4.3 Split Radix

4.3.1 Theory
The Split-Radix FFT algorithm combines two different Radix-r algorithms resulting in an
unbalanced recursion tree. We implemented a 4/2 Split Radix Algorithm, which means that in
each recursive step, the input is split into one subsequence of size N/2 and two subsequences
of size N/4. The N/2 length subsequence contains the elements with index 2 ∗ k for k =
0, 1, 2, ..., N/2− 1 while the other two contain elements 4 ∗ k + 1 and 4 ∗ k + 3 respectively
for k = 0, 1, 2, ..., N/4− 1. An example array division is shown in Figure 4.8.

0, 1, 2, ..., 15

0, 2, 4, 6, 8, 10, 12, 14

0, 4, 8, 12

0, 8

4

122, 10

6, 14

1, 5, 9, 13

1, 9

5

13

3, 7, 11, 15

3, 11

7

15

Figure 4.8: 16-Point Split-Radix FFT Array Division

The mathematical equation for the Split-Radix algorithm can be derived in similar fashion
to the other two presented algorithms, however since we divide the sequence in an unbalanced
fashion the sum boundaries and twiddle factors have to be evaluated carefully. In addition
to [5], we used the mathematical formulations shown by Steven G. Johnson and Matteo Frigo
[10] as a foundation of the following equations. In their work, the authors use a modified
version of the division process for the elements with indices 4 ∗ k+3, which is not the case in
our work.
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X(j) =
N−1∑
k=0

x(k) ∗W jk
N (4.17)

This time we split the original definition of the DFT into three parts. The even indexed part
corresponds to the even indexed part of the Radix-2 algorithm, whereas the odd indexed ele-
ments are split much like in the Radix-4 algorithm.

X(j) =

N/2−1∑
k=0

x(2k) ∗W j2k
N +

N/4−1∑
k=0

x(4k + 1) ∗W j(4k+1)
N +

N/4−1∑
k=0

x(4k + 3) ∗W j(4k+3)
N

(4.18)

Since the sum over the even indices does not have a + operator in the exponent of the twiddle
factor we don’t have to factor anything out. For the other two sums, we do so in the same way
as described in Section 4.2.

X(j) =

N/2−1∑
k=0

x(2k) ∗ (W 2
N)

jk +W j
N

N/4−1∑
k=0

x(4k + 1) ∗ (W 4
N)

jk+

W 3j
N

N/4−1∑
k=0

x(4k + 3) ∗ (W 4
N)

jk

(4.19)

Again, with Equation (4.5) we can reformulate W 4
N to WN/4, as well as W 2

N to WN/2 at
which point each summand is a complete DFT of the part of the input sequence its indices
cover.

X(j) =

N/2−1∑
k=0

x(2k) ∗ (WN/2)
jk +W j

N

N/4−1∑
k=0

x(4k + 1) ∗ (WN/4)
jk+

W 3j
N

N/4−1∑
k=0

x(4k + 3) ∗ (WN/4)
jk

(4.20)

This can be stated in a more abstract way as a sum of three DFTs:

X(j) = EV EN(j) +W j
N ∗ SECOND(j) +W 3j

N ∗ THIRD(j) (4.21)

Which can be split based on j:

X(j1) = EV EN(j1) +W j
N ∗ SECOND(j1) +W 3j

N ∗ THIRD(j1)

X(j1 +
N

2
) = EV EN(j1) +W j

N ∗ SECOND(j1) +W 3j
N ∗ THIRD(j1)

X(j1 +
N

4
) = EV EN(j1 +

N

4
) +W j

N ∗ SECOND(j1) +W 3j
N ∗ THIRD(j1)

X(j1 + 3 ∗ N
4
) = EV EN(j1 +

N

4
) +W j

N ∗ SECOND(j1) +W 3j
N ∗ THIRD(j1)

(4.22)
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for j1 = 0, 1, 2, ..., N/4− 1
Note that the indices j1 + N

4
and j1 + 3 ∗ N

4
are calculated with EV EN(j1 +

N
4

and not
EV EN(j1). This can be derived if we look at the sum for the even part in Equation (4.20).
We combine the three DFTs into a DFT of size N, however EVEN is only of size N/2, meaning
that we calculate it with WN/2 so that N/2 is the period of W . With that knowledge we can
use EV EN(j1) for X(j1) and X(j1+N/2) because W j1

N/2 = W
j1+N/2
N/2 and the same goes for

X(j1 +N/4) and X(j1 + 3 ∗N/4).

4.3.2 Split-Radix algorithm
Algorithm 6 depicts a split-radix 4/2 FFT where the input length is required to be a power
of 2. Since the recursion tree for this algorithm is unbalanced due to multiple recursion calls
with different split sizes, we have to check the extra base case of n = 2 here. In this case we
perform a Radix-2 butterfly in order to calculate the 2-point DFT. Splitting the input is depicted
in two separate iterations here for a better visual representation, this can be optimized to one
iteration with k = 0, 1, ..., n/2 − 1 with a simple conditional statement for the n/4 splits.
The assignments to y in the combination part represent equation Equation (4.22). The other
variable assignments are mostly optimizations to prevent redundant operations of the same
value.
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Algorithm 6 Compute split radix DIT FFT on x
Require: x.length is power of 4
n← x.length
log2n← log2(n)
n4← n/4
if n == 1 then

return new Complex[]{x[0]}
else if n == 2 then
y0← x[0] + x[1]
y1← x[0]− x[1]
return new Complex[] {y0, y1}

end if
first← new Complex[n/2]
second← new Complex[n/4]
third← new Complex[n/4]
for k=0 to n/2 do
first[k]← x[2 ∗ k]

end for
for k=0 to n/4 do
second[k]← x[4 ∗ k + 1]
third[k]← x[4 ∗ k + 3]

end for
q ← fftSplit(first)
r ← fftSplit(second)
s← fftSplit(third)
y ← new Complex[n]
for k=0 to n4 do
wk ← twiddleTable[log2n][k]
wk2← twiddleTable[log2n][3 ∗ k]
a1← q[k]
a2← q[k +N4]
b← r[k] ∗ wk
c← s[k] ∗ wk2
temp← i ∗ (a− b)
y[k]← a1 + b+ c
y[k +N2]← a1− b− c
y[k +N4]← a2− temp
y[k + 3 ∗N4]← a2 + temp

end for
return y
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4.3.3 Split-Radix butterfly diagram
The combination of Radix-2 and Radix-4 in Split-Radix leads to the "reverse L"-shaped but-
terfly displayed in Figure 4.9. The equivalent mathematical expression is stated in Equa-
tion (4.23) where the values that are temporarily stored in Algorithm 6 are exposed. Similar
to the other two FFT algorithms, we can reduce the count of multiplies by assigning the mul-
tiplications with the twiddle factors to a variable. Since y(1) and y(3) have the same second
summand with the only difference being the sign, we can save one addition by storing this
value.
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x(1)

x(2)

x(3)

y(0)

y(1)

y(2)

y(3)

Wk
N

W3k
N

−1
i
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−1

Figure 4.9: 4-Point Split-Radix DIT FFT Butterfly

y(0) = x(0) + x(2) ∗W k
N + x(3)W 3k

N

y(1) = x(1)− i ∗ (x(2) ∗W k
N − x(3) ∗W 3k

N )

y(2) = x(0)− (x(2) ∗W k
N + x(3) ∗W 3k

N )

y(3) = x(1) + i ∗ (x(2) ∗W k
N − x(3) ∗W 3k

N )

(4.23)
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5 Experimental Evaluation

5.1 Goal
The goal of the performance analysis is to compare the runtime performance of Radix-2,
Radix-4, and Split-Radix FFT algorithms on streaming data under different sized inputs. The
accuracy of our implementations has been tested against jTransforms1, an open source FFT
library written in Java. The output was also partially cross-validated with FFTW2, a well
established software library for FFT computation. In any test with synthetic input data, our
algorithms evaluated to a 100% accuracy, contemplating digits of up to 10−8. We conducted
two different experiments in order to gain insights of different aspects of the application. The
first evaluations were focused on the isolated performance of the FFT algorithms on different
sized inputs. Since our FFT algorithms rely on input dimensions that are a power of 2 (or 4
in the Radix-4 case), we mapped the continuously indexed data onto discrete grids of size N4

for N = 3, 4, 5, 6, since powers of 2 are a subset of powers of 4. The second experiments
conducted were time measurements of the complete pipeline with focus on the computational
expensive parts. The total runtime of the pipeline will be broken down into its summation
factors and compared across multiple datasets of different sizes. In Section 5.2 we will cover
the experimental settings, including the hardware used for time measurements and descriptions
of the tested scenarios.

5.2 Experimental Setting
All evaluations were done on an Intel Core i5-7600(3.50GHz) CPU and 8 GB of RAM with
Arch Linux3 as the operating system.
As described in Section 3.2.2, the data is being processed in time windows. For the evaluation,
we set the time to 15 seconds per window, meaning that data is aggregated for 15 seconds
until it is mapped onto the grid and processed by the three discussed FFT algorithms. The
amount of records arriving per window may vary depending on the throughput of the streaming
pipeline, however this variation is not considered to be important in the evaluation of the FFT
performances since it does not change the grid size and thus does not influence the operation
count of the FFTs. If the throughput would be exponentially high or low during a benchmark,
this could influence total running time of the pipeline since the amount of batches received
would strongly differ from the rest of the experiments. In order to evaluate the throughput

1https://sites.google.com/site/piotrwendykier/software/jtransforms
2http://fftw.org/
3https://www.archlinux.org/
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the complete dataset has been processed n = 10 times in advance. For a time window of 15
seconds, the batch-size averaged at 17’000 data records.

The performance metric for the FFTs is the time in milliseconds it takes each algorithm to
compute the discrete Fourier Transform on the input with all values of W pre-computed and
accessible in constant time. For each grid size we evaluated multiple samples. For the second
experiment we evaluated runtime performances for multiple parts of the application separately.
The main parts of the application that require processing are the deserialization of the received
records, the gridding of the data, and the FFT computations. The time necessary for each of
those is measured individually on different sized datasets and presented in a break-down graph

5.3 Results

5.3.1 FFT Algorithm Performance
In the following section a comparison of the runtime for all three FFT Algorithms on multiple
input sizes will be presented, as well as a comparison of their theoretical operation count.
The algorithms were invoked in an isolated environment and all other variables like streaming
throughput or deserialization time have been eliminated by only measuring the time passed
while performing the FFTs. For all input sizes we decided to evaluate averages over 20 FFTs
in order to achieve a smoother, more representative graph since the individual measurements
contained spikes that made it hard to extract information from the graphs. According to our
calculations on runtime complexity and complex operation count, we expect Split-Radix to
perform best, followed by Radix-4 and Radix-2.

Operation Count

Table 5.1 shows the amount of operations each algorithm computes for the discussed input
sizes, here Adds and Mults correspond to complex additions/subtractions and multiplications,
respectively. In this table it is noticeable that the amount of complex additions/subtractions
are the same for all algorithms, which is consistent with our calculations in Section 4.2.1 and ...

Size
Radix-2 Radix-4 Split-Radix

Adds Mults Adds Mults Adds Mults
64 384 192 384 144 384 114
256 2048 1024 2048 768 2048 626
1024 10240 5120 10240 3840 10240 3186

Table 5.1: Operation Count Comparison.

One can clearly see where the difference in running time for the algorithm origins, as the
multiplication count differs for all three algorithms. Split-Radix requires the lowest amount
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of multiplications followed by Radix-4 and Radix-2. In numbers, this corresponds to an im-
provement of 25% from Radix-2 to Radix-4 over all input sizes. The multiplication count of
Split Radix is best expressed by the recursion in Algorithm 7 and is approximately 20% better
than Radix-4 at the discussed input sizes.

Algorithm 7 Compute multiplies of Split Radix
if n==1 || n==2 then
return 0

end if
return n/4 + 2 ∗ rec(n/4) + rec(n/2)
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Synthetic Input Data

In order to evaluate the isolated FFT performance we created a test environment which gen-
erates synthetic input data of different dimensions. With this testing environment we were
able to do experiments of larger sizes compared to what would have been feasible through the
pipeline. Recall that the two dimensional FFT procedure for a n∗nmatrix consists of 2∗n one
dimensional FFT pass-troughs. Thus one could also evaluate the performance on one dimen-
sional testing data and expect similar relations between the runtime of all algorithms. Since
our real data is defined in two dimensions, we decided to follow that data structure also for this
experiment in order to provide consistency when mentioning input dimension and also to keep
time relations consistent. Discussed input dimensions are 64, 256, 1024, and 4096 whereas
an input dimension of 64 corresponds to matrix of size 64 by 64 in this context. For each
input dimension we evaluated 20 FFT pass-troughs and recorded the average time per Fourier
Transform for each FFT algorithm. The results of the experiment are depicted in Figure 5.1
and will be discussed in the following section.
With dimensions of size 43 = 64 all algorithms solved the Fourier Transform in under 7 ms.
Radix-2 in average needed 6.9 ms of computation time, whereas Radix-4 and Split-Radix
needed 2.65 and 1.15 ms, respectively. This pattern of Radix-2 performing notably worse than
the other algorithms continues with increasing input dimension size, as shown in Table 5.2. We
expect the effective running times to reflect the differences in theoretical computation count
shown earlier. However since the addition count of all three algorithms is the same and the
running time consists out of a combination of both additions and summations some deviation
is also expected. In fact the ratio between measured times of Radix-2 and Radix-4 seems to
approximately reflect the ratio of multiplies for both algorithms, which is 0.75 for Radix−4

Radix−2 .
This is more accurate for larger input sizes. The differences between Radix-4 and Split-Radix
are less apparent. Although Split-Radix performs better across all input dimension variations,
the relative difference is decreasing with increasing input size, which is consistent with the
operation counts in Table 5.1.

Size Radix-2 Radix-4 Split-Radix
64 6.9 2.65 1.15
256 34.05 21.55 16.7
1024 381.65 274.85 270.15
4096 8870.85 6858.75 6745.65

Table 5.2: Synthetic data performance times in ms.

5.3.2 Pipeline performance
The goal of the second experiment conducted in this work was to evaluate the performance of
each algorithm embedded in the pipeline. In order to individually extract the time consumed
for each part of the pipeline, multiple times were recorded. Recall the abstract view of the
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Figure 5.1: Experiment results for different input sizes

pipeline for each incoming data-point in Figure 3.9. The time necessary to deserialize it was
recorded in a first variable. Secondly, the total amount of time that was spent to map each
data-point onto the grid is recorded, as well as the time spent computing the FFT. Important
variables for this experiment are the time-window size and the grid size, as well as the chosen
FFT algorithm. The windows size defines how much data is being processed at the same time.
As mentioned earlier, this does not influence the FFT performance which is only dependent on
the grid size. It does however define how many times we calculate the FFT for the complete
dataset. Thus the window size influences the granularity of our result. With a large window
size, we process a large amount of records at once, leading to a reduced runtime since we have
to perform less FFTs. However, this also decreases the amount of output data we gather, giving
us less intermediate results. With a large window size, we process fewer batches with more
data records, which leads to the effect of the deserialization- and griding time consisting out
of fewer- but larger chunks. Since every record is deserialized and cast onto the grid exactly
once independent of the window size, we argue that this factor does only influence the amount
of time spent computing FFTs. This is true as long the processing time of a batch does not
grow larger than the window’s size, which would induce idle time.

We evaluated this for window sizes of 5, 15, and 30 seconds on the Radix-4 algorithm. The
results of those tests can be observed in Figures 5.2a to 5.2c, where the complete dataset has
been processed for the aforementioned window sizes. Since each datapoint corresponds to one
batch of data contained in one window, the amount of datapoints in the plots decreases with a
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larger window. As we expected, the total amount of time spent deserializing the data was con-
stant at around 64’000 ms, with a maximum delta of 897 ms. The measurements also support
our assumption that the window size does not influence the total gridding time as it stayed at
a constant 1700 ms with maximum deviation of 78 ms. These numbers can be derived from
Figures 5.2a to 5.2c by addition of the deserialization/gridding times of all measured points
on the x-axis. Logically, we have less measured points for larger window sizes, as we pro-
cess more records from the dataset at once. As to be expected the largest window size leads to
the lowest overall runtime as we compute less FFTs in total, as explained earlier in this section.

(a) Window Size 5 (b) Window Size 15

(c) Window Size 30

Figure 5.2: Time break down for window sizes of 5, 15, and 30 seconds.

In contrast to the window size, the grid size does directly influence the computation cost
of the FFT algorithms and thus is our main variable for this experiment. It is also important
to note that the grid size may drastically influence the quality of the output of the pipeline.
Choosing a small grid will be computationally fast, but may lead to losing accuracy as multiple
coordinates could be mapped onto the same discrete set of coordinates, whereas a larger grid
will be more accurate but increase FFT runtime and memory consumption of the application.
In order to discuss the direct influence of different sized grids, we chose the same sizes as in
Section 5.3.1, without the largest size of 46 = 4096 and evaluated the times for the individual
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steps presented above for each of those. The largest size was left out since it introduced major
computation spikes due to CPU and memory limitations of the test hardware. We chose a
fixed window size of 15 seconds for this experiment.
On the smallest grid size, the deserialization process is overwhelmingly more expensive than
both the gridding and the FFT computation, as seen in Figure 5.3a. The spike in Radix-2 is
explained by a larger amount of records in the corresponding time windows and thus larger
batch sizes for those windows. This also shows how the deserialization and the gridding
are directly dependent on the amount of records in a window, whereas we don’t recognize a
change in FFT calculation time. This spike in batch size also leads to the experimental data
generated from the Radix-2 sample having less output values, since a large amount of data
is being processed in one step. We can observe the same phenomenon in Figure 5.3b for
Radix-2. We can clearly observe a shift in the composition of the total runtime here. The
FFT time was negligible for input size 64 and now makes up a notable amount of the sum.
This trend continues in Figure 5.3c where the FFT time is the dominant part of the sum.
This graphic further strengthens the argument that the amount of records mainly influences
the deserialization time and the gridding time by a smaller extent. In these samples one can
observe a highly volatile record size and its influence on the different times. We argue that
this is due to higher memory consumption on larger grid sizes, as a similar image could be
replicated by multiple runs of the application with the same parameters.
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(a) Input dimension 64 by 64

(b) Input dimension 256 by 256

(c) Input dimension 1024 by 1024

Figure 5.3: Time break down for grid sizes 64, 256,&1024.
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6 Conclusion

We discussed the performance of three FFT algorithms to perform the Fourier Transforma-
tion on complex streaming data. Streaming environments come with multiple benefits and
challenges. They allow for real-time or close-to-real-time computations on continuously gen-
erated data. In order to provide processing of the incoming data as fast as possible, it is vital
to reduce runtime complexity and operation count for every procedure that is invoked in such
an environment. We built a streaming environment for data from the radio astronomy domain,
where the Fourier Transform is an often used algorithm in the process of generating images
from data.
All discussed algorithms fall into the same category of divide-and-conquer and have a very
similar structure. The main differences in performance come from the ability to re-use certain
computations, which is exploited to a different degree in all three algorithms. In our theoreti-
cal operation count analysis we noted that all three algorithms that we implemented perform
the same amount of complex additions. The performance difference origins in the amount
of complex multiplications. Radix-2 uses the most multiplications, followed by Radix-4 and
lastly Split-Radix with the difference of the latter two being very small in our implementa-
tions.
We furthermore conducted experiments in order to evaluate the actual runtime for all algo-
rithms in an isolated environment. The results from those experiments are consistent with
the theoretical evaluation in terms of performance ranking. Also the relative differences in
runtime are closely related to the relative differences in operation count. Radix-2 performed
notably worse than its competitors, while Split-Radix outperformed Radix-4 only by a very
small margin. The same result could be observed when the algorithms were embedded in
the streaming pipeline. The dataset could be processed the fastest using Split-Radix, when
keeping all other parameters stable. Our results show that, although optimized from the initial
procedure, the deserialization of the data in the stream processor is taking a large amount of
time relative to the FFT computation, especially for smaller grid sizes. Thus it might be ben-
eficial for a real world application to optimize the data already when it is created, in order to
reduce serialization overhead and also to reduce network usage in a distributed scenario. Our
experimental evaluation also showed how the window size influences the total running time
and the output of the pipeline. With a larger window size we can process more data at once,
leading to a reduced total runtime but also reduced amount of intermediate results and thus
less information.
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7 Appendix

Listing 7.1: Radix-2 implementation in Java
/**
* complex-based recursive cooley-tukey radix-2 dit fft

* @param x: Complex[] with length of power of 2

* @return Fourier-transformed array of same length as x

*/
public static Complex[] fft2(Complex[] x)
{

int N = x.length;
//Check for power of 2 and get power of current size
int log2n=-1;
for(int i=0;i<=MAX_POW_2;i++){

if(pow2[i]==x.length){
log2n=i;

}
}
if(log2n ==-1){

throw new RuntimeException("Length of input is not a power
of 2, n = "+N);

}
//Base case
if (N == 1)

return new Complex[] { x[0] };
//split Array into new subarrays, recursively evaluate fft of

those
Complex[] even = new Complex[N / 2];
for (int k = 0; k < N / 2; k++)
{

even[k] = x[2 * k];
}
Complex[] q = fft2(even);

Complex[] odd = new Complex[N / 2];;
for (int k = 0; k < N / 2; k++)
{

odd[k] = x[2 * k + 1];
}
Complex[] r = fft2(odd);
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Complex[] y = new Complex[N];
//Combine
for (int k = 0; k < N / 2; k++)
{

//Radix-2 Butterfly
Complex wk = twiddleTable[log2n][k];

Complex oddVal = wk.multiply(r[k]);
y[k] = q[k].add(oddVal);
y[k + N / 2] = q[k].subtract(oddVal);
mults +=1;
adds+=2;

}
return y;

}

Listing 7.2: Radix-4 implementation in Java
/**
* Complex-based Cooley-Tukey Radix-4 dit FFT

* @param x: Complex[] with length of power of 4

* @return Fourier-transformed array of same length as x

*/
public static Complex[] fft4(Complex[] x){

int N = x.length;
//Power of 4 check, get current power of 4
int log2n=-1;
for(int i=0;i<=MAX_POW_2;i++){

if(pow2[i]==N){
log2n=i;

}
}
if(log2n== -1 || log2n%2!=0){

throw new RuntimeException("Length of input is not a power
of 4");

}
int N4 =N/4;
//Base case
if(N ==1){

return new Complex[] {x[0]};
}
//Split array into four subarrays, recursive calls
Complex[] first = new Complex[N/4];
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Complex[] second = new Complex[N/4];
Complex[] third = new Complex[N/4];
Complex[] fourth = new Complex[N/4];
for(int k=0;k<N4;k++){

first[k]=x[k*4];
second[k]=x[k*4+1];
third[k]=x[k*4+2];
fourth[k]=x[k*4+3];

}
Complex[] q = fft4(first);
Complex[] r = fft4(second);
Complex[] s = fft4(third);
Complex[] t = fft4(fourth);

Complex[] y = new Complex[N];
//Combination
for (int k = 0; k < N / 4; k++)
{

//Radix-4 butterfly
Complex wk = twiddleTable[log2n][k];
Complex wk2 = twiddleTable[log2n][2*k];
Complex wk3 = twiddleTable[log2n][3*k];

Complex a = q[k];
Complex b = r[k].multiply(wk);
Complex c = s[k].multiply(wk2);
Complex d = t[k].multiply(wk3);

Complex t1 = a.add(c);
Complex t2 = a.subtract(c);
Complex t3 = b.add(d);
Complex t4 = b.subtract(d);

y[k] = t1.add(t3);
y[k+N4] = t2.add(new

Complex(t4.getImaginary(),-t4.getReal()));
y[k+2*N4] = t1.subtract(t3);
y[k+3*N4] = t2.add(new

Complex(-t4.getImaginary(),t4.getReal()));
mults+=3;
adds+=8;

}
return y;

}
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Listing 7.3: Split-Radix implementation in Java
/**
* Split Radix 2/4 DIT recursive

* based on "A modified split-radix FFT with fewer arithmetic
operations"

* @param x: Complex[] with length of power of 2

* @return y Fourier-transformed array of same length as x

*/
public static Complex[] fftSplit(Complex[] x){

int N = x.length;
//Find Log2 for twiddle factor lookup and check if input is

of valid length
int log2n=-1;
for(int i=0;i<=MAX_POW_2;i++){

if(pow2[i]==N){
log2n=i;

}
}
if(log2n== -1){

throw new RuntimeException("Length of input is not a power
of 2");

}
int N4 =N/4;
//Base case
if(N ==1){

return new Complex[] {x[0]};
}else if(N==2){

Complex y0=x[0].add(x[1]);
Complex y1=x[0].subtract(x[1]);
adds+=2;
return new Complex[] {y0, y1};

}
//Split input into three subarrays of length N/4, N/4, N/2

and make recursive calls
Complex[] first = new Complex[N/2];
Complex[] second = new Complex[N/4];
Complex[] third = new Complex[N/4];
for(int k =0;k<N/2;k++){

first[k] = x[2*k];
}
for(int k=0;k<N4;k++){

second[k]=x[k*4+1];
third[k]=x[k*4+3];

}

Complex[] q = fftSplit(first);
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Complex[] r = fftSplit(second);
Complex[] s = fftSplit(third);

Complex[] y = new Complex[N];
//Combination
for(int k=0;k<N4;k++){
//Split-Radix Butterfly

Complex wk = twiddleTable[log2n][k];
Complex wk2 = twiddleTable[log2n][3*k];

Complex a1 = q[k];
Complex a2 = q[k+N4];
Complex b = r[k].multiply(wk);
Complex c = s[k].multiply(wk2);
Complex temp = new Complex(0,1).multiply(b.subtract(c));
Complex temp2 = b.add(c);

y[k] = a1.add(temp2);
y[k+N/2] = a1.subtract(temp2);
y[k+N4] = a2.subtract(temp);
y[k+3*N4] = a2.add(temp);
adds+=6;
mults+=2;

}
return y;
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