Efficient Algorithms for Frequently Asked Questions

6. Worst-Case Optimal Join Algorithms

Prof. Dan Olteanu

DaST =

Data+(Systems+Theory)
March 21+28, 2022

University of
Zurich™

https://lms.uzh.ch/url/RepositoryEntry/17185308706

https://lms.uzh.ch/url/RepositoryEntry/17185308706

What Makes a Join Algorithm Optimal?

Terminology
+ Join = FAQ where all variables are free, i.e., no marginalisation
» Conjunctive query (CQ) = FAQ over the Boolean semiring

» Query output = Listing representation of all tuples in the query answer
We can reason about two types of output sizes for a join ¢

« Instance output size: The size of ®’s output for a specific input

» Worst-case output size: The maximum size of ®’s output for any input
Running time of optimal join algorithms is proportional to

* Input size (IN) plus output size (OUT) (Instance Optimality)

* Input size plus worst-case output size (Worst-Case Optimality)

Agenda for this Lecture

1. Instance optimality for free-connex acyclic CQs: Yannakakis’s algorithm

+ Runtime becomes O(IN*OUT) for arbitrary acyclic CQs

» This works for semirings with constant-size elements, e.g., sum-product

2. Worst-case optimality for arbitrary joins: LeapFrog TrieJoin algorithm

 This only works when all variables are free, so no CQs

« Instance optimality for cyclic joins not possible (unless P=NP)

3. Mainstream join algorithms are suboptimal for cyclic joins

4. Efficient processing of CQs with large output size

Next lecture: Deriving worst-case optimal size of join output

1. Computing Acyclic Conjunctive Queries
using Yannakakis Algorithm

Recall: Evaluation Example for Acyclic CQ without Free Variables

d() = \/ 12(x1, X2) A as(Xe, X3) A 134(Xs, Xa) A 1s(X1, X5)

(%1--,%6) €] Tj[5) Dom(X;)

Recall: Evaluation Example for Acyclic CQ without Free Variables

d() = \/ 12(x1, X2) A as(Xe, X3) A 134(Xs, Xa) A 1s(X1, X5)

(%1--,%6) €] Tj[5) Dom(X;)

A join tree for ¢:

P12(x1, X2)
/N
Y23(X2, X3) Y15(X1, X5)

\

34(Xs, Xa)

Recall: Evaluation Example for Acyclic CQ without Free Variables

d() = \/ 12(x1, X2) A as(Xe, X3) A 134(Xs, Xa) A 1s(X1, X5)

(%1--,%6) €] Tj[5) Dom(X;)

A join tree for ¢:

P12(x1, X2)
/N
Y23(X2, X3) Y15(X1, X5)

\

34(Xs, Xa)

We repeat how ¢ can be evaluated efficiently on the next slide.

Recall: Evaluation Example for Acyclic CQ without Free Variables

Join tree of ®: 23 (Xe, X3) Y15(X1, Xs5)
\

3a(Xs, Xa)

Recall: Evaluation Example for Acyclic CQ without Free Variables

Join tree of ®: 23 (Xe, X3) Y15(X1, Xs5)
\

3a(Xs, Xa)

Q@134 Send up its xz-values:

Vas—y23(X3) = \/7/)34()(37 Xa)

X4

Recall: Evaluation Example for Acyclic CQ without Free Variables

hr2(xi, X2)
VAN
Join tree of ®: 23 (Xe, X3) Y15(X1, Xs5)

haa (X3, Xa)

Q@134 Send up its xz-values:
Vaq_s23(X3) = \/?/)34(X37 X4)
X4
@123 Send up its xz-values that are paired with x3 common to Vas—.23(X3) and)z3:
Vog s12(X2) = \/7/)23(X2, X3) A Vaa_s23(X3)

X3

Recall: Evaluation Example for Acyclic CQ without Free Variables

hr2(xi, X2)
VAN
Join tree of ®: 23 (Xe, X3) Y15(X1, Xs5)

haa (X3, Xa)

Q@134 Send up its xz-values:

V34—>23 X3 \/7/)34 X3,X4)

X4
@123 Send up its xz-values that are paired with x3 common to Vas—.23(X3) and)z3:
Voz_12(Xe) = \/7/)23(X2, X3) A Vaa_s23(X3)
X3

Q@115 Send up its x1-values:

Vis—12(x1) \/11)15 X1, X5)

X5

Recall: Evaluation Example for Acyclic CQ without Free Variables

Join tree of ®: 23 (Xe, X3) Y15(X1, Xs5)
\

h34(Xs, Xa)

Q@134 Send up its xz-values:
V34—>23 X3 \/7/)34 X3,X4)
X4
@123 Send up its xz-values that are paired with x3 common to Vas—.23(X3) and)z3:
Vs 12(Xe) = \/7/)23(X27 x3) A Vaa—23(X3)
X3
Q@115 Send up its x1-values:
Vis—12(x1) \/11)15 X1, Xs)
X5
©w12 Is there a pair (X1 5 X2) of 1/)12 with x; also in V5,12 and xz also in Voz_,12?
o() = \/ P12(x1, X2) A Vis—12(X1) A Vaz—12(X2)

X1,X2

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree

1. Initialisation: Create a view Vs(xs) = 1s(xs) forevery S € £

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree

1. Initialisation: Create a view Vs(xs) = 1s(xs) forevery S € £

2. Repeatedly transfer information from leaf to parent and delete leaf

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree

1. Initialisation: Create a view Vs(xs) = 1s(xs) forevery S € £
2. Repeatedly transfer information from leaf to parent and delete leaf
Pick a leaf v, (x.) with parent ¢p(xp) in T

Propagate information from leaf to parent and remove the leaf from 7
Marginalise out variables of the leaf that are not in parent

Viop(Xinp) = @ Vi(xe)
i€L\P:x;

Ve(xp) := Vp(xp) @ Visp(Xinpr)

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree

1. Initialisation: Create a view Vs(xs) = 1s(xs) forevery S € £
2. Repeatedly transfer information from leaf to parent and delete leaf

Pick a leaf v, (x.) with parent ¢p(xp) in T

Propagate information from leaf to parent and remove the leaf from 7

Marginalise out variables of the leaf that are not in parent
Viop(Xinp) = @ Vi(xe)

i€L\P:x;

Ve(xp) := Vp(xp) @ Visp(Xinpr)

3. Marginalise out remaining variables and output at root from view Vg(xz)

= @ VF{(XR)

Yannakakis’s Algorithm for Acyclic CQs without Free Variables

o() = P X) vs(xs) with acyclic hypergraph 7 and join tree T

x Se&

Yannakakis’s algorithm uses a bottom-up evaluation strategy over the join tree
1. Initialisation: Create a view Vs(xs) = 1s(xs) forevery S € £
2. Repeatedly transfer information from leaf to parent and delete leaf

Pick a leaf v, (x.) with parent ¢p(xp) in T
Propagate information from leaf to parent and remove the leaf from 7
Marginalise out variables of the leaf that are not in parent

Viop(Xinp) = @ Vi(xe)
i€L\P:x;

Ve(xp) := Vp(xp) @ Visp(Xinpr)

3. Marginalise out remaining variables and output at root from view Vg(xz)
= €D Valxa)
XR

Time complexity: Linear in the size of the input factors (after sorting them)

Yannakakis’s Algorithm for Acyclic CQs with Free Variables

o(x)) = B Q) vs(xs), where Xi, ..., X; are free variables
(29 9o00p Xp) SEE

Yannakakis’s Algorithm for Acyclic CQs with Free Variables

o(x)) = B Q) vs(xs), where Xi, ..., X; are free variables
(Xf15.--,Xn) SEE

The output size may be non-linear in the size of the input

Yannakakis’s Algorithm for Acyclic CQs with Free Variables

o(x)) = B Q) vs(xs), where Xi, ..., X; are free variables
(Xf15.--,Xn) SEE

The output size may be non-linear in the size of the input

Adaptation of Steps 2 and 3: do NOT marginalise out free variables

2. We marginalise out L' = (L\ P) \ [f] and keep P' = P U (LN [f])

Viop (Xinpr) = @ Vi(xe)
i€L’:x;

Vpr (Xpr) := Vp(Xp) @ Vi,pr (Xrpr)

3. Marginalise out non-free variables and output at root from view Vg(xg)

d(xp7) @ Vr(xg)

i€ R\[f]:x;

Yannakakis’s Algorithm for Acyclic CQs with Free Variables

o(x)) = B Q) vs(xs), where Xi, ..., X; are free variables
(Xf15.--,Xn) SEE

The output size may be non-linear in the size of the input

Adaptation of Steps 2 and 3: do NOT marginalise out free variables

2. We marginalise out L' = (L\ P) \ [f] and keep P' = P U (LN [f])

Vi pr (Xenpr) i= @ Vi(xc)

i€L’:x;
Vpr (Xpr) := Vp(Xp) @ Vi,pr (Xrpr)

3. Marginalise out non-free variables and output at root from view Vg(xg)

d(xp7) @ Vr(xg)

i€ R\[f]:x;

Question: Since P’ D P, Vr may be larger than the input, yet how much larger?

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: el xe) — s (X, Xo) — taas(Xa, Xa, Xs)

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

") Yr2(X1,X2) —
A join tree for ®: () 1)o3(X2, X3) o)
Pz Xi Xe o3 Xa X3 Pas Xa Xa Xs
a bo by o ol adi e
a by b1 C1 Co a> (2]
bz C2 C2 ds €1
b3 C2

C2 adn (]
bn C2

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

- (X, X2) —

A join tree for ®: e) wzs(xe,x;;)\%45()(3’)(4’)(5)

Vig Xi Xe Vs Xo X3 Vais X5 Xo X5
a bo bp co c di e
ai b1 b+ C1 C2 (o3 (=]

b Co Co a3 e1
bs o

C2 adn (=]
by C2

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

Ajointres foro: 00 —— ey
Vig Xi Xe Vs Xo X3 Vais X5 Xo X5
a b bo Co C1 di e
ai b1 b+ C1 C2 (o3 (=]
b Co C2 a; (=]
b o

C2 adn (=]
by C2

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

Ajointres foro: 00 —— ey
Vig Xi Xe Vs Xo X3 Vassso3a Xz Xa
a bo bp co c d
ai by by C1 C2 o
b Co Co a;
by o
C2 dn

by C2

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(X15.eey x5) €[Tic(5) Dom(X;)

- (X, X2) —
A join tree for ®: e) o3(Xe, X3) o0 E)

Vi Xi Xo Vosa Xo Xz X4 Vasss034 Xz Xa
a bo b Cy d Cy d
ai by b C2 0> C2 >
.. G o5

b2 C2 dvn
. e dy

bN Co ab

bn C2 an

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: iz,) — Y3 (X2, X3)

Vi Xi Xo Vosa Xo Xz X4 Vasss034 Xz Xa
a bo b Cy d Cy d
ai by b C2 0> C2 >

Co d3
b2 C2 dvn
. e e Co dN
bN Co ab

bn C2 an

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: iz,) — Y3 (X2, X3)

Vig Xi Xe Vosas12a Xo Xa Vassso3a Xz Xa
ao bo b+ o Cy d
ai by bo a; C2 a>

Co d3

b dy
¢ dy

bn o

by dw

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: iz,) — Y3 (X2, X3)

Viea X1 Xo Xa Voga—s1oa Xo X Vasss034 Xz Xa
ar b 0O by di Cy di
b2 d C2 0>
. Co a’3
b dy
600 000 Co dN
bn o

by dw

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: iz(x, %)
Viea X1 Xo Xa Voga—s1oa Xo X Vasss034 Xz Xa
ai by as b as C ad;
bo d C2 o
® X1 X4 A A Co d3
e b dy ...

d L . . Co dN

bn a;

by dw

Evaluation Example for a Conjunctive Query

(X1, %) = \/ Pi2(X1, X2) A Y2s(Xe, Xs) A aas(Xs, Xa, X5)
(x1,-++:%5) €l T 5) Dom(X;)

A join tree for ®: iz(x, %)

Viea X1 Xo Xa Voga—s1oa Xo X Vasss034 Xz Xa
a by as b as Cq o
b2 d Co d
® X1 X4 e e Co a’3
o b dy el
1 g ' S

bn a;

bn an

Problem: Intermediate results are of quadratic size!

Reducing the Size of Intermediate Results

Consider again the following join tree and factors:

hra(Xi, %) —
pos(Xo, X3)
1/23(2 3) ¢345(X3,X4,X5)

P2 X1 Xe o3 Xo X3 Yas Xz Xa X
a b bo o] ai e
a b1 b1 C1 Co d2 e
bo Co Co as e
bs C2

C2 adn (=]
bN C2

Reducing the Size of Intermediate Results

Consider again the following join tree and factors:

hra(Xi, %) —
pos(Xo, X3)
1/23(2 3) ¢345(X3,X4,X5)

P2 X1 Xe o3 Xo X3 Yas Xz Xa X
a b bo o] ai e
a b1 b1 C1 Co d2 e
bo Co Co as e
bs C2

C2 adn (=]
bN C2

No tuple (bj, c2) of 123 is in the join result: 112 has no matching tuple

Reducing the Size of Intermediate Results

Consider again the following join tree and factors:

hra(Xi, %) —
pos(Xo, X3)
1/23(2 3) ¢345(X3,X4,X5)

P2 X1 Xe o3 Xo X3 Yas Xz Xa X
a b bo o] ai e
a b1 b1 C1 Co d2 e
bo Co Co as e
bs C2

C2 adn (=]
bN C2

No tuple (bj, c2) of 123 is in the join result: 112 has no matching tuple

Tuple (ao, bo) of 12 is not in the join result: ¢s45 has no matching tuple

Reducing the Size of Intermediate Results

Consider again the following join tree and factors:

hra(Xi, %) —
pos(Xo, X3)
1/23(2 3) ¢345(X3,X4,X5)

P2 X1 Xe o3 Xo X3 Yas Xz Xa X
a b bo o] ai e
a b1 b1 C1 Co d2 e
bo Co Co as e
bs C2

C2 adn (=]
bN C2
No tuple (bj, c2) of 123 is in the join result: 112 has no matching tuple
Tuple (ao, bo) of 12 is not in the join result: ¢s45 has no matching tuple

These are examples of dangling tuples

Reducing the Size of Intermediate Results

Consider again the following join tree and factors:

hra(Xi, %) —
pos(Xo, X3)
1/23(2 3) ¢345(X3,X4,X5)

P2 X1 Xe o3 Xo X3 Yas Xz Xa X
a b bo o] ai e
a b1 b1 C1 Co d2 e
bo Co Co as e
bs C2

C2 adn (=]
bn C2
No tuple (bj, c2) of 123 is in the join result: 112 has no matching tuple
Tuple (ao, bo) of 12 is not in the join result: ¢s45 has no matching tuple
These are examples of dangling tuples

Adaptation: remove all dangling tuples at each factor before we do the join

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

1. Initialisation: Create a view Rs(xs) = 1s(xs) for every S € €

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

1. Initialisation: Create a view Rs(xs) = 1s(xs) for every S € €

2. Remove dangling tuples bottom-up

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

1. Initialisation: Create a view Rs(xs) = 1s(xs) for every S € €
2. Remove dangling tuples bottom-up

In bottom-up traversal of T, filter each node vp using its child ¢
Remove tuples from Rp with no match in Re

Re(xp) := Re(XP) ® 1, c\ 5., Ac(xc)

Indicator 1y: Returns 1 if W # 0 and 0 otherwise

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

1. Initialisation: Create a view Rs(xs) = 1s(xs) for every S € €
2. Remove dangling tuples bottom-up

In bottom-up traversal of T, filter each node vp using its child ¢
Remove tuples from Rp with no match in Re

Re(xp) := Re(XP) ® 1, c\ 5., Ac(xc)

Indicator 1y: Returns 1 if W # 0 and 0 otherwise

3. Remove dangling tuples top-down

Reducing the Size of Intermediate Results: Full Reducer

Fully reduce input factors along a join tree 7

1. Initialisation: Create a view Rs(xs) = 1s(xs) for every S € €
2. Remove dangling tuples bottom-up

In bottom-up traversal of T, filter each node vp using its child ¢
Remove tuples from Rp with no match in Re

Re(xp) := Rp(xp) ® 169/‘50\P;x,- Rec(xc)

Indicator 1y: Returns 1 if W # 0 and 0 otherwise
3. Remove dangling tuples top-down

In top-down traversal of T, filter each node ¢ using its parent 1p
Remove tuples from R¢ with no match in Rp

Re(xc) := Re(Xe) @ 1@, py .y, Relxp)

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2)

Yealre, 2o} — 3a5(X3, X4, Xs5)
vz X1 Xe Pz Xo Xa Yaas Xz Xo Xs
a bo bo Co C4 di e
a b by o] C d e
bg Co Co d3 e
bs Co

C2 dn (]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

12(X1, X2
hra() ¢23(X27@5(X3,X4,X5)
Rz Xi Xo Rz Xo X3 Ras X3 Xa X5
a bo bo Co Cy o e
a b by i C d e
b Co Co a3 e
bs Co 600 600 600

C2 adn (=]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

12(X1, X2
w () wzs(xz’@s(Xs,Xme)
Rz Xi Xo Rz Xo X3 Ras X3 Xa X5
ao bo o -€o C1 ai €1
a b by i C d e
b Co Co a3 e
bs C2

C2 adn (=]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2) (6, 5)
_/23 2780 T 445 (X3, Xa, X)

Rz Xi Xo Rz Xo X3 Ras X3 Xa X5
ao bo o -€o C1 ai €1
a b by i C d e
b Co Co a3 e
bs C2

C2 adn (=]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2) (6, 5)
_/23 2780 T 445 (X3, Xa, X)

Rz X1 Xe Rz Xo X3 Ras X3 Xa X5
& b o €0 Cq ai e
a b by i C d e
b Co Co a3 e
bs C2

C2 adn (=]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2)

Yealre, 2o} — thaas(Xa, Xa, Xs)
Rz X1 Xe Rz Xo X3 Ras X3 Xa X5
& b o €0 Cq ai e
a b by i C d e
b Co Co a3 e
bs C2

C2 adn (=]
bn C2

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2)
Xo,X3)
7#23(2 3) ’¢345(X3,X4,X5)
Rz X1 Xe Rz X2 Ras X3 Xa X5
a b ¢ di e
ai by C2 s e

Co d3 e1

C2 adn (=]

| s e
1 ¢o0o dx

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2)
Xo,X3)
7#23(2 3) ’¢345(X3,X4,X5)
Rz X1 Xe Rz X2 Ras X3 Xa X5
a b ¢ di e
ai by C2 s e

Co d3 e1

C2 adn (=]

| s e
1 ¢o0o dx

Full Reducer: Example

Consider again the previous join tree and factors:

hiz(x1, X2)

wzs(Xz, x3) T ’¢345(X3, Xa, X5)

Rz X1 Xe Rz X2 X3 Rass X3 X4 Xs
@ bo by -6 c a; e
a b by ol € &
b e < &
b3 e ——
= == € B &

by €

Full Reducer: Example

Consider again the previous join tree and factors:

Y12(X1, Xz
() wzs(Xz, x3) T thaas(X3, Xa, X5)

Rz X1 Xe Rz X2 X3 Rass X3 X4 Xs
‘o Ho H € ol as e
ar b by Ci € &

b e € 6 &
b T
= == € B &
by €

Only tuples remain that contribute to at least one tuple in the join result

Yannakakis’s Algorithm for Acyclic CQs: Wrapping Up

Adaptation of Step 1: initialise views as fully reduced

Yannakakis’s Algorithm for Acyclic CQs: Wrapping Up

Adaptation of Step 1: initialise views as fully reduced

Size of intermediate results is bounded by product of input size and output size

Yannakakis’s Algorithm for Acyclic CQs: Wrapping Up

Adaptation of Step 1: initialise views as fully reduced

Size of intermediate results is bounded by product of input size and output size

Time complexity: Linear in the product of input size and output size (after sorting)

Yannakakis’s Algorithm for Acyclic CQs: Wrapping Up

Adaptation of Step 1: initialise views as fully reduced
Size of intermediate results is bounded by product of input size and output size

Time complexity: Linear in the product of input size and output size (after sorting)

For free-connex acyclic CQs, the algorithm is instance-optimal:
Time complexity is linear in the sum of input size and output size (after sorting)
1. Bottom-up /ocal computation in time proportional to IN
 Pick one node with free variables as root

» The nodes with free variables form a connected subtree in the join tree

+ Values for free variables pushed up when these variables are also in parent
We are now left with a reduced join tree only over free variables

2. We can now join all the remaining factors in time proportional to OUT

2. Computing Joins using LeapFrog Triedoin

Beyond Acyclicity

Various applications call for cyclic joins
» graph problems, e.g., looking for cyclic patterns in networks, social media
» Typical cyclic queries: loops, triangles, Loomis-Whitney

» Compute the factors representing the bags in hypertree decompositions

Surprisingly, mainstream join algorithms are sub-optimal for cyclic joins
* nested-loops join, hash join, sort-merge join, [your favourite join algorithm]
» Sub-optimal: It takes asymptotically more time than worst-case join size

» We will see this by means of an example later in this lecture

We next discuss a worst-case optimal join algorithm: LeapFrog TrieJoin
» Runtime proportional to the size of the join output (proof in paper)
» Recall: Join output size O(NP*); p* is the fractional edge cover number

» We later show that O(N"*) is worst-case optimal join size

LFTJ: The LeapFrog Triedoin Algorithm

State-of-the art worst-case optimal join (WCQOJ) algorithm

* Available at http://arxiv.org/abs/1210.0481
» Variants implemented in commercial and open-source query engines

» LFTJ can be orders of magnitude faster for cyclic queries on large datasets
than existing commercial and open-source query engines

» Adapting an existing engine to support joins worst-case optimally requires
significant design changes

http://arxiv.org/abs/1210.0481

Join of Unary Factors: Standard Approach

Compute the join of unary factors (intersection): ®(x) = A(x) ® B(x) ® C(x)

A 0 1 3 4 5 6 7 8 9 11

B 0 2 6 7 8 9

C 2 4 5 8 10
AnBNC 8

» Standard approach (for sorted factors): multi-way sort-merge join
« lterators over the three factors proceed in lockstep to find common values
» Each iterator scans the entire list

» Time to compute: proportional to the sizes of the lists

Join of Unary Factors: Leapfrogging

seek(2) jeek(8)7 seek(10)

A 0—1 ™3—4 5 6 7 =89 1
k) wei®) | k)
B o— 2 6 7 89 T4
seek(6) H next()
C 2mﬁ —r0 10
ANBNC 8

Complexity: let Nyin = min{|A|, |B|,|C|} and Ny. = max{|A|, |B|,|C|}. Then
leapfrog join runs in time @ (Nyin(1 + 108(Nyax/ Nipin))-
« Leapfrog Join: Multi-way sort-merge join using smart seeks instead of scans

» Seeking m keys amongst N possible keys in ascending order has amortised
complexity O(1 + log(N/m)) as for balanced search tree data structures

Linear lterator

We navigate a unary factor using an iterator that sees it as an ordered list.

The linear iterator interface:

int key()
next()

seek(int seekKey)

bool atEnd()

Returns the key at the current iterator position

Proceeds to the next key

Positions the iterator at a least upper bound for seekKey

i.e., the least key > seekKey, or move to end if no such key exists.
The sought key must be > the key at the current position.

Returns true if the iterator is at the end.

Trie Presentation of Factors With Non-Unary Arity

Trie lterator in Action: Example

Trie lterator in Action: Example

Call: open()

Trie lterator in Action: Example

Call: open()

Trie lterator in Action: Example

Call: open()

Trie lterator in Action: Example

Call: next()

Trie lterator in Action: Example

Call: atEnd() true

Trie lterator in Action: Example

Trie lterator in Action: Example

Call: next()

Trie lterator in Action: Example

Call: open()

Trie lterator in Action: Example

Call: next()

Trie lterator in Action: Example

Call: next()

N

0
3/4\5
/\ /\
4 5 0 1[2]2

Call: atEnd() true

1
5
2

and so on

Trie lterator

We navigate a factor using an iterator that sees it as a trie.

The trie iterator interface:

void open() Proceed to the first key at the next depth

void up() Return to the parent key at the previous depth
int key() Returns the key at the current iterator position
next() Proceeds to the next key

seek(int seekKey)

bool atEnd()

Positions the iterator at a least upper bound for seekKey
i.e., the least key > seekKey, or move to end if no such key exists.
The sought key must be > the key at the current position.

Returns true if the iterator is at the end.

Binding Trie: Variables Mapped to Values During Trie Traversal

» The variables of a factor are bound to values following a backtracking search
« Satisfying assignments are emitted when leaves are reached

« Consider our trie below for factor R(x, y, z)

x—d////x\\\}:1

T~

y=4 y=5 y=5

Execution Strategy of LeapFrog TriedJoin

» Choose a global and total variable ordering for all factors

» Each factor is traversed following this variable ordering
» Backtracking search through binding trie to find result tuples

- Example join: R(a, b) = S(b, c) = T(a, ¢) under variable ordering: [a, b, c]
« Leapfrog join for a occurring in both R and T
« For each such a, leapfrog join for b occurring in S and R?

« For each such b, leapfrog join for ¢ occurring in S? and T2

» The result is presented as a non-materialised view using a trie iterator

LeapFrog Triedoin in Action: Example (1/7)

Tree join example

LeapFrog Triedoin in Action: Example (2/7)

Tree join example

A(x,y,2) B(x,z) C
0 2
0/

x \1 0
/N |
SRy
21

2

(v) D(y,z)

\

2 3 0

Position iterators at root of trees.

LeapFrog Triedoin in Action: Example (3/7)

Tree join example

A(x,y,2) B(x,z) C
0 ™ /
0

x \1 0
/N |
2’3 5/ |
21

2

(v) D(y,z)

\

2 3 0

open() iterators for trees that bind x.

Join for A(x, ,), B(x,) finds x = 0.

LeapFrog Triedoin in Action: Example (4/7)

Tree join example

A(x,y,2) B(x,z) C
0o) /
0

x \1 0
/N |
2 s 5 / |
21

2

() D(y,z)

\

2 3 0

open() iterators for trees that bind y.

LeapFrog Triedoin in Action: Example (5/7)

Tree join example

seek(2) on C iterator

LeapFrog Triedoin in Action: Example (6/7)

Tree join example

A(x,y,2) B(x,z)
_—

C
x 0 \} 0 2 /‘ /\
y2 3 ?/\ ‘023/0\/\2\
11 21 2 3) 1

seek(2) on D iterator; join for A(0,y,),C(y),D(y,) findsy = 2

LeapFrog Triedoin in Action: Example (7/7)

Tree join example

/A(x,y,Z) /B(x,Z)\ C(y) D(y, z)
S 3 G IV A
| ﬁl 2 /\2

open() on iterators for z

join for A(0,2,z),B(0,z), D(2,z) produces z = 1: emit (0,2,1)

3. Suboptimality of Mainstream Join Algorithms

The Triangle Join on Factors with Heavy and Light Values

D(x1, X2, X3) = 12(X1, X2) ® 13(X1, X3) ® 1)23(X2, X3)

P12(x1, X2) 13(X1, Xs) 23(X2, X3) D(x1, X2, X3)
a bo & C by co a b o
a ... a ... bo ... a bo
a bm d Cm bo Cm a b0 cm
a bo a Co by Co a b Co

bo Co R Co a ... Co

am bo am G bn Co a bm G
a bo Co

b @

am bO Co
Each input factor has size 2m + 1, the output factor has size 3m + 1.
Values ap, by, co are heavy in the input factors, all other values are light

Ideally, a join algorithm takes time proportional to the input and output sizes.

How would existing join algorithms compute this query?

Mainstream Join Algorithms Compute One Join at a Time

Traditional join: Join two of the three factors, then join in the remaining factor

@' (x1, X2, X3) = P12(X1, X2) ® Y13(x1, Xs) — \,

D (x1, X2, X3) = ' (X1, X2, X3) ® 123(Xe, Xs)

« &' takes quadratic time to compute: It has (m + 1)? 4+ m tuples

12(X1, X2) P13(x1, x3) &' (x1, X2, X3)
aop bo Co
a bo a Co
a by
ap 000 aop bo @
a
ao bm ap Cm _ 9% H ©om
ay bo aj Co B e———
bO c aO 'm CO
am b am Co S e

a2 bm o
ai bo Co
by ¢
am bo Co

« This behaviour happens regardless of which two factors we join first

This is not optimal: The intermediate result is larger than the final join result

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

X3

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

X3 C -+ Cm

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C -+ Cm Co Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C -+ Cm Co Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 Co -+ Cm Co Co Co -+ Cm Co

X3 C -+ Cm Co Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

X2 bo by bm

X3 C -+ Cm Co Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

/

X2 bo by bm

X3 C -+ Cm Co Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X2 bo bi - bm bo

X3 C -+ Cm Co C Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

X2 bo bi - bm bo

X3 C -+ Cm Co C Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

Co -+ Cm Co Co Co -+ Cm Co Co

X2 bo bi - bm bo

X3 C -+ Cm Co C Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X2 bo bi - bm bo

X3 C -+ Cm Co C Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X3 C---Cn O Co Co---Cmn Co Co

X2 bo bi - bm bo

X3 C -+ Cm Co C Co

LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time

X2 bU b1"'bm bO bO
Co

X3 C -+ Cm Co C Co

4. Conjunctive Queries with Large Output

Simple Queries May Have Large Output

Output size is not a good measure for the computational effort of a query

Cartesian product ®(x1,. .., Xm) = ¥1(X1) ® - - - @ ¥Ym(Xm) has output size N

Simple Queries May Have Large Output

Output size is not a good measure for the computational effort of a query

Cartesian product ®(x1,. .., Xm) = ¥1(X1) ® - - - @ ¥Ym(Xm) has output size N

Decompose the computational effort into two steps:

1. Preprocessing step

» Construct a compact data structure for all tuples in the query result

» Construction time = true measure of the query’s computational effort

2. Enumeration step
» Enumerate the distinct tuples from this data structure one after the other
» Delay: The time needed to return one tuple after returning the previous one
» Constant delay is as good as enumerating tuples from a listing representation

» One can enumerate top-k tuples in a desired order

Overview of Approaches Covered in Lecture

conjunctive queries
O(N™*) and O(1)

a-acyclic
O(N) and O(N)

free-connex
O(N) and O(1)

The above diagram shows preprocessing time and enumeration delay

Two broad strategies:
1. All computational effort in the preprocessing step to achieve constant delay

« Still lower than materialising the entire query result: thtw < p*

2. Distribute the computational effort between preprocessing and enumeration

Strategy 1: All Computational Effort in Preprocessing

Input: FAQ & with hypergraph H and free variables [f], input factors of size N

Preprocessing Step
« Construct a hypertree decomposition for # in O(N™*(*:11))
» Hypertree becomes join tree: each bag is materialised as one factor

» Free variables form a connected subtree including wlog the root of the join tree
« Calibrate the factors using a full reducer to remove dangling tuples
» Marginalise out bound (i.e., not free) variables

« Sort factors following an order of free variables compatible with top-down
traversal of join tree

Output of preprocessing step:
» Reduced join tree whose nodes are factors over free variables only
» Expensive and unnecessary: Joining all factors in the reduced join tree

« = Time to compute ® is O(N*"), yet p*(#) > £htu(H, [f])

Strategy 1: Preprocessing Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1,X2) —_—
Xo,X3)
Vas(0e, %) 1345(X3, X4, X5)

P2 X Xo oz Xo Xz Yas Xz Xa X5
a b4 by Cq Cq o] e
a bo ce ce Cq a> e1
a by b1 Cn Co o (=]
a bo b Cy C a> e
an b+ bo (o] CN o (]
an b2 bs C1 CN o/} &

av b

Strategy 1: Preprocessing Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

X, Xe)
Pr2(x1, X2) oz (X2, X3) e)
))

P2 X Xo Yoz Xo X3 Yas Xz Xo X
a b4 by Cq Cq o] e
a b2 cee e ol d e
a by b1 Cn Co o (=]
a bo b Cy C a> e
an b bo Cn CN o e
an b2 bs C1 CN o/} &
ay bs

 Factors are already calibrated

Strategy 1: Preprocessing Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

ia(X1, X2) —
X2, X
Vs (2,) Y34523(X3)

P12 X Xz o3 Xo X3 V345523 X3
a b4 by Cq Cq
a b SR e
a by b CN
a bo b Cq CN
an by bo Cn
an b2 b3 C1

av b

 Factors are already calibrated

 Variables X4, X5 are marginalised out

Strategy 1: Preprocessing Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)

P12 X Xz o3 Xo X3 V345523 X3
a b1 b1 Cq Cq
a b2 cee e C
ar by by CN
a bo b Cy Cn
aN by bo CN
an b2 bs Cy

av b

 Factors are already calibrated
 Variables X4, X5 are marginalised out

« Factors are already sorted appropriately

Strategy 1: All Computational Effort in Preprocessing

Constant-Delay Enumeration of Tuples from Reduced Join Tree
« Variable order (Xi, ..., X;) compatible with top-down traversal of join tree
 Factors are sorted following this variable order

» For each value x; for Xi, we seek a value x> for X2, and so on

« If factors sorted, then all values for X; are in a contiguous block in factors, given
the values for Xi, ..., Xj_1

« Since there are no dangling tuples, each value x; participates in at least one
output tuple

+ We output a complete assignment x[; and backtrack

Why constant delay?

 For each variable X;, we need constant time to locate its next value, given
values for variables Xi, ..., Xi—1

» The time to output a tuple is independent of the sizes of the factors

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)

P12 X Xz o3 Xo X3 V345523 X3
a b1 b1 Cq Cq
a b2 cee e C
ar by by CN
a bo b Cy Cn
aN by bo CN
an b2 bs Cy

av b

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)
P12 Xi Xo o3 Xo X3 V345523 X3
ai by by Cq Cq
a b2 see e C
as by by CN
a bo b2 Cy Cn
an by bo CN
an b bs C1
an bs

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)
vz X1 Xo Y Xo Xs Y523 Xa
a b1 by Cy C1
a b2 see e C
as by by CN
a bo b2 Cy Cn
an by bo CN
an b bs C1
ay bs

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
a by by Cq Cq
a b2 IR C2
a» o b CN
az b2 b ¢ CN
an b b2 cN
an b2 bs cy

an bs

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

1/)12(X1) X2) _
X2, X
Vas(0e, %) Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
ai by by C1 C1
ay b2 000 000 Co
ao b b1 CN
az b2 b ¢ CN
an b b2 cN
an b2 bs cy

an bs

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
a by b cy C1
ay b2 .. e Co
ao o by CN
a b2 b2 C CN
an b4 bo CN
an b2 bs c
an bs

Output: (ar, b1, ¢1)

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
ai by b4 C1 C1
ay b2 coo coo Co
ao b1 b1 Cn
az b2 b2 c CN
an b4 b2 CN
an b bs Ci
an bs

Output: (ar, b1, ¢1),. .., (a1, bi, cn)

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
ai by by Cq Cq
a b2 °00 oo0q C
az b+ by CN 000
a by b: ¢ CN
an b4 bo Cn
an b2 bs cy

an bs

Output: (ar, b1, ¢1),. .., (a1, bi, cn)

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

iz X Xo s Xoo Xs Y523 Xa
a b b Cy C1
a b2 o00 oac o
a» o b CN
a b> b, i Cn
an b b2 Cn
an bo bs o
an bs

Output: (ar, b1, ¢1),. .., (a1, bi,cn), (ar, b2, c1)

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
a by b Ci cy
a b2 soc e C
ao b1 b1 CN 0oo
az b b2 G Cn
an b b2 cn
an b2 bs c
an bs

Output: (ar, b1, ¢1), ..., (a1, b1, cn), (ar, b2, ¢1), ..., (ar, b2, cn)

Strategy 1: Enumeration Example

Input: join tree and factors as follows, free variables are { X1, X2, X3}

P12(x1, X2) ——— a2, %)

Y34523(X3)

P12 Xi Xz o3 Xo X3 V345523 X3
a by b Ci cy
a b2 soc e C
ao b1 b1 CN 0oo
az b b2 G Cn
an b b2 cn
an b2 bs c
an bs

Output: (ar, bi, 1), ..., (a1, b1, cn), (ar, b2, ¢1), ..., (a1, b2, cn), - - .

Strategy 2: Linear Preprocessing and Linear Enumeration Delay

We discuss this strategy for a-acyclic CQs that are not free-connex
Preprocessing Step
* Apply a full reducer to remove the dangling tuples

« Sort factors following an order of the free variables compatible with top-down
traversal of join tree

» This computation can be done in linear(ithmic) time

Enumeration Step
« lterate over the possible values x; for variable Xj
« Restrict the factors for X; to those tuples where X = xq
« Fully reduce all other factors to avoid newly dangling tuples
» Do the previous three steps for the next variable
» When a complete variable assignment is found, output it and backtrack

» This computation can be done in linear time per complete assignment

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Y12(X1, Xo) ———————— o3(Xe, X3) —————————— aas (X3, Xa, X5)

P2 X Xz s Xo Xs tass Xa Xa Xs
a by bi ¢ . di e
aj b2 - - C d2 ey
a by by CN Co as e
a» b2 b ¢ . e
an by bo CN CN a e
an bo bs C1 CN > e1
an bs

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

12(X1, Xo) ———————— Ya3(Xe, X3) ———————— 3a5(X3, X4, Xs5)
P2 X Xa Pz Xo Xa Pas Xz Xao Xs
a by b1 C1 C1 o (=]
a b bo Cy Cy a (=]
a by bs Cq Co as e
a b2 by G2 C2 d e
b2 Co
an b1 000 000 CcN d1 ey
an b b con v b e
an bs b cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Y12(X1, X2) ——————— ea(Xxe, X3) ——————— VP345(x3, X4, X5)

P2 X X2 Pz Xo Xa Pas Xz Xao Xs
a by b1 C1 C1 o (=]
ai bo b2 C1 C > ey
a by bs Cq Co as e
az b2 by G2 c e

b2 Co
an b A oy di e
av b br ¢ v e
an bs b cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

12(X1, Xo) ———————— Ya3(Xe, X3) ———————— 3a5(X3, X4, Xs5)
Pz X Xe Pz Xo Xa Pas Xz Xao Xs
a b2 b> Ci Ci a> €1
bs C1 C2 d e
b1 C2 C2 a> (]
b2 Co
CN a e
b1 Cn CN a> (]
b (o]

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Pra(X1, Xo) ———————— a23(X2, X3) ———————— tass5(X3, Xa, X5)
P2 X Xz o3 Xo Xs Yas Xz Xa X
a b b Cq Cy di (=]
a b2 bo Ci c > e
Co d1 (=]
b C2 C2 a> (=]
b2 Co
CN a e
b Cn Cn a> (=]
bo Cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)

« restrict ¥12 to fixed value, here ay

» remove dangling tuples in other factors

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Pra(X1, Xo) ———————— a23(X2, X3) ———————— tass5(X3, Xa, X5)
P2 X Xz o3 Xo Xs Yas Xz Xa X
a b b Cq Cy di (=]
a b2 bo Ci c > e
Co d1 (=]
b C2 C2 a> (=]
b2 Co
CN a e
b Cn Cn a> (=]
bo Cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay
» remove dangling tuples in other factors
« iterate over all results of ¢3(X3) = ¢12(a , Xg) ® ¢23(X27 X3) ® ¢345(X37 X4, X5)

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Pra(X1, Xo) ———————— a23(X2, X3) ———————— tass5(X3, Xa, X5)
Pz X Xe Yy Xo Xa Yas Xz Xo Xs
a b b Cy Cy di (=]
a b2 bz ol c b e
Co d1 (=]
b C2 C2 a> (]
b C2
CN a e
by CN Cn a> €1
bo Cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay
» remove dangling tuples in other factors
« iterate over all results of ¢3(X3) = ¢12(a , Xg) ® ¢23(X27 X3) ® ¢345(X37 X4, X5)
Output: (a1, c1)

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

12(X1, Xo) ———————— Ya3(Xe, X3) ———————— 3a5(X3, X4, Xs5)
P2 Xi Xe oz Xo X3 Pas Xz Xao Xs
ai b4 b1 C1 C1 o (=]
a bo b2 C1 C1 a (=]
Co d1 (=]
b1 C2 C2 a> (]
b C2
CN a e
by CN Cn a> €1
b2 CN

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay
» remove dangling tuples in other factors
« iterate over all results of ¢3(X3) = ¢12(a , Xg) ® ¢23(X27 X3) ® ¢345(X37 X4, X5)
Output: (a1, c1), (a1, c2)

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Pra(X1, Xo) ———————— a23(X2, X3) ———————— tass5(X3, Xa, X5)
Pz X Xe Pz Xo Xs Yas Xz Xo Xs
ai b4 b1 C1 C1 o (=]
a bo b2 C1 C1 a (=]
Co d1 (=]
b1 Co C2 a> (]
b2 Co
CN a e
b1 Cn CN a> (]
b2 Cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay
» remove dangling tuples in other factors
« iterate over all results of ¢3(X3) = ¢12(a , Xg) ® ¢23(X27 X3) ® ¢345(X37 X4, X5)
Output: (a1, ¢1), (a1, c2), ..., (a1, cn)

Strategy 2: Enumeration Example

Fix again join tree and factors as follows, free variables are now {Xi, X3}

Pra(X1, Xo) ———————— a23(X2, X3) ———————— tass5(X3, Xa, X5)
Pz X Xe Pz Xo Xs Yas Xz Xo Xs
ai b4 b1 C1 C1 o (=]
a bo b2 C1 C1 a (=]
Co d1 (=]
b1 Co C2 a> (]
b2 Co
CN a e
b1 Cn CN a> (]
b2 Cn

» Preprocessing: Remove dangling tuples, sort ¢»3 by the free variable X3
* lterate over all results of ®1(x1) = B,, r2(x1, x2)
« restrict ¥12 to fixed value, here ay
» remove dangling tuples in other factors
« iterate over all results of ¢3(X3) = ¢12(a , Xg) ® ¢23(X27 X3) ® ¢345(X37 X4, X5)
Output: (a1, ¢1), (a1, c2), ..., (a1, cn), . ..

