Efficient Algorithms for Frequently Asked Questions 6. Worst-Case Optimal Join Algorithms Prof. Dan Olteanu March 21+28, 2022 # What Makes a Join Algorithm Optimal? #### Terminology - Join = FAQ where all variables are free, i.e., no marginalisation - Conjunctive query (CQ) = FAQ over the Boolean semiring - Query output = Listing representation of all tuples in the query answer We can reason about two types of output sizes for a join Φ - Instance output size: The size of Φ's output for a specific input - Worst-case output size: The maximum size of Φ 's output for any input Running time of optimal join algorithms is proportional to Input size (IN) plus output size (OUT) (Instance Optimality) • Input size plus worst-case output size (Worst-Case Optimality) # Agenda for this Lecture - 1. Instance optimality for free-connex acyclic CQs: Yannakakis's algorithm - Runtime becomes O(IN*OUT) for arbitrary acyclic CQs - · This works for semirings with constant-size elements, e.g., sum-product - 2. Worst-case optimality for arbitrary joins: LeapFrog TrieJoin algorithm - · This only works when all variables are free, so no CQs - Instance optimality for cyclic joins not possible (unless P=NP) - 3. Mainstream join algorithms are suboptimal for cyclic joins - 4. Efficient processing of CQs with large output size Next lecture: Deriving worst-case optimal size of join output using Yannakakis Algorithm 1. Computing Acyclic Conjunctive Queries $$\Phi() = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{34}(x_3, x_4) \wedge \psi_{15}(x_1, x_5)$$ $$\Phi() = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{34}(x_3, x_4) \wedge \psi_{15}(x_1, x_5)$$ A join tree for Φ: $$\begin{array}{c} \psi_{12}(x_1, x_2) \\ / \\ / \\ \psi_{23}(x_2, x_3) \ \psi_{15}(x_1, x_5) \\ | \\ \psi_{34}(x_3, x_4) \end{array}$$ $$\Phi() = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{34}(x_3, x_4) \wedge \psi_{15}(x_1, x_5)$$ A join tree for Φ: $$\begin{array}{cccc} \psi_{12}(x_1, x_2) \\ & \swarrow \\ \psi_{23}(x_2, x_3) & \psi_{15}(x_1, x_5) \end{array}$$ $$\downarrow \\ \psi_{34}(x_3, x_4)$$ We repeat how Φ can be evaluated efficiently on the next slide. $$ψ_{12}(x_1, x_2)$$ Join tree of Φ: $ψ_{23}(x_2, x_3) ψ_{15}(x_1, x_5)$ $ψ_{34}(x_3, x_4)$ $@\psi_{34}$ Send up its x_3 -values: $$V_{34\to23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$ $@\psi_{34}$ Send up its x_3 -values: $$V_{34\to23}(x_3)=\bigvee_{x_4}\psi_{34}(x_3,x_4)$$ $@\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\to23}(x_3)$ and ψ_{23} : $$V_{23\to12}(x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{34\to23}(x_3)$$ $@\psi_{34}$ Send up its x_3 -values: $$V_{34\to23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$ $@\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\to23}(x_3)$ and ψ_{23} : $$V_{23\to12}(x_2) = \bigvee_{x_3} \psi_{23}(x_2, x_3) \wedge V_{34\to23}(x_3)$$ $@\psi_{15}$ Send up its x_1 -values: $$V_{15\to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$ $$ψ_{12}(x_1, x_2)$$ / \ Join tree of Φ: $ψ_{23}(x_2, x_3) ψ_{15}(x_1, x_5)$ $ψ_{34}(x_3, x_4)$ $@\psi_{34}$ Send up its x_3 -values: $$V_{34\to23}(x_3) = \bigvee_{x_4} \psi_{34}(x_3, x_4)$$ $0\psi_{23}$ Send up its x_2 -values that are paired with x_3 common to $V_{34\to23}(x_3)$ and ψ_{23} : $$V_{23\to12}(x_2)=\bigvee_{x_3}\psi_{23}(x_2,x_3)\wedge V_{34\to23}(x_3)$$ $@\psi_{15}$ Send up its x_1 -values: $$V_{15\to 12}(x_1) = \bigvee_{x_5} \psi_{15}(x_1, x_5)$$ $@\psi_{12}$ Is there a pair (x_1, x_2) of ψ_{12} with x_1 also in $V_{15\rightarrow 12}$ and x_2 also in $V_{23\rightarrow 12}$? $$\Phi() = \bigvee_{x_1, x_2} \psi_{12}(x_1, x_2) \wedge V_{15 \to 12}(x_1) \wedge V_{23 \to 12}(x_2)$$ $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree 1. Initialisation: Create a view $V_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree - 1. Initialisation: Create a view $V_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Repeatedly transfer information from leaf to parent and delete leaf $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree - 1. Initialisation: Create a view $V_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Repeatedly transfer information from leaf to parent and delete leaf Pick a leaf $\psi_L(\mathbf{x}_L)$ with parent $\psi_P(\mathbf{x}_P)$ in \mathcal{T} Propagate information from leaf to parent and remove the leaf from \mathcal{T} Marginalise out variables of the leaf that are not in parent $$V_{L\to P}(\mathbf{x}_{L\cap P}) = \bigoplus_{i\in L\setminus P: x_i} V_L(\mathbf{x}_L)$$ $$V_P(\mathbf{x}_P) := V_P(\mathbf{x}_P) \otimes V_{L\to P}(\mathbf{x}_{L\cap P})$$ $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree - 1. Initialisation: Create a view $V_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Repeatedly transfer information from leaf to parent and delete leaf Pick a leaf $\psi_L(\mathbf{x}_L)$ with parent $\psi_P(\mathbf{x}_P)$ in \mathcal{T} Propagate information from leaf to parent and remove the leaf from \mathcal{T} Marginalise out variables of the leaf that are not in parent $$V_{L\to P}(\mathbf{x}_{L\cap P}) = \bigoplus_{i\in L\setminus P: x_i} V_L(\mathbf{x}_L)$$ $$V_P(\mathbf{x}_P) := V_P(\mathbf{x}_P) \otimes V_{L\to P}(\mathbf{x}_{L\cap P})$$ 3. Marginalise out remaining variables and output at root from view $V_R(\mathbf{x}_R)$ $$\Phi()=\bigoplus_{\mathbf{x}_{R}}V_{R}(\mathbf{x}_{R})$$ $$\Phi() = \bigoplus_{\mathbf{x}} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S) \text{ with acyclic hypergraph } \mathcal{H} \text{ and join tree } \mathcal{T}$$ Yannakakis's algorithm uses a bottom-up evaluation strategy over the join tree - 1. Initialisation: Create a view $V_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Repeatedly transfer information from leaf to parent and delete leaf Pick a leaf $\psi_L(\mathbf{x}_L)$ with parent $\psi_P(\mathbf{x}_P)$ in \mathcal{T} Propagate information from leaf to parent and remove the leaf from \mathcal{T} Marginalise out variables of the leaf that are not in parent $$V_{L\to P}(\mathbf{x}_{L\cap P}) = \bigoplus_{i\in L\setminus P: x_i} V_L(\mathbf{x}_L)$$ $$V_P(\mathbf{x}_P) := V_P(\mathbf{x}_P) \otimes V_{L\to P}(\mathbf{x}_{L\cap P})$$ 3. Marginalise out remaining variables and output at root from view $V_R(\mathbf{x}_R)$ $$\Phi()=\bigoplus_{\mathbf{x}_{R}}V_{R}(\mathbf{x}_{R})$$ Time complexity: Linear in the size of the input factors (after sorting them) $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{(x_{f+1}, \dots, x_n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S), \text{ where } X_1, \dots, X_f \text{ are free variables}$$ $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{(x_{f+1}, \dots, x_n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S), \text{ where } X_1, \dots, X_f \text{ are free variables}$$ The output size may be non-linear in the size of the input $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{(x_{f+1}, \dots, x_n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S), \text{ where } X_1, \dots, X_f \text{ are free variables}$$ The output size may be non-linear in the size of the input Adaptation of Steps 2 and 3: do NOT marginalise out free variables 2. We marginalise out $L' = (L \setminus P) \setminus [f]$ and keep $P' = P \cup (L \cap [f])$ $$V_{L o P'}(\mathbf{x}_{L \cap P'}) := \bigoplus_{i \in L': x_i} V_L(\mathbf{x}_L)$$ $V_{P'}(\mathbf{x}_{P'}) := V_P(\mathbf{x}_P) \otimes V_{L o P'}(\mathbf{x}_{L \cap P'})$ 3. Marginalise out non-free variables and output at root from view $V_R(\mathbf{x}_R)$ $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{i \in R \setminus [f]: x_i} V_R(\mathbf{x}_R)$$ $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{(x_{f+1}, \dots, x_n)} \bigotimes_{S \in \mathcal{E}} \psi_S(\mathbf{x}_S), \text{ where } X_1, \dots, X_f \text{ are free variables}$$ The output size may be non-linear in the size of the input Adaptation of Steps 2 and 3: do NOT marginalise out free variables 2. We marginalise out $L' = (L \setminus P) \setminus [f]$ and keep $P' = P \cup (L \cap [f])$ $$V_{L o P'}(\mathbf{x}_{L \cap P'}) := \bigoplus_{i \in L': x_i} V_L(\mathbf{x}_L)$$ $V_{P'}(\mathbf{x}_{P'}) := V_P(\mathbf{x}_P) \otimes V_{L o P'}(\mathbf{x}_{L \cap P'})$ 3. Marginalise out non-free variables and output at root from view $V_R(\mathbf{x}_R)$ $$\Phi(\mathbf{x}_{[f]}) = \bigoplus_{i \in R \setminus [f]: x_i} V_R(\mathbf{x}_R)$$ Question: Since $P' \supseteq P$, $V_{P'}$ may be larger than the input, yet how much larger? $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $$\Phi(\textit{\textbf{X}}_{1},\textit{\textbf{X}}_{4}) = \bigvee_{(\textit{\textbf{X}}_{1},...,\textit{\textbf{X}}_{5}) \in \prod_{i \in [5]} \mathsf{Dom}(\textit{\textbf{X}}_{i})} \psi_{12}(\textit{\textbf{X}}_{1},\textit{\textbf{X}}_{2}) \wedge \psi_{23}(\textit{\textbf{X}}_{2},\textit{\textbf{X}}_{3}) \wedge \psi_{345}(\textit{\textbf{X}}_{3},\textit{\textbf{X}}_{4},\textit{\textbf{X}}_{5})$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} \psi_{12} & X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\begin{array}{c|ccccc} \psi_{345} & X_3 & X_4 & X_5 \\ \hline c_1 & d_1 & e_1 \\ c_2 & d_2 & e_1 \\ c_2 & d_3 & e_1 \\ & \cdots & \cdots & \cdots \\ c_2 & d_N & e_1 \\ \hline \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} V_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$\begin{array}{c|ccccc} V_{345} & X_3 & X_4 & X_5 \\ \hline c_1 & d_1 & e_1 \\ c_2 & d_2 & e_1 \\ c_2 & d_3 & e_1 \\ \cdots & \cdots & \cdots \\ c_2 & d_N & e_1 \\ \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $$V_{12} = \begin{array}{ccc} X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\begin{array}{c|ccccc} V_{345} & X_3 & X_4 & X_5 \\ \hline c_1 & d_1 & e_1 \\ c_2 & d_2 & e_1 \\ c_2 & d_3 & e_1 \\ & \cdots & \cdots & \cdots \\ c_2 & d_N & e_1 \\ \hline \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $$V_{12} = X_1 = X_2 = A_0 A$$ $$V_{345 o 234} egin{array}{cccc} X_3 & X_4 \ \hline c_1 & d_1 \ c_2 & d_2 \ c_2 & d_3 \ & \cdots & \cdots \ c_2 & d_N \ \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ A join tree for Φ: $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} V_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ A join tree for Φ : $\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3)$ $$\begin{array}{c|cccc} V_{12} & X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ $\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3)$ A join tree for Φ : $$V_{12} = \begin{array}{ccc} X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$V_{345\to 234}$$ X_3 X_4 C_1 C_2 C_2 C_3 C_4 C_2 C_3 C_4 C_5 C_7 C_8 C_9 C $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ A join tree for Φ: $\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3)$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ A join tree for Φ : $\psi_{12}(x_1, x_2)$ $$\Phi(x_1, x_4) = \bigvee_{(x_1, \dots, x_5) \in \prod_{i \in [5]} \mathsf{Dom}(X_i)} \psi_{12}(x_1, x_2) \wedge \psi_{23}(x_2, x_3) \wedge \psi_{345}(x_3, x_4, x_5)$$ A join tree for Φ : $\psi_{12}(x_1, x_2)$ Problem: Intermediate results are of quadratic size! #### **Reducing the Size of Intermediate Results** Consider again the following join tree and factors: $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{cccc} \psi_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$\psi_{23} = \begin{array}{cccc} X_2 & X_3 \\ \hline b_0 & c_0 \\ b_1 & c_1 \\ b_2 & c_2 \\ b_3 & c_2 \\ & \cdots & \cdots \\ b_N & c_2 \end{array}$$ $$\begin{array}{c|ccccc} \psi_{345} & X_3 & X_4 & X_5 \\ \hline c_1 & d_1 & e_1 \\ c_2 & d_2 & e_1 \\ c_2 & d_3 & e_1 \\ \cdots & \cdots & \cdots \\ c_2 & d_N & e_1 \\ \end{array}$$ #### **Reducing the Size of Intermediate Results** Consider again the following join tree and factors: No tuple (b_i, c_2) of ψ_{23} is in the join result: ψ_{12} has no matching tuple #### **Reducing the Size of Intermediate Results** Consider again the following join tree and factors: No tuple (b_i, c_2) of ψ_{23} is in the join result: ψ_{12} has no matching tuple Tuple (a_0, b_0) of ψ_{12} is not in the join result: ψ_{345} has no matching tuple #### **Reducing the Size of Intermediate Results** Consider again the following join tree and factors: No tuple (b_i, c_2) of ψ_{23} is in the join result: ψ_{12} has no matching tuple Tuple (a_0, b_0) of ψ_{12} is not in the join result: ψ_{345} has no matching tuple These are examples of dangling tuples #### **Reducing the Size of Intermediate Results** Consider again the following join tree and factors: No tuple (b_i, c_2) of ψ_{23} is in the join result: ψ_{12} has no matching tuple Tuple (a_0, b_0) of ψ_{12} is **not** in the join result: ψ_{345} has no matching tuple These are examples of dangling tuples Adaptation: remove all dangling tuples at each factor before we do the join Fully reduce input factors along a join tree $\ensuremath{\mathcal{T}}$ Fully reduce input factors along a join tree ${\mathcal T}$ 1. Initialisation: Create a view $R_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ Fully reduce input factors along a join tree ${\mathcal T}$ - 1. Initialisation: Create a view $R_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Remove dangling tuples bottom-up Fully reduce input factors along a join tree ${\mathcal T}$ - 1. Initialisation: Create a view $R_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Remove dangling tuples bottom-up In bottom-up traversal of \mathcal{T} , filter each node ψ_{P} using its child ψ_{C} Remove tuples from R_P with no match in R_C $$R_P(\mathbf{x}_P) := R_P(\mathbf{x}_P) \otimes \mathbf{1}_{\bigoplus_{i \in C \setminus P: x_i} R_C(\mathbf{x}_C)}$$ Indicator $\mathbf{1}_{\Psi}$: Returns $\mathbf{1}$ if $\Psi \neq \mathbf{0}$ and $\mathbf{0}$ otherwise Fully reduce input factors along a join tree ${\mathcal T}$ - 1. Initialisation: Create a view $R_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Remove dangling tuples bottom-up In bottom-up traversal of $\mathcal{T},$ filter each node ψ_{P} using its child ψ_{C} Remove tuples from R_P with no match in R_C $$R_P(\boldsymbol{x}_P) := R_P(\boldsymbol{x}_P) \otimes \boldsymbol{1}_{\bigoplus_{i \in \mathcal{C} \setminus P: x_i} R_\mathcal{C}(\boldsymbol{x}_\mathcal{C})}$$ Indicator $\mathbf{1}_{\Psi}$: Returns $\mathbf{1}$ if $\Psi \neq \mathbf{0}$ and $\mathbf{0}$ otherwise 3. Remove dangling tuples top-down Fully reduce input factors along a join tree ${\mathcal T}$ - 1. Initialisation: Create a view $R_S(\mathbf{x}_S) = \psi_S(\mathbf{x}_S)$ for every $S \in \mathcal{E}$ - 2. Remove dangling tuples bottom-up In bottom-up traversal of \mathcal{T} , filter each node ψ_P using its child ψ_C Remove tuples from R_P with no match in R_C $$R_P(\boldsymbol{x}_P) := R_P(\boldsymbol{x}_P) \otimes \boldsymbol{1}_{\bigoplus_{i \in \mathcal{C} \setminus P: x_i} R_\mathcal{C}(\boldsymbol{x}_\mathcal{C})}$$ Indicator $\mathbf{1}_{\Psi}$: Returns $\mathbf{1}$ if $\Psi \neq \mathbf{0}$ and $\mathbf{0}$ otherwise 3. Remove dangling tuples top-down In top-down traversal of $\mathcal T$, filter each node $\psi_{\mathcal C}$ using its parent $\psi_{\mathcal P}$ Remove tuples from $R_{\mathcal C}$ with no match in $R_{\mathcal P}$ $$R_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) := R_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) \otimes \mathbf{1}_{\bigoplus_{i \in P \setminus \mathcal{C}: x_i} R_{\mathcal{P}}(\mathbf{x}_{\mathcal{P}})}$$ $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345}(x_3, x_4, x_5)$$ $$\psi_{12} = \begin{array}{ccc} X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\psi_{23}$$ X_2 X_3 b_0 c_0 b_1 c_1 b_2 c_2 b_3 c_2 \cdots b_N c_2 $$\begin{array}{c|cccc} \psi_{345} & X_3 & X_4 & X_5 \\ \hline c_1 & d_1 & e_1 \\ c_2 & d_2 & e_1 \\ c_2 & d_3 & e_1 \\ & \cdots & \cdots & \cdots \\ c_2 & d_N & e_1 \\ \hline \end{array}$$ $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\psi_{12}(x_1, x_2) - \psi_{23}(x_2, x_3) - \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\psi_{12}(x_1, x_2) - \psi_{23}(x_2, x_3) - \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$\psi_{12}(x_1, x_2)$$ $\psi_{23}(x_2, x_3)$ $\psi_{345}(x_3, x_4, x_5)$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$R_{23}$$ X_2 X_3 $-b_0$ $-c_0$ b_1 c_1 b_2 c_2 b_3 c_2 \cdots b_N c_2 $$\psi_{12}(x_1, x_2)$$ $\psi_{23}(x_2, x_3)$ $\psi_{345}(x_3, x_4, x_5)$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ $$R_{23}$$ X_2 X_3 $-b_0$ $-c_0$ b_1 c_1 $-b_2$ $-c_2$ $-b_3$ $-c_2$ $-b_N$ $-c_2$ $$\psi_{12}(x_1, x_2) - \psi_{23}(x_2, x_3) - \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{cccc} R_{12} & X_1 & X_2 \\ \hline a_0 & b_0 \\ a_1 & b_1 \end{array}$$ $$\psi_{12}(x_1, x_2) - \psi_{23}(x_2, x_3) - \psi_{345}(x_3, x_4, x_5)$$ $$\begin{array}{c|cccc} R_{12} & X_1 & X_2 \\ \hline & a_0 & b_0 \\ & a_1 & b_1 \end{array}$$ Consider again the previous join tree and factors: $$\psi_{12}(x_1, x_2) - \psi_{23}(x_2, x_3) - \psi_{345}(x_3, x_4, x_5)$$ Only tuples remain that contribute to at least one tuple in the join result Adaptation of Step 1: initialise views as fully reduced Adaptation of Step 1: initialise views as fully reduced Size of intermediate results is bounded by product of input size and output size Adaptation of Step 1: initialise views as fully reduced Size of intermediate results is bounded by product of input size and output size Time complexity: Linear in the product of input size and output size (after sorting) Adaptation of Step 1: initialise views as fully reduced Size of intermediate results is bounded by product of input size and output size Time complexity: Linear in the product of input size and output size (after sorting) For free-connex acyclic CQs, the algorithm is instance-optimal: Time complexity is linear in the sum of input size and output size (after sorting) - 1. Bottom-up *local* computation in time proportional to IN - · Pick one node with free variables as root - The nodes with free variables form a connected subtree in the join tree - Values for free variables pushed up when these variables are also in parent We are now left with a reduced join tree only over free variables 2. We can now join all the remaining factors in time proportional to OUT 2. Computing Joins using LeapFrog TrieJoin #### **Beyond Acyclicity** #### Various applications call for cyclic joins - graph problems, e.g., looking for cyclic patterns in networks, social media - Typical cyclic queries: loops, triangles, Loomis-Whitney - Compute the factors representing the bags in hypertree decompositions #### Surprisingly, mainstream join algorithms are sub-optimal for cyclic joins - nested-loops join, hash join, sort-merge join, [your favourite join algorithm] - Sub-optimal: It takes asymptotically more time than worst-case join size - We will see this by means of an example later in this lecture #### We next discuss a worst-case optimal join algorithm: LeapFrog TrieJoin - Runtime proportional to the size of the join output (proof in paper) - Recall: Join output size $O(N^{\rho^*})$; ρ^* is the fractional edge cover number - We later show that $O(N^{\rho^*})$ is worst-case optimal join size ### LFTJ: The LeapFrog TrieJoin Algorithm State-of-the art worst-case optimal join (WCOJ) algorithm - Available at http://arxiv.org/abs/1210.0481 - Variants implemented in commercial and open-source query engines - LFTJ can be orders of magnitude faster for cyclic queries on large datasets than existing commercial and open-source query engines - Adapting an existing engine to support joins worst-case optimally requires significant design changes #### Join of Unary Factors: Standard Approach Compute the join of unary factors (intersection): $\Phi(x) = A(x) \otimes B(x) \otimes C(x)$ | Α | 0 | 1 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 11 | |-------------------|---|---|---|---|---|---|---|---|---|---|----|----| | В | 0 | | 2 | | | | 6 | 7 | 8 | 9 | | | | С | | | 2 | | 4 | 5 | | | 8 | | 10 | | | $A \cap B \cap C$ | | | | | | | | | 8 | | | | - Standard approach (for sorted factors): multi-way sort-merge join - Iterators over the three factors proceed in lockstep to find common values - · Each iterator scans the entire list - Time to compute: proportional to the sizes of the lists #### Join of Unary Factors: Leapfrogging Complexity: let $N_{min} = \min\{|A|, |B|, |C|\}$ and $N_{max} = \max\{|A|, |B|, |C|\}$. Then leapfrog join runs in time $\Theta(N_{min}(1 + \log(N_{max}/N_{min})))$. - Leapfrog Join: Multi-way sort-merge join using smart seeks instead of scans - Seeking m keys amongst N possible keys in ascending order has amortised complexity O(1 + log(N/m)) as for balanced search tree data structures #### **Linear Iterator** We navigate a unary factor using an iterator that sees it as an ordered list. #### The linear iterator interface: | int key() | Returns the key at the curre | ent iterator position | |-----------|------------------------------|-----------------------| | | | | next() Proceeds to the next key seek(int seekKey) Positions the iterator at a least upper bound for seekKey i.e., the least key \geq seekKey, or move to end if no such key exists. The sought key must be \geq the key at the current position. bool atEnd() Returns true if the iterator is at the end. # Trie Presentation of Factors With Non-Unary Arity | R(x, y, z) | | |------------|--| | (0,3,4) | | | (0,3,5) | | | (0,4,0) | | | (0,4,1) | | | (0,4,2) | | Call: open() Call: open() Call: open() Call: next() Call: atEnd() true Call: up() Call: next() Call: open() Call: next() Call: next() Call: atEnd() true and so on #### **Trie Iterator** We navigate a factor using an iterator that sees it as a trie. ### The trie iterator interface: void open() | void up() | Return to the parent key at the previous depth | | | | |-------------------|-----------------------------------------------------------|--|--|--| | | | | | | | int key() | Returns the key at the current iterator position | | | | | next() | Proceeds to the next key | | | | | seek(int seekKev) | Positions the iterator at a least upper bound for seekKey | | | | i.e., the least key > seekKey, or move to end if no such key exists. The sought key must be \geq the key at the current position. Proceed to the first key at the next depth bool atEnd() Returns true if the iterator is at the end. ### **Binding Trie: Variables Mapped to Values During Trie Traversal** - The variables of a factor are bound to values following a backtracking search - Satisfying assignments are emitted when leaves are reached - Consider our trie below for factor R(x, y, z) ### **Execution Strategy of LeapFrog TrieJoin** - Choose a global and total variable ordering for all factors - · Each factor is traversed following this variable ordering - Backtracking search through binding trie to find result tuples - Example join: R(a, b) * S(b, c) * T(a, c) under variable ordering: [a, b, c] - Leapfrog join for a occurring in both R and T - For each such a, leapfrog join for b occurring in S and Ra - For each such b, leapfrog join for c occurring in S^b and T^a - The result is presented as a non-materialised view using a trie iterator # **LeapFrog TrieJoin in Action: Example (1/7)** # Tree join example # LeapFrog TrieJoin in Action: Example (2/7) # Tree join example Position iterators at root of trees. ## LeapFrog TrieJoin in Action: Example (3/7) # Tree join example open() iterators for trees that bind x. Join for $A(x, _{-}, _{-}), B(x, _{-})$ finds x = 0. # LeapFrog TrieJoin in Action: Example (4/7) # Tree join example open() iterators for trees that bind y. # LeapFrog TrieJoin in Action: Example (5/7) # Tree join example seek(2) on C iterator ### LeapFrog TrieJoin in Action: Example (6/7) # Tree join example seek(2) on D iterator; join for $A(0,y,_)$, C(y), $D(y,_)$ finds y=2 ## LeapFrog TrieJoin in Action: Example (7/7) # Tree join example open() on iterators for z join for A(0,2,z), B(0,z), D(2,z) produces z = 1: emit (0,2,1) 3. Suboptimality of Mainstream Join Algorithms ### The Triangle Join on Factors with Heavy and Light Values Each input factor has size 2m + 1, the output factor has size 3m + 1. Values a_0 , b_0 , c_0 are *heavy* in the input factors, all other values are *light* Ideally, a join algorithm takes time proportional to the input and output sizes. How would existing join algorithms compute this query? ### Mainstream Join Algorithms Compute One Join at a Time Traditional join: Join two of the three factors, then join in the remaining factor $$\Phi'(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}) = \psi_{12}(\mathbf{X}_{1}, \mathbf{X}_{2}) \otimes \psi_{13}(\mathbf{X}_{1}, \mathbf{X}_{3})$$ $$\Phi(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}) = \Phi'(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}) \otimes \psi_{23}(\mathbf{X}_{2}, \mathbf{X}_{3})$$ $$\psi_{12}$$ • Φ' takes quadratic time to compute: It has $(m+1)^2 + m$ tuples | $\psi_{12}({\color{red} \textbf{\textit{X}}_1},{\color{red} \textbf{\textit{X}}_2})$ | | $\psi_{13}(\mathbf{x_1}, \mathbf{x_3})$ | | $\Phi'(x_1,x_2,x_3)$ | | | |--------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------| | <i>a</i> ₀ | | a ₀ | | a ₀ | <i>b</i> ₀ | <i>c</i> ₀ | | a_0 | 20 | a ₀ | 00 | a_0 | b_0 | | | a_0 | b _m | a_0 | · · · | a_0 | b_0 | Cm | | | | | C _m | | | | | a ₁ | <i>b</i> ₀ | <i>a</i> ₁ | <i>c</i> ₀ | a ₀ | b _m | <i>C</i> ₀ | | | <i>b</i> ₀ | | <i>C</i> ₀ | a_0 | | c_0 | | am | <u>b</u> 0 | a _m | <i>C</i> ₀ | a_0 | <i>b</i> _m | <i>c</i> ₀ | | | | | | a ₁ | <i>b</i> ₀ | <i>C</i> ₀ | | | | | | | b_0 | <i>c</i> ₀ | | | | | | am | b_0 | C ∩ | • This behaviour happens regardless of which two factors we join first This is not optimal: The intermediate result is larger than the final join result *X*3 b_0 *X*₂ *X*3 $b_1 \cdots b_m b_0$ b_0 *X*₂ *X*3 $b_1 \cdots b_m b_0$ *X*3 # LeapFrog TrieJoin Computes All Joins Together in IN + OUT Time 4. Conjunctive Queries with Large Output # **Simple Queries May Have Large Output** Output size is not a good measure for the computational effort of a query Cartesian product $\Phi(x_1,\ldots,x_m)=\psi_1(x_1)\otimes\cdots\otimes\psi_m(x_m)$ has output size N^m ### Simple Queries May Have Large Output Output size is not a good measure for the computational effort of a query Cartesian product $\Phi(x_1, \dots, x_m) = \psi_1(x_1) \otimes \dots \otimes \psi_m(x_m)$ has output size N^m Decompose the computational effort into two steps: #### 1. Preprocessing step - · Construct a compact data structure for all tuples in the query result - · Construction time = true measure of the query's computational effort #### 2. Enumeration step - Enumerate the distinct tuples from this data structure one after the other - Delay: The time needed to return one tuple after returning the previous one - · Constant delay is as good as enumerating tuples from a listing representation - One can enumerate top-k tuples in a desired order # Overview of Approaches Covered in Lecture The above diagram shows preprocessing time and enumeration delay #### Two broad strategies: - 1. All computational effort in the preprocessing step to achieve constant delay - Still lower than materialising the entire query result: $\mathtt{fhtw} \leq \rho^*$ - 2. Distribute the computational effort between preprocessing and enumeration # Strategy 1: All Computational Effort in Preprocessing Input: FAQ Φ with hypergraph $\mathcal H$ and free variables [f], input factors of size N #### Preprocessing Step - Construct a hypertree decomposition for H in O(N^{fhtw(H,[f])}) - · Hypertree becomes join tree: each bag is materialised as one factor - · Free variables form a connected subtree including wlog the root of the join tree - Calibrate the factors using a full reducer to remove dangling tuples - Marginalise out bound (i.e., not free) variables - Sort factors following an order of free variables compatible with top-down traversal of join tree #### Output of preprocessing step: - · Reduced join tree whose nodes are factors over free variables only - Expensive and unnecessary: Joining all factors in the reduced join tree - \Rightarrow Time to compute Φ is $O(N^{\rho^*(\mathcal{H})})$, yet $\rho^*(\mathcal{H}) \geq \text{fhtw}(\mathcal{H}, [f])$ $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345}(x_3, x_4, x_5)$$ | $\psi_{\rm 12}$ | X_1 | X_2 | | |-----------------|----------------|----------------|--| | | a ₁ | b ₁ | | | | a_1 | b_2 | | | | a_2 | b_1 | | | | a_2 | b_2 | | | | | | | | | a_N | b_1 | | | | a_N | b_2 | | | | a_N | b_3 | | | | | | | | ψ_{345} | <i>X</i> ₃ | X_4 | <i>X</i> ₅ | |--------------|-----------------------|-------|-----------------------| | | C ₁ | d_1 | <i>e</i> ₁ | | | C ₁ | d_2 | e_1 | | | C 2 | d_1 | e 1 | | | <i>C</i> ₂ | d_2 | e_1 | | | | | | | | c_N | d_1 | e_1 | | | c_N | d_2 | e_1 | Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ · Factors are already calibrated - Factors are already calibrated - Variables X₄, X₅ are marginalised out - · Factors are already calibrated - Variables X₄, X₅ are marginalised out - · Factors are already sorted appropriately # Strategy 1: All Computational Effort in Preprocessing #### Constant-Delay Enumeration of Tuples from Reduced Join Tree - Variable order (X_1, \ldots, X_f) compatible with top-down traversal of join tree - · Factors are sorted following this variable order - For each value x_1 for X_1 , we seek a value x_2 for X_2 , and so on - If factors sorted, then all values for X_i are in a contiguous block in factors, given the values for X₁,..., X_{i-1} - Since there are no dangling tuples, each value x_i participates in at least one output tuple - We output a complete assignment $\mathbf{x}_{[t]}$ and backtrack #### Why constant delay? - For each variable X_i , we need constant time to locate its next value, given values for variables X_1, \ldots, X_{i-1} - The time to output a tuple is independent of the sizes of the factors a_N $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345 \to 23}(x_3)$$ | ψ_{12} | <i>X</i> ₁ | <i>X</i> ₂ | | |-------------|-----------------------|-----------------------|--| | | a ₁ | <i>b</i> ₁ | | | | a ₁ | b_2 | | | | a_2 | b_1 | | | | a_2 | b_2 | | | | | • • • | | | | a_N | b_1 | | | | a_N | b_2 | | | | a_N | b_3 | | | | | | | $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345 \to 23}(x_3)$$ | ψ_{12} | X_1 | X_2 | |-------------|----------------|-----------------------| | | a ₁ | <i>b</i> ₁ | | | a ₁ | b_2 | | | a_2 | b_1 | | | a_2 | b_2 | | | | | | | a_N | b_1 | | | a_N | b_2 | | | a_N | b_3 | | | | | $$\psi_{12}(x_1, x_2) = \psi_{23}(x_2, x_3) = \psi_{345 \to 23}(x_3)$$ | ψ_{12} | <i>X</i> ₁ | <i>X</i> ₂ | |-------------|-----------------------|-----------------------| | | a ₁ | <i>b</i> ₁ | | | a ₁ | <i>b</i> ₂ | | | a_2 | b_1 | | | a_2 | b_2 | | | | | | | a_N | b_1 | | | a_N | b_2 | | | a_N | <i>b</i> ₃ | | | | | $$\psi_{23}$$ X_2 X_3 b_1 c_1 \cdots b_1 c_N b_2 c_1 \cdots b_2 c_N b_3 c_1 | $\psi_{ m 345 ightarrow 23}$ | <i>X</i> ₃ | |-------------------------------|-----------------------| | | C ₁ | | | C ₂ | | | | | | c_N | | | | | | | | | | Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: (a_1, b_1, c_1) Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: $(a_1, b_1, c_1), \ldots, (a_1, b_1, c_N)$ Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: $(a_1, b_1, c_1), \ldots, (a_1, b_1, c_N)$ Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: $(a_1, b_1, c_1), \ldots, (a_1, b_1, c_N), (a_1, b_2, c_1)$ Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: $(a_1, b_1, c_1), \dots, (a_1, b_1, c_N), (a_1, b_2, c_1), \dots, (a_1, b_2, c_N)$ Input: join tree and factors as follows, free variables are $\{X_1, X_2, X_3\}$ Output: $(a_1, b_1, c_1), \dots, (a_1, b_1, c_N), (a_1, b_2, c_1), \dots, (a_1, b_2, c_N), \dots$ # Strategy 2: Linear Preprocessing and Linear Enumeration Delay We discuss this strategy for α -acyclic CQs that are not free-connex #### Preprocessing Step - Apply a full reducer to remove the dangling tuples - Sort factors following an order of the free variables compatible with top-down traversal of join tree - This computation can be done in linear(ithmic) time #### **Enumeration Step** - Iterate over the possible values x₁ for variable X₁ - Restrict the factors for X_1 to those tuples where $X_1 = x_1$ - Fully reduce all other factors to avoid newly dangling tuples - Do the previous three steps for the next variable - When a complete variable assignment is found, output it and backtrack - This computation can be done in linear time per complete assignment Fix again join tree and factors as follows, free variables are now $\{\textit{X}_{1},\textit{X}_{3}\}$ Fix again join tree and factors as follows, free variables are now $\{X_1,X_3\}$ • Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 Fix again join tree and factors as follows, free variables are now $\{X_1,X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ $$\psi_{12}(x_1, x_2) = -\psi_{23}(x_2, x_3) = -\psi_{345}(x_3, x_4, x_5)$$ $$\psi_{12} = \begin{array}{c|ccccc} X_1 & X_2 & & \psi_{23} & X_2 & X_3 & & \psi_{345} & X_3 & X_4 & X_5 \\ \hline a_1 & b_1 & & b_1 & c_1 & & c_1 & d_1 & e_1 \\ a_1 & b_2 & & b_2 & c_1 & & c_1 & d_2 & e_1 \\ a_2 & b_1 & & b_3 & c_1 & & c_2 & d_1 & e_1 \\ a_2 & b_2 & & b_1 & c_2 & & c_2 & d_2 & e_1 \\ & \cdots & \cdots & & b_2 & c_2 & & \cdots & \cdots \\ a_N & b_1 & & \cdots & \cdots & & c_N & d_1 & e_1 \\ a_N & b_2 & & b_1 & c_N & & c_N & d_2 & e_1 \\ a_N & b_3 & & b_2 & c_N & & & c_N & d_2 & e_1 \\ \hline \end{array}$$ • Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 C_N - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ • Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 C_N C_N b_1 b_2 CN C_N d_1 e_1 e_1 d_2 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - · remove dangling tuples in other factors Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - remove dangling tuples in other factors - iterate over all results of $\Phi_3(x_3)=\psi_{12}({\color{red} a_1 \over a_1},x_2)\otimes \psi_{23}(x_2,x_3)\otimes \psi_{345}(x_3,x_4,x_5)$ Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - remove dangling tuples in other factors - iterate over all results of $\Phi_3(x_3) = \psi_{12}(a_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{345}(x_3, x_4, x_5)$ Output: (a_1, c_1) Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - remove dangling tuples in other factors - iterate over all results of $\Phi_3(x_3) = \psi_{12}(a_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{345}(x_3, x_4, x_5)$ Output: $(a_1, c_1), (a_1, c_2)$ Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - remove dangling tuples in other factors Output: $(a_1, c_1), (a_1, c_2), \dots, (a_1, c_N)$ Fix again join tree and factors as follows, free variables are now $\{X_1, X_3\}$ - Preprocessing: Remove dangling tuples, sort ψ_{23} by the free variable X_3 - Iterate over all results of $\Phi_1(x_1) = \bigoplus_{x_2} \psi_{12}(x_1, x_2)$ - restrict ψ_{12} to fixed value, here a_1 - remove dangling tuples in other factors - iterate over all results of $\Phi_3(x_3) = \psi_{12}(\ \ \, a_1 \ \ \, , x_2) \otimes \psi_{23}(x_2,x_3) \otimes \psi_{345}(x_3,x_4,x_5)$ Output: $(a_1, c_1), (a_1, c_2), \ldots, (a_1, c_N), \ldots$