
Department of Informatics, University of Zürich

BSc Vertiefungsarbeit

Detecting Volatile Index Nodes in
Apache Jackrabbit Oak

Rafael Kallis
Matrikelnummer: 14-708-887

Email: rk@rafaelkallis.com

October 3, 2017
supervised by Prof. Dr. Michael Böhlen and Kevin Wellenzohn

1

1 Introduction

Frequently adding and removing data from hierarchical indexes causes them to repeat-
edly grow and shrink. A single insertion or deletion can trigger a sequence of structural
index modifications (node insertions/deletions) in a hierarchical index. Skewed and
update-heavy workloads trigger repeated structural index updates over a small subset
of nodes to the index.

Informally, a frequently added or removed node is called volatile. Volatile nodes de-
teriorate index update performance due to two reasons. First, frequent structural index
modifications are expensive since they cause many disk accesses. Second, frequent struc-
tural index modifications also increase the likelihood of conflicting index updates by con-
current transactions. Conflicting index updates further deteriorate update performance
since concurrency control protocols need to resolve the conflict.

Wellenzohn et al. [4] propose the Workload-Aware Property Index (WAPI). The WAPI
exploits the workloads’ skewness by identifying and not removing volatile nodes from the
index, thus significantly reducing the number of expensive structural index modifications.
Since fewer nodes are inserted/deleted, the likelihood of conflicting index updates by
concurrent transactions is reduced.

The goal of this project is to implement a WAPI, as proposed by [4] in Apache Jackrab-
bit Oak (Oak) in order to improve the transactional throughput of Oak. In Section 2 we
describe how nodes are inserted, queried and deleted from the WAPI. Next, we describe
how volatility is computed in Section 3. Finally, a reference implementation in Java is
presented in Section 4.

1.1 Apache Jackrabbit Oak (Oak)

Oak is a hierarchical distributed database system which makes use of a hierarchical index.
Multiple transactions can work concurrently by making use of Multiversion Concurrency
Control (MVCC) [3], a commonly used optimistic concurrency control technique [2].

Figure 1 depicts Oak’s multi-tier architecture. Oak embodies the Database Tier.
Whilst Oak is responsible for handling the database logic, it stores the actual data on
MongoDB, labeled as Persistence Tier. On the other end, applications can make use
of Oak as shown in Figure 1 under Application Tier. One such application is Adobe’s
enterprise content management system (CMS), the Adobe Experience Manager.

Persistence Tier

Database Tier

Application Tier

Figure 1: Apache Jackrabbit Oak’s system architecture.

2

2 Workload Aware Property Index (WAPI)

The WAPI is a hierarchical index and indexes the properties of nodes. It takes into
account if an index node is volatile before performing structural index modifications.
If a node is considered volatile, we do not remove it from the index. In the following
section, we will see how to add, query and remove nodes from the index.

2.1 Insertion

The WAPI is hierarchically organized under /index node. The second index level con-
sists of all properties k we want to index. The third index level contains any values
v of property k. The remaining index levels replicate all nodes from the root node to
any content node with k set to v. Some node m is added to the WAPI iff m has a
property k set to v, as shown in Algorithm 1. Starting from /index, we descend down
to /index/k, followed by /index/k/v. Next, we descend down from /index/k/v along
the index nodes on the absolute path from the root to node m. While we descend the
WAPI, we create any node n that does not exist and assign it to variable tail. At the
end of the tree traversal, tail corresponds to index node /index/k/v/m. tail’s property
k is finally set to v.

Example 1. Consider Figure 2. Given snapshot Gi, transaction Tj adds the property-
value pair x = 1 to /a/b and commits snapshotGj. Starting from /index and descending
down to /index/x/1/a/b, we create each node on the way since they do not exist yet.
Finally, we set property x = 1 on /index/x/1/a/b.

Gi Tj−−−−→ Gj

λ : index λ : a

λ : b λ : c

Snapshot Gi

λ : index

λ : x

λ : 1

λ : a

λ : b
x : 1

λ : a

λ : b
x : 1

λ : c

Snapshot Gj

Algorithm 1: AddTripleWAPI
Data: Triple (k, v,m), where k is a

property, v a value and m a content
node.

tail←− /index

for n ∈ 〈/i/k, /i/k/v, . . . , /i/k/v/m〉 do
if n does not exist then

create node n

tail←− n
tail[k]←− v

Figure 2: Adding a node in WAPI. /i is an abbreviation for /index. Property λ denotes
the label of a node.

3

2.2 Querying

Oak mostly executes content-and-structure (CAS) queries [1], defined as follows.

Definition 1. (CAS-Query): Given node m, property k and value v, a CAS query
Q(k, v,m) returns all descendants of m which have k set to v, i.e

Q(k, v,m) = { n | n[k] = v ∧ n ∈ desc(m) }

Algorithm 2 describes how we answer a CAS query using the WAPI. Given property
k, value v and node m, we start descending down to node /index/k/v/m. Next, we
iterate through all its descendants n. We return a set consisting of content nodes ∗n
corresponding to every index node n with property k set to v. The path of content
node ∗n is obtained by removing the first three nodes on the path of index node n. For
example, if n = /index/x/1/a/b is an index node, the corresponding content node is
∗n = /a/b. If /index/k/v/m does not exist, then desc(/index/k/v/m) = ∅.

Example 2. Consider Q(x, 1, /a), which queries for every descendant of /a with x

set to 1. Assuming we execute the query on the tree depicted in Figure 3, WAPI
descends to node /index/x/1/a and traverses all descendants. Its only descendant is
n = /index/x/1/a/b and since n[x] = 1 the content node ∗n = /a/b is returned. That
is, Q(x, 1, /a) = { /a/b }

λ : index

λ : x

λ : 1

λ : a

λ : b
x : 1

λ : a

λ : b
x : 1

λ : c

Algorithm 2: QueryWAPI
Data: Query Q(k, v,m), where k is a property, v

a value and m a node.
Result: A set of nodes satisfying Q(k, v,m)
r ←− ∅
for n ∈ desc(/index/k/v/m) do

if n[k] = v then
r ←− r ∪ {∗n}

return r

Where desc(/index/k/v/m) is the set of descendants of node

/index/k/v/m, n[k] is property k of node n and ∗n is the

content node corresponding to n.

Figure 3: CAS Query example.

4

2.3 Deletion

If a property-value pair is deleted from a content node, the corresponding index entry
is deleted from WAPI. Volatile nodes influence the logic of the deletion process. A
workload aware property index detects which nodes are volatile and does not remove
them. The process of classifying a node as volatile, will be explained in more details
in Section 3. For the moment we assume that a function isV olatile(n) is given that
classifies n either as volatile or as non-volatile.

Algorithm 3 describes the process of removing node n = /index/k/v/m from WAPI
after property k was changed or removed from content node m. We first descend down
to node n = /index/k/v/m, which we intend to remove. We remove property k from n
by setting k’s value to NIL. If n is (a) a leaf node, and (b) does not have property k set
to v and (c) is not volatile, we remove it. If n was removed, we repeat the process on
its parent node par(n). The process repeats on all ancestors and ends if we propagate
up to /index or reach a node that violates at least one of the above three conditions.

Example 3. Figure 4 depicts the following scenario. Assume /index/x/1/a/b (colored
red) is volatile in all three snapshots Gi, Gj, Gk. Given snapshot Gi, transaction Tj
removes property x = 1 from /a/b and commits snapshot Gj. Since /index/x/1/a/b is
volatile, it was not removed from the WAPI, only its property x = 1 is removed. Given
snapshot Gj, transaction Tk removes property x from /a/c and commits snapshot Gk.
Since /index/x/1/a/c was not volatile, was a leaf-node, and property x = 1 was just
removed, the index node was removed from the WAPI. Since its parent node has another
child node, the parent is not removed and the deletion process stops.

Gi Tj−−−−→ Gj Tk−−−−−→ Gk

λ : index

λ : x

λ : 1

λ : a

λ : b
x : 1

λ : c
x : 1

λ : a

λ : b
x : 1

λ : c
x : 1

Snapshot Gi

λ : index

λ : x

λ : 1

λ : a

λ : b λ : c
x : 1

λ : a

λ : b λ : c
x : 1

Snapshot Gj

λ : index

λ : x

λ : 1

λ : a

λ : b

λ : a

λ : b λ : c

Snapshot Gk

Figure 4: Removing a node from the WAPI. Assume /index/x/1/a/b (colored red) is
volatile in all three snapshots Gi, Gj, Gk.

5

Algorithm 3: RemoveTripleWAPI
Data: Triple (k, v,m), where k is a property, v a value and m a node.
n←− /index/k/v/m

n[k]←− nil
while n 6= /index ∧ chd(n) = ∅ ∧ n[k] 6= v ∧ ¬ isV olatile(n) do

u←− n
n←− par(n)
remove node u

Where chd(n) is the set of children of node n and par(n) is the parent of n.

3 Volatility

Volatility is the measure which is used by the WAPI in order to distinguish when to
remove a node or not from the index.

Wellenzohn et al. [4] propose to look at the recent transactional workload to check
whether a node n is volatile. The workload on Oak instance Oi is represented by a
sequence Hi = 〈. . . , Ga, Gb, Gc〉 of snapshots, called a history. Let tn be the current time
and t(Gb) be the point in time snapshot Gb was committed, N(Ga) is the set of nodes
which are members of snapshot Ga. pre(Gb) is the predecessor of snapshot Gb in Hi.

Node n is volatile iff n’s volatility count is at least τ , called volatility threshold. The
volatility count of n is defined as the number of times n was added or removed from
snapshots in a sliding window of length L over history Hi. Let ni denote version i of
node n that belongs to the node set N(Gi) of snapshot Gi. Given two snapshots Ga and
Gb we write na and nb to emphasize that nodes na and nb are two versions of the same
node n, i.e, they have the same absolute path from the root node.

Definition 2. (Volatility Count): The volatility count vol(n) of node n is the number
of times node n was added or removed from snapshots contained in a sliding window
with length L over history Hi.

vol(n) = |{Gb|Gb ∈ Hi ∧ t(Gb) ∈ [tn−L+1, tn] ∧ ∃Ga[

Ga = pre(Gb) ∧ ([na /∈ N(Ga) ∧ nb ∈ N(Gb)]∨
[na ∈ N(Ga) ∧ nb /∈ N(Gb)])]}|

(1)

Definition 3. (Volatile Node): Node n is volatile iff n’s volatility count (see Definition 2)
is greater or equal than the volatility threshold τ , i.e

isV olatile(n) ⇐⇒ vol(n) ≥ τ

Example 4. Consider the snapshots depicted in Figure 5. AssumeHh = 〈Gi, Gj, Gk, Gl〉.
Oh executes transactions Tj, Tk, Tl. Snapshot Gi was committed at time t(Gi) = t. Given
snapshot Gi, transaction Tj removes property x from /a/b and commits snapshot Gj

at time t(Gj) = t + 1. Next, transaction Tk adds the property x = 1 to /a/b given

6

snapshot Gj and commits snapshot Gk at time t(Gk) = t + 2. Finally transaction Tl
removes property x from /a/b given Gk and commits Gl at time t(Gl) = t+ 3.

If τ = 2 (volatility threshold), L = 4 (sliding window length) and n = /index/x/1/a/b,
then:

• at time tn = t we have that: vol(n) = 0 =⇒ isV olatile(n) = ⊥

• at time tn = t+ 1 we have that: vol(n) = 1 =⇒ isV olatile(n) = ⊥

• at time tn = t+ 2 we have that: vol(n) = 2 =⇒ isV olatile(n) = >

• at time tn = t+ 3 we have that: vol(n) = 2 =⇒ isV olatile(n) = >

Since index node n is not volatile at tn = t, transaction Tj removes it from the index.
But at tn = t + 2, n is volatile (colored red) and transaction Tl does not remove it,
instead it only removes property x = 1 from n.

Gi Tj−−−−→ Gj Tk−−−−−→ Gk Tl−−−−→ Gl

λ : index

λ : x

λ : 1

λ : a

λ : b
x : 1

λ : a

λ : b
x : 1

λ : c

Snapshot Gi

t(Gi) = t

λ : index λ : a

λ : b λ : c

Snapshot Gj

t(Gj) = t+ 1

λ : index

λ : x

λ : 1

λ : a

λ : b
x : 1

λ : a

λ : b
x : 1

λ : c

Snapshot Gk

t(Gk) = t+ 2

λ : index

λ : x

λ : 1

λ : a

λ : b

λ : a

λ : b λ : c

Snapshot Gl

t(Gl) = t+ 3

Figure 5: Node /index/x/1/a/b becomes volatile after a deletion by Tj and insertion
by Tk. Therefore the nodes cannot be deleted by transaction Tl.

7

4 Implementation

4.1 Checking Node Volatility

In order to classify a node n as volatile, we have to compute n’s volatility count using
the corresponding JSON document on MongoDB. The document contains all revisions
(i.e, versions) of n throughout history Hi of an Oak instance Oi. Figure 6 depicts such
a document. We omit non relevant properties. Property " deleted" contains key value
pairs which encode when the node was added or removed from snapshots. A key is a
revision that is composed of three parts connected by a dash (-): (1) a timestamp, (2)
a counter that is used to differentiate between value changes at the same instance of
time, and (3) the identifier i of the Oak instance Oi committing the change. A value is
a boolean variable which is true (>) iff n was added at the point of time indicated by
the revision key, and false (⊥) otherwise.

Example 5. Consider revision (r15cac0dbb00-0-2, false) in Figure 6. Character r is
a standard prefix and can be neglected. The 15cac0dbb00 following r, is a timestamp
(number of milliseconds since the Epoch) in hexadecimal encoding which represents the
time at which the change was committed, Thursday June 15 2017 2:00:00 PM in this
example. The 0 following the timestamp, is a counter which is used for tie-breaking
between transactions committed at the same instance of time. Since all revisions in this
example are committed at different time points, all counters are 0. The 2 following the
counter, tells that the change was committed by Oak instance O2 with an ID of 2. Value
false indicates /index/x/1/a/b was added at that point of time.

{

"_id": "5:/index/x/1/a/b",

"_deleted": {

"r15cac0dbb00-0-2": false,

"r15cabff1500-0-2": true,

"r15ca9f191c0-0-1": false,

/* ... */

},

/* ... */

}

Figure 6: JSON document of an index node.

Having seen what a node document looks like, we can now describe how we classify
a node as volatile. Figure 7 shows the native Java-implementation of isV olatile(n)
in Oak. isV olatile(n) is given a node’s corresponding JSON document. We iterate
through the revisions of property " deleted" in most-recent first fashion. Notice that
the keySet referred to in the Java code is based on Java’s ordered sets and is maintained
in descending order according to the revision. If a revision is outside the sliding window
we stop iterating because remaining revisions cannot be more recent. We increment the
volatility count for every visible revision. A revision is visible if it is contained in the
Oak instance’s history. If the volatility count reaches at least τ we break the loop. When
exiting the loop, we finally check if the volatility count is at least τ and return the result.

8

/**

* Determines if node is volatile.

* @param nodeDocument: document of node.

* @returns true iff node is volatile.

*/

boolean isVolatile(NodeDocument nodeDocument) {

int vol = 0;

for (Revision r : nodeDocument.getLocalDeleted().keySet()) {

if (!isInSlidingWindow(r)){

break;

}

if (!isVisible(r)){

continue;

}

if (vol++ >= getVolatilityThreshold()) {

break;

}

}

return vol >= getVolatilityThreshold();

}

Figure 7: Java implementation for detecting volatile index nodes.

The Java-implementation of the helper functions isVisible and isInSlidingWindow

is provided in the Appendix.

4.2 Document Splitting

Jackrabbit Oak periodically checks a node’s corresponding document for its size and if
necessary splits it up and moves old data to a new split document. Performance suffers
if looking at split documents is required while computing the volatility count, since
MongoDB has to be accessed in order to lookup the split document. We modify Oak’s
document splitting implementation as mentioned in [4] in order to prevent split document
lookups. Essentially, all necessary information is kept in a document to compute the
volatility count. A race condition could occur if multiple Oak instances split the same
document at the same time. In order to avoid such a race condition, each Oak instance
only moves changes committed by itself.

Figure 8 depicts the Java implementation of the document splitting process. We
iterate through the revisions of the " deleted" property of the given document in most-
recent first fashion. A revision gets moved to the split document iff: (1) it is not the
most recent revision committed by the local Oak instance, (2) it is not among the τ first
visible revisions contained in the sliding window, and (3) the revision was committed by
the local Oak instance.

Example 6. Consider Figure 9. We see how a node’s corresponding document is split
on Oak instance O1, assuming τ = 3, tlast sync = 2017.06.15 13:59, L = 24 hours, tn =
2017.06.15 14:01. Figure 10 shows a table with intermediate values during computation.

9

/**

* Splits the "_deleted" property on the given document.

* @param NodeDocument the node document.

*/

void splitDeleted(NodeDocument nodeDocument) {

int vol = 0;

boolean first = true;

for (Revision r : nodeDocument.getLocalDeleted().keySet()) {

if (first && r.getClusterId() == getClusterId()) {

first = false;

if (isInSlidingWindow(r)) {

++vol;

}

continue;

}

if (isInSlidingWindow(r) && isVisible(r) && vol++ < getVolatilityThreshold()) {

continue;

}

if (r.getClusterId() != getClusterId()) {

continue;

}

moveToSplitDocument(r);

}

}

Figure 8: Java implementation for splitting the node document.

“t(r)” is the point in time revision r was committed. Only the day, hours and minutes
are shown for brevity. “c(r)” is the ID of the cluster node that committed revision r.
“Vis.” is true iff the revision is visible to the local cluster node. “∈Win.” is true iff the
revision is in the sliding window. “Vol.” represents the volatility count at that step of
the iteration. “Split” is true iff the revision is moved to the split document.

We will briefly walk through the iterations during the document split depicted in
Figure 9. Revision r1 is not visible to the local Oak instance O1 because it was committed
on O2 after the last synchronization, i.e. tlast sync < t(r1). Therefore, r1 does not
increment the volatility count and is not moved to the split document. The three next
revisions, r2, r3, r4, increment the volatility count because they are in the sliding window
but are not moved to the split document because vol ≤ τ . r5 is still in the sliding window
and therefore increments the volatility count. Since there are already τ revisions in the
document and r5 was committed on O1, we move r5 to the split document. Finally, any
following revisions committed by the local Oak instance (i.e, r7, r8, r9) are moved to the
split document since there are already τ revisions in the document, enough to decide
the node’s volatility.

10

{

"_id": "5:/index/x/1/a/b",

"_deleted": { /* DD HH:MM */

"r15cac0dbb00-0-2": false, /* 15 14:00 */

"r15cabff1500-0-2": true, /* 15 13:44 */

"r15ca9f191c0-0-1": false, /* 15 04:10 */

"r15ca76fc8e0-0-1": true, /* 14 16:29 */

"r15ca73b9980-0-1": false, /* 14 15:32 */

"r15ca5e9c520-0-2": true, /* 14 09:23 */

"r15ca5a8c480-0-1": false, /* 14 08:12 */

"r15ca5a6efc0-0-1": true, /* 14 08:10 */

"r15ca58e37a0-0-1": false /* 14 07:43 */

},

/* ... */

}

(a) Before splitting.

{

"_id": "5:/index/x/1/a/b",

"_deleted": { /* DD HH:MM */

"r15cac0dbb00-0-2": false, /* 15 14:00 */

"r15cabff1500-0-2": true, /* 15 13:44 */

"r15ca9f191c0-0-1": false, /* 15 04:10 */

"r15ca76fc8e0-0-1": true, /* 14 16:29 */

"r15ca5e9c520-0-2": true /* 14 09:23 */

},

/* ... */

},

{

"_id": "6:p/index/x/1/a/b/r15ca58e37a0-0-1",

"_deleted": { /* DD HH:MM */

"r15ca73b9980-0-1": false, /* 14 15:32 */

"r15ca5a8c480-0-1": false, /* 14 08:12 */

"r15ca5a6efc0-0-1": true, /* 14 08:10 */

"r15ca58e37a0-0-1": false /* 14 07:43 */

},

/* ... */

}

(b) After splitting.

Figure 9: Document splitting. We use the same parameters as in Example 6.

r t(r) c(r) Vis. ∈Win. Vol. Split
r1 15 14:00 2 ⊥ > 0 ⊥
r2 15 13:44 2 > > 1 ⊥
r3 15 04:10 1 > > 2 ⊥
r4 14 16:29 1 > > 3 ⊥
r5 14 15:32 1 > > 4 >
r6 14 09:23 2 > ⊥ 4 ⊥
r7 14 08:12 1 > ⊥ 4 >
r8 14 08:10 1 > ⊥ 4 >
r9 14 07:43 1 > ⊥ 4 >

Figure 10: Intermediate values of computation while splitting document
/index/x/1/a/b as shown in Figure 9. We use the same parameters
as in Example 6.

11

References

[1] C. Mathis, T. Härder, K. Schmidt, and S. Bächle. XML indexing and storage:
fulfilling the wish list. Computer Science - R&D, 30(1):51–68, 2015.

[2] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third
Edition. Springer, 2011.

[3] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms,
and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

[4] K. Wellenzohn, M. Böhlen, S. Helmer, M. Reutegger, and S. Sakr. A Workload-
Aware Index for Tree-Structured Data. To be published.

12

5 Appendix

5.1 Helper Functions

Figure 11 presents the Java implementation of two helper functions. isVisible(r)

determines if revision r is visible to the local Oak instance Oi. isInSlidingWindow(r)
determines if revision r is in the sliding window.

/**

* Checks if r is visible to the local cluster node

* @param r the revision

* @returns true iff r is visible to the local cluster node

*/

boolean isVisible(Revision r) {

return r.getClusterId() == getClusterId()

|| (r.compareRevisionTime(documentNodeStore

.getHeadRevision()

.getRevision(getClusterId())) < 0);

}

/**

* Checks if r is in the sliding window

* @param r the revision

* @returns true iff r is in the sliding window

*/

boolean isInSlidingWindow(Revision r) {

return System.currentTimeMillis() - getSlidingWindowLength() < r.getTimestamp();

}

Figure 11: Java implementation for helper functions.

13

