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Abstract—We present a method to predict collisions with
objects thrown at a quadrotor using a pair of dynamic vision
sensors (DVS). Due to the micro-second temporal resolution
of these sensors and the sparsity of their output, the object’s
trajectory can be estimated with minimal latency. Unlike standard
cameras that send frames at a fixed frame rate, a DVS only
transmits pixel-level brightness changes (‘“‘events”) at the time
they occur. Our method tracks spherical objects on the image
plane using probabilistic trackers that are updated with each
incoming event. The object’s trajectory is estimated using an
Extended Kalman Filter with a mixed state space that allows
incorporation of both the object’s dynamics and the measurement
noise in the image plane. Using error-propagation techniques,
we predict a collision if the 3o-ellipsoid along the predicted
trajectory intersects with a safety sphere around the quadrotor.
We experimentally demonstrate that our method allows initiating
evasive maneuvers early enough to avoid collisions.

I. INTRODUCTION

Collision avoidance of fast-moving objects requires high-
frequency and low-latency sensors, algorithms, and control
strategies. As an example, consider an object that is thrown at
a robot at 30 m/s (i.e., 108 km/h) from a distance of 5m, only
0.17 s are left to (i) detect the object, (ii) predict its trajectory,
(iii) foresee if a collision will occur, and if so, (iv) initiate
and (v) execute an evasive maneuver. Due to the inertia of the
robot and its actuators, most of this time is required for the
evasive action and only a small fraction (in the order of 10 ms)
can be used for sensing and computation. During this time, a
high-frequency camera running at 100 Hz would capture only
one or two images, giving very limited data for the subtasks
(i) and (iii).

To achieve higher measurement frequencies while keeping
the computational load small, new vision sensors are required.
In this paper, we propose the use of Dynamic Vision Sensors
(DVS) [2]. Contrarily to standard frame-based cameras that
send entire images at fixed frame rates, a DVS only sends
the local pixel-level brightness changes at the time they occur.
These changes, which we call “events”, are transmitted asyn-
chronously and with low latency. While the sensor’s spatial
resolution of 128 x 128 pixels is still low, the temporal
resolution is in the order of micro-seconds.

In the last few years, impressive demonstrations of ag-
gressive flight and acrobatics with quadrotors have been pre-
sented [3], [4]. Among these demonstrations were also inter-
actions with other, fast-moving objects, e.g. juggling balls [5],
pole acrobatics [6], or flying through thrown circular hoops [7].
However, all these demonstrations are based on external
motion-capture systems that track both the quadrotor and all

(a) Quadrotor platform: (1) stereo DVS rig, (2) smartphone computer, (3) down-
looking camera for vision-based stabilization, and (4) markers for ground truth
with a motion-capture system. The details of our quadrotor platform are provided
in [1].

(b) Experimental setup: (1) thrown ball, (2) quadrotor, (3) leash to avoid actual
collisions, and (4) motion-capture system for ground-truth measurements.

Fig. 1. A ball is thrown towards an autonomous, vision-based quadrotor.
The ball is detected and tracked using a pair of Dynamic Vision Sensors in
a stereo configuration. Our algorithm predicts whether a collision will occur
and can be used to initiate evasive maneuvers. The motion-capture system was
only used to record ground-truth data of the ball and the quadrotor.

other moving objects with very high precision and frequency
(typically about 200 Hz). To bring these capabilities outside of
laboratory environments, we cannot rely on external systems.
Therefore, all sensing and computation must be performed
onboard the vehicle. Due to their low weight and power
consumption, vision-based approaches have been successfully
demonstrated for autonomous, infrastructure-free flight with
quadrotors [1]. However, due to motion blur at high speeds and



computational complexity for high frame rates, current vision-
based quadrotor systems fly at relatively low speeds and only
navigate in static environments.

In this paper, we present a method to predict collisions with
objects thrown at a quadrotor using a pair of DVS in a stereo
configuration (see Fig. 1). To avoid a collision, a series of steps
must be executed: (i) the thrown object must be detected, (ii)
it must be tracked precisely to (iii) propagate its trajectory in
time. Then, (iv) a decision on the action must be made to (v)
initiate and execute an evasive maneuver. Possible applications
are quick avoidance of other, uncooperative aerial vehicles and
the escape of bird attacks'.

The remainder of the paper is organized as follows. In
Section II, we review related work. The DVS is described in
Section III, followed by an evaluation of the latencies of both
standard frame-based cameras and the DVS in Section IV.
Our algorithm is described in Section V and experimentally
evaluated in Section VI.

II. RELATED WORK

An impressive demonstration of the low-latency capabili-
ties of a DVS for control applications was presented in [8].
Using two DVS, the authors implemented a pencil-balancing
system on a highly-reactive platform free to move on a
plane. A robotic goalkeeper with a reaction time of 3 ms was
presented in [9].

An Event-based Iterative Closest Point Algorithm (ICP)
was used in [10] for closed-loop control of a micro gripper.
The mean update rate was 4kHz. The algorithm integrates
events over a predefined time interval and only works in 2D.

Asynchronous, event-based optical flow was presented
in [11]. The authors adapted the Lucas-Kanade tracking al-
gorithm to cope with the event-based nature of the DVS.
The event-based optical flow was later used [12] for event-
based computation of the time-to-contact [13]. This approach,
however, assumes that the trajectories of the robot and the
obstacles are aligned, i.e., when the robot continues to move,
a collision is unavoidable. In this paper, we explicitly estimate
the trajectory of the thrown object, since it might no intersect
with the robot and no evasive action is required.

Several approaches of event-based stereo matching can be
found in the literature. In [14], the high temporal resolution
of the DVS was exploited for stereo matching. In [15], event
histograms were used for stereo correspondence. The output
of the algorithm was used for gesture recognition. In [16],
six synchronized DVS were used for 3D reconstruction using
N-ocular stereo vision.

In our previous work [17], a DVS fixed to the ground
was used to recover the pose of a quadrotor during flight by
tracking LEDs mounted on the platform, which were blinking
at very high frequencies. The DVS’ time resolution allowed
distinguishing different frequencies, thus avoiding the need
for data association. While this system successfully showed
low-latency pose-tracking capabilities using a DVS, it required
active markers (i.e., the blinking LEDs). Furthermore, the DVS

ISee, e.g., http://youtu.be/DzfiLmbhvqg or
http://youtu.be/smv7cBzg-Ok.
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Fig. 2. Visualization of the output of a DVS looking at a rotating dot. Colored
dots mark individual events. The polarity of the events is not shown. Events
that are not part of the spiral are caused by sensor noise. Figure adapted
from [21].

was not mounted onboard the quadrotor. We use a similar
concept for intrinsic and extrinsic camera calibration.

Localization using a DVS on a ground robot was first
presented in [18] and later extended to Simultaneous Localiza-
tion And Mapping (SLAM) in [19]. However, the system was
limited to planar motion and a 2D map. In their experiments,
the authors used an upward-looking DVS mounted on a ground
robot moving at low speed.

In previous work, we showed how a DVS can be used
onboard a flying robot for localization during high-speed
maneuvers [20], where rotational speeds of up to 1,200 °/s
were measured during quadrotor flips.

III. DYNAMIC VISION SENSORS
A. Working Principle

Standard CMOS cameras send full frames at fixed frame
rates. On the other hand, event-based (retinal) cameras such
as the DVS [2] have independent pixels that generate events
at local relative brightness changes in continuous time. These
events are timestamped and transmitted asynchronously at the
time they occur using sophisticated digital circuitry. Each
event e is a tuple (p,t,p), where p = (x,y) are the pixel
coordinates of the event, ¢ is the timestamp of the event, and
p € {—1,+1} is the polarity of the event, which is the sign of
the brightness change. This representation is sometimes also
referred to as Address-Events Representation (AER). The DVS
has a resolution of 128 x 128 pixels and is connected via USB.
A visualization of the output of the DVS is shown in Fig. 2.

Due to its low latency and high temporal resolution, both in
the range of micro-seconds, the DVS is a very promising sensor
for high-speed mobile robot applications. Since the data stream
from the DVS is sparse (only changes are reported), the band-
width and computational load are low. An additional advantage
for robotic applications is the DVS’ high dynamic range
of 120dB (compared to 60dB of expensive computer-vision
cameras), which allows both indoor and outdoor operation
without changing parameters. Since all pixels are independent,
these contrasts can also take place within the same scene.

B. Calibration

We used a board with blinking LEDs for intrinsic and
extrinsic calibration of the DVS stereo setup (see Fig. 3).
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Fig. 3.
the DVS stereo setup. The LEDs are blinking at a frequencies of 1 kHz, such

Board with blinking LEDs for intrinsic and extrinsic calibration of

that they can easily be detected by a DVS.
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Fig. 4. Picture of sensor-latency measurement setup: the LED (1) is triggered
by a computer and observed by a sensor (2). In our case, the sensor is either
a DVS, a BlueFOX, or an ASUS Xtion. We measure the round-trip delay
from sending the signal until the change was detected by the sensor. The
experiments were performed for each sensor individually.

While we used computer screens in previous work [20] for
calibration, we found that an LED checkerboard allows for
larger viewing angles and, thus, better calibration results. Since
a DVS only responds to changes in the scene, blinking LED
allow us to artificially trigger events without moving the sensor.
Due to its very high temporal resolution, a DVS can easily cope
with the LED blinking frequency of 1kHz. As shown in [17],
this frequency is well above those generated by moving the
sensor or moving objects in the scene. Since the optics are the
same for the DVS as for frame-based cameras, we can rely
on standard algorithms for intrinsic and extrinsic calibration.
We released our ROS-compatible? DVS driver and calibration
suite as open-source software?.

IV. SENSOR LATENCIES

To motivate the use of DVS for low-latency and high-
speed robotic applications, we compare its latency to frame-
based cameras. To do so, we measure the round-trip delay
between toggling an LED and the detection of this change by
the different sensors (see Fig. 4). This measurement includes
sending the command to toggle the LED, the time to capture an
image (in the frame-based case), data transfer to the computer,
and simple computations to detect the change.

2Robot Operating System, http:/www.ros.org
3http://www.github.com/uzh-rpg/rpg_dvs_ros

A. Experimental Setup

We compare the DVS with two frame-based cameras:
the ASUS Xtion Pro Live and MatrixVision mvBlueFOX-
MLC200w. The ASUS Xtion has a rolling shutter, a resolution
of 640 x 480 pixels, and provides RGB-D images at 30 Hz.
Exposure and gain are controlled by the sensor automatically.
The BlueFOX camera has a global-shutter, a resolution of
752 x 480 pixels, and provides grayscale images up to 90 Hz.
The exposure time was set to 4ms and the gain to 0dB.
The bias-generation setting for the DVS were set to “fast™.
We interfaced all sensors over USB and evaluated the delays
both on a laptop computer (Lenovo W530) and an embedded
computer (Hardkernel Odroid U3).

Back-of-the-envelope calculations for the two frame-based
cameras show the minimally achievable latencies for this setup:
USB 2.0 is specified for 480 Mbit/s. An RGB image from the
ASUS Xtion has a raw size of 3 x640x480x 8 bits = 7.3 Mbit,
yielding a transfer duration of 15.2 ms. A grayscale image from
the BlueFOX has a raw size of 752 x 480 x 8 bits = 2.1 Mbit,
yielding a transfer duration of 6.0ms. This is only a lower
bound on the transfer duration: the exposure time must also
be added. An event of a DVS is encoded in 32bit, yielding
a transfer duration of 0.067 ps. Therefore, the event rate is
bounded by 15 million events per second.

An LED is triggered using a PX4FMU-Autopilot board®,
which is the same board that interfaces the motor controllers
on many quadrotor platforms. It is optimized for reliable and
low-latency communication.

To detect the LED on the frame-based cameras, we defined
a small region of interest in which the LED is visible. We
then computed the mean intensity in that region and reported
a detection when the mean changed by more than a threshold.

To detect the LED using the DVS, we measured the
number of events per time unit. When nothing changes, only
“background-activity” events are transmitted, which are caused
by sensor imperfections. However, as soon as the LED is
toggled, many events are generated.

For each combination of computer, toggle direction, and
sensor, we collected more than 1,000 measurements. To avoid
aliasing effects, we waited for a random amount of time after
each detection before toggling the LED again. No triggering
signal was missed in all the experiments.

B. Results

The sensor latency (i.e., capturing the image, transferring it
to the host computer, and performing a simple computation to
detect a change) is assumed to be Gaussian. It is modeled with
a random variable X; = N (1, o), where 4 is the mean delay
and o is the standard deviation. Due to the fixed frequency
of standard cameras (typically f = 30Hz), a uniformly-
distributed delay between 0 and At = 1/f is added to the
sensor latency: Xo = U(0, At), where At is the time between
two frames. Therefore, the expected delay Y is thus a sum of
two independent random variables, Y = X; + X5. We identify

“http://sourceforge.net/p/jaer/code/HEAD/tree/j AER/trunk/biasgenSettings/
DVS128/DVS128Fast.xml

Shttp://www.pixhawk.org/modules/px4fmu
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Fig. 5. Round-trip delays for a DVS (red) and a BlueFOX camera (blue)

using a laptop computer. The delays for the BlueFOX camera are wide spread
due to the synchronous nature of the sensor. In our experiments, it ran at
40Hz, which corresponds to 25ms. The histograms were normalized with
their maximum value.

TABLE 1. ROUND-TRIP DELAYS USING A LAPTOP COMPUTER
Sensor on Oon Jhoff Ooff At Unit
ASUS Xtion 28.0 2.7 50.3 2.8 33 ms
BlueFOX 14.5 0.5 18.0 0.5 25 ms
DVS 2.8 0.3 2.8 0.3 0 ms
TABLE II. ROUND-TRIP DELAYS USING AN EMBEDDED COMPUTER
Sensor Lbon Ton Hoff OToff At Unit
ASUS Xtion 45.0 4.0 67.3 2.8 33 ms
BlueFOX 19.9 0.4 20.5 1.2 25 ms
DVS 4.5 1.2 4.2 0.8 0 ms

the mean p and standard deviation ¢ of X in terms of those
of Y and X5, and replacing the mean and variance of Y by
their empirical values (sample mean and sample variance), as
detailed in the Appendix. For the DVS, only a Gaussian was
fitted because it works asynchronously.

A histogram comparing the latency distributions of the
DVS and the BlueFOX camera is shown in Fig. 5. While the
delays of the DVS are an order of magnitude lower, it can
also be seen that the delays of the BlueFOX camera are wide
spread due to the synchronous nature of the sensor. In our
experiments, it was running at a framerate of 40 Hz, which
corresponds to 25 ms.

In Table I, we summarize the round-trip delays for the three
vision sensors when connected to the laptop computer. We
report the identified parameters of the histogram distribution,
where the indices on and off indicate measurements when
turning on and off the LED, respectively. Table II provide the
same results measured on the embedded computer. Our results
are in line with the results reported in [9] of (2.2 & 2.0) ms.

V. ALGORITHM

In this section, we describe an algorithm to track spherical
objects thrown at flying quadrotor using two DVS in a stereo
configuration (see Fig. 1(a)). We first describe an event-based
circle tracker that is similar to the trackers introduced in [22].
Then, we match trackers from the left and right sensor that
fulfill a set of geometric constraints. We exploit the high
temporal resolution of the DVS to measure the disparity with
sub-pixel accuracy using the correlation of spatio-temporal
neighborhoods of matching trackers. These measurements are

used to initialize and update an Extended Kalman Filter (EKF).
A mixed state space allows incorporation of both the object’s
dynamics and the measurement noise on the image plane.
We then propagate the current state of the system with its
uncertainty in time and check for a collision of the 3o-ellipsoid
around the predicted trajectory with a safety sphere around the
quadrotor. In the following, we detail these steps.

A. Event-based Circle Tracker

Our trackers are similar to the ones described in [22], but
specialized to track spherical objects. We describe circular
trackers by their mean position p,,, radius p,., and uncertainty
in radius o, as illustrated in Fig. 6. For each incoming event,
we evaluate its score p;(p) that belongs to tracker i,

1 1 (di — pri\7
(p)=——exp|—= (=) ), @
pi(p) Brons Xp 2( - ) (D
where d; = ||p — p, ;| is the distance between the event’s

position p and the tracker’s position Ko i The tracker i = %00
with the highest score is then updated using an Infinite Impulse
Response (IIR) filter,

Hp(t) = Mp(tprev) +ap (p - Hp(tprev)) )
Mr(t) = Mr(tprev) + (d — Wy (tprev)) , 2)

02(1) = 2 (tyes) + r ((d = p1r(1))* = o2 (b))

which corresponds to an exponentially-weighted moving aver-
age filter with smoothing factors {cy, o, ax } € (0,1). Small
values indicate more smoothing but also induce more latency.
In our experiments, we empirically set a;, = 0.01, o, = 0.002,
and a, = 0.005.

Fig. 6. Tllustration of the Gaussian radius distribution N (p1r-(¢), 02(¢)) of a
tracker. An event with a score p; below d,, e.g., red crosses, is not considered,
while an event above J,, e.g., green crosses, is considered to be generated by

the circular shape.

The activity .4; of a tracker indicates when the tracker was
last updated by events,

At — At)exp (—
Ailt) = {Ai(t — At)exp (—

t)'i‘Pz(p), t = bmaz,

), otherwise.

3
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In addition, each tracker has £ directional activities a; with
j = 1,...,k, which is defined as (3) but only for a 1/k-
th section of the circle. From these directional activities, we



compute a factor ~y,

k
_ sy
7_&Z;k’ (4)

which is high if the events are distributed uniformly around
the circle and low otherwise. Therefore, v indicates how well
the tracker follows an actual circle. In the following, we only
consider trackers that have A > 15 and v > 0.7, i.e., trackers
that have received sufficient support from the event stream
and follow a circle. To avoid that the trackers follow arbitrary
shapes, we restrict the radius, its variance, and the variance-
to-mean ratio to reasonable intervals. For the initialization of
the trackers and more details of the algorithm, we refer the
reader to [22].

B. Stereo Matching

We match active trackers from the left and right sensor
plane that fulfill all of these four constraints: (i) the disparity d
must be positive, (ii) the mean vertical positions p, of the
trackers must be close, (iii) the radius r of the trackers must
be similar, and (iv) each tracker can only have one matching
tracker.

Due to the low spatial resolution of the DVS of only
128 x 128 pixels and the short baseline of 12 cm, the disparity
at 5m is only 3.1 pixels. Thus, noise in the tracker positions has
a significant impact on the accuracy of the depth measurement.
We therefore refine the disparity estimate with a sub-pixel
estimation algorithm that we initialize with the stereo-matching
estimate.

C. Sub-Pixel Disparity Estimation

To increase the precision of the stereo matching, we
compute the correlation of the spatio-temporal neighborhood
of the two matching trackers. More precisely, we correlate the
Surface of Active Events (SAE) [23] using linear interpolation.
The SAE X,(p) stores the last timestamp of an event with
polarity p that was reported at pixel location p,

Y,(p) . )

We search for the maximum correlation of the left and right
SAE,

d = arg max S (u,v) - S (u+d,v), (6
i ST TS0 S, ©

where [ and 7 refer to the left and right SAE, respectively, and
> is the shifted SAE defined as

%(p) = max(X(p)

where £y, is the current time and AT = 50 ms. All timestamps
on the shifted SAE are between 0 and AT. We first evaluate (6)
in 1-pixel steps and then refine it with 0.1-pixel steps. This
results in a measurement of the ball’s center of mass in the
image plane, i.e., its location u, v and its disparity d with
sub-pixel accuracy.

- tcurr + AT, 0)7 (7)

D. Extended Kalman Filter

Under the assumption of negligible air drag and a perfectly-
stable hovering quadrotor (i.e., pitch, roll, and all angular rates
are zero), the ballistic trajectory of a ball in the sensor’s 3D
coordinate frame is given by

X(t) Xo VX0 1 O
Y(t)| = |Yo |+ |vvo|t+ 3 |9 2, 3
Z(t) Zy Vz0 0

with initial position  [Xg, Yy, Zo]T, initial  velocity

[vx0,Vy0,vz0] ", and gravitational acceleration g.

For the Extended Kalman Filter (EKF), we use a mixed
state x(t) consisting of the ball’s position in image coordinates
and its velocity in world coordinates,

X(t) = [‘rh X2,T3,T4,Ts5, xG}T
= [d, Z, Teoms X ; Yeoms Y}T~
This allows us to incorporate the measurement noise in pixel
units with the dynamics of the ball (8). The coordinates in

image space and world coordinates are linked by the pinhole
camera model, i.e.,

®

u v

X=b-—-, Y=0b=

d’ d’

where f is the focal length of the camera and b the baseline
of the stereo setup.

Z=b-7, (10)

ISHESN

Using (10) and (8), the nonlinear continuous-time system
can be derived as

r }7; . x% . x2 T
0

. (%.M,#.xz.xg)‘zl

x(t) = a (x(t) = . an
(%xe— f%,-xzms) “a1
L g |
with observation vector

z(t) = h(x(t)) = [1,23,75] . (12)

Using a first-order approximation of the derivate and a
timestep of T}, the discrete-time nonlinear system becomes

(}T}'ﬁ'lﬁ)'Tkerl
T2
x(tgr1) = q (x(tr)) = (b pL2 x;) zy -1y + 3
4
(%1'6—%.;(,’2.(55).‘@1.1"]6_’_1.5
L ng+$6 ]

The linearized system matrix A (tx) is given by the Jaco-
bian of the nonlinear system around the current state x;, which
has a closed-form solution,

At = 22l

We initialize the filter state with a linear least-square
regression on the first four measurements. While the filter
could be initialized with only two measurements, we found
that four yields a good tradeoff between latency and precision.



E. Trajectory Propagation

To propagate the trajectory, we transform the ball’s position
in image coordinates and its covariance to world coordinates.
For the covariance transformation, we use a first-order approx-
imation. We then use the dynamical model (8) to propagate the
system in world coordinates. We define the world-coordinate
origin to coincide with the quadrotor center. We compute a crit-
ical time t; at which the distance between the trajectory r(¢)
and the quadrotor is minimal and propagate the states up to
that time. We find .4 by

0 !
alr(tei)] = 0. (13)

The more intuitive geometrical solution of this problem is
illustrated in Figure 7, which yields

r(teric) - T (Ferit) < 0, (14)

which results in a cubic equation in f; that can be solved by,
e.g., Cardano’s method.

Fig. 7. Illustration of the geometrical solution to obtain the critical point
r(teit) on the ballistic trajectory r(t) defined by the vectors r(t,) and ©(tp).
The critical point occurs at the time ¢.4;, when the position vector and its
derivative are orthogonal.

. Maneuver Decision

We define a spherical safety zone with radius 7, around
the quadrotor’s origin. Since the trajectory prediction includes
the expected value of the critical position and its uncertainty,
a collision is predicted if the uncertainty ellipsoid around the
critical position intersects with the safety zone.

If the distance-to-origin ||r(¢cq)|| of the predicted critical
position is smaller than rge, we expect a collision in any
case. If it is larger, we need to consider the uncertainty of the
prediction. The vector rgg(tei) (15) represents the distance
from the expected critical position on the predicted trajectory
to the closest point on the surface of the spherical safety zone,

o Tsafe B . )
rdist(tcrit) - <||r(tcrit)| 1) r(tcrlt)- (15)

The covariance matrix X, () can be interpreted as an
ellipsoid that gives us information about directional uncertainty
of the predicted critical position. This information is extracted
with the Principal Component Analysis (PCA) of the covari-
ance matrix

S, (tair) = UAUT (16)

with

and A = diag()\l, /\27 )\3),

where the normalized eigenvectors u; are the principal axes
of the uncertainty ellipsoid and the square roots of the cor-

responding eigenvalues \; represent the standard deviations
along the axes.

U = [u, up, ug]

Therefore, we rotate rgg to the PCA space U using U
and scale it with 3v/A, which corresponds to a probability of
99.73 %. We call this the confidence vector

—1
Urconf(tcrit) = (3\/K) -U- rdisl(tcrit)~ a7

The norm of the confidence vector then gives us an
indication of the predicted critical position not entering the
safety zone with a probability of 99.73 %. More precisely, we
can rule out a collision with said probability, if the norm of
the confidence vector is larger than 1.

Additionally, we set a threshold o for the largest eigen-
value that determines whether we trust the prediction. Le., we
predict a collision if

max (A) < oy and ||r(tcrit)H < Tsafe (18)

or
max (A) < oy and ||y Teont(terit)| < 1. (19)

VI. EXPERIMENTS

We first describe the experimental setup. Then, we evaluate
the tracking performance and the effect of the EKF. We
compare the measurements with a ground truth captured with
a motion-capture system. Finally, we analyze the time margin
between a collision is predicted and the time of collision.

A. Experimental Setup

We mounted two DVS in a stereo setup on a quadrotor (see
Fig. 1(a)). Our quadrotor platform is described in detail in [1].
All sensing and computation for flying was performed onboard.
We recorded the event streams from both DVS while hovering
in vision-based flight that we later processed offboard. Then,
we threw a ball towards the quadrotor from a distance of 6 m
at speeds of about 10 m/s. The ball was secured with a leash
that prevents a collision shortly before it would occur. We
recorded ground truth for both the quadrotor and the ball using
an OptiTrack motion-capture system.

B. Circle Tracking

Fig. 8 shows a snapshot of the tracking. The three trackers
on the left event stream in Fig. 8(a) are filtered by the stereo-
matching constraints. Since the trackers only roughly track
the ball’s position, a sub-pixel disparity refinement is used to
improve the measurement.

C. EKF Performance

Figure 9 shows the stereo measurements and the output of
the EKF. The first four measurements between t; and ¢y are
used for initialization of the filter. The last measurements at
time 3 are corrupted since the ball is no longer fully visible
by the DVS. However, since these measurements do not pass
a 3o validation gate, they are not used to update the state and
only the dynamical model is propagated.
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Fig. 8. Tracking of the ball during a throw. Red and blue points indicate events
with positive and negative polarity, respectively. The active circle trackers are
marked in black and highlighted with an arrow.
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Fig. 9. Comparison of the measurement and the EKF estimate of the center
of mass in image coordinates [u, y, d]T. The first measurement is obtained at
t1 and the EKF is initialized at 2. The EKF recognizes corrupt measurement
at t3.

D. Comparison with Ground Truth

In Fig. 10, the output of the EKF is compared to ground
truth obtained from a motion-capture system. It also shows
the triggering signal for the evasive maneuver. The EKF is
initialized at time ¢, and at time t4, a triggering signal is
sent. The elapsed time is t4 — t = 15ms. Since the ball
was on a leash in the experiment, it stops before hitting the
quadrotor. When we extrapolate its trajectory, a collision with
the quadrotor would occur at time ¢5. In this case, this yields
a time of 5 — t4 = 330 ms for the quadrotor to escape before
a collision would occur. Since the plots in Fig. 10 are time-
stamped by the same clock, they include the latency of the
algorithm.

E. Time Margin for Evasive Maneuver

The time margin is the time between a collision is predicted
and the time of collision (assuming no maneuver) We evaluate
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Fig. 10. Ground truth and center of mass estimate in quadrotor frame world
coordinates. The EKF is initialized at ¢2 and the collision prediction is made
at t4. The expected collision would take place at ¢5. The evasive maneuver
triggering signals are shown in magenta.

the time margin for the evasive maneuver for a series of
19 experiments. In 15 experiments, the ball was thrown at
the quadrotor, which was correctly predicted 12 times (80 %),
while it was not detected in 3 experiments. In the other
4 experiments, the ball missed the quadrotor. Our algorithm
reported 3 times (75 %) that no collision will occur and did
not detect the ball in one experiment.
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Fig. 11. Histogram of the escape time. The red dashed line indicates the

0.32s escape time that is necessary for our quadrotor to escape the imminent
collision with a free fall evasive maneuver (see Section VII).

We summarized the time margin for the 12 successfully
predicted collisions in Fig. 11. We estimated the time of
collision by extrapolating the ball trajectory until it would hit
the quadrotor. The algorithm ran in real-time on the recorded
data, thus we incorporate also the processing time in our
analysis. In most experiments, the time margin was 250 ms.

VII. CONCLUSION

In this paper, we demonstrated a method to predict colli-
sions of objects thrown at a quadrotor. We used two DVS in a
stereo configuration. The ball was detected and tracked in both
event streams. Using a set of geometric constraints, a rough
stereo matching is obtained that is further refined by sub-pixel
disparity estimation. These measurements are fused in an EKF
that uses a mixed state to incorporate both the measurement
noise in the image plane and the dynamical model of the ball’s



trajectory. We predict a collision if the 3o-ellipsoid along the
predicted trajectory intersects with a safety sphere around the
quadrotor.

While the prediction of a collision is available within a
reasonable time margin of 250 ms in most cases, our quadrotor
platform currently does not allow to execute an aggressive
evasive maneuver. In fact, due to the additional payload of two
DVS and its sensor mount (which makes the quadrotor 40 %
heavier), the quadrotor operates at its actuator limits (i.e., it can
barely hover). The only possible evasive maneuver would be a
free fall. However, to escape a safety sphere of s = 0.5 m using
free fall, a time margin of at least /2s/g = 0.32s is required,
assuming no delays on the motor controllers and neglecting
rotor dynamics. We are currently building a more powerful
quadrotor platform to perform different evasive maneuvers in
future work.
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APPENDIX
A. Probabilistic Sensor-Latency Model

The total sensor latency Y is the sum of two independent
random variables,

Xl = N(/’% U)a (20)
Y = X1+ Xy, (22)

where X; models the Gaussian sensor latency and X5 accounts
for the uniform delay due to the fixed sensor frequency (cf.
Sec. IV-B). While At is known, we want to identify p and o.
Since the two variables are independent, we can sum their
expected values and variances,

A
EY]=  E[X]+EX) =pt5. @)
2
Var[Y] = Var[X;] + Var[Xp] =o?+ % (24)

Given enough samples, we can compute E[Y] and Var[Y]
from the measurements and compute the mean p and vari-
ance o2 of the Gaussian as

At
At?
2 — —_——
o = Var[Y] TR (26)
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