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1 Introduction

Intensive Care Unit (ICU) patients require a fast and sophisticated analysis
of their condition in real time. To do so, it is paramount to compare patient
data across time series in order to find outliers in the data leading to potential
threats. Similarity search in time series for ICU patients is of much interest
as it can immediately detect changes with respect to the physical state of the
patient and potential red flags. The goal of this project was to compute pair-
wise Pearson Correlation Coefficients in a dataset of multiple time series. To
illustrate this process, let’s take look at a time series x, i.e. a sequence of values
ordered according to the time of generation: x = x1, x2, . . . , xn as illustrated
in Figure 1.

Figure 1: Value VS Time for time series

A correlation serves an indication of the relationship between two series and
subsequent assessment of whether they are moving in the same direction. This
method is efficient as, compared to other approaches such as simple Euclidean
distance calculations, it is scale invariant and unaffected by the addition or sub-
traction of constants across the time series. Direct calculations (Naive Pearson
and Adapted Pearson) as well as dimensionality reduction approaches (PAA,
DFT, DWT) were used. Direct computations of Pearson correlations are the
most straight forward methods to observe similarities among series. However, to
speed up outputs production dimensionality reduction methods have also been
developed.

We subsequently performed an analysis to compare run times and perfor-
mance across all five methods. In order to generate results in the most trans-
parent form, almost all of the code was written using basic Python, with the
two exceptions being in the DFT module, where a couple of functions from the
math and cmath libraries had to be used due to the presence of the complex
numbers.
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Our results showed that algorithms behave differently based on which values
are changed. In other words, depending on the specific parameter settings
algorithms can perform better or worse than others. In particular, while Naive
and Adapted Pearson follow a somewhat monotonic pattern that is independent
of the changing of parameters values, the dimensionality reduction methods
show a decreasing-then-increasing behavior. Sweet spots values were found by
targeting the change in behavior for PAA, DFT and DWT with respect to their
unique parameters.

2 Pearson correlation

Similarity search in time series is evaluated by computing the Pearson Corre-
lation Coefficient, a statistical measure of correlation between two time series
that ranges between +1 and -1: +1 represents a total positive correlation, 0 no
correlation, and -1 total negative correlation. A positive correlation is obtained
when two series increase and/or decrease at the same pace as shown in Figure
2:

Figure 2: Positive Correlation
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A negative correlation is obtained when two series inversely increase and/or
decrease as shown in Figure 3:

Figure 3: Negative Correlation

A zero correlation is obtained when two series show completely unrelated
behaviors as shown in Figure 4:

Figure 4: Zero Correlation

Several techniques to calculate the Pearson Correlation Coefficient have been
developed. Sections 2 illustrates direct methods and Section 3 explicates dimen-
sionality reduction techniques.
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2.1 Naive Pearson

Pearson Correlation measures how one series differ from the other. In its naive
approach, this coefficient is directly proportional to the covariance and inversely
proportional to the variance. Mathematical derivations of these quantities begin
with the definition of the mean:

x̄ =
1

n
·

n∑
i=1

xi (1)

var(x) =
1

n
·

n∑
i=1

(xi − x̄)2 (2)

cov(x, y) =
1

n
·

n∑
i=1

[(xi − x̄)− (yi − ȳ)] (3)

corr(x, y) =
cov(x, y)√

var(x) · var(y)
=

∑n
i=1[(xi − x̄)− (yi − ȳ)]√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2
(4)

Equation (4) clearly shows that as both series move in the same direction (i.e. if
their values either linearly increase or decrease), the correlation will be positive.
On the other hand, if they diverge, the coefficient will be negative.

Even though this method is sufficient to draw the right conclusions, it can be
computationally expensive. In fact, both variance and covariance include both
series in their respective equations, which is not ideal from a computational
standpoint. Adapted Pearson shows a re-arrangement of these equations such
that most of the series parameters are computed separately and thus allows to
pre-calculate multiple parameters that are then saved and reused.

2.2 Adapted Pearson

Adapted Pearson modifies the Naive Pearson approach to separate calculations
for the two series. By applying summations rules to Equation (4) and performing
some simplifications, it is possible to derive a variant of Naive Pearson, which
only has one parameter being dependent on both series. These new parameters
are labeled s1 to s5:

s1 =

n∑
i=1

xi (5)

s2 =

n∑
i=1

x2i (6)

s3 =

n∑
i=1

yi (7)

s4 =

n∑
i=1

y2i (8)
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s5 =

n∑
i=1

xi · yi (9)

corr(x, y) =
n · s5 − s1 · s3√

(n · s2 − s21) · (n · s4 − s23)
(10)

Because s5 is the only parameter requiring both time series, most of the values
needed in the correlation equation (Equation (10)) can be computed treating xi
and yi separately, suggesting an improved computational time.

However there may be scenarios where the Pearson Correlation Coefficient
is meaningful for a specific task only if above a certain threshold value. Direct
methods have no way to make any preliminary filtering of the data to avoid
performing unnecessary calculations. Dimensionality reduction techniques aim
at speeding up the computational process by making preliminary approximated
calculations and subsequent filtering of the data.

3 Dimensionality reduction

Time series can be computationally really expensive as well as unnecessary
to analyse as an entire series if there are initial conditions that would filter
values out. Dimensionality reduction techniques have been proven to improve
processing time by means of approximations and filtering using the Euclidean
distance.

3.1 Euclidean distance

All three dimensionality reduction techniques implemented in this work check
whether the Euclidean distance between the two time series passes a set thresh-
old.

d(x̂, ŷ) =

√√√√ n∑
n=1

(x̂i − ŷi)2 (11)

Where x̂ and ŷ represent normalized versions of the original dataset. In order to
determine if the exact correlation needs to be computed, the Euclidean Distance
must pass the following condition [AML10]:

d(x̂, ŷ) ≤
√

2 ·m · (1− T ) (12)

Where T is the threshold value, m the length of the sequence, and x̂ is the
normalized sequence of x:

x̂ =
x− µx

σx
(13)

Doing so will determine whether the correlation is set above the threshold
[AML10]:

corr(x, y) ≥ T (14)
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Now the Pearson correlation coefficient can be calculated based on the Euclidean
distance [AML10]:

corr(x, y) = 1− 1

2 ·m
· d2(x̂, ŷ) (15)

Setting a threshold condition as a prerequisite to compute the correlation leads
to the absence of false negatives [AML10] and allows for filtering of the dataset,
thus improving the speed of run time. Three dimensionality reduction methods
were analysed in this work: PAA (Piecewise Aggregate Approximation), DFT
(Direct Fourier Transform), and DWT (Direct Wavelet Transform):

3.2 PAA

Piecewise Aggregate Approximation (PAA) is a dimensionality reduction method
that approximates a time series x = x1, x2, . . . , xn by dividing it into N sub-
sections and calculating the respective mean values, obtaining a new sequence
X̄ = x̄1, x̄2, . . . , x̄n. For convenience it is assumed that N is a factor of
length of the input series n (in sliding window scenario, series n translates to a
window size) [EKM01].

x̄i =
N

n
·

n
N ·i∑

j= n
N ·(i−1)+1

x̂j (16)

The same method is applied to a second series with output Ȳi. X̄i and
Ȳi are then used to check for the threshold condition (Equation (11)-(14)). If
such condition is passed, results are used to calculate the Pearson Correlation
Coefficient (Equation (15)). If the threshold condition is not passed, the code
will skip the calculation and output None.

Transferring this mathematical concept to a graphical representation in Fig-
ure 5, it is possible to observe how the PAA behaves when applied to an ap-
proximated X’ sequence as an approximation of linear box basis functions.
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Figure 5: PAA applied to X’ [EKM01]

3.3 DFT

The Discrete Fourier Transform (DFT) is one of the most popular techniques
in signal processing. It takes a sequence as input and outputs another sequence
with complex numbers of same length as the original [AML10].

Xf =
1

m
·
m−1∑
k=0

xi · exp(
−2 · π · i · f · k

m
) (17)

Where,
i = the imaginary number

√
−1,

f = coeff num = data point index of output sequence,
k = data point index of input sequence,
m = sequence length
Equation(17) is applied to two normalized sequences with outputs Xf and

Yf . The two new sequences are then used to calculate the Euclidean distance
by separating the real and imaginary components [AML10]:

D =

√√√√ m∑
i=0

(x̄i,real − ȳi,real)2 + (x̄i,im − ȳi,im)2 (18)

If D passes the threshold condition (Equation(14)), a new Euclidean distance
is calculated directly from the normalized sequence Equation (13) through Equa-
tion (11) and results are used to calculate the Pearson Correlation Coefficient
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(Equation (15)). If D does not pass the threshold condition, the code will skip
the calculation and output None.

Transferring this mathematical concept to a graphical representation in Fig-
ure 6, it is possible to observe how the DFT behaves when applied to an ap-
proximated X’ sequence as a combination of four Fourier bases waves.

Figure 6: DFT applied to X’ [EKM01]

3.4 DWT

The Discrete Wavelet Transform (DWT) used in this project is the Haar trans-
form (H). Given a sequence ~x = x1, x2, . . . , xn, H(~x) = (x0,0 d1 d2 ... d2i+j

d2i+j+1 ... dn−1) where xi, j and d2i+j are defined as [pCcF99]:

xi,j =
xi+1,2j + xi+1,2j+1√

2
(19)

where i represents the vertical level index of the hierarchy, ranging from 0
to log2(n) and j the horizontal level index of the hierarchy ranging from 0 to n
- 1 [pCcF99]. A graphical representation can be viewed in Figure 7:
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Figure 7: Hierarchy levels in DWT [pCcF99]

dx,2i+j =
xi+1,2j − xi+1,2j+1√

2
(20)

Where denominator is changed from 2 in original formula by [pCcF99] to
√

2
following the authors note that such replacement of scaling factor serves as the
normalization step in order to preserve the Euclidean distance between Haar
and time domains. Equation(19)-(20) are applied to two normalized sequences
x̄i,j and ȳi,j . The Euclidean distance is calculated using the information from all
previous hierarchy levels up to the one defined by the user. The more levels are
taken into account, the more accurate the Euclidean distance and subsequently
the correlation estimate will be. The Euclidean distance for each predefined
hierarchy level hc is then calculated [pCcF99]:

D =

√∑log2(n)
i=0

∑n−1
j=0 (x̄i,j − ȳi,j)2

2
(21)

If D passes the threshold condition (Equation(14)), a new Euclidean distance
is calculated directly from the normalized sequence and results are used to
calculate the Pearson Correlation Coefficient. If D does not pass the threshold
condition, the code will skip the calculation and output None.

Transferring this mathematical concept to a graphical representation in Fig-
ure 8, it is possible to observe how the DWT behaves when applied to an
approximated X’ sequence as a combination of eight Haar wavelet bases.
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Figure 8: DWT applied to X’ [EKM01]

These 5 algorithms were implemented inside our work and their performance
was evaluated using a sample dataset.

4 Implementations

The algorithms implementation inside the project was structured into different
modules, each performing a specific task. This was done to avoid repeating
functions when functions were used in multiple algorithms, performing clear run
time measurements, and creating the sample data set only once. All modules
were then called in the call testing pearson.py file. Figure 9 provides a general
overview of the code structure, where numbers are an indication of execution
order.
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Figure 9: Simplified Project Schema

The same sample data set was used for all algorithms. This sample data
set was created to simulate a real-life scenario of receiving measurements from
an ICU patient. The individual entries were created at random, however the
number of records and sequences were explicitly defined.

Table 1: Sample Data set fragment
-0.02 -0.68 -1.54 -1.94 -2.34 -1.75 -1.29 -1.47 -1.89 -1.71
-0.66 -1.52 -1.92 -1.46 -1.88 -1.42 -1.21 -1.94 -2.02 -2.56
-0.86 -1.26 -0.8 -0.62 -0.41 -0.88 -1.42 -2 -1.18 -0.52
-0.4 -0.8 -1.22 -1.01 -1.09 -0.24 0.58 -0.14 -0.95 -1.11
-0.4 0.19 0.65 0.18 1.03 0.99 1.37 1.77 1.94 1.63

This dataset was then used to simulate the data streaming, in which new
data is added and old data removed. This method was implemented by means
of a sliding window scenario.
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4.1 Sliding Window and Iterations implementation

In order to create a data streaming scenario where new data is continuously
fed to the system and old data removed, a much larger version of the dataset
in Table 1 was used to simulate sliding windows. As an example, a partioning
with window size of 4 elements and a step size of 2 is illustrated in Figures 10
to 12.

Figure 10: Sliding Window Schema at t 0

Figure 11: Sliding Window Schema at t 1

Figure 12: Sliding Window Schema at t 2

Qualitatively speaking, the window color changes with respect to the time,
i.e. the blue window represents the examined window at time t 0, the green at
time t 1, and the red at time t 2.

In general, each new window is obtained by following a First-In-First-Out
approach: starting from the previous window, the number of elements removed
corresponds to the step size and are taken from the front, a respective number
of elements is added to the back. The amount of elements added always corre-
sponds to the amount removed. Applying this logic to Figures 10, 11 and 12,
the first window is set with 4 elements and all coefficients are calculated for that
window. Afterwards, two more data points are added to the sequence and the
first two data points of the initial window are removed.

This extension and reduction method requires data to be segmented in multi-
ple windows, which in turn mandates that correlations for window pairs have to
be calculated sequentially. The use of iterations satisfies this requirement. Two
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functions were created: one for the initial window and another for any following
one. Respectively, as shown in Listing 1 function sliding window first run(dataset,
window size) creates the first window from the data set, whereas function slid-
ing window fun(dataset, window size, step size, iteration) in Listing 2 outputs
all windows elements to add and remove from any window after the initial one
is created. The former was used during the first (0th) iteration, whereas the
latter in all other iterations following the first one. For efficiency reasons, all
of the initial windows values were calculated first and then the sliding window
technique was applied by looping over the rest of the data set. Example schema
of code structure for all implemented algorithms is illustrated in Listing 3

1 def sliding_window_first_run(dataset , window_size):

2 # start by setting window as empty list

3 window = []

4 # fill window with first batch of elements

5 window = dataset [0: window_size]

6 return window
dataset is given by user or created using parameters that the user inputed.

window size is defined by user’s input

Listing 1: sliding window first run function

1 def sliding_window_fun(dataset , window_size , step_size , iteration):

2 # start by setting window as empty list

3 window_step = []

4

5 # detect first element to extend

6 start_extension = window_size + step_size * (iteration - 1)

7 # detect last element to extend

8 stop_extension = start_extension + step_size

9 # detect first element to delete

10 start_reduction = start_extension - window_size

11 # detect last element to delete

12 stop_reduction = stop_extension - window_size

13

14 # select the elements that have to be extended

15 window_extension = dataset[start_extension:stop_extension]

16 # select the elements that have to be deleted

17 window_reduction = dataset[start_reduction:stop_reduction]

18

19 window_step = [window_extension , window_reduction]

20

21 return window_step
dataset is given by user or created using parameters that the user inputed.

window size and step size are defined by the user’s input
iteration is generated and passed to this function from general iterations loop (see Listing 3)

Listing 2: sliding window fun function
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1 # number of sequences (variable m in parameter input)

2 dataset_n_col = len(dataset)

3 # final Pearson correlation coefficients list

4 output = []

5 # k is the number of iterations

6 for k in range(0, (length_of_a_row -window_size) / step_size):

7 # define windows and pre -calculate values

8 for i in range(0, dataset_n_col):

9 if k == 0:

10 # define first window with sliding_window_first_run

11 else:

12 # define first window with sliding_window_fun

13

14 # calculate all windows and values which can be

15 # calculated for each sequence separately

16

17 # append everything to list

18 for i in range(0, dataset_n_col):

19 # extract values for the ith operation

20 for j in range(i + 1, dataset_n_col):

21 # extract values for the jth operation

22

23 # calculate all remaining variables , which can

24 # only be computed with data from both sequences

25

26 # calculate Pearson correlations

27

28 # append results to list
It is important to note that values have to be large enough to perform all calculations. For example, if window
size was set to 2, variance in Naive Pearson would be 0, which would lead the algorithm to crash. Additionally,

most calculations are independent of the iteration value, however this is not the case for the mean.

Listing 3: General code structure

Another important difference between first and all subsequent iterations
apart from different method of window computation is mean computation. In
first iteration (k = 0) the standard mean calculation formula is used. However
in the following iterations (k > 0), the mean function is modified to improve
run time performance. Exact function is to be found in Listing 4.

1 def calc_mean_seq(window_size , mean_val , reduced , extend)

2 avg = mean_val - sum(reduced)/window_size + \\

3 sum(extend)/window_size

4 return avg

To compute mean from shifted window, it is sufficient to separately sum the ”extend” and ”reduced” elements,
respectively by adding and subtracting them by the previously calculated mean values, and dividing by the length

of the window size.
mean val is the mean value of the previous window from previous iteration

reduced and extend are values generated by sliding window fun function (Listing 2)

Listing 4: Reduced computation time mean function

To sum up the differences between the 0th iteration and any following one:

1. if k = 0: first window is defined using sliding window first run(dataset,
window size), the means are calculated with the standard formula;
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2. if k > 0: windows are defined using sliding window fun(dataset, win-
dow size, step size, iteration) by extracting individual ”extend” and ”re-
duced” components, the means are calculated with the calc mean seq(window size,
mean val, reduced, extend) formula.

Final results for run time1 and Pearson Correlations Coefficients are ap-
pended to an output list. This general logic is then adapted to each different
algorithm. In the following subsections, we describe specific implementations of
different algorithms with respect to the structure presented in Listing 3

4.1.1 Naive Pearson implementation

Within the first i loop, mean values for each kth iteration are calculated. These
are then extracted in the nested i and j loop and remaining calculations of
variance, covariance and correlation itself are performed. Before executing Naive
Pearson or any other algorithm it is important to check that step size is smaller
or equal to window size.

4.1.2 PAA implementation

Within the first i loop Xbar values from normalized sequences for each kth
iteration are calculated as well as a check for N to be less of equal to the
window length and being a factor of window size. Normalised window and Xbar

values are appended to the list. These are then extracted in the nested i and j
loop where Euclidean distance calculations, threshold checks, and final Pearson
correlation calculations are performed.

4.1.3 DFT implementation

Within the first i loop Xf values from normalized sequences for each kth iter-
ation are calculated. Normalised window and Xf values are appended to the
list. These are then extracted in the nested i and j loop where euclidean dis-
tance calculations, threshold checks, and final Pearson correlation calculations
are performed. It is important to note that coeff num should be less or equal
to window size.

4.1.4 DWT implementation

Within the first i loop Xw values from normalized sequences for each kth itera-
tion are calculated. Normalised window and Xw values are appended to the list.
These are then extracted in the nested i and j loop where euclidean distance
calculations, threshold checks, and final Pearson correlation calculations are per-
formed. Since hierarchy level in DWT implementation is of central importance,
it is important that it is bigger or equal to the maximum amount of times that
a window size can be divided by 2 without decimal, thus math.log(window size,
2) >= hierarchy level.

1More on run time calculations in Section 4.3
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4.1.5 Adapted Pearson implementation

Within the first i loop, s1 and s2 values for both sequences are calculated using
the sequence sum first run function for the 0th k iteration. The function is
described in Listing 5:

1 def sequence_sum_first_run(dataset):

2 s_1 = sum(dataset)

3 s_2 = sum([x ** 2 for x in dataset ])

4 output = [sequence_sum1 , sequence_sum2]

5 return output

Listing 5: sequence sum first run function

For any other kth iteration, an optimized function sequence sum described
in Listing 6 was used:

1 def sequence_sum(prev_sum , reduced , extend):

2 # add and subtract "reduce" and "extend" parameters

3 s_1 = prev_sum [0] - sum(reduced) + sum(extend)

4 s_2 = prev_sum [1] - sum(x ** 2 for x in reduced) + \\

5 sum(x ** 2 for x in extend)

6 output = [s_1 , s_2]

7 return output
This function uses similar reduced and extend logic as mean calculations mentioned in 4

Listing 6: sequence sum function

Window elements, s1, and s2 values are appended to a list. These are then
extracted in the nested i and j loop, where s5 and final Pearson correlation
calculations are performed.

In general, avoiding repetitiveness is of great support in improving the run
time. An initial indication of how run times compare for each method is the
time complexity.

4.2 Time complexity

Time complexity calculations provide an indication of how fast each algorithm
will run. A lower time complexity is indicative of a better run time performance.
To evaluate each algorithm, the following rules were applied:

• a simple expression or if statement outside of any loop will have time com-
plexity of O(1)

• a loop will will repeat itself as many times as the length of the input n (e.g.
n), hence the time complexity is O(n)

• two nested loops will repeat themselves as many times as the multiplication
of length of the inputs (e.g. n*m), hence the time complexity is O(n*m)

• a recursive function will repeat itself until the exiting condition is met, hence
the time complexity is O(log(n))
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• if a script includes expressions, if statements, and loops, the higher time
complexity value is predominant

• if there are two or more independent predominant expressions, their time
complexities are summed together.

These rules were applied to all of the five algorithms to calculate their time
complexities. For simplicity in the notation, the length of the data set sequence
is labeled as m and the number of records in the data set as n. Additionally,
step size is usually smaller than window size but it was still included in the time
complexity result as this fact cannot be taken as a universal assumption.

4.2.1 Naive Pearson

Naive Pearson contains an outer k for loop ranging from 0 to number of windows,
and 2 inner loops: an independent i loop of complexity O(m*(window size+step size)),
and a nested i and j loop of complexity O(m2 * window size). Combining these,
the final time complexity is: O(m * k * (step size + m * window size)).

4.2.2 Adapted Pearson

Adapted Pearson contains an outer k for loop ranging from 0 to number of win-
dows, and 2 inner loops: an independent i loop of complexity O(m * (step size
+ window size)), and a nested i and j loop of complexity O(m2 * window size).
Combining these, the final time complexity is: O(m * k * (step size + m *
window size)).

4.2.3 PAA

PAA Pearson contains an outer k for loop ranging from 0 to number of windows,
and 2 inner loops: an independent i loop of complexity O(m * (step size +
window size), and a nested i and j loop of complexity O(m2 * (window size +
N)), where K = window size / N . Combining these complexities, the final time
complexity is: O(k * m * (m * window size + N + step size).

4.2.4 DFT

DFT Pearson contains an outer k for loop ranging from 0 to number of windows,
and 2 inner loops: an independent i loop of complexity O(m * (window size
* coeff num + step size)), and a nested i and j loop of complexity O(m2 *
(window size + coeff num). Combining these, the final time complexity is: O(k
* m (m * (window size + coeff num) + (window size * coeff num + step size))).

4.2.5 DWT

DWT Pearson contains an outer k for loop ranging from 0 to number of windows,
and 2 inner loops: an independent i loop of complexity O(m * window size +
step size), and a nested i and j loop of complexity O(m2 * hierarchy level *
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window size). Combining these last two complexities with the k loop, the final
time complexity is: O(k * m (step size + m * hierarchy level * window size)).

4.2.6 Conclusions on Time complexity

Based on these time complexity calculations, a prediction can be made regarding
the impact of different input values on the performance. Summation of findings
for each algorithm:

• Naive Pearson: O(m * k * (step size + m * window size))

• Adapted Pearson: O(m * k * (step size + m * window size))

• PAA: O(k * m * (m * window size + N + step size)

• DFT: O(k * m (m * (window size + coeff num) + (window size * coeff num
+ step size)))

• DWT: O(k * m (step size + m * hierarchy level * window size))

Even though Naive and Adapted Pearson display analogous time complexi-
ties, their internal math and implementations differ. Section 5.2.1 will go into
more details regarding this matter. In addition, depending on the values for N,
coeff num and hierarchy level, the dimensionality reduction techniques perform
differently and can be either better or worse than Adapted Pearson.

To look at more accurate results, run time calculations were performed and
visualisations were created.

4.3 Run time calculations

Run time computations were used to calculate the algorithms performance. The
time library was imported in each module and the time.perf counter() function
was used to measure the time difference between two consecutive calls of the
function; it returns a float value of time in seconds. This was the function of
choice as it measures elapsed time with the highest resolution available, which
is of use in the ”initial and incremental” execution mode, which is explained
in Section 5.1. However comparing this function to other possibilities given in
Python, high time resolution is a trade off as we loose the ability to distinguish
between system and user CPU time. Sample code similar to Listing 3, but
expanded with time measurement points can be found in Listing 7:
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1 # number of sequences (variable m in parameter input

2 dataset_n_col = len(dataset)

3 # final Pearson correlation coefficients list

4 output = []

5 # k is the number of iterations

6 for k in range(0, (length_of_a_row -window_size) / step_size):

7 # define windows and pre -calculate values

8 for i in range(0, dataset_n_col):

9 if k == 0:

10 �extbf initial

11 start_initial = time.perf_counter ()

12 # calculate all windows and values which can be

13 # calculated for each sequence separately

14 end_initial = time.perf_counter ()

15 output.append ([ end_initial - start_initial , "

initial_time"])

16 else:

17 start_incremental = time.perf_counter ()

18 # calculate all windows and values which can be

19 # calculated for each sequence separately

20 end_incremental = time.perf_counter ()

21 output.append ([ end_incremental - start_incremental , "

incremental_time"])

22 # append everything to list

23 for i in range(0, dataset_n_col):

24 # extract values for the ith operation

25 for j in range(i + 1, dataset_n_col):

26 # extract values for the jth operation

27 # calculate all remaining variables , which can

28 # be only be computed with data from both sequences

29 start_calculated_sequence_objects = time.perf_counter ()

30 # calculate Pearson correlations

31 end_calculated_sequence_objects = time.perf_counter ()

32 output.append ([ pearson_corr ,

calculated_sequence_objects_time , "

calculated_sequence_objects_time"])

Listing 7: General code structure expanded with time measurement points

Qualitative description of Listing 7 is as follows:

1. At the 0th iteration (when k is 0), the run time count was started and
saved under the start initial variable. Once all required calculations in
initial run were done, time was saved under end initial. The difference
between these two variables represents the time taken for a single iteration
in the initial window calculations

2. At any k subsequent iteration, the run time count was taken and saved un-
der the variable start incremental variable. Similarly to start initial, after
incremental calculations were done, time was saved under end incremental.
The difference between start incremental and end incremental represents
the time for a single iteration of incremental calculations

3. At all k iterations, the run time count was taken and saved under the
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start calculated sequence objects variable, right before the values that re-
quire inputs from both sequences were calculated. After these calculations
are done run time was saved under the end calculated sequence objects
variable. The difference of these two represents the time for single itera-
tion of calculations that require input from both sequences.

The difference between the start and end values were appended with the correla-
tion coefficients and passed to the testing pearson.py file for further processing
and saved into .csv file.

It is important to mention that the sum of single initial, single incremental
and calculate sequence objects times is not equal to overall execution time. Ap-
proximate overall execution time for any given set of inputs should be calculated
as follows:

single initial time * number of sequences in input dataset (dataset n col)
+
single incremental time * number of sequences in input dataset (dataset n col)
* k-1
+
single calculated sequence objects time * number of sequences in input dataset
(dataset n col) squared * k.

The expectation was that time would occasionally vary between the runs
with same parameters, thus each measurement was repeated 20 times and the
average of the overall performance time was taken. All of these values were com-
piled into a data frame and exported in a csv file to be used for the experimental
evaluation.

5 Experimental evaluation

Each algorithm implementation, tests, and run time measurements were im-
plemented inside a different module. Functions used in more than one al-
gorithm were collected in a separate file named common functions.py. All
separate algorithms were called from the testing pearson.py module, which
wraps algorithm functions into another that handles iterations and averaging
of time measurements. These wrapped functions are then called from mod-
ule call testing pearson.py, which reads user inputs, creates or imports dataset
(depending on user inputs), passes necessary variables to wrapped functions in
testing pearson.py, and handles .csv export as well as visualisations if defined
so by user input in command line. Figure 13 displays a visual representation of
the project architecture.
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Figure 13: Integrated Project Schema

5.1 Command line initiation

All functions directly implementing the algorithms in Sections 2 and 3 require a
set of inputs to be provided by the user. Thus a set of input parameters has to
be explicitly declared from command line at the beginning of each simulation
in order to establish initial values, what parameters are steady and/or variable,
whether a data set is provided or has to be generated, and if plots need to be
created:

• create dataset: a boolean parameter - False if dataset is provided by the
user, in this case only the path to file has to be specified. True if it has
to be generated by the code and the following additional parameters need
to specified2:

2”min”, ”step” and ”max” for all parameters represent a range of values, which will be
tested in combination with all other defined parameters and their ranges. Step parameter
represents the increase step inside the defined range. In Python this logic would be expressed
as range(min, max, step). If the a value obtained from the summation of a previous one with
the step is bigger than the max value, it will be ignored
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- n min: an integer parameter - minimum number of records in dataset

- n step: an integer parameter - incremental number of records in dataset

- n max: an integer parameter - maximum number of records in dataset

- m min: an integer parameter - minimum number of sequences in dataset

- m step: an integer parameter - incremental number of sequences in
dataset

- m max: an integer parameter - maximum number of sequences in dataset

• plotting: a boolean parameter - True if the user requires plots to be gen-
erated, False otherwise

• window size min: an integer parameter - minimum window size value

• window size step: an integer parameter - incremental window size value

• window size max: an integer parameter - maximum window size value

• step size min: an integer parameter - minimum step size value

• step size step: an integer parameter - incremental step size value

• step size max: an integer parameter - maximum step size value

• N min: an integer parameter - minimum N value for PAA

• N step: an integer parameter - incremental N value for PAA

• N max: an integer parameter - maximum N value for PAA

• hierarchy level min: an integer parameter - minimum hierarchy level value
for DWT

• hierarchy level step: an integer parameter - incremental hierarchy level
value for DWT

• hierarchy level max: an integer parameter - maximum hierarchy level
value for DWT

• coeff num min: an integer parameter - minimum coeff num value for DFT

• coeff num step: an integer parameter - incremental coeff num value for
DFT

• coeff num max: an integer parameter - maximum coeff num value for DFT

• threshold min: a float parameter - minimum threshold value

• threshold step: a float parameter - incremental threshold value

• threshold max: a float parameter - maximum threshold value
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• output file name: a string parameter - name of the output file without
including extension3

• iterations: an integer parameter - number of measurement repetitions in
order to get the averaged time results.4

• execution mode: a string input - to define execution mode. ”full” mode
computes the simulation in full, whereas ”initial and incremental” com-
putes only the first iteration (k=1) in Listing 7 and averages all 3 types of
time measurements obtained this way.5 Execution mode was created for
fast debugging and initial results exploration.

All input values have to be executed as parameters of call testing pearson.py
file in command line: this script is the only file that needs to be called from
command line. Examples of command line inputs are presented in Listings 8
and 9.

python call_testing_pearson.py create_dataset=False plotting=False

window_size_min =4 window_size_step =2 window_size_max =5

step_size_min =2 step_size_step =1 step_size_max =3 N_min =4

N_step =1 N_max=5 threshold_min =0.7 threshold_step =0.1

threshold_max =0.8 hierarchy_level_min =1 hierarchy_level_step =1

hierarchy_level_max =2 path_to_file="imported_file_path"

output_file_name="exported_file" iterations =20 coeff_num_min =0

coeff_num_step =1 coeff_num_max =10

execution_mode= "initial_and_incremental"

Listing 8: Example call command using ”initial and incremental” execution
mode and no dataset creation

python call_testing_pearson.py create_dataset=True plotting=False

window_size_min =4 window_size_step =2 window_size_max =5

step_size_min =2 step_size_step =1 step_size_max =3 N_min =4 N_step =1

N_max=5 threshold_min =0.7 threshold_step =0.1 threshold_max =0.8

hierarchy_level_min =1 hierarchy_level_step =1 hierarchy_level_max =2

n_min =200 n_step =100 n_max =201 m_min =200 m_step =100 m_max =201

output_file_name="exported_file" iterations =20 coeff_num_min =0

coeff_num_step =1 coeff_num_max =10 execution_mode= "full"

Listing 9: Example call command using ”full” execution mode and dataset
creation with required additional parameters

3extension of the output file is always .csv
4As stated in 4.3 our standard value here were 20 iterations (repetitions)
5The value for initial time is computed only once.

The value for incremental is computed a number of times proportional to the number of
sequences in the dataset (dataset n col) and an average value is taken.
Finally, calculated sequence objects time is calculated dataset n col squared number of times
and the final result is the average of calculated sequence objects.
Averaging is performed inside of testing pearson.py script
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The input values order is not fixed and can be re-arranged. Once these
values are entered, call testing pearson.py calculates the results and outputs a
csv file with time measurements for each algorithm. An example of a csv output
file with sample values for one row is shown in Table 2:

These results are used to create visualizations and draw conclusions regard-
ing the performance of each algorithm.

5.2 Results

Depending on parameters values, the algorithms show different behaviors. There-
fore, various analyses were performed by investigating different parameters with
respect to increasing numbers in their values. In some cases, all algorithms were
affected by the changing parameters whereas in others only one approach was.
In the latter case, ”sweet spots” were extracted for each analysis. The expec-
tation is that for an increasing number of sequences and records6 in dataset as
well as for increasing window size, and step size7 all algorithms will increase
in execution time as these parameters are present in all of their time com-
plexities. On the other hand, for an increasing threshold, only dimensionality
reduction methods will be subject to change. In fact, we expect the execution
time to decrease with the increase of threshold value, since more sequence com-
binations will be ”filtered out” before the exact correlation is calculated; thus
saving computation time. Finally, for N, coeff num, and hierarchy level, only
the respective algorithms that include these parameters will show a difference
in behavior. For these parameters we expect the time to initially decrease as
these variables increase in values. This phenomenon is due to the fact that
higher values help filtering out correlations ahead of exact calculations thanks
to the threshold. However with an increase of these parameters, mathematical
overhead to calculate required variables for the filtering increases as well. Our
consequent expectation is that the negative effects will offset the time savings
achieved by the filtering; thus, ”sweet spots” are expected.

5.2.1 Increasing number of sequences (m)

An increasing number of sequences leads to a higher run time. The slowest
algorithm is the Naive Pearson, followed by DFT, Adapted Pearson, DWT, and
PAA. Their behavioral pattern resembles an exponential pattern as illustrated
in Figure 14.

6Important to note, that we expect an increase in execution time for increased number of
records only in our simulation setting for overall execution time in ”full” mode. In a real life
scenario, setting the number of records should not play a role. The reason for this is because
records are screened by the medical equipment and entered into the system immediately

7we expect step size to have a negative effect on execution time in a real life setting as
a bigger step size requires more adjustments and mathematical calculations. However in an
experimental setting overall time might decrease, since the increase in the step size reduces
the number of iterations needed to slide the window over the complete dataset. Thus, this
effect should have a positive impact on the overall execution time
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Figure 14: Increasing number of sequences

There is a solid difference in performance between the Naive Pearson and
the other algorithms, where the former is noticeably slower. This is due to
the fact that it is heavily dependent on the number of sequences, which can
also be observed from its time complexity. Since Adapted Pearson has the
same complexity as Naive Pearson, one may expect them to have comparable
performance; however, due to the independency of the sequences in Adapted
Pearson, this algorithm performs far better. In fact, the remaining four behave
similarly in pairs: DFT and Adapted display close values, likewise DWT and
PAA. It is worth noting that DFT results in this plot are not competitive with
the other two dimensionality reduction methods; this behavior is also present
in other plots and will be explained in Section 5.2.8.
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5.2.2 Increasing number of records (n)

An increasing number of records leads to a higher run time. The slowest al-
gorithm is the Naive Pearson, followed by DFT, Adapted Pearson, DWT, and
PAA. Figure 15 shows the resulting plot:

Figure 15: Increasing number of records

The algorithms follow an incremental linear pattern with Naive significantly
diverging from the others. The reason why Adapted Pearson is not as affected
as Naive is the same as described in the comments to Figure 14.
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5.2.3 Increasing window size

An increasing window size leads to a higher run time in all algorithms. The
algorithm that is the most affected by the increasing of this factor is Naive
Pearson. The others’ performance is interchangeable. With a larger window
size, PAA performs better thanks to the N factor, whereas DWT is affected by
the hierarchy levels which can improve or worsen the performance based on the
window size. DFT behavior will be further analysed in the coeff num section.
Figure 16 shows the resulting graph on a small scale:

Figure 16: Incremental window size (smaller window sizes)

On a bigger window size scale, the algorithm behaviors are even more defined.
The slowest is Naive Pearson, followed by DFT, Adapted Pearson, DWT, and
finally PAA. Compared to Naive Pearson, the remaining algorithms’ change in
performance is not incredibly noticeable. These observations can be viewed in
Figure 17:
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Figure 17: Increasing window size

Within each window size, it was also important to analyse the impact of an
increasing step size as it is an essential component of the sliding window design.

5.2.4 Increasing step size

A higher step size reduces the number of computations needed and hence de-
creases the overall run time. Looking at the time complexities, a higher step size
will asymptotically approach window size and thus reduce the complexity. The
slowest algorithm is Naive Pearson, followed by DFT, Adapted Pearson, DWT,
and finally PAA. The algorithms behaviors are asymptotically decremental as
shown in Figure 18:
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Figure 18: Increasing step size

This result matches our expectation regarding the impact of step size on
execution time in ”full” mode. However, to test the impact in real life sce-
nario, further analyses were performed. Because of scales differences, Naive and
Adapted Pearson were separated from the dimensionality reduction methods.

With increasing step size, incremental time for Adapted Pearson will increase
and thus be more affected compared to Naive Pearson as demonstrated in Figure
19:
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Figure 19: Increasing incremental step size for Naive and Adapted Pearson

DFT performs the slowest out of the three dimensionality reduction tech-
niques, followed by DWT and PAA. However, within their run time values, their
behavior is linear. Figure 20 shows the output graph:
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Figure 20: Increasing incremental step size for dimensionality reduction tech-
niques

This analysis shows that, even though Naive Pearson is the slowest perform-
ing algorithm in regards to overall time, Adapted Pearson is subject to the most
effect with respect to incremental time, which is the most relevant metric for
real world scenarios. This is due to its higher dependency from step size relative
to window size. On the other hand, dimensionality reduction methods show a
somewhat steady behavior. However, the situation became inverted when the
effect of increasing threshold values was examined.
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5.2.5 Increasing threshold

Dimensionality reduction techniques perform efficiently if the threshold is high
enough to filter out part of the data. Naive and Adapted Pearson are not af-
fected by an increasing threshold value as it is not part of their algorithms.
For the remaining algorithms, a low threshold is not useful as almost (or all)
Euclidean distance values will pass the condition. This fact leads to a higher
computational time than Adapted Pearson as the threshold check has to be
performed in addition to the Pearson correlation calculations. In other words,
as threshold values are low, filtering will not play such a big role, leading to
slower performances. With higher threshold values, all dimensionality reduc-
tion techniques decrease with respect to their computation time. In fact, as the
threshold value approaches its maximum (1), PAA, DFT, and DWT all even-
tually fall below Adapted Pearson. Going into more details, PAA filters values
out more efficiently than the other two8. For the same reason, DWT performs
better than DFT. These observations can be confirmed by looking at Figure 21.

The next sections 5.2.6, 5.2.7 and 5.2.8 explore specific dimensionality re-
duction parameters. It will be observed that in all of them the increasing of
each parameter does not have a direct relationship with the increasing and/or
decreasing in performance of the algorithm, rather it displays sweet spots. The
reasoning behind this pattern is related to the fact that initially threshold helps
speeding up the process; however, with higher values, the threshold check is not
useful anymore and increases computational time as the overhead from dimen-
sionality reduction becomes bigger. The individual components for each method
that were examined are: N, hierarchy level, and coeff num.

8Unit test results produced with the example inputs: create dataset=True plotting=False
window size min=1024 window size step=128 window size max=2048 step size min=100
step size step=10 step size max=101 N min=16 N step=2 N max=17 threshold min=0.8
threshold step=0.05 threshold max=1 hierarchy level min=4 hierarchy level step=1 hierar-
chy level max=5 n min=4000 n step=100 n max=4001 m min=100 m step=100 m max=101
coeff num min=3 coeff num step=1 coeff num max=4 iterations=20 execution mode=full
output file name=”unit test results” show that out of first 1024650 calculations, PAA cor-
rectly filtered out 982778 calculations (95,9%), DFT - 393091 (38,3%) and DWT - 880961
(86%)
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Figure 21: Increasing threshold

5.2.6 Increasing N

The N parameter is only present in the PAA calculations. Naive Pearson,
Adapted Pearson, DFT, and DWT are not affected as N is not part of their
algorithms and time complexities. More details regarding PAA behavior with
increasing N can be viewed in Figure 22:
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Figure 22: Increasing N

PAA behavior changes with respect to N, first decreasing and then increas-
ing. The sweet spot is found around 10. This leads to the conclusion that N
is neither consistently directly nor inversely proportional to the PAA run time.
Consequently, choosing too low or too high of a N value will not lead to an opti-
mal performance. The second best performing dimensionality reduction method
in our work was DWT, where hierarchy level played a pivoting role.

5.2.7 Increasing hierarchy level

The hierarchy level parameter is only present in the DWT calculations. Naive
Pearson, Adapted Pearson, PAA, and DFT are not affected as hierarchy level
is not part of their algorithms and time complexities. More details regarding
DWT behavior with increasing hierarchy level can be viewed in Figure 23:
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Figure 23: Increasing hierarchy level

DWT behavior changes with respect to the hierarchy level, first decreasing
and then increasing. The sweet spot is found around 4. This leads to the
conclusion that the hierarchy level is neither consistently directly nor inversely
proportional to the DWT run time. Consequently, choosing too low or too high
of a hierarchy level value will not lead to an optimal performance.

The slowest of the three dimensionality reduction techniques in our project
was DFT. Our explanation behind this phenomenon will be explained in the
next section, where the impact of coeff num is examined.

5.2.8 Increasing coeff num

The coeff num parameter is only present in the DFT calculations. Naive Pear-
son, Adapted Pearson, PAA, and DWT are not affected as coeff num is not part
of their algorithms and time complexities. More details regarding DFT behavior
with increasing coeff num can be viewed in Figure 24:
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Figure 24: Increasing Coeff num

DFT behavior changes with respect to coeff num, first decreasing and then
increasing. The sweet spot is found between 2 and 3. This leads to the conclu-
sion that coeff num is neither consistently directly nor inversely proportional to
the DFT run time. Consequently, choosing too low or too high of a coeff num
value will not lead to an optimal performance. It is important to note that,
even with the most efficient values, we still have high degree of false positives.

Further analyses were performed to deeper investigate DFT behavior. It
can be observed in Figure 25 that initial and incremental times of specific DFT
function execution comprises a substantial amount (on average 59%) of the
overall initial and incremental execution time. The output values of these two,
in our opinion, are largely due to the run time used to process the DFT function,
whereas calculating the sequence objects consumes much less.
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Figure 25: Increasing Coeff num

Going into more details in regards to what portions of the DFT function are
more expensive, several parameters were investigated and shown in Figure 26.
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Figure 26: Increasing Coeff num

The legend labels represent the removal of individual components of Equa-
tion (17):

• full is the time when all equation components are included.

• without i: removal of i from equation∑
xi += dataset[k]*math.e**((-2 * math.pi * f * k) / window size)

• without math.pi: removal of pi from equation∑
xi += dataset[k]*math.e**((-2 * i * f * k) / window size)

• without math.e: removal of e from equation∑
xi += dataset[k]*1**((-2 * math.pi * i * f * k) / window size)

• without math: every mathematical operation is removed∑
xi += dataset[k]

• without power: power is replaced with multiplication∑
xi += dataset[k]*math.e*((-2 * math.pi * i * f * k) / window size)

• not explained time: is just full - all of the other times that are included
in the computation.

The analysis shows ”not explained time” and ”without math” are almost
identical. Consequently, removing only one of the mathematical operations does
not drastically affect the performance, however their comprehensive need indeed
makes the function slower. Power function and irrational number component
also cause delays in performance, singularly having more effect than only one
of the previously mentioned parameters. The combined time from power (full
- without power) and i (full - without i) takes on average 63% of total DFT
function execution time. Power and i take 37.17% (0.63*0.59) of the whole
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execution time of DFT. If we adjust DFT in Figure 24 to consume 37.17% less
time, its performance line would be placed just under the Adapted Pearson line.

Aside from these parameters, DFT performs below expectations because of
the methods used to implement it. In fact, when checking for the threshold
parameter, coeff num is used instead of window size, which can lead to the
presence of false negatives. In addition, the current implementation passes a
critical amount of false positives which would need a second round of checking.
These and other additional edits (including adaptation of the code to remove
the need for sequence normalization) as described in [ZS02] would make DFT
competitive with the other two dimensionality reduction methods.

5.3 Unit Testing

Some basic tests were implemented to check validity of the data, pass only the
appropriate values and pinpoint discrepancies in the results. In case that the
algorithms had bugs or were not performing as expected, error messages were
outputted. The code for these tests can be found in the unit test.py file.

6 Conclusions and Future Work

Intensive Care Unit (ICU) patients require real-time fast and sophisticated anal-
ysis of their condition. For this reason, it is paramount to compare patient data
across time series in a fast and reliable fashion. To achieve this goal, pair-
wise Pearson Correlation coefficients computations can be used. In this project,
we investigated different methods to perform this calculation: Naive Pearson,
Adapted Pearson, PAA, DFT, and DWT. We performed several analyses to
compare run times and performance across all five methods by implementing
them in Python.

Our results showed that algorithms may behave differently based on which
values are changed:

• Increasing number of sequences (m): all algorithms show exponential in-
crease

• Increasing number of records (n): all algorithms show linear increase

• Increasing window size: all algorithms show an increase in run time

• Increasing step size: all algorithms show an asymptotically decrease in run
time. However if looking at real life scenarios when only incremental time
is applicable, time of dimensionality reduction techniques stays stable,
whereas for Naive Pearson and Adapted Pearson rises.

• Increasing threshold: dimensionality reduction methods perform better
with a higher threshold value

• PAA - Increasing N: sweet spot found around 10 with our parameters set.
Different parameters will lead to a different sweet spot value.

41



• DFT - Increasing coeff num: sweet spot found between 2 and 3 with our
parameters set. Different parameters will lead to a different sweet spot
value.

• DWT - Increasing hierarchy level: sweet spot found around 4 with our
parameters set. Different parameters will lead to a different sweet spot
value.

For the future, the DFT implementation in the code should be optimized
such that it is competitive with the other two dimensionality reduction methods.
For Adapted Pearson, it would be beneficial to also show only one change for one
incremental window in the visualizations. Furthermore, we believe that real-life
implementations should be implemented in one of the lower level languages (e.g.
C) to perhaps further improve general run time and performance (even though
relationships among algorithms will remain the same). Additional nice-to-haves
would be to implement a hyper-parameters choice strategies (e.g. grid search) to
automate the process of selecting the most optimal parameters (e.g. the sweet
spots) for the inputs as well as a User Interface so that users can perform their
own analyses interactively and without having to run a command line based
computer program.
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