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Abstract

Image processing, crucial for information extraction from image data, finds historical roots in the
application of Gabor filters. These filters, modeled after the human visual system’s early process-
ing stages, have been integral to tasks such as face recognition. Despite their efficacy, existing
open-source implementations face challenges, including deactivation and lack of parallelization.
This project aims to revitalize a deprecated Gabor wavelet processing package by rewriting it in
Python, implementing it in PyTorch, and incorporating parallelization for seamless integration
into modern deep learning methods. The enhanced package allows Gabor filtering and similar-
ity computation within PyTorch networks, bridging traditional methods with contemporary deep
learning frameworks. This project contributes not only to reactivating the Gabor processing pack-
age but also to extending its applicability in the evolving landscape of image processing and deep
learning.
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Chapter 1

Introduction

Image processing is the extraction of information from image data and has a long history in re-
search. One particular traditional approach of image processing is the application of Gabor filters
(Daugman, 1985), which have been used for the task of face recognition and other face-related
tasks (Wiskott et al., 1996; Zhang et al., 2005; Günther, 2012; Günther et al., 2012; Schneider et al.,
2011). Gabor wavelets are filters that are applied to images, and they model the first levels of the
human visual system. Even when training deep networks, it has been shown that the learned
filters have large similarities with Gabor wavelets (Krizhevsky et al., 2012). Early approaches of
incorporating Gabor wavelets directly into deep learning systems, however, only model parts of
the whole processing chain (Luan et al., 2018).

There exists an open-source package1 that implements the whole chain of Gabor wavelet pro-
cessing for images in C++ with Python bindings. This package was implemented by Prof. Dr.
Manuel Günther some years ago as part of Bob (Anjos et al., 2012, 2017), but it has been deacti-
vated in the last version due to restructuring and removal of all old implementations.2 Another
problem with the existing implementation is that it is done in C++ and without parallelization.
Moreover, the integration of Gabor wavelet processing into contemporary deep learning meth-
ods, as per the existing implementation, exhibits suboptimal processing speed. The goal of this
Master’s project is to rewrite this package in Python so that it can be reactivated. We implement
the Gabor wavelet processing in PyTorch. This includes 1) defining the frequency and spatial
filters within the PyTorch Module, 2) using these filters to apply transform to input images, 3) ex-
tracting Gabor jets from the transformed images, and 4) computing the similarity scores between
Gabor jets. We implemented the whole processing in parallel by tensor operations, enabling the
integration of Gabor filtering and similarity computation into modern deep learning methods.
Additionally, We added some use cases for this new package and updated the documentation.

The report is structured in the following way:

• Gabor Wavelet Processing (Chapter 2): This chapter provides a brief introduction to the
piepline of Gabor wavelet processing. It also includes a comparison between the legacy
bob.ip.gabor package and the new pytorch_gabor package implemented by us.

• Milestones and Deliverables (Chapter 3): This chapter outlines the milestones of our project
and details the distribution of work among team members.

• Setting Up the Working Environment (Chapter 4): This chapter covers the process of setting
up the working environment.

1https://gitlab.idiap.ch/bob/bob.ip.gabor
2https://gitlab.idiap.ch/bob/bob.ip.gabor/-/issues/6

https://gitlab.idiap.ch/bob/bob.ip.gabor
https://gitlab.idiap.ch/bob/bob.ip.gabor/-/issues/6
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• The details of our package modules related to the following topics: Gabor Wavelet Trans-
form (Chapter 5), Gabor Jets and Activation (Chapter 6), Grid Graph (Chapter 7), and
Similarity Functions and Disparity (Chapter 8). These sections cover both the theoretical
aspects and practical implementation, including discussions on interface designs, encoun-
tered problems, and the solutions we provided.

• Full Network Example (Chapter 9): This chapter presents a use case demonstrating a full
network example with a standard Gabor wavelet processing pipeline and shows a proof of
concept.

• Evaluation (Chapter 10): This chapter evaluates the performance enhancement achieved by
our new pytorch_gabor through parallelization and discusses the results we obtained.

• Conclusion and Future Work (Chapter 11).
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Gabor Wavelet Processing

2.1 Gabor wavelet
Gabor wavelet, named after physicist Dennis Gabor, is widely used in image processing and sig-
nal analysis. Constructed by combining complex sinusoidal functions with a Gaussian envelope,
the Gabor wavelet serves as a complex-valued filter, excelling in the domain of feature extraction.

Nevertheless, a single Gabor wavelet has its limitations in feature extraction. To address a
wider array of features, the Gabor wavelet family comes into play. This family encompasses
Gabor wavelets characterized by different scales and directions (cf. Chapter 5). The effectiveness
of the Gabor wavelet family lies in its ability to capture a broader spectrum of features using
various daughter wavelets, rendering it valuable for discerning patterns and structures in both
images and signals.

2.2 Gabor wavelet processing pipeline
The Gabor wavelet processing pipeline is a multi-stage methodology employed in image analysis.
This pipeline involves 1) applying the Gabor wavelet transform (GWT) to images; 2) extracting
Gabor jets from the Gabor wavelet transformed images; 3) applying similarity functions to com-
pute the similarity scores between Gabor jets. A visual representation of the entire processing
pipeline is presented in Figure 2.1.

In Gabor wavelet transform (Chapter 5), we have the option to generate a discrete family
of Gabor wavelets either in the spatial domain or in the frequency domain as filters (Günther,
2012). These wavelets allow GWT to extract local variations and structural features within the
input image. The Gabor wavelet transformed image obtained through the use of either spatial or
frequency domain Gabor filters should be equivalent, as depicted in Figure 2.2.

After generating the Gabor wavelet transformed image (Figure 2.2), the subsequent step in-
volves the extraction of Gabor jets (Chapter 6) at specific positions within the transformed image.
Gabor jets comprise aggregation of Gabor wavelet responses at specific positions (Buhmann and
Lange, 1989). These Gabor jets also serve as features, with a common choice for their location be-
ing the grid graph detailed (Chapter 7). The Gabor jets extracted from the data can be effectively
utilized for computing similarity scores using various dedicated similarity functions (Chapter 8).
The obtained similarity scores encompass diverse applications, including landmark detection,
disparity estimation, and classification tasks (Günther, 2012).
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Figure 2.1: THE GABOR WAVELET PROCESSING PIPELINE. The pipeline includes Gabor wavelet trans-
form (GWT), extracting Gabor jets from transformed image and computing similarity score utilizing the
extracted Gabor jets.

Figure 2.2: TWO WAYS OF APPLYING GABOR WAVELET TRANSFORM. This figure shows we can apply
Gabor wavelet transform to an input image with filters in spatial domain or frequency domain, and their
results are equivalent.

2.3 bob.ip.gabor
bob.ip.gabor is part of the signal-processing and machine learning toolbox Bob.1 It contains a
set of C++ code and Python bindings for Bob’s image processing tools concerning Gabor wavelets,
the Gabor wavelet transform, Gabor jet extraction in a grid graph structure, and Gabor jet simi-
larity functions, including a Gabor jet disparity estimation.

2.3.1 Functionality of bob.ip.gabor
The modules and functions of the bob.ip.gabor are outlined below:

1. bob.ip.gabor.Wavelet: A class that represents a Gabor wavelet in the frequency do-

1https://www.idiap.ch/software/bob/docs/bob/bob.ip.gabor/master/index.html

https://www.idiap.ch/software/bob/docs/bob/bob.ip.gabor/master/index.html
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main.

2. bob.ip.gabor.Transform: A class that represents a family of Gabor wavelets in the
frequency domain that can be used to perform a Gabor wavelet transform.

3. bob.ip.gabor.Jet: A class to manage Gabor jets. As outlined above, a Gabor jet com-
prises the responses from all Gabor wavelets belonging to the Gabor wavelet family at a
specific position within the image.

4. bob.ip.gabor.Jetstatistics: A class to compute statistics of a list of Gabor jets and
do further calculations.

5. bob.ip.gabor.Similarity: A class that computes different kinds of similarity func-
tions between Gabor jets, for example, disparity corrected phase differences.

6. bob.ip.gabor.Graph: A class to extract Gabor jets from multiple positions of a Gabor
transformed image.

7. bob.ip.gabor.load_jets: A function that loads a list of Gabor jets from the given
HDF5 file; the file needs to be open for reading.

8. bob.ip.gabor.save_jets: A function that saves the given list of Gabor jets to the given
HDF5 file; the file needs to be open for writing.

The bob.ip.gabor package encapsulates the entire Gabor wavelet processing pipeline. How-
ever, this package has some issues:

1. bob.ip.gabor is done in C++ and without parallelization.

2. The integration of Gabor filtering into modern deep learning methods under bob.ip.gabor
implementation is too slow.

2.4 pytorch_gabor
Within the pytorch_gabor package, we implemented each stage of the entire Gabor wavelet
processing pipeline using PyTorch in a manner that maximizes parallelization. However, we still
retained most of the object-oriented approaches as employed in bob.ip.gabor. Therefore, the
new pytorch_gabor maintains a close connection in structure and functionality with the old
bob.ip.gabor, while introducing many more efficient options.

2.4.1 The difference between bob.ip.gabor and pytorch_gabor
Building upon the previously identified issues with bob.ip.gabor, we have implemented sev-
eral changes in our new package to address these concerns. The corresponding classes and func-
tions between bob.ip.gabor and pytorch_gabor are shown in Table 2.1.

Parallelization: Data flow in bob.ip.gabor primarily relies on arrays, along with basic types
like lists and tuples. Although the integration with Numpy arrays is supported through Python
binding, utilizing the GPU for processing is not currently feasible.

In pytorch_gabor, parallelization is accomplished through torch.Tensor operations, fa-
cilitating the efficient handling of a batch of images. This package introduces the capability for
parallel processing of all positions, departing from the previous method of extracting and pro-
cessing similarity with a single jet at a time, as observed in the old Bob package.
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Modules in bob.ip.gabor pytorch_gabor

bob.ip.gabor.Wavelet -

bob.ip.gabor.Transfrom

pytorch_gabor.compute_frequency_centers

pytorch_gabor.GaborFilterSpatial

pytorch_gabor.GaborFilterFrequency

bob.ip.gabor.Jet
pytorch_gabor.Jet

pytorch_gabor.GaborFilterAct

bob.ip.gabor.Graph
pytorch_gabor.Graph

pytorch_gabor.GridExtract

bob.ip.gabor.Jetstatistics pytorch_gabor.jetstatistics

bob.ip.gabor.Similarity pytorch_gabor.Similarity

Table 2.1: THE CORRESPONDING MODULES BETWEEN BOB.IP.GABOR AND PYTORCH_GABOR.

Integration with deep learning: bob.ip.gabor does not allow seamless integration of Ga-
bor filtering into modern deep learning methods. Gabor filters in pytorch_gabor inherit from
torch.nn.Module, facilitating direct usage as PyTorch network layers. This enables easy inte-
gration into modern deep learning workflows.

Package structure: bob.ip.gabor has a specialized Wavelet class as an object-oriented rep-
resentation of an individual wavelet. These Wavelet objects were contained within the class
Transform. In pytorch_gabor, adopting this approach is proven unnecessary. Storing the en-
tire Gabor family directly as a torch.nn.Parameter in self.weight has proven to be more
meaningful and efficient, aligning with modern PyTorch module structures.

Additional functionality in pytorch_gabor: When representing the entire data flow in pack-
age pytorch_gabor using torch.Tensor, additional classes inherited from torch.nn.Module
like GaborFilterAct and GridExtract are required to process these tensors. In this frame-
work, input tensors and return tensors are handled without the need for encapsulation through
any intermediary objects.
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Milestones and Deliverables

3.1 Timeline
Initially, this Master’s project was expected to require about 15 weeks if pursued full-time, based
on an estimated workload of 30 hours per week and a total of 15 ECTS, averaging 30 hours per
ECTS. Despite primarily working part-time on this project, we maintain the use of full-time week
structures in the descriptions below to ensure clarity and consistency.

Milestone 1: Gabor wavelet transform in different domains. An image can be filtered using
a family of Gabor wavelets, resulting in similar outcomes between Gabor wavelet transforms in
spatial and frequency domains.

Week 1-2: Familiarization and Scope Understanding.

• Deliverables:

– Understanding the project’s scope and aligning theoretical concepts and formulas with
planned functionalities.

– Executing the existing bob.ip.gabor locally to comprehend it and identify areas for
refactoring and enhancement.

Week 3-4: Setting up the work environment, installing all required tools, and building a joint
software design and interface.

• Deliverables:

– A working environment with all necessary dependencies pushed to the remote repos-
itory.

– An initial draft of UML class diagrams.

Week 5-6: Implementing Gabor wavelet transform in the frequency domain using torch.fft
for the FFT.

• Deliverables:

– The parallel implementation of GaborFilterFrequency class, capable of perform-
ing Gabor wavelet transforms in the frequency domain and generating transformed
images identical to those produced by the old bob.ip.gabor.Transform.
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– A use case transform.ipynb demonstrating the generated Gabor wavelets and the
Gabor wavelet transform process.

Week 7-8: Implementing the Gabor wavelet family as an extension of the PyTorch Conv2d layer.

• Deliverables:

– The parallel implementation of GaborFilterSpatial class, which can transform im-
ages in the spatial domain with results consistent with GaborFilterFrequency.

– Successful migration and execution of all old tests related to Gabor wavelet transform
on the new implementations (i.e., GaborFilterFrequency and GaborFilterSpatial).

Milestone 2: Transformed image activation and feature extraction. The activation layer can
be applied to the Gabor transformed images with tensors in parallel. Gabor jets can be extracted
from Gabor transformed images using the Jet and Graph classes.

Week 9: Implementing the Gabor activation layer to turn complex-valued responses into Euler
representations.

• Deliverables:

– Implementation of GaborFilterAct that can function as an activation layer for trans-
formed images.

– A use case spatial_frequency_activation.ipynb, demonstrating the applica-
tion of GaborFilterAct on transformed images using both GaborFilterFrequency
and GaborFilterSpatial classes.

Week 10: Implementing classes to represent the Gabor jet and Gabor graph, including I/O func-
tionality.

• Deliverables:

– Implementation of Jet and Graph classes to extract, store, save, and load batched jets
at single and multiple positions, respectively.

– Successful migration and execution of all old tests related to Gabor jets and graphs on
the new implementations.

Milestone 3: Similarity functions. Gabor jet disparities and other similarity functions are im-
plemented.

Week 11-12: Implementing similarity functions for two lists of Gabor jets.

• Deliverables:

– Development of the Similarity class capable of computing graph similarities using
various functions for two lists of Gabor jets.

– Creation of test cases to ensure that the outcomes from the new Similarity class are
the same as those acquired from the old bob.ip.gabor.Similarity.
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Week 13: Implementing similarity functions for two tensors of activated transformed images
in parallel.

• Deliverables:

– Enhancing the Similarity class to accommodate parallel processing of two tensors
containing Gabor jets extracted from multiple positions.

– Two use cases, similarity.ipynb and disparity.ipynb, showcasing the com-
putation of Gabor jet similarity and disparity maps.

Milestone 4: Full network example. A grid graph to extract Gabor jets as tensors (rather than
objects) is implemented. A full network example can show a proof of concept.

Week 14: Implementing the grid graph inherited from torch.nn.Module and demonstrating
a full application as a use case, showcasing a basic pipeline adaptable for integration into standard
PyTorch neural networks.

• Deliverables:

– Development of the GridExtract class to extract jets as tensors from transformed
images using a specified stride.

– The use case full_network_example.ipynb, showcasing a small network as a Py-
Torch Module that can run on a GPU. This demonstration utilizes GaborFilterFreq-
ency, GaborFilterSpatial, GridExtract, GaborFilterAct, and Similarity
classes.

Milestone 5: Finalization. All test cases pass, the documentation is up-to-date, and the final
report is completed.

Week 15: Updating the documentation of the package and improving the test cases. Writing
the final report and preparing the presentation.

• Deliverables:

– Test cases for greater relevance.

– Comprehensive documentation for each class and function within the new package.

– Final report.

3.2 Work Distribution
Huiran Duan:

• Interface design

• Refinement of the working environment (based on the draft version from Prof. Dr. Manuel
Günther)

• Implementation of GaborFilterSpatial

• Review and refinement of GaborFilterFrequency
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• Implementation of GaborFilterAct

• Review and refinement of Jet and Graph

• Parallel implementation of Similarity

• Implementation of GridExtract

• Implementation of full network examples

• Implementation of all Jupyter notebook use cases

• README document

• Relevant parts of the test cases

• Relevant parts of the final report

• Relevant parts of the presentation

Zelin Wu:

• Raw version of Jet

• Raw version of Graph

• Raw version of Similarity

• Implementation of Jetstatistics

• Implementation of utils

• Documentation for most classes

• Code review and bug fixes

• Relevant parts of the test cases

• Relevant parts of the final report

• Relevant parts of the presentation
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Setup Working Environment

Our work primarily unfolded within the macOS system, though our package is compatible with
Windows and Linux systems. We centered our development process around the Python Program-
ming Language (version >=3.10) and set up the working environment using Conda.

4.1 Dependencies
We created a Conda environment with the following dependencies:

dependencies:

- python>=3.10

- numpy>=1.22.3

- matplotlib>=3.5.2

- pytorch>=2.0.0

# - pytorch-cuda>=1.11.0 # if CUDA is available

- torchvision>=0.12.0

- tqdm>=4.64.0

- pyyaml

- pip

Please note that CUDA and MKL are unavailable on macOS. To ensure compatibility, we em-
ployed pytorch>=2.0.0 as an alternative. However, users requiring CUDA or MKL capabil-
ities can opt to install them via Conda independently. For instance, on Windows systems with
CUDA, users can refer to the corresponding command line:

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c

nvidia

which is provided on the PyTorch official website.1 Additionally, our package can also be used
with GPU in other cloud-based environments like Google Colab.

4.2 Problems and Solutions
Given that our primary working environment was macOS, it posed a challenge as our package
also needed parallelization in a GPU environment. To address this, we opted for the more versa-
tile and convenient Google Colab cloud environment for testing. The workflow is as follows:

1https://pytorch.org/

https://pytorch.org/
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1. Set Google Colab’s hardware accelerator to GPU (CUDA).

2. Install Conda in Colab. We can utilize a dedicated library, condacolab, to easily install
Conda and associated packages in Google Colab.

!pip install -q condacolab

import condacolab

condacolab.install() # expect a kernel restart

# check if conda has been installed

import condacolab

condacolab.check()

3. Clone the remote repository.

!git clone $repo_url

%cd bob.ip.gabor/

4. Update the Conda environment. Please note that due to the limitations of Google Colab, we
can only use and update the base environment instead of creating new ones.

# Use mamba to update the base environment (it is faster than conda,

but it will still take a few minutes)

!mamba env update -f environment.yaml

With these configurations in place, running and testing our package with GPU capabilities
was as straightforward as in any local environment.
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Gabor Wavelet Transform

The essence of the Gabor wavelet transform (GWT) revolves around meticulously creating a Ga-
bor wavelet family within the spatial or frequency domain. These wavelets are then applied to
grayscale input images, undergoing transformation through convolution (in the spatial domain)
or element-wise multiplication (in the frequency domain). Ultimately, the GWT yields complex-
valued Gabor transformed images as its output.

5.1 Theoretical Analysis

5.1.1 Discrete Gabor Wavelet Family
In the initial step of analysis, it is imperative to clarify the characteristics of an individual Gabor
wavelet. The Gabor wavelet family that we have implemented in our code all comes from the
variants of the mother Gabor wavelet. It in the spatial domain can be expressed as:

ψ(x⃗) =
1

σ2
e−

x⃗2

2σ2 eie⃗
T
h x⃗ (5.1)

which represents a complex-valued filter divided into two overlaying parts. The first part consists
of a Gaussian with a standard deviation σ, imparting localization of the Gabor wavelet in both
spatial and frequency domains. The second part is the complex-valued even wave eie⃗

T
h x⃗ with

spatial frequency e⃗h = (1, 0)T , pointing along the horizontal axis. On the other hand, the mother
Gabor wavelet in the frequency domain can be represented as:

ψ(ω⃗) = e
−σ2(ω⃗−e⃗h)2

2 (5.2)

which is just a Gaussian shifted to frequency coordinates e⃗h.
By introducing different scales (k) and directions (θ), we can modify the mother Gabor wavelet,

generating new daughter Gabor wavelets. In the spatial domain, it can be written as:

ψk⃗(x⃗) =
k⃗2

σ2
e−

k⃗2x⃗2

2σ2 [eik⃗
T x⃗ − e−

σ2

2 ] (5.3)

and the frequency domain formula now reads as:

ψk⃗(ω⃗) = e−
σ2(ω⃗−k⃗)2

2k⃗2 − e−
σ2

2 e−
σ2ω⃗2

2k⃗2 (5.4)

where

k⃗ =

{
kh
kv

}
=

{
k · cos(θ)
k · sin(θ)

}
(5.5)
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As a result, the discrete Gabor wavelet family can be constructed based on the following pa-
rameter set:

Γ = (νmax, ζmax, kmax, kfac, σ) (5.6)

where νmax represents the number of directions, ζmax denotes the number of scale levels, kmax is
the highest frequency, and kfac is the logarithmic distance between two scale levels. Consequently,
each wavelet in a Gabor wavelet family can be described in terms of its direction and scale:

θν =
νπ

νmax
, ν = {0, . . . , νmax − 1} (5.7)

kζ = kmaxk
ζ
fac, ζ = {0, . . . , ζmax − 1} (5.8)

For simplicity, we can employ j ∈ {0, ..., J − 1} to index for each Gabor wavelet in a family:

j = ζνmax + ν (5.9)

where J = ζmaxνmax represents the total number of Gabor wavelets generated with the parameter
set Γ. The resulting Gabor wavelet is labeled as ψk⃗j

in the spatial domain and ψ̌k⃗j
in the frequency

domain, with the center at k⃗j and a radius of 1
σeff

, where σeff =
σ
kj

represents the effective standard
deviation.

The default parameter set Γdefault used in Günther (2012) and is defined by (5.10), and it gen-
erates the common discrete Gabor wavelet family as depicted in Figure 5.1.

Γdefault = (8, 5,
π

2
, 2−

1
2 , 2π) (5.10)

5.1.2 Transform Using Discrete Gabor Wavelet Family
The historical application of the discrete family of Gabor wavelets in processing the image I,
particularly in the context of face detection and recognition, involves depicting a face against a
more or less cluttered background. This results in the generation of the Gabor transformed image
T from the original image, composed of J layers denoted as Tk⃗j

. Each of these layers is derived
through the convolution of the input image I with its corresponding Gabor wavelet in the spatial
domain:

Tk⃗j
=

(
ψk⃗j

∗ I
)
(⃗t) (5.11)

=
∑
x⃗

ψk⃗j
(⃗t− x⃗) I(x⃗) (5.12)

=
∑
x⃗

ψk⃗j
(x⃗− t⃗) I(x⃗) (5.13)

Alternatively, the Gabor transformed image layer Tk⃗j
can be obtained by transforming the

image I to the frequency domain, multiplying Ǐ and ψ̌k⃗j
pixel by pixel:

Ťk⃗j
= ψ̌k⃗j

(ω⃗)Ǐ(ω⃗) (5.14)

Subsequently, the inverse Fourier transform of Ťk⃗j
is applied to return to the spatial domain.

Therefore, the Gabor transformed image layer Tk⃗j
retains the same resolution as the input image

I, but the pixels Tk⃗j
(⃗t), representing the responses of Gabor wavelet ψk⃗j

to image I at the offset

point t⃗, are complex-valued.
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Figure 5.1: THE DISCRETE GABOR WAVELET FAMILY. This figure depicts the discrete Gabor wavelet
family in the frequency domain under the default parameter set given by (5.10). Each Gabor wavelet in the
frequency domain, denoted as ψ̌k⃗j , is represented by a circle with a radius of 1

σeff
centered at k⃗j .
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torch.nn.Moduletorch.nn.Conv2d

pytorch_gabor. 
GaborFilterSpatial

pytorch_gabor. 
GaborFilterFrequency

pytorch_gabor.
compute_frequency_centers

<<use>> <<use>>

Figure 5.2: CLASS DIAGRAM OF GABOR WAVELET TRANSFORM.

The aforementioned methods represent two approaches to obtain the Gabor wavelet trans-
formed image, providing theoretical guidance for our code implementation. Whether conducting
the transform in the spatial or frequency domain, the complex-valued responses (comprising real
and imaginary parts) should remain consistent.

5.2 Implementation
In our new pytorch_gabor package, the corresponding implementations for the theoretical
components reside in the GaborFilterSpatial and GaborFilterFrequency classes. Fig-
ure 5.2 illustrates the relationship between these two classes, where GaborFilterFrequency
solely inherits from torch.nn.Module, while GaborFilterSpatial inherits from torch.nn.
Conv2d. Both classes, in the process of generating their respective Gabor wavelet families, rely on
a function named compute_frequency_centers to assist in computing a crucial intermediary
value, the frequency centers in Equation (5.5).

5.2.1 pytoch_gabor.compute_frequency_centers
Within our pytorch_gabor package, computing the frequency centers for daughter wavelets
serves as a pivotal step in constructing the Gabor wavelet family.

The process involves several factors and parameters influencing these centers: The direction
index ν and the number of directions νmax determine the phases through θν = π · (ν/νmax).

For various scale indices ζ, the number of scales ζmax, the highest frequency kmax, and the
logarithmic distance between scale levels kfac, frequencies are calculated as kζ = kmax · kζfac.

The computation of frequency centers involves determining the h and v of the vector (5.5) for
each wavelet indexed by j in the frequency domain.
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The final output comprises a tensor stacked with [kjh, kjv] for all j, encapsulating the fre-
quency centers for the entire Gabor wavelet family.

Problems and solutions

In the initial version, the process of preparing frequency centers was strongly coupled with the
remaining steps of generating the wavelet family. Essentially, the same computation for frequency
centers was redundantly distributed within both the GaborFilterSpatial and GaborFilter-
Frequency classes, resulting in significant code duplication. Upon further theoretical analysis
and code reviews, we discovered that these processes could be effectively decoupled. This became
evident as equations (5.3) and (5.4) both directly utilize k⃗. Consequently, we extracted this func-
tionality of computing frequency centers into a separate function interface, which was then called
independently by GaborFilterSpatial and GaborFilterFrequency. It is noteworthy that
soon after decoupling, we could focus on optimizing the internal logic of this function itself. This
enabled us to easily identify possibilities for refining its algorithm. For instance, we leveraged
methods such as torch.tile and torch.repeat_interleave to avoid any explicit for-loop
iterations, rendering the internal algorithm entirely parallelized and efficient:

theta = torch.arange(number_of_directions) * torch.pi / number_of_directions

theta_v = torch.tile(theta, [number_of_scales])

scale = torch.arange(number_of_scales)

scale = scale.repeat_interleave(number_of_directions)

k_mu = k_max * (k_fac ** scale)

k_x = k_mu * torch.cos(theta_v)

k_y = k_mu * torch.sin(theta_v)

frequency = torch.stack((k_y, k_x), 1)

5.2.2 pytoch_gabor.GaborFilterSpatial
GaborFilterSpatial is a class that represents a layer housing a family of Gabor filters (wavelets)
in the spatial domain, capable of conducting the Gabor wavelet transform using convolution.
During the instantiation of this class, numerous parameters come into play, bifurcating into two
main categories for discussion.

The first category encompasses the parameter set Γ (5.6), responsible for generating the Ga-
bor wavelet family. Within the code, these parameters correspond to (number_of_scales,
number_of_directions, k_max, k_fac, sigma). As mentioned earlier, the first four parame-
ters are utilized for computing and generating frequency centers, while sigma, representing Gaus-
sian standard deviation, localizes each Gabor wavelet in both spatial and frequency domains.

The second category of parameters originates from the requirements after inheriting class
torch.nn.Conv2d. These parameters include in_channels, kernel_size, stride, padding,
and padding_mode. It is important to note that while out_channels is also a mandatory
parameter in torch.nn.Conv2d, its quantity should not be controlled by the user; instead, it
should be autonomously calculated during the instantiation process of GaborFilterSpatial,
where out_channels = number_of_scales * number_of_directions. Moreover, we
have introduced a new parameter, number_of_sigma_eff (cf. (5.18)), to assist the Gabor-
FilterSpatial in automatically calculating its kernel size if the user does not specify a specific
kernel size.

Subsequently, based on equation (5.3), GaborFilterSpatial constructs the complete Gabor
wavelet family and stores it in self.weight. It is worth noting that the initialization process
of GaborFilterSpatial has been entirely parallelized by us (meaning, the generation of the
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Gabor wavelet family does not depend on any for loop). Additionally, the Gabor wavelet family
is stored in self.weight as a torch.nn.Parameter. This is essential as it allows them to
be automatically added to the list of parameters. For instance, when we change the Module’s
device from CPU to CUDA, the registered parameter self.weight will be seamlessly placed on
CUDA correctly. Then, owing to inheritance, the specific convolution process entirely delegates
to the forward function of torch.nn.Conv2d.

The weight shape in GaborFilterSpatial is conventionally specified as [out_channels,
in_channels, *kernel_size], where out_channels is determined by the product of the
number_of_scales and number_of_directions, denoted as the number_of_wavelets
(i.e., J). Consequently, the shape of the output transformed image is expected to be [B, J, H’,
W’], where B represents the batch size, and H’ and W’ signify the height and width of the trans-
formed image after convolution. It is noteworthy that, if the padding is appropriately configured,
H’ and W’ can align with the resolution of the input image.

We have additionally recognized that there is a subtle distinction between the terminologies
commonly utilized in theory and that employed in practical code implementation. Nevertheless,
we found that these terms essentially convey the same meaning. Therefore, we have employed
the @property notation to align the terminologies of both Gabor wavelet transform and PyTorch
Module, ensuring compatibility without any loss of generality:

@property

def wavelets(self):

return self.weight

@property

def number_of_wavelets(self):

return self.out_channels

Problems and solutions

1. cross-correlation Despite strictly adhering to equation (5.3) to construct the spatial Gabor
wavelet family, our tests revealed that GaborFilterSpatial consistently failed to perform the
Gabor wavelet transform accurately. Specifically, the transformed image by GaborFilterSpat-
ial and the transformed image by the old bob.ip.gabor.Transform exhibited inconsistency
in their imaginary parts, displaying an exact opposite relationship. This prompted us to reevalu-
ate the theoretical analysis of performing GWT in the spatial domain.

The key point here is that, while the term "convolution" is commonly employed in the deep
learning domain, strictly speaking, in mathematical terms, what we are actually performing is
a "cross-correlation". According to the official documentation of PyTorch, torch.nn.Conv2d
does not implement 2D convolution in the precise mathematical sense; instead, it executes 2D
cross-correlation.

In our code, we should actually consider the conjugate form of the Gabor wavelet (cf. Equation
(5.13)), which is corresponding to the definition of cross-correlation. Furthermore, according to
the strong symmetric nature of the Gabor wavelet:

ψk⃗(−x⃗) = ψ−k⃗(x⃗) = ψk⃗(x⃗) (5.15)

the transformed image can be expressed as:

Tk⃗j
(⃗t) =

∑
x⃗

ψ−k⃗j
(x⃗− t⃗)I(x⃗) (5.16)
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This conclusion indicates that we should generate a family of ψ−k⃗j
instead of ψk⃗j

during the
instantiation of GaborFilterSpatial, if we intend to utilize the ready-made cross-correlation
provided by the forward function in torch.nn.Conv2d.

After completing the theoretical analysis above, debugging the code became relatively straight-
forward. We simply added a negative sign to the frequency centers k⃗j . Subsequent tests con-
firmed that GaborFilterSpatial could perform GWT correctly, generating a transformed im-
age consistent with the results obtained from both the old bob.ip.gabor.Transform and the
new GaborFilterFrequency.

2. set_wavelets After our initial implementation of GaborFilterSpatial, we discovered
that the __init__ function contained excessive code, primarily due to the intricate process in-
volved in generating Gabor wavelets. This approach was not optimal in software engineering,
as it resulted in convoluted code, unclear responsibilities, and diminished readability. Thus, we
aimed to devise a method to segregate the Gabor wavelet generation process.

During the subsequent optimization phase, we streamlined the code by isolating the Gabor
wavelet generation logic within the set_wavelets member function. This adjustment offered
another clear advantage: users can now modify specific parameters of a GaborFilterSpatial
instance to reset its internal wavelets, such as the number_of_scales, without creating a new
GaborFilterSpatial object.

3. compute_spatial_kernel_size and padding_mode = ’circular’ In the prior implementa-
tion of GaborFilterSpatial, users were required to define the kernel_size by themselves,
with the default padding_mode set to ’zeros’. Although these arguments align with a typical
torch.nn.Conv2d setup, they are suboptimal for our GaborFilterSpatial. Specifically, 2D
convolution layers often utilize small kernel sizes to reduce computational load, such as (3,3)
and (5,5) by convention, which are significantly insufficient within GaborFilterSpatial.

However, in practical applications of the GWT within the spatial domain, the kernel size of
Gabor wavelets is typically limited to exclude pixels further than 3− 5 σeff (5.17) from the center,
where the Gaussian envelope becomes negligible. When the overlay of the Gabor wavelet and
image extends beyond the image border, cyclic boundary conditions are commonly applied in
convolution instead of using ’zeros’. This is because the cyclic boundary can replicate what
happens in the frequency domain.

Therefore, we modified padding_mode to ’circular’, representing the cyclic boundary
and changed the default kernel_size to None. Now, users are not obligated to define a specific
kernel_size. Instead, GaborFilterSpatial delegates the initialization of kernel_size to
the compute_spatial_kernel_size function (5.18). Thus, GaborFilterSpatial can au-
tomatically compute the kernel_size based on the effective standard deviation of the wavelet
with the largest wavelength (or lowest frequency) if a user does not specify a kernel_size by
themselves:

σ∗
eff =

σ

kmax · kνmax−1
fac

(5.17)

Ksize = 2 · ⌈σ∗
eff · ns⌉+ 1 (5.18)

where σ∗
eff represents the effective standard deviation of the largest wavelet, νmax denotes the

number of scales, ns is the number of effective standard deviations away from the center (de-
faulting to 5), and Ksize indicates the kernel size. Another consequential detail is that if the a user
sets padding to None, GaborFilterSpatial will also automatically compute it as half of the
kernel size for each dimension (i.e., ⌊Ksize/2⌋).
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def __update_padding_by_kernel_size(self):

if isinstance(self.padding, str):

self._reversed_padding_repeated_twice = [0, 0] * len(self.kernel_size)

if self.padding == ’same’:

for d, k, i in zip(self.dilation, self.kernel_size,

range(len(self.kernel_size) - 1, -1, -1)):

total_padding = d * (k - 1)

left_pad = total_padding // 2

self._reversed_padding_repeated_twice[2 * i] = left_pad

self._reversed_padding_repeated_twice[2 * i + 1] = (total_padding

- left_pad)

else:

self._reversed_padding_repeated_twice =

_reverse_repeat_tuple(self.padding, 2)

Listing 5.1: Private method __update_padding_by_kernel_size in GaborFilterSpatial

According to this computation, the kernel size often tends to be large. This is one of the
primary reasons why performing GWT in the spatial domain is significantly slower than in the
frequency domain. Nevertheless, with these adjustments, GaborFilterSpatial functions well
and provides us with more precisely transformed images.

4. __update_padding_by_kernel_size As previously discussed, we outlined how we extracted
the set_wavelets function, computed kernel_size automatically, and set convolution to op-
erate with cyclic boundary conditions. However, these modifications come with some side effects.
Directly manipulating certain internal states of torch.nn.Conv2d causes discrepancies where
some internal states do not update in conjunction with others. During comprehensive testing,
we identified an issue when padding_mode=’circular’ and the kernel_size was altered,
leading to misbehavior within the inherited _ConvNd, resulting in incorrect padding updates if
a user set padding=’same’ or padding=None. This is because the padding did not adjust in
accordance with changes in the kernel size.

Understanding the root cause of this bug, we delved into the torch.nn.Conv2d source code
and extracted a corresponding code snippet to rectify the _reversed_padding_repeated_twice
private attribute:

Within GaborFilterSpatial, the set_waveletsmethod now invokes this private method
__update_padding_by_kernel_size (shown in Listing 5.1) to ensure timely updates of rel-
evant internal states.

5. in_channels From a theoretical perspective, the Gabor wavelet transform is not inherently
designed to handle color images (i.e., when in_channels > 1). In response to such cases,
GaborFilterSpatial issues a warning to users. However, if a user insists on using multi-
channel images as input, we can also allow it. This is made possible by the fact that, in the
Conv2d operation, the shape of self.weight should be [out_channels, in_channels,

*kernel_size], allowing us to easily duplicate self.weight along the second dimension
in_channels times. This is a straightforward way to handle this edge case. Due to the nature
of convolution, this is essentially equivalent to adding up the images along the in_channels
dimension at the first step.
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In future work, it might be interesting to apply the Gabor filters channel-wise instead of sum-
ming them.

5.2.3 pytoch_gabor.GaborFilterFrequency
The Gabor wavelet transform within the old bob.ip.gabor.Transform was conducted exclu-
sively in the frequency domain. Consequently, it served as a fundamental reference for the de-
velopment of our new GaborFilterFrequency. While the interface design of GaborFilter-
Spatial also provided a reference, it is important to note that there exists several key differences
between GaborFilterFrequency and GaborFilterSpatial.

The generated Gabor wavelet family in GaborFilterFrequency is also stored in the at-
tribute self.weight. However, the key difference lies in the instantiation process:
GaborFilterFrequency necessitates the generation of the Gabor wavelet family within the
frequency domain during instantiation, as opposed to the spatial domain. As per equation (5.4),
the Gabor wavelet family produced in GaborFilterFrequency consists of real values rather
than complex values.

GaborFilterFrequency solely inherits from torch.nn.Module, not torch.nn.Conv2d,
which means it does not require parameters like stride or padding during instantiation. Nev-
ertheless, GaborFilterFrequency needs an additional argument called resolution upon
instantiation, which represents the resolution of the input image. In the case of executing Gabor
wavelet transform in the frequency domain, the resolutions of the Gabor wavelet and the image
must be identical. This requirement stems from using pixel-wise multiplication instead of convo-
lution to execute GWT. Thus, we have customized its forward function accordingly. The imple-
mentation of this forward function is straightforward, following the steps outlined in equation
(5.14): 1) apply torch.fft.fft2 to the input image; 2) perform pixel-to-pixel multiplication
between the input image and wavelets with batch broadcasting; 3) apply torch.fft.ifft2 to
the output. Hence, the resulting transformed image has the same shape [B, J, H, W] as that
of GaborFilterSpatial.

In GaborFilterFrequency, we have also employed @property notation to align with ter-
minologies from both PyTorch Module and Gabor wavelet transform. They are the same as those
in GaborFilterSpatial.

Problems and solutions

1. set_wavelets For GaborFilterFrequency, there is also a dedicated member function,
set_wavelets, which is designed to generate a Gabor wavelet family in the frequency domain.
This approach helps to avoid code logic coupling. Additionally, by maximizing the use of tensor
operations, as exemplified in Listing 5.2 with functions like meshgrid and expand, we have
parallelized this function to create the entire family of wavelets (weights) at once.

The set_wavelets function in GaborFilterFrequency involves less complexity com-
pared to the one in GaborFilterSpatial, as we do not need to manage convolution-related
edge cases, thus, we will not elaborate too much detail on this function here.

2. in_channels As mentioned before, Gabor wavelet transform does not support color images.
However, in practice, we have adopted a simple way to address this special case in the spatial
domain—simply duplicating the weights along in_channels. In such cases, ensuring the con-
sistency in the interfaces and computational outcomes between GaborFilterFrequency and
GaborFilterSpatial posed a challenge.

Upon analysis, we found that because GaborFilterSpatial inherits from torch.nn.
Conv2d, it fundamentally includes an additional summation process along the in_channels di-
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(a) Sample Input Image and the Chosen Wavelet

(b) Gabor Transformed Images

Figure 5.3: THE AGREEMENT OF GWT IN SPATIAL AND FREQUENCY DOMAINS. (a) By selecting
a sample input image and choosing a single Gabor wavelet at scale 4 and direction 1, (b) the Gabor trans-
formed images in both spatial and frequency domains exhibit consistency.

mension when in_channels of the convolution exceeds one. Therefore, in our implementation
of GaborFilterFrequency.forward(), we allow the in_channels greater than 1 but then
automatically sum the input image along the in_channels dimension. This approach aligns
GaborFilterFrequency.forward() behavior with that of GaborFilterSpatial.forward().
Although users can specify in_channels greater than one for GaborFilterSpatial and
GaborFilterFrequency during instantiation, we issue a runtime warning against this prac-
tice due to the lack of theoretical support.

Overall, this approach strikes a balance between theoretical principles and practical imple-
mentation, optimizing the trade-off in GWT.

5.2.4 Use Cases and Agreement
According to theory, whether executing GWT in the spatial or frequency domain, the transformed
images should agree. Hence, demonstrating and verifying the equivalence between GaborFilter-
Spatial and GaborFilterFrequency are necessary.

In the use case spatial_frequency_activation.ipynb, we utilized a simple input im-
age and applied GWT using both GaborFilterSpatial and GaborFilterFrequency under
default parameter settings. By choosing a specific Gabor wavelet in the family, Figure 5.3 visually
displays their transformed images respectively, illustrating their consistency.

In addition to visualization in a use case, we have designed thorough test cases to confirm this
consistency. These tests encompass three different categories, each reflecting different scenarios
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of the input images:

• batch_size = 1, in_channels = 1;

• batch_size > 1, in_channels = 1;

• batch_size > 1, in_channels > 1;

The first two categories of tests successfully pass the torch.allclose() assertion, using
very low rtol and atol thresholds. Furthermore, the differences between the transformed im-
ages in the spatial and frequency domains are mainly around the borders of the images, due to
padding in the spatial domain. If we ignore the borders of the transformed image when testing,
the differences will be even smaller:

assert torch.allclose(freq_transformed, spat_transformed, rtol=1e-05,

atol=1e-3)

# If we ignore the borders

assert torch.allclose(freq_transformed[:, :, 20:108, 20:108],

spat_transformed[:, :, 20:108, 20:108], rtol=1e-05,

atol=1e-4)

However, with multi-channel input images, we had to significantly increase the rtol and
atol levels (atol=0.9, rtol=0.5) to make the tests pass. The primary reason is that
torch.nn.Conv2d does not support ’circular’ padding mode when in_channels > 1.

Based on the demonstrations and comprehensive testing conducted, we can conclude that our
implementations of GaborFilterSpatial and GaborFilterFrequency are correct. Whether
performing GWT in the spatial or frequency domain, the results of the transformed images remain
substantially consistent.
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self.out_channels = self.number_of_scales * self.number_of_directions

# To ensure compatibility between frequency and the device in similarity,

# we need to wrap it within a Parameter.

self.frequency = torch.nn.Parameter(

data=compute_frequency_centers(self.number_of_scales,

self.number_of_directions, self.k_max, self.k_fac),

requires_grad=False)

height, width = self.kernel_size

# To ensure that coordinates are centered

x = torch.arange(-(width // 2), (width + 1) // 2)

y = torch.arange(-(height // 2), (height + 1) // 2)

yy, xx = torch.meshgrid(y, x, indexing="ij")

y_omega, x_omega = (2 * torch.pi / height) * yy, (2 * torch.pi / width) * xx

omega_squared = x_omega ** 2 + y_omega ** 2

sigma_squared = self.sigma ** 2

self.weight = torch.nn.Parameter(

data=torch.empty(self.number_of_scales * self.number_of_directions,

self.kernel_size[0], self.kernel_size[1]),

requires_grad=False)

k_y = self.frequency[:, 0, None, None].expand(-1, self.kernel_size[0],

self.kernel_size[1])

k_x = self.frequency[:, 1, None, None].expand(-1, self.kernel_size[0],

self.kernel_size[1])

omega_minus_k_squared = (x_omega - k_x) ** 2 + (y_omega - k_y) ** 2

k_squared = k_x ** 2 + k_y ** 2

omega_sqrd_plus_k_sqrd = omega_squared + k_squared

first_part = torch.exp(-sigma_squared * omega_minus_k_squared / (2 *
k_squared))

second_part = torch.exp(-(sigma_squared * omega_sqrd_plus_k_sqrd) / (2 *
k_squared))

self.weight[:, yy, xx] = first_part - second_part

Listing 5.2: Parallel implementation for initializing Gabor wavelets in the frequency domain
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Gabor Jets and Activation

6.1 Theoretical Analysis
The concept of jet was introduced by Buhmann and Lange (1989), a Gabor jet J I of a image I is
created by concatenating the responses of all Gabor wavelets at a specific position t⃗ in the Gabor
transformed image T into a single vector (Figure 6.1). The elements of J I are addressed by the
index j of the corresponding Gabor wavelet ψk⃗j

:

(J I (⃗t))j = Tk⃗j
(⃗t) (6.1)

In order to integrate it with the subsequent stage of the Gabor wavelet processing pipeline,
which involves computing similarity (Chapter 8). Activation is applied to the extracted jet, which
converts the complexed-valued Gabor jet into the absolute value part:

aj = |(J )j | (6.2)

and the phase part:

ϕj = arg
[
(J )j

]
(6.3)

6.2 Implementation
In our new pytorch_gabor package, the corresponding implementations for the theoretical
components can be found in the Jet and GaborFilterAct classes.

GaborFilterAct applies activation function to the transformed image for all images within
a batch and at all positions, producing a torch.Tensor as output. In contrast, Jet extracts a
Gabor jet from a specified position of all images within a batch, then generates an encapsulated
Jet object. As a result, GaborFilterAct seamlessly integrates into PyTorch networks, whereas
Jet does not.

The Jet and GaborFilterAct classes exhibit several common features: both utilize activa-
tion functions to convert the complex-valued input derived from Gabor filters into Euler form,
encompassing absolute value and phase. Additionally, normalization for the absolute value is
optional for both classes. These classes operate on Gabor wavelet transformed images as input,
demonstrating the capability to process all images within a batch concurrently.

However, distinctions arise in their outputs and functionalities: GaborFilterAct facilitates
complete parallelization, enabling concurrent processing for all images within the batch and all
positions. On the other hand, Jet is confined to extracting Gabor jets from individual positions



26 Chapter 6. Gabor Jets and Activation

Figure 6.1: SIMPLIFIED DEPICTION OF A GABOR JET (GÜNTHER, 2012). The size of circles stands for
scale, the different orientations of stride show different directions.

def normalize(self) -> None:

self.jet[:, 0, :] = torch.nn.functional.normalize(self.jet[:, 0, :],

dim=-1)

Listing 6.1: Normalization for absolute value of Jet

for every image in the batch in a single operation. While the advantage of GaborFilterAct
in parallelization has been discussed earlier, the strength of Jet lies in its additional and useful
member functions. For instance, it provides the capability to manually extract a single jet, a
functionality not available with GaborFilterAct.

6.2.1 pytoch_gabor.Jet
As mentioned earlier, the shape of the transformed image is [B, J, H, W], where B repre-
sents the batch size, J represents different Gabor wavelets, and H and W are height and width of
the image. The Jet class is responsible for extracting Gabor jets from a specific position in the
transformed image, yielding a complex-valued torch.Tensor with a shape of [B, J]. Subse-
quently, activation is applied to the extracted jet to integrate it with the subsequent stage of the
pipeline which leverages both the absolute value and phase of the complex values. The output of
activation is a real-valued torch.Tensor with a shape of [B, 2, J]. This structure takes into
account Jet in the old package that processed a single image with the shape [2, J], and the
batch dimension comes first in standard PyTorch networks.

As mentioned earlier, normalization for the absolute value is optional for the Jet class. The
Jet class provides a method called normalize specifically designed to apply L2 normalization
to the absolute part of the jet along dimension J. We implement this normalization process en-
tirely relying on PyTorch’s built-in methods (Listing 6.1). This function is crucial because the
Similarity class assumes that all jets are normalized.

As outlined above, the Jet class takes input from Gabor wavelet transformed images in tensor
form, extracts Gabor jets from a specific position, and applies activation. This class utilizes tensor
operations to handle extraction and activation, achieving parallelization over all images within
a batch naturally through tensor operations. However, it is important to note that the Jet class
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is designed to extract jets only from one specified position in transformed images, and it cannot
extract Gabor jets from multiple positions in one shot.

problems and solution

The bob.ip.gabor.Jet class features multiple constructors, a functionality not directly sup-
ported by Python. To overcome this limitation, we strategically implemented one constructor as
initmethod and other constructors as class methods, streamlining their integration into the class
structure (Table 6.1). To enhance the simplicity of the code, the init function serves primarily
for encapsulation, with other class methods invoking it. This design choice streamlines the code
structure and promotes a clear separation of concerns, contributing to a more maintainable and
comprehensible implementation. The constructors in bob.ip.gabor.Jet and corresponding
methods in pytorch_gabor.Jet are outlined below:

1. The constructor 1 in bob.ip.gabor.Jet creates Jet from jet data. In our new implemen-
tation, we replace this constructor with init method to streamline the process.

When the input data is complex-valued and has a shape of [B, J], the init method
transforms the complex values into their absolute value and phase, storing them accord-
ingly. This mirrors the functionality of the constructor in the old Bob package that creates a
jet from a list of complex values.

If the input data is of type float and has a shape of [B, 2, J], the init method directly
saves the input as jet data.

2. The constructor 2 in bob.ip.gabor.Jet is utilized to create a bob.ip.gabor.Jet object
filled with zeros of a specified length. In our new package, we provide a corresponding
method called zeros to achieve the same result, creating a Gabor jet with all zeros. Given
our approach to handling a batch of images in the new package, the batch_size is also a
parameter for this method.

3. The constructor 3 in bob.ip.gabor.Jet is responsible for creating a bob.ip.gabor.Jet
object by averaging the complex forms of the provided Gabor jets within the list. In our new
package, we offer a comparable method named average to achieve the same functionality.

4. The constructor 4 in bob.ip.gabor.Jet is responsible for extracting a Gabor jet from the
provided Gabor transformed image at the specified location. In our new package, we offer
a corresponding method named extract to perform the same operation. As discussed
earlier, the new package is designed to handle batched images. Consequently, the extract
method can efficiently extract Gabor jets from a batch of images.

5. The constructor 5 in bob.ip.gabor.Jet is designed to load a Gabor jet from an HDF5
file, relying on the bob.io.base.HDF5File module. The new load method now fully
relies on torch.load and no longer depends on bob.io.base.HDF5File, as illustrated
in Listing 6.2.

.

The use of the @classmethod annotation, coupled with forward declarations denoting the
return type as -> "Jet", provides an organized and anticipatory structure for these constructor
functionalities.

Remarkably, within the Jet class, we have also incorporated methods such as save_jets
and load_jets, effectively internalizing these processes and reducing reliance on external func-
tions.
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def load(cls, f: FILE_LIKE, **kwargs) -> "Jet":

# f is a file-like object (has to implement write and flush) or a string or

os.PathLike object containing a file name.

data = torch.load(f=f, **kwargs)

return cls(data, normalize=False)

Listing 6.2: The method Jet.load

ID The constructors of bob.ip.gabor.Jet The corresponding method in
pytorch_gabor.Jet

1 bob.ip.gabor.Jet (complex: Array,
normalize: bool = True)

def __init__(self, data: Tensor, normalize:
bool = True)

2 bob.ip.gabor.Jet (length: int = 0)
@classmethod
def zeros(cls, length: int, batch_size: int
= 1) -> "Jet"

3 bob.ip.gabor.Jet (to_average: List["Jet"],
normalize: bool = True)

@classmethod
def average(cls, to_average: List["Jet"],
normalize: bool = False) -> "Jet"

4
bob.ip.gabor.Jet (trafo_image: Array,
position: Tuple[int,int], normalize: bool
= True)

@classmethod
def extract(cls, trafo_image: Tensor, posi-
tion: Union[Tuple[int, int], Tensor], nor-
malize: bool = True) -> "Jet"

5 bob.ip.gabor.Jet(hdf5:
"bob.io.base.HDF5File")

@classmethod
def load(cls, f: FILE_LIKE, **kwargs) ->
"Jet"

Table 6.1: THE COMPARISON OF BOB.IP.GABOR.JET AND PYTORCH_GABOR.JET. This table
shows the constructors of bob.ip.gabor.Jet and corresponding methods in pytorch_gabor.Jet.

6.2.2 pytoch_gabor.GaborFilterAct
The GaborFilterAct class is specifically crafted as an activation layer for Gabor filters, inherit-
ing from torch.nn.Module. This class can convert the complex values of transformed images
into absolute values and phases, allowing the selection of the desired part as the output.

Derived from torch.nn.Module, the class employs tensor operations to manage the activa-
tion process. This allows the class to activate the transformed images for all images in a batch and
all positions in a single operation.

This class provides flexible control over the output type, output shape, and normalization
through various parameters during its setup:

The out_type parameter defines the desired output type and offers three choices: abs, phase,
or abs_phase. Each option corresponds to the absolute value, the phase, or a combination of
both in the complex output. The default configuration is abs_phase, which means returning
both "absolute and phase" values, reflecting the common use of both aspects in most Gabor jet
similarity functions.
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The stack_abs_phase parameter helps to control the shape of the output when out_type
is configured as "abs_phase." In this configuration, it intelligently stacks the absolute and phase
components along dimension 1. If set to false while out_type remains "abs_phase", the for-
ward method will output a tuple (abs_part, phase_part). The default value for this param-
eter is true, aligning with PyTorch’s network structure, where the data output is a tensor rather
than a tuple. This adherence to standards enhances compatibility and facilitates computational
optimization.

The output shape, presented in tensor form, for both GaborSpatial and GaborFreq (which
also functions as the input for GaborFilterAct), is [B, J, H, W]. If the out_type is set to
"abs_phase" and stack_abs_phase=True, the resulting output tensor of GaborFilterAct
will have shape [B, 2, J, H, W], if the out_type is set to abs or phase, the resulting output
will have shape [B, J, H, W].

The normalize parameter governs whether the absolute part of the output undergoes L2 nor-
malization. This parameter holds significance only when the "out_type" is specified as "abs" or
"abs_phase". If the activated jets are to be utilized in the Similarity class later, normalization
becomes necessary. This is due to the fact that the jets provided as input to the Similarity class
are already normalized by default (Chapter 8).

Problems and solution

In the context of the project’s inception, the main goal of GaborFilterAct was to transform
complex responses from Gabor wavelets into Euler form. However, the initial interface design
overlooked the inclusion of the normalize argument. Subsequent testing highlighted the essen-
tial nature of normalization. This modification played a crucial role in fulfilling the normalization
requirement in Similarity and aligning its functionality with that of the ’Jet’ in this specific
context.

6.2.3 pytoch_gabor.JetStatistics
This class is not integrated into the Gabor wavelet processing pipeline; instead, it functions as
an experimental analysis tool. Its essential functions and interfaces closely resemble those of
bob.ip.gabor.JetStatistics. The primary distinction lies in its capability for batch pro-
cessing, which is similar to Jet and GaborFilterAct. Therefore, we will not delve into the
details of this aspect in the current discussion. We only show parameter of init method here:

1. The jets parameter accommodates a list of "Jet" objects, representing the entities sub-
jected to analysis.

2. The gwt parameter accepts either "GaborFilterFrequency" or "GaborFilterSpatial."
This parameter plays a pivotal role in the computation of disparity vectors.
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Grid Graph

7.1 Theoretical Analysis
The grid graph concept involves extracting a memorizable object from an image in the form of a
model graph. This is accomplished by overlaying a rectangular grid of points onto the object and
recording the corresponding jets, as proposed by Lades et al. (1993).

Remarkably, the grid graph exhibits superior recognition accuracy compared to the face graph
(Günther et al., 2012), even when the number of nodes in the grid is fewer than that in the face
graph (Günther et al., 2012).

7.2 Implementation
In the new pytorch_gabor package, the corresponding implementations for the theoretical
components reside in the Graph and GridExtract classes.

GridExtract takes a batch of activated and transformed images as input, then produce a
torch.Tensor. In contrast, Graph only receives a batch of transformed images as input, gener-
ating a list of Jet objects through the Jet.extract method, with activation occurring in Jet.
Consequently, GridExtract seamlessly integrates into PyTorch networks, while Graph lacks
this capability.

Both classes exhibit similarities as they play a role in constructing a rectangular grid graph
using Gabor wavelet transformed images, following the theoretical analyses provided earlier.
Following the graph construction, both classes proceed to extract Gabor jets from the points of
the rectangular grid graph. During the jet extraction process, parallel processing is achieved over
all images in a batch through efficient torch.Tensor operations.

However, there are distinctions between them: GridExtract enables complete paralleliza-
tion, efficiently extracting Gabor jets for all images in a batch and every position in the grid graph
in parallel. Conversely, Graph supports only partial parallelization, achieving parallelization for
images in a batch. The benefit of GridExtract in parallelization has been discussed above.
The advantage of Graph lies in its additional, useful member functions. For example, Graph
allows users to create custom graphs, not limited to grid graphs. This flexibility is not found in
GridExtract.

7.2.1 pytoch_gabor.Graph
The Graph class serves as a tool for extracting Gabor jets from Gabor wavelet transformed images.
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def load(cls, f: FILE_LIKE, **kwargs) -> "Graph":

# f is a file-like object (has to implement write and flush) or a string or

os.PathLike object containing a file name.

data = torch.load(f=f, **kwargs)

return cls(data)

Listing 7.1: The method Graph.load

The Graph class supports various methods to generate graphs. This class can then utilize
the Graph.extract method to extract Gabor jets for all images in a batch and all positions
in the graph. As outlined above, Graph supports only partial parallelization, achieved for im-
ages in a batch. The extraction of different points on the entire graph relies on a for loop, as
the Graph.extract method depends on Jet.extract, which can only extract jets from a sin-
gle position at a time. Then the Graph.extract method returns a list of Jet. The reliance on
Jet.extract and the chosen output format are crafted in this manner to uphold consistency
with the original Bob implementation.

Another noteworthy aspect is that the Graph class stores the absolute positions of its nodes
(points in the graph). Ensuring that these nodes, when used in the extract method, stay within
the image boundaries is crucial to prevent errors.

Problems and solutions

The bob.ip.gabor.Graph class encompasses multiple constructors, a feature not directly sup-
ported by Python. Similar to pytorch_gabor.Jet, we address this limitation by implementing
one constructor as init method and other constructors as class methods, and the init method
serves same purpose, with other class methods calling it. This approach contributes to a more
maintainable and comprehensible implementation. The constructors in bob.ip.gabor.Graph
and corresponding methods in pytorch_gabor.Graph are discussed below:

1. Constructor 1 in bob.ip.gabor.Graph specify the positions as a list of tuples, which are
then used to generate a Graph object. Similarly, the init method in the new package
accepts a list of tuples or a torch.Tensor with the shape [L, 2] as input, creating a
Graph object accordingly.

2. The bob.ip.gabor.Graph class in the old package provides two different parameter sets
to generate a regular rectangle graph: constructor 2 and constructor 3. In the new package,
we follow the same approach and use the create_by_border and create_by_eyes
methods to achieve the same functionality.

3. The bob.ip.gabor.Graph class in the old package loads a bob.ip.gabor.Graph object
from a specific bob.io.base.HDF5File file through constructor 4. In our new implemen-
tation, we have a corresponding load method that serves the same purpose. The new load
method now exclusively relies on torch.load and no longer depends on bob.io.base.
HDF5File, as illustrated in Listing 7.1.

.

We utilize the @classmethod annotation and employ forward declarations for return types.
The notation -> "Graph" serves as a forward declaration, signifying the return of an instance of
the ’Graph’ class.
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ID The constructors of
bob.ip.gabor.Graph

The corresponding method in
pytorch_gabor.Graph

1 bob.ip.gabor.Graph (self, nodes:
List[Tuple[int, int]])

def__init__(self, nodes:
Union[List[Tuple[int, int]], Tensor])

2 bob.ip.gabor.Graph (first: int, last: int,
step: int)

@classmethod
def create_by_border(cls, top_left: Tu-
ple[int, int], bottom_right: Tuple[int, int],
step: Tuple[int, int]) -> "Graph"

3
bob.ip.gabor.Graph (righteye: int,
lefteye: int, between: int , along: int,
above: int, below: int)

@classmethod
def create_by_eyes(cls, righteye: Tu-
ple[int, int], lefteye: Tuple[int, int], be-
tween: int, along: int, above: int, below:
int) -> "Graph"

4 bob.ip.gabor.Graph (hdf5:
"bob.io.base.HDF5File")

@classmethod
def load(cls, f: FILE_LIKE, **kwargs) ->
"Graph"

Table 7.1: THE COMPARISON OF BOB.IP.GABOR.GRAPH AND PYTORCH_GABOR.GRAPH.
The table shows constructors of bob.ip.gabor.Graph and corresponding methods in
pytorch_gabor.Graph.

7.2.2 pytoch_gabor.GridExtract
The GridExtract class is designed for the extraction of jets from a rectangle grid graph within
PyTorch networks, utilizing a user-defined stride parameter; this parameter determines the
distance between neighboring points in the graph in two directions. It is notable that this class
starts indexing the grid always at (0,0). In future work, it may be meaningful to enable users to
set a different starting point and a end point for indexing.

This class is designed as a subclass of torch.nn.Module, in comparison to Graph, the func-
tionality of this class is straightforward. It solely implements a function that extracts specific
entries from a given tensor based on a specified stride, and it lacks many additional member
functions. Nevertheless, pytoch_gabor.GridExtract is convenient, making it suitable for
use in standard PyTorch networks. For a comprehensive understanding of the network’s overall
functionality, please refer to Chapter 9.





Chapter 8

Similarity Functions and
Disparity

8.1 Theoretical Analysis
The Gabor jet serves as a repository of texture information and finds utility in applications such
as landmark detection and disparity estimation. When comparing Gabor jets extracted from dif-
ferent images, various similarity measures come into play. Here, assuming all jets are already
normalized, we introduce the similarity functions utilized in our code:

1. Scalar product:

Sa(J ,J ′) =
∑
j

ajaj′ (8.1)

2. Canberra distance:

SC(J ,J ′) =
∑
j

aj − a′j
aj + a′j

(8.2)

3. Abs phase:
Sϕ(J ,J ′) =

∑
j

aja
′
j cos(ϕj − ϕ′j) (8.3)

4. Disparity:

SD(J ,J ′) =
∑
j

aja
′
j cos(ϕj − ϕ′j − k⃗Tj d⃗) (8.4)

5. PhaseDiff:
DP (J ,J ′) =

∑
j

cos(ϕj − ϕ′j − k⃗Tj d⃗) (8.5)

6. PhaseDiffPlusCanberra:

SP+C(J ,J ′) =
∑
j

[
aj − a′j
aj + a′j

+ cos(ϕj − ϕ′j − k⃗Tj d⃗)

]
(8.6)

In (8.4), (8.5), (8.6), k⃗Tj represents the frequency center of the jth wavelet, and d⃗ is the disparity
vector. The disparity vector is calculated as suggested by Günther (2012).



36 Chapter 8. Similarity Functions and Disparity

The disparity vector is calculated by following rules iteratively (we estimate them from highest
frequency ζmax to lowest frequency ζ):

d⃗ζ = Γ−1
ζ Φζ (8.7)

with

Γζ;h,v =

ζmaxνmax−1∑
j=ζνmax

kj;hkj;vaja
′
j (8.8)

Φζ;h =

ζmaxνmax−1∑
j=ζνmax

aja
′
jkj;h(ϕj − ϕ′j −mj2π) (8.9)

mj =

⌊
ϕj − ϕ′j − k⃗Tj d⃗ζ+1

2π

⌉
(8.10)

The final disparity vector d⃗ = d⃗0 is simply the estimated disparity using all Gabor wavelet
levels.

For graph similarity assessment, we calculate the mean across all graph nodes (Günther, 2012),
L means different positions of the graph.

SG
[·](G1, G2) =

1

L

L−1∑
l=0

S[·](J
1
l , J

2
l ) (8.11)

S[·] can be different kinds of similarity functions:

S[·] ∈ {Sa, SC , Sϕ, SD, SP , SP+C ...} (8.12)

8.2 Implementation
In the initial version, the implementation followed the theoretical analysis and referred to the
source code of bob.ip.gabor.Similarity to incorporate its core functionality. This entails
the ability to take two jet objects as input and produce the correct result.

The class pytorch_gabor.Similarity in our new package inherits from torch.nn.Module,
considering to operate within the Gabor wavelet processing pipeline. Additionally, the class
Similarity is explicitly designed to accommodate input in the form of either two lists of jet
objects or two tensors of jets. This flexibility corresponds to the utilization of two distinct Gabor
wavelet processing pipelines.

Another noteworthy aspect is parallelization; this class is tasked with computing similarity
between jet tensors with shape [B, 2, J, ...] in one shot.

8.2.1 pytoch_gabor.Similarity
The Similarity class is versatile, designed for computing various similarity functions between
Gabor jets. It is important to note that all input Gabor jets to compute similarity functions are
expected to be pre-normalized.

The similarity_type parameter determines the specific similarity function calculated by
the class.



8.2 Implementation 37

The types "ScalarProduct" (8.1) and "Canberra" (8.2) utilize the absolute values of the Ga-
bor jets to calculate the similarity function.

The types "AbsPhase" (8.3), "Disparity" (8.4) and "PhaseDiffPlusCanberra" (8.6) di-
rectly utilize both the absolute values and the phase values of Gabor jets to calculate the similarity
function.

The type "PhaseDiff" (8.5) requires to compute disparity vector, the computing of disparity
vector utilizes both the absolute values and the phase values of Gabor jets.

In (8.4), (8.5), and (8.6), we require k⃗Tj to calculate disparity vector, then use disparity vector to
calculate similarity. The frequency center k⃗Tj corresponds to the frequency parameter in Gabor
filters (referred to as parameter transform, which should be an instance of GaborFilter-
Spatial or GaborFilterFrequency). Therefore, the transform parameter is essential when
parameter similarity_type is set to "Disparity" or "PhaseDiff" or "PhaseDiffPlus-
Canberra".

When the parameter similarity_type is set to "Disparity" (8.4), "PhaseDiff" (8.5), or
"PhaseDiffPlusCanberra" (8.6), the disparity vector (estimated by (8.7), (8.8), (8.9) and (8.10))
is essential for similarity computation.

Similarity can be employed in two distinct Gabor wavelet processing pipelines: either
within a pure object-oriented Gabor wavelet processing pipeline (as illustrated in Figure 9.1) or
as part of a pipeline that relies entirely on torch.nn.Module (as illustrated in Figure 9.2).

Within the pipeline, which relies entirely on torch.nn.Module, the Similarity class uti-
lizes the forward method to compute the similarity between jets. The forward method takes
two previously extracted and activated jet tensors as input. As outlined above, the shape of such
input jet tensors is [B, 2, J, H, W], where [2, J] represents a single Gabor jet from a single
image, [B] stands for all images in the batch, and [H, W] corresponds to height and width of
images. The forward method calculates the similarity map for every image in the batch, repre-
senting the similarity between every pair of Gabor jets at all positions for each image in the batch;
the overall result has shape [B, H, W]. Parallelization is automatically achieved through tensor
operations.

In the object-oriented pipeline, the similarity method of the Similarity class is em-
ployed. Aligned with its object-oriented design, this method accepts two lists of Jet objects as
input.

To optimize the code and eliminate redundancy, the similarity method stacks the two lists
of Jet (with shape [B, 2, J]) along the last dimension, resulting in the stacked_jet with
a shape of [B, 2, J, L]. Subsequently, these two instances of stacked_jet are provided as
input to the forward method. The similarity method then computes the average similarity
of the result of the internally called forward method (the result had shape [B, L]) along the
[L] dimensions, yielding the graph similarity as defined in (8.11) with shape [B].

Problems and solution

1. broadcast problem and Parallelization As explained earlier, in the pipeline that relies en-
tirely on torch.nn.Module, two activated and extracted jet tensors with shape [B, 2, J,
H, W] are input for forward method. A single Gabor jet across images in a batch has a shape
of [B, 2, J]. In the pure object-oriented pipeline, two lists of Jet objects are used as input



38 Chapter 8. Similarity Functions and Disparity

for the similarity method, resulting in a stacked_jet with the shape of [B, 2, J, L].
If required, all three scenarios will call the disparity method within the forward method to
calculate the disparity vector.

Based on the analysis above, it is imperative to compute the disparity vector in cases where
the jet tensors have a shape of [B, 2, J, ...], where ... can take on values such as [], [L],
or [H, W], resulting in a non-fixed shape for the jet tensors. This deviates from conventional
PyTorch network approaches.

When updating disparity, the Similarity class stores the dimension of [...] of jet tensors
in self.dims_of_jets.

Subsequently, upon updating the disparity vector, the shape of certain parameters will adjust
based on self.dims_of_jets. Specifically, the shape of gamma (corresponding to Γ in (8.8))
and phi_yx (corresponding to Φ in (8.9)) varies in accordance with the shape of the parameter
self.dims_of_jets.

Then we update gamma, phi_yx, self._disparity and nL (corresponds to mj in (8.10))
for every wavelets according to (8.7), (8.8), (8.9) and (8.10). Commencing with the last wavelet,
characterized by the highest frequency and largest direction angle, we subsequently update Γ, Φ
and mj for all wavelets sharing the same frequency in reverse order (from large direction angle
to small direction angle). When all wavelets that share the same frequency have been traversed,
we update d⃗ for this frequency. This process continues in reverse order, updating these values for
the next smaller frequency until all wavelets have been traversed. The resulting d⃗ represents the
disparity vector.

The actual disparity calculation process is only related to the [2, J] dimension of the jet
tensors. In principle, parallelization can be achieved on [B] (dimension of batch) and [...]
(dimension of jets distribution). However, certain issues arise in this context.

When updating disparity, we need to perform a "broadcasting" operation as follows:

[B, 1, ...] * [2, 1] => [B, 2, ...]

However, according to the documentation of Pytorch:1 Two tensors are "broadcastable" if the
following rules hold:

1. Each tensor has at least one dimension.

2. When iterating over the dimension sizes, starting at the trailing dimension, the dimension
sizes must either be equal, one of them is 1, or one of them does not exist.

In our scenario, "..." represents different positions, and it is positioned at the trailing dimen-
sion, determined by the shape of the jet tensor. This arrangement poses a challenge for direct
broadcasting.

To address this challenge, we used a technique called torch.einsum. This method removes
the need to manually adjust the dimensions of the corresponding torch.Tensor for different
shapes of "...," achieving our original goal. It also makes the code easier to understand. With
this method, we can compute the disparity vector for tensors of different shapes, as long as their
shapes follow the pattern [B, 2, J, ...], which also helps with parallelization using tensor
operations. The full process of calculating disparity vector is shown in Listing 8.1.

2. device conflict in GPU While trying to execute on the GPU, we ran into a problem where
there was a conflict between devices. Specifically, it pointed out that some parameters were not on
the same device (CUDA) as other tensors, like the input image. The usual fix for this kind of issue
is to put them in torch.nn.Parameter. However, there is a complication, these variables have

1https://pytorch.org/docs/stable/notes/broadcasting.html

https://pytorch.org/docs/stable/notes/broadcasting.html


8.2 Implementation 39

self._confidences = jets1[:, 0] * jets2[:, 0] # absolute part | shape [B, J,

...]

self._phase_differences = self.adjust_phase(jets1[:, 1] - jets2[:, 1]) # phase

part | shape [B, J, ...]

# The computing of self._confidences and self._phase_differences are in

different methods; when calculating disparity, this method is also called

to calculate these two values for calculating disparity vector; the actual

structure of the class is different from what we show here. We just show

how we calculate the disparity vector here.

# The method self.adjust_phase adjust the input phase to [-pi, pi].

self.dims_of_jets = jets1.shape[3:] # can be [], [L] or [H, W]

gamma = torch.zeros(self.batch_size, 2, 2, *self.dims_of_jets, device=device)

phi_yx = torch.zeros(self.batch_size, 2, *self.dims_of_jets, device=device)

self._disparity = torch.zeros(self.batch_size, 2, *self.dims_of_jets,

device=device)

for j in range(self.transform.number_of_wavelets - 1, -1, -1):

kj_yx = self.transform.frequency[j, :] # The center of frequency

conf = self._confidences[:, j]

diff = self._phase_differences[:, j]

gamma += torch.einsum(’bij..., bij... -> bij...’,

conf.unsqueeze(1).unsqueeze(1), torch.outer(kj_yx, kj_yx).unsqueeze(0))

# update gamma for every wavelet

nL = torch.round(((diff - torch.einsum(’bi..., bi... -> bi...’,

self._disparity, kj_yx.unsqueeze(0) ).sum(dim=1)) / (2 * torch.pi))) #

update m_j for every wavelet

phi_yx += torch.einsum(’bi..., bi... -> bi...’, ((diff - nL * 2.0 *
torch.pi) * conf).unsqueeze(1), kj_yx.unsqueeze(0)) #update Phi for

every wavelet

if j % self.transform.number_of_directions == 0:.

gamma_inverse = torch.inverse(

gamma.permute(0, *range(3, len(gamma.shape)), 1, 2)

).permute(0, 1 + len(self.dims_of_jets), 2 + len(self.dims_of_jets),

*range(1, len(self.dims_of_jets) + 1))

self._disparity = torch.einsum(’bij..., bjk... -> bik...’,

gamma_inverse, phi_yx.unsqueeze(dim=2) ).squeeze(dim=2) # [B, 2,

...] # update disparity for every frequency.

Listing 8.1: The calculation of disparity vectors
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Figure 8.1: SIMILARITY MAP ASSOCIATED WITH THE RIGHT EYE POSITION. This figure displays the
similarity map for types "Disparity" and "ScalerProduct" when using the jet at the right eye position as a
reference.

varying shapes but torch.nn.Parameter requires a fixed shape. So, to tackle this problem, we
manually specified the device for these parameters.

8.3 Use Case
In theory, the results of similarity computation, whether performed with the Jet object or with
tensors, should align.

In the use case similarity.ipynb, we employed two different approaches, computing sim-
ilarity with two lists of Jet objects and two tensors of jets. For each approach, we utilized a sim-
ple sample as the input image and extracted the Gabor jet at the right eye location as a reference.
Subsequently, every fourth pixel was extracted, and we computed the similarity map. Finally, we
displayed the similarity map, illustrating the two approach’s consistency.

The approach with Jet showed in Listing 8.2 includes 1) extracting reference Jet from right
eye position, 2) computing the similarity field over the entire image and generating the similarity
map using both the "ScalarProduct" and "Disparity" similarity measures.

It is noteworthy that every fourth pixel from the image was selected to compute the similarity
map, consistent with the old use case.

We compare two ways of measuring similarity ("Disparity" and "ScalarProduct" a.k.a
"cosine") in the use case. Both methods focus on the eyes, specifically the right eye’s Gabor jet
(Figure 8.1).

We obtain the same cos_image and disp_image as in the old use case. It is noteworthy
that the disparity method can emphasize only the eye areas more effectively. Next, we will
introduce another method that exclusively utilizes tensors, achieving similar cos_image and
disp_image results.

As depicted in Listing 8.3, The approach with tensors includes: 1) employing the GridExtract
module to extract every fourth pixel, essentially creating jets without the need for encapsulation
within Jets, 2) using GaborFilterAct to transform complex values to absolute values and
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gabor_filter = GaborFilterFrequency(in_channels=1, resolution=image.shape[-2:])

trafo_image = gabor_filter(image)

# extract reference

pos = (177, 131) # eye

eye_jet = Jet.extract(trafo_image, pos)

# compute similarity field over the whole image

cos_sim = Similarity(similarity_type="ScalarProduct")

disp_sim = Similarity(similarity_type="Disparity", transform=gabor_filter)

cos_image = torch.zeros(1, 1, (image.shape[-2])//4+1, (image.shape[-1])//4+1)

disp_image = torch.zeros(1, 1, (image.shape[-2])//4+1, (image.shape[-1])//4+1)

# compute similarity map

for y in range(0, image.shape[-2], 4):

for x in range(0, image.shape[-1], 4):

image_jet = Jet.extract(trafo_image, (y, x))

cos_image[:, :, y//4, x//4] = cos_sim.similarity([image_jet],

[eye_jet])

disp_image[:, :, y//4, x//4] = disp_sim.similarity([image_jet],

[eye_jet])

Listing 8.2: The approach with Jet

phases. Like any neural network layer, we directly apply its forward method for parallel com-
putation of similarity maps.

It is notable that creating the reference_tensor requires a bit of maneuvering. We expand
it and ensure its shape matches jets_tensor, as Similarity’s forward method only accepts
tensors with the same shape.

To ensure both approaches yield similar results, our tests pass the torch.allclose assertion
with very low rtol and atol thresholds.

assert torch.allclose(cos_image, cos_image_parallel, rtol=1e-4, atol=1e-4)

assert torch.allclose(disp_image, disp_image_parallel, rtol=1e-4, atol=1e-4)

It is evident that whether calculating similarity scores using lists of Jet objects or tensors of
jets, the results are entirely equivalent. However, it is notable that the method relying solely on
tensors exhibits significant improvements in computational performance. We quantified these
performance enhancements and provided a detailed discussion in Chapter 10.
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gabor_filter = GaborFilterFrequency(in_channels=1, resolution=image.shape[-2:])

trafo_image = gabor_filter(image)

# Employing the GridExtract module to extract every fourth pixel

grid = GridExtract(stride=(4,4))

jets_tensor = grid(trafo_image)

# Create reference tensor

reference_tensor = trafo_image[..., pos[0], pos[1], None,

None].expand(jets_tensor.shape)

# Transform complex values to absolute values and phases

act = GaborFilterAct(out_type=’abs_phase’, stack_abs_phase=True,

normalize=True)

jets_tensor_acted = act(jets_tensor)

reference_tensor_acted = act(reference_tensor)

# Compute similarity map

cos_image_parallel = cos_sim(jets_tensor_acted, reference_tensor_acted)

disp_image_parallel = disp_sim(jets_tensor_acted, reference_tensor_acted)

Listing 8.3: The approach with tensors
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Full Network Example

9.1 Pipeline
In previous discussions, we have outlined our new pytorch_gabor package, which fundamen-
tally offers two approaches to implement the Gabor wavelet processing pipeline.

The first approach revolves around a pure object-oriented approach. Specifically, the class
pytorch_gabor.Jet facilitates the extraction, activation, normalization, and encapsulation of
a Gabor jet. Meanwhile, the pytorch_gabor.Graph class extends the functionalities of the
pytorch_gabor.Jet class, allowing encapsulation of various positions and extraction of a list
of Gabor jets. The pytorch_gabor.Similarity class can further process these lists of Ga-
bor jet objects as input. Figure 9.1 illustrates this object-oriented pipeline approach. This ap-
proach offers some advantages — leveraging well-encapsulated, object-oriented Jet and Graph
classes that host useful member methods, enhancing readability and interpretability. However,
it faces clear drawbacks, notably in integration within modern PyTorch neural network archi-
tectures. Therefore, this method poses challenges especially when necessitating parallel Gabor
wavelet processing (including batch processing and parallel computation of similarities between
two maps of jets with various positions). Another consequence is the difficulty in placing the
entire computation process on a GPU.

The second approach relies entirely on torch.nn.Module. In this context, the representation
of these Gabor jets can be simplified to just a Tensor. Every step, from transforming images to
activating and normalizing Gabor jets, followed by batch extraction and their utilization as input
for pytorch_gabor.Similarity, can all be represented using tensors. This approach aligns
with the standard adopted by modern PyTorch neural network architectures. Figure 9.2 illustrates
how this pipeline is implemented in our package as a PyTorch network. In this pipeline, all the
relevant classes are subclasses of torch.nn.Module. Additionally, attributes like weight are
encapsulated using torch.nn.Parameter, allowing the entire process to be readily placed on
a GPU for accelerated computation in parallel.

9.2 Use Case
To illustrate the aforementioned pipeline in code, we have implemented a use case named
full_network_example.ipynb. This use case demonstrates a concise network that integrates
GaborFilterFrequency (can be replaced with GaborFilterSpatial), GaborFilterAct,
GridExtract and Similarity as a PyTorch Module, making it adaptable for seamless integra-
tion into any other neural network.
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Figure 9.1: AN OBJECT-ORIENTED PIPELINE OF GABOR WAVELET PROCESSING. This pipeline relies
on pytorch_gabor.Jet and pytorch_gabor.Graph. Recall that pytorch_gabor.Jet inter-
nally implements activation (i.e., conversion from complex values to Euler representation).
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Figure 9.2: AN TENSOR-ORIENTED PIPELINE OF GABOR WAVELET PROCESSING. This pipeline relies
solely on pytorch.nn.Module. The blue boxes and squares represent the data flow in Tensor format.



46 Chapter 9. Full Network Example

class NetworkFreq(torch.nn.Module):

def __init__(self, resolution, similarity_type, stride=(4,4)):

super().__init__()

self.gwt = GaborFilterFrequency(in_channels=1, resolution=resolution)

self.grid = GridExtract(stride=stride)

self.act = GaborFilterAct(out_type=’abs_phase’, stack_abs_phase=True,

normalize=True)

self.sim = Similarity(similarity_type=similarity_type,

transform=self.gwt)

def forward(self, img1, img2):

img1 = self.act(self.grid(self.gwt(img1)))

img2 = self.act(self.grid(self.gwt(img2)))

return self.sim(img1, img2)

Listing 9.1: The customized network utilizing GaborFilterFrequency

The customized NetworkFreq (cf. Listing 9.1) starts by utilizing GaborFilterFrequency
to transform two input images. Given the stability of the texture descriptor against minor shifts,
the network employs GridExtract to selectively extract every 4th pixel.

Next, the network activates the complex-valued transformed images into tensors comprising
absolute and phase values, representing maps of Gabor jets distributed along the y-axis and x-
axis.

Finally, the similarity layer computes similarity scores for the Gabor jets derived from both
input images. These scores are localized within a similarity map, represented as a Tensor. Each
entry in this similarity map corresponds to the similarity score of two jets positioned at the same
coordinates.

Moreover, we have the option to utilize GaborFilterSpatial in another customized net-
work NetworkSpat (cf. Listing 9.2), producing outcomes very similar to those using Gabor-
FilterFrequency.

When constructing a network with GaborFilterSpatial, we can follow a similar approach:
first, transform the complete image and then use GridExtract to extract every 4th pixel. How-
ever, for efficiency in the spatial domain, we do not need to transform every pixel of the original
images. Given GaborFilterSpatial inherits from torch.nn.Conv2d, it inherently supports
a stride parameter. This modification is worthwhile for networks based on GaborFilterSpatial
because it can make the computation 16 times faster in this case.

Finally, we can run these two networks to obtain corresponding similarity maps with six dif-
ferent similarity types (Figure 9.3). As anticipated, whether using NetworkFreq or NetworkSpat,
we achieved nearly identical similarity maps.
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class NetworkSpat(torch.nn.Module):

def __init__(self, similarity_type, stride=(4,4)):

super().__init__()

# The kernel_size and padding will be computed automatically when

initializing GaborFilterSpatial if they are set to None.

self.gwt = GaborFilterSpatial(in_channels=1, stride=stride,

kernel_size=None, padding=None,)

self.act = GaborFilterAct(out_type=’abs_phase’, stack_abs_phase=True,

normalize=True)

self.sim = Similarity(similarity_type=similarity_type,

transform=self.gwt)

def forward(self, img1, img2):

img1 = self.act(self.gwt(img1)) # no need for grid extraction

img2 = self.act(self.gwt(img2))

return self.sim(img1, img2)

Listing 9.2: The customized network utilizing GaborFilterSpatial

Figure 9.3: SIMILARITY MAPS. These are the results produced by NetworkFreq and NetworkSpat.
The 6 similarity maps corresponds to 6 similarity functions. Face 1 and Face 2 are sample input images in
this case.
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Evaluation

Given that one of the main reasons for implementing the pytorch_gabor package was par-
allelization, it is essential to measure how much of a speed boost parallelization offers when
performing Gabor wavelet processing using our new pytorch_gabor package. Hence, this
section primarily focuses on quantifying and demonstrating the performance enhancement and
discussing the final outcomes.

10.1 Methodology

10.1.1 Dataset

We utilized the AT&T dataset1 for this experiment, which contains 10 different images of each
of 40 distinct subjects. For some subjects, the images were taken at different times, varying the
lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses /
no glasses). All the images were taken against a dark homogeneous background with the subjects
in an upright, frontal position (with tolerance for some side movement).

This dataset was previously employed as a toy dataset in the legacy library, bob.example.
faceverify, to assess the predictive accuracy of Gabor wavelet processing using bob.ip.gabor
and generate corresponding ROC curves. However, in this experiment, measuring the predictive
accuracy of pytorch_gaborwhen performing the Gabor wavelet processing is not our objective,
because previous discussions have adequately demonstrated that both the new and old packages
yield identical results. Instead, our primary goal in this experiment is to measure the computa-
tional speed of both the new and old packages when dealing with the same task but with varying
amounts of data.

The original AT&T database contains only 400 facial images. To measure computational speed
with different data amounts, we introduced a repeat factor r to control the data volume. As
illustrated in Figure 10.1, by assigning different positive integer values to r, the augmented AT&T
dataset expands to contain 400 × r facial images for experimentation. These images will serve
as the references for the functions of GWT and similarity. To compute similarity scores, we also
need to define some probe images. As the simplest approach, we just select the first face from
each subject as a probe image. Hence, there are a total of 40 probe images.

1https://www.kaggle.com/datasets/kasikrit/att-database-of-faces

https://www.kaggle.com/datasets/kasikrit/att-database-of-faces
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·
·
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10 faces per subject (original)

· · ·

10(r-1) faces per subject (repeated)

probe
images

Figure 10.1: ADJUST VOLUME OF DATA. We adjust the volume of data by controlling the repetition of
face images within all subjects, generating the augmented AT&T dataset.

10.1.2 Pipelines
For this experiment, we have to test the Gabor wavelet processing pipelines on different hard-
ware setups to obtain our experimental results. We have prepared two environments: one on a
CPU environment and another on a GPU environment. For the CPU, our setup includes a macOS
system with an Apple M1 chip, 8 total cores, and 16GB system RAM. As for the GPU (CUDA) en-
vironment, we are utilizing a cloud-based setup on Google Colab, equipped with 12.7GB system
RAM and 15GB GPU RAM.

The legacy bob.ip.gabor package does not support parallel computation on GPUs, restrict-
ing its operation solely to CPU environments. Conversely, our new package can run on both CPU
and GPU environments. Hence, we run our experiments using pytorch_gabor on both a local
CPU setup and the CUDA environment in Google Colab.

For the pipeline design of this experiment, the legacy evaluation code in bob.example.face-
verify remains a valuable reference. However, there are some interface differences between the
new and old packages, and generating ROC curves is not our objective. Hence, we have made
necessary modifications to the legacy evaluation code and created a standard pipeline as depicted
in Figure 10.2.

In more detail, concerning the process of computing features, the old bob.ip.gabor can
only transform images one by one and relies on the bob.ip.gabor.Graph class to extract and
encapsulate Gabor jets (cf. Listing 10.1). However, pytorch_gabor can batch-transform images,
and relies on the stride parameter to extract Gabor jets within Tensor (cf. Listing 10.2 and
Listing 10.3).

As for the process of computing similarities, the complexity of the old bob.ip.gabor is
higher. It requires four nested for loops to accomplish this task since its similarity function can
only handle two single jets at a time (cf. Listing 10.4).
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Figure 10.2: A STANDARD PIPELINE TRACKING THE COMPUTING TIME. This pipeline is applied
to track the time taken by different packages for computing features and similarities with increasing data
amount. As the outcome of this pipeline, we obtain average similarity scores between each probe image and
each subject.

However, our new pytorch_gabor allows us to harness its capability to process batch and
graph nodes in parallel, eliminating the need for two nested for loops (cf. Listing 10.5). Fur-
thermore, we can also run this process on the GPU, which significantly enhances computational
efficiency .

In summary, Table 10.1 comprises five specific experiments, demonstrating how we imple-
mented the predefined standard pipeline using different packages, classes, and hardware. Fur-
thermore, to enhance the credibility of our experimental results, we repeated these experiments
20 times and recorded the average time taken.

10.2 Results
Consistent similarity score results are obtained regardless of whether using the old bob.ip.gabor
or the new pytorch_gabor, as long as the pipeline described earlier is followed. These simi-
larity scores are presented in Figure 10.3 as a heatmap. Since this is not the primary focus of this
experiment, there is no need to discuss these similarity scores here.

By progressively increasing the dataset size, we obtained and recorded the time taken for com-
puting features and similarities with 5 different configurations. Figure 10.4 are two line graphs
that illustrate the trends in runtime.

In terms of computing features, running Gabor wavelet transform in the spatial domain on
a CPU is notably slower compared to any other methods. This is mainly because the default
settings in pytorch_gabor.GaborFilterSpatial generates a large kernel size (161 × 161),
and the convolution operations are much more computationally intensive than simple pixel-wise
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Id Relevant
package

Relevant classes for
computing features

Relevant classes for
computing similarities

Hardware

1 bob.ip.gabor Transform
Graph

Similarity CPU

2 pytorch_gabor GaborFilterFrequency
GridExtract

Similarity CPU

3 pytorch_gabor GaborFilterSpatial
(with striding)

Similarity CPU

4 pytorch_gabor GaborFilterFrequency
GridExtract

Similarity GPU

5 pytorch_gabor GaborFilterSpatial
(with striding)

Similarity GPU

Table 10.1: EXPERIMENTAL CONFIGURATIONS.

multiplications. When it comes to pytorch_gabor.GaborFilterFrequency on a CPU, it
does not perform significantly better than bob.ip.gabor.Transform.

Regarding computing similarities, bob.ip.gabor, which relies on C++, shows faster run-
time compared to pytorch_gabor.Similarity on a CPU, if there are smaller data volumes
(below 2400). However, as the dataset size exceeds 2400 instances, the advantage of batch pro-
cessing becomes evident, reducing the runtime of pytorch_gabor.Similarity below that of
bob.ip.gabor.Similarity.

The standout discovery occurs when pytorch_gabor operates on a GPU. Whether comput-
ing features or similarities, the runtime significantly decreases compared to other setups. Addi-
tionally, as the dataset size grows, there is no notable increase in processing time.
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Figure 10.3: RESULTS OF SIMILARITY SCORES. The scores are obtained through both the legacy
bob.ip.gabor and the new pytorch_gabor methods following the outlined pipeline and are vi-
sualized in the heatmap. Please note that, for the purpose of visualization, this heatmap displays only the
average similarity scores between each probe image and all images in each subject set, rather than the simi-
larity scores between each probe image and each subject image.

Figure 10.4: EXPERIMENTAL RESULTS. Time taken for computing features(left) and computing simi-
larities(right) with increasing data amount using different packages, classes, and hardware configurations,
where "Old" means bob.ip.gabor and "New" means pytorch_gabor.
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image_resolution = DataSetAtnt.image_resolution

gabor_wavelet_transform = bob.ip.gabor.Transform()

# pre-allocate Gabor wavelet transform image in the desired size

trafo_image = np.ndarray((gabor_wavelet_transform.number_of_wavelets, 112,

92), np.complex128)

def extract_feature(image, extractor: bob.ip.gabor.Graph) ->

List[bob.ip.gabor.Jet]:

# perform Gabor wavelet transform on the image

gabor_wavelet_transform.transform(image, trafo_image)

gabor_graph = extractor.extract(trafo_image)

return gabor_graph

def compute_features(db) -> Tuple[Dict, Dict]:

graph_extractor = bob.ip.gabor.Graph(first=(0, 0), last

(image_resolution[0] - 1, image_resolution[1] - 1), step=(4, 4))

subject_files = db.load_images()

subjects = {}

for subject_id in subject_files.keys():

# load enroll images for the current subject ID

enroll_images = subject_files[subject_id]

# extract features for all enroll images and store all of them

subjects[subject_id] = [extract_feature(enroll_image, graph_extractor)

for enroll_image in enroll_images]

probe_files = db.load_probes()

probes = {}

for probe_id in probe_files.keys():

probes[probe_id] = extract_feature(probe_files[probe_id],

graph_extractor)

return subjects, probes

Listing 10.1: Computing features using the old bob.ip.gabor
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image_resolution = DataSetAtnt.image_resolution

# define Gabor wavelet transform class globally since it is reused for all

images

gabor_wavelet_transform = pytorch_gabor.GaborFilterFrequency(in_channels=1,

resolution=image_resolution).to(torch.float64)

class ExtractFeature(torch.nn.Module):

def __init__(self, stride=(4, 4)):

super().__init__()

self.gwt = gabor_wavelet_transform

self.grid = pytorch_gabor.GridExtract(stride=stride)

self.act = pytorch_gabor.GaborFilterAct(out_type=’abs_phase’,

stack_abs_phase=True, normalize=True)

def forward(self, img):

gabor_graph = self.act(self.grid(self.gwt(img)))

return gabor_graph

def compute_features(db, device=’cpu’) -> Tuple[Dict, Dict]:

extract_feature = ExtractFeature().to(device)

subject_files = db.load_images()

subjects = {}

for subject_id in subject_files.keys():

# load enroll images for the current subject ID

enroll_images = torch.stack(subject_files[subject_id],

dim=0).unsqueeze(dim=1)

# extract features for all enroll images and store all of them

subjects[subject_id] = extract_feature(enroll_images)

batch_size = subjects[1].shape[0] # record the batch size

probe_files = db.load_probes()

probes = {}

for probe_id in probe_files.keys():

# parallelization

probe_feature = extract_feature(probe_files[probe_id][None, None, ...])

probes[probe_id] = probe_feature.expand(batch_size, -1, -1, -1, -1)

return subjects, probes

Listing 10.2: Computing features using the pytoch_gabor.GaborFilterFrequency



56 Chapter 10. Evaluation

gabor_wavelet_transform = pytorch_gabor.GaborFilterSpatial(in_channels=1,

stride=(4, 4), dtype=torch.complex128)

class ExtractFeature(torch.nn.Module):

def __init__(self):

super().__init__()

self.gwt = gabor_wavelet_transform

self.act = pytorch_gabor.GaborFilterAct(out_type=’abs_phase’,

stack_abs_phase=True, normalize=True)

def forward(self, img):

return self.act(self.gwt(img))

def compute_features(db, device=’cpu’) -> Tuple[Dict, Dict]:

# This function is exactly the same as the function compute_features() in

the case of using GaborFilterFrequency

Listing 10.3: Computing features using the pytoch_gabor.GaborFilterSpatial

def compute_similarities(subjects, probes):

scores = defaultdict(lambda: defaultdict(list))

for subject_id, subject_features in subjects.items():

for subject_feature in subject_features:

for probe_id, probe_feature in probes.items():

sims = []

for jet_index in range(len(probe_feature)):

sims.append(SIMILARITY_FUNCTION(subject_feature[jet_index],

probe_feature[jet_index]))

sim = np.mean(sims)

scores[probe_id][subject_id].append(sim)

return scores

Listing 10.4: Computing similarities using the old bob.ip.gabor

def compute_similarities(subjects, probes, device=’cpu’):

sim_layer = SIMILARITY_FUNCTION.to(device)

scores = defaultdict(lambda: defaultdict(torch.Tensor))

for subject_id, subject_features in subjects.items():

for probe_id, batched_probe_feature in probes.items():

# similarity function in pytorch_gabor can accept batched jets and

# compute graph similarity with all graph nodes in parallel

scores[probe_id][subject_id] = sim_layer(subject_features,

batched_probe_feature).mean(dim=(-2, -1))

return scores

Listing 10.5: Computing similarities using the new pytorch_gabor
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Conclusion and Future Work

11.1 Conclusion
In this master project, we undertook the re-implementation of the bob.ip.gabor package in
pure Python and PyTorch, achieving comparable results against specified criteria. Our modifica-
tions, detailed in Table 2.1, ensured parallel processing and smooth integration into modern deep
learning methods.

Handling "convolution" in GaborFilterSpatial posed unexpected challenges, given that
the standard PyTorch convolution layer actually performs "cross-correlation" instead of true con-
volution (5.2.2). We addressed this issue through theoretical analysis and implemented a straight-
forward solution in the code. By incorporating a mechanism for automatic calculation of ker-
nel size and padding, we enabled GaborFilterSpatial to generate results identical to those
of GaborFilterFrequency. This agreement holds even in various edge cases, such as when
handling multi-channel images. We have further endeavored to achieve parallelization for both
GaborFilterSpatial and GaborFilterFrequency by decoupling the code as much as pos-
sible.

Implementing parallel processing in Jet, Graph, and Jetstatistics proved straightfor-
ward. However, challenges arose in parallelizing the Similarity component due to the variable
input shape. In order to overcome this, we leveraged PyTorch functionalities like torch.einsum
for effective parallelization.

Our implementation not only reproduces old use cases of bob.ip.gabor but also introduces
a full network example, showcasing a Gabor wavelet processing pipeline entirely reliant on class
torch.nn.Module. Experimental evaluations demonstrate a significant performance boost in
features and similarities computation with pytorch_gabor on CUDA, especially evident with
large datasets compared to running on CPU or using bob.ip.gabor.

In conclusion, our work not only contributes to the field by providing a more versatile and
efficient Gabor wavelet processing package but also opens avenues for further exploration in
parallelization and deep learning integration. The demonstrated speed improvements underscore
the practical applicability of our pytorch_gabor package in real-world scenarios.

11.2 Future work
Possible future work for this package includes:

Learnable Parameters in Gabor Filters: The current implementation of the pytorch_gabor
package relies on manually set parameters for Gabor filters. To enhance adaptability and perfor-
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mance, a potential avenue for future work involves introducing learnable parameters. Neverthe-
less, allowing each wavelet to learn and update the specific value of each entry might lead our
GaborFilterSpatial and GaborFilterFrequency to behave like regular neural networks.
A more meaningful approach is to enable the parameter set Γ, to undergo learning and updating.
However, this introduces a challenge due to the involvement of non-differentiable elements such
as num_of_directions and num_of_scales, which are integer-valued. That requires the ex-
ploration of alternative optimization strategies or innovative parameterization schemes compati-
ble with gradient-based optimization methods.

Integration into the Idiap Ecosystem: The successful integration of the pytorch_gabor pack-
age into the broader Idiap ecosystem is a key aspect of future development. This integration goes
beyond the package’s functionality and involves smooth inclusion into existing workflows and
systems. Specifically, efforts should be directed toward integrating the package into the Idiap
continuous integration (CI) system. This ensures ongoing compatibility testing, including unit
tests, integration tests, and performance tests. Additionally, collaborative initiatives with other
projects and researchers within Idiap can foster knowledge exchange, improvements, and a more
interconnected research environment.
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