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Abstract

The workload-aware property index is a hierarchical index which adapts to the database’s
recent transactional workload by not pruning volatile index nodes, i.e. nodes which are
frequently inserted or deleted, in order to increase update performance. When the
workload changes, these nodes cease to be volatile and become unproductive if they and
their descendants, neither contribute to a query match, nor are volatile.

Unproductive nodes in hierarchical indexes waste space and slow down queries. We
propose periodic Garbage Collection and Query-Time Pruning in order to clean unpro-
ductive nodes in the index. We implement the techniques in Apache Jackrabbit Oak
and provide an extensive experimental evaluation to stress test the algorithms and show
that the database throughput increases considerably when periodic Garbage Collection
or Query-Time Pruning are applied.



Zusammenfassung

Der “workload-aware property index” ist ein hierarchischer Index, der sich an die jüngste
Transaktionslast der Datenbank anpasst, indem er volatile Indexknoten (d.h. Knoten die
häufig eingefügt oder gelöscht werden) nicht löscht um die Schreibleistung zu erhöhen.
Wenn sich die Arbeitslast ändert, sind diese Knoten nicht mehr volatil und werden
unproduktiv, falls sie und ihre Nachkommen weder zu einer Abfrage beitragen noch
volatil sind.

Unproduktive Knoten in hierarchischen Indizes verschwenden Speicherplatz und ver-
langsamen die Abfragen. Wir schlagen periodische Indexreinigung und Abfragezeitbe-
reinigung vor, um den Index von unproduktiven Knoten zu bereinigen. Wir imple-
mentieren unsere Techniken in Apache Jackrabbit Oak und bieten eine umfangreiche
experimentelle Auswertung, um die Algorithmen unter hoher Last zu testen und zeigen,
dass der Datenbankdurchsatz erheblich zunimmt, wenn periodische Indexreinigung oder
Abfragezeitbereinigung benutzt werden.
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1 Introduction

Frequently adding and removing data from hierarchical indexes causes them to repeat-
edly grow and shrink. A single insertion or deletion can trigger a sequence of structural
index modifications (node insertions/deletions) in a hierarchical index. Skewed and
update-heavy workloads trigger repeated structural index updates over a small subset
of nodes to the index. Informally, a frequently added or removed node is called volatile.
Volatile nodes decrease index update performance due to two reasons. First, frequent
structural index modifications are expensive since they cause many disk accesses.
Second, frequent structural index modifications also increase the likelihood of conflicting
index updates by concurrent transactions. Conflicting index updates further decrease
update performance since concurrency control protocols need to resolve the conflict.

Wellenzohn et al. [6] propose the Workload-Aware Property Index (WAPI). The WAPI
exploits the workload’s skewness by identifying and not removing volatile nodes from the
index, thus significantly reducing the number of expensive structural index modifications.
Since fewer nodes are inserted/deleted, the likelihood of conflicting index updates by
concurrent transactions is reduced.

Some Content Management Systems (CMS) make use of hierarchical databases. The
Adobe Experience Manager,1 Adobe’s enterprise CMS, works with the hierarchical
database system Apache Jackrabbit Oak (Oak). CMSs yield skewed, update-heavy and
changing workloads. They frequently update a small changing subset of index nodes.
Such workloads decrease WAPI’s query performance.

When the workload characteristics change, new index nodes can become volatile while
others cease to be volatile and become unproductive. Unproductive index nodes slow
down queries, as traversing an unproductive node is useless because unproductive nodes
do not contain any data and thus cannot yield a query match. Additionally, unproductive
nodes occupy storage space that could otherwise be reclaimed. lf the workload changes
frequently, unproductive nodes accumulate in the index and the query performance
deteriorates over time. Therefore, unproductive nodes must be cleaned to keep query
performance stable over time and reclaim disk space as the workload changes.

Wellenzohn et al. [6] propose periodic Garbage Collection (GC), which traverses the
entire index subtree and prunes all unproductive index nodes at once. Additionally we
propose Query-Time Pruning (QTP), an incremental approach to cleaning unproductive
nodes in the index. The idea is to turn queries into updates. Since Oak already traverses
unproductive nodes as part of query processing, these nodes could be pruned at the same
time. With QTP, only one query has to traverse an unproductive node, while subsequent
queries can skip this overhead and thus perform better. The goal of this BSc thesis is
to study, implement and empirically compare GC and QTP as proposed by [6] in the
open-source hierarchical database Apache Jackrabbit Oak.

1http://www.adobe.com/marketing-cloud/experience-manager.html
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2 Background

2.1 CMS Workload

Depending on the data model, applications might use a hierarchical [4] database system
such as Apache Jackrabbit Oak, called Oak. A content management system (CMS)
might choose Oak because the database reflects the hierarchical structure of a webpage.
Content management systems have specific workloads. These workloads have distinct
properties: they are skewed, update-heavy and changing [6]. CMSs frequently use a
job-queuing system that has the noted characteristics.

Consider a social media feed as a running example. Only a few posts are popular.
These posts have many comments or likes. Since most of the interactions (comments,
likes) are on a small subset of the posts, we have a skewed workload. Users submit
new posts or interact with existing posts by writing comments for example, creating an
update-heavy workload. As time passes, new posts are created. Users are more likely to
interact with recent posts than older ones, hence the workload changes over time.

When a user submits a new post, a job is sent to the CMS for processing. A back-
ground thread is periodically checking for pending jobs. A pending job is signaled using
node properties in Oak. The CMS adds a property to the respective node in order to
signal the background thread that the specific node has a pending job requiring pro-
cessing. A node’s “pub” property signals when the job has to be processed. Setting the
value of “pub” to “now” indicates that the job must be processed immediately. Once
the background thread detects the node, the job is processed and the “pub” property is
removed.

From now on, we shall refer to a workload with the properties mentioned above as a
CMS workload. When a hierarchical database operates under a CMS workload, we can
increase its update performance using the workload aware property index.

2.2 Workload Aware Property Index (WAPI)

Oak mostly executes content-and-structure (CAS) queries [5]. We denote node n’s prop-
erty k as n[k] and node n’s descendants as desc(n).

Definition 1 (CAS Query). Given node m, property k and value v, a CAS query
Q(k, v,m) returns all descendants of m which have k set to v, i.e.,

Q(k, v,m) = {n|n ∈ desc(m) ∧ n[k] = v}

Example 1 (CAS Query). Consider Figure 1. CAS-Query Q(pub, now, /a), which
queries for every descendant of /a with “pub” set to “now”, would evaluate toQ(pub, now, /a) =
{/a/b/d}, since /a/b/d is the only descendant of /a with “pub” set to “now”.

Figure 1 depicts a database instance with the workload aware property index (WAPI).
The WAPI is a hierarchical index which indexes the properties of nodes in order to answer
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λ : i

λ : pub

λ : now

λ : a

λ : b

λ : d
pub : now

λ : a

λ : b

λ : d
pub : now

λ : c

λ : e

corresponding content node

Index Subtree Root

Matching Node

Content Subtree Root

Figure 1: An instance of a hierarchical database. The index subtree is rooted at /i. The
content subtree is rooted at /a. Index node /i/pub/now/a/b/d is matching,
since its corresponding content node, /a/b/d, has property “pub” set to “now”.

CAS queries efficiently. The WAPI is hierarchically organized under node /i, the Index
Subtree Root. The second level consists of all properties k we want to index, such as
“pub”. The third level contains any values v of property k, for example “now”. The
remaining levels replicate all nodes from the root node to any content node with k set
to v.

When processing a CAS query, Oak traverses the WAPI in order to answer the query
efficiently. Any index node has a corresponding content node. Given index node n,
we denote n’s corresponding content node as ∗n. If index node n’s path is path(n) =
/i/k/v/m = /i/k/v/λ1/ . . . /λd, then n’s corresponding content node ∗n has the path
path(∗n) = m = /λ1/ . . . /λd.

Definition 2 (Matching Node). Index node n, with path /i/k/v/m, is matching iff n
and n’s corresponding content node ∗n, with path m, have property k set to v, i.e.,

matching(n) ⇐⇒ ∗n[k] = v ∧ n[k] = v

Example 2 (Matching Node). Consider Figure 1. The subtree rooted at /a is the
content subtree. The subtree rooted at /i is the index subtree. Node /i/pub/now/a/b/d
is matching, since its corresponding content node, /a/b/d, has property “pub” set to
“now” as well as i/pub/now/a/b/d itself, too.

From the CMS workload described in Section 2.1 we can infer that the index subtree
has a small number of matching nodes relative to the total number of nodes in the
content subtree. The index is used to signal pending jobs to the background thread
using the “pub” property. Assuming jobs are processed by the background thread and
removed from the index faster than they are created, the number of matching nodes
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should be close to zero. We infer that, an index subtree which resembles a job-queuing
system under a CMS workload, should have almost no matching nodes.

The CMS workload is also skewed and update-heavy, therefore causing repeated struc-
tural index updates (insertions/deletions) over a small subset of nodes to the index. The
WAPI takes into account if an index node is frequently added and removed, i.e. volatile
(see Definition 4), before performing structural index modifications. If a node is consid-
ered volatile, we do not remove it from the index.

Volatility is the measure which is used by the WAPI in order to distinguish whether
to remove a node or not from the index. Wellenzohn et al. [6] propose to look at the
recent transactional workload to check whether a node n is volatile. The workload on
Oak instance Oi is represented by a sequence Hi = 〈. . . , Ga, Gb, Gc〉 of snapshots [4],
called a history. A snapshot represents an immutable committed tree of the database.
Let tn be the current time and t(Gb) be the point in time snapshot Gb was committed,
N(Ga) is the set of nodes which are members of snapshot Ga. We use a superscript a
to emphasize that a node na belongs to tree Ga. pre(Gb) is the predecessor of snapshot
Gb in Hi.

Given two snapshots Ga and Gb, we write na and nb to emphasize that nodes na and
nb are two versions of the same node n, i.e., they have the same absolute path from the
root node.

Node n is volatile iff n’s volatility count is at least τ , called volatility threshold. The
volatility count of n is defined as the number of times n was added or removed from
snapshots in a sliding window of length L over history Hi.

Definition 3 (Volatility Count). The volatility count vol(n) of index node n on Oak in-
stance Oi, is the number of times node n was added or removed from snapshots contained
in a Sliding Window of Length L over history Hi.

vol(n) = |{Gb|Gb ∈ Hi ∧ t(Gb) ∈ [tn − L+ 1, tn] ∧ ∃Ga[

Ga = pre(Gb) ∧ ([na /∈ N(Ga) ∧ nb ∈ N(Gb)]∨
[na ∈ N(Ga) ∧ nb /∈ N(Gb)])]}|

Definition 4 (Volatile Node). Index node n is volatile iff n’s volatility count (see Defi-
nition 3) is greater or equal than the volatility threshold τ , i.e.,

volatile(n) ⇐⇒ vol(n) ≥ τ

Example 3 (Volatile Node). Consider the snapshots depicted in Figure 2. Assume
volatility threshold τ = 1, sliding window of length L = 2 and historyHh = 〈G0, G1, G2, G3〉.
Oak instance Oh executes transactions T1, . . . , T3. Note that volatile index nodes are
color-coded blue in Figure 2. Snapshot G0 was committed at time t(G0) = t. Given
snapshot G0, transaction T1 adds the property-value pair “pub” = “now” to /a/b/d and
commits snapshot G1 at time t(G1) = t+1. Next, transaction T2 removes property “pub”
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from /a/b/d given snapshot G1 and commits snapshot G2 at time t(G2) = t+2. During
T2 we have tn = t+ 2 and the sliding window is [tn −L+ 1, tn] = [t+ 2− 2 + 1, t+ 2] =
[t+1, t+2]. SnapshotG1 is in the sliding window since t(G1) = t+1 and t+1 ∈ [t+1, t+2].
Snapshot G0 is not in the sliding window because t(G0) = t and t /∈ [t+ 1, t+ 2]. Index
node n = /i/pub/now/a/b/d exists in the set of nodes which are members of snapshot
G1, n1 ∈ N(G1) but not in its predecessor pre(G1) = G0, n0 /∈ N(G0) and therefore has
a volatility count of vol(n) = 1. Since the threshold is τ = 1, the node is volatile. The
same holds for n′s ancestors within the index subtree.

G0 T1−−−−→ G1 T2−−−−→ G2 T3−−−−→ G3

λ:i λ:a

λ:b

λ:d

λ:c

λ:e

Snapshot G0

t(G0) = t

λ:i

λ:pub

λ:now

λ:a

λ:b

λ:d
pub:now

λ:a

λ:b

λ:d
pub:now

λ:c

λ:e

Snapshot G1

t(G1) = t+ 1

λ:i

λ:pub

λ:now

λ:a

λ:b

λ:d

λ:a

λ:b

λ:d

λ:c

λ:e

Snapshot G2

t(G2) = t+ 2

λ:i

λ:pub

λ:now

λ:a

λ:b

λ:d

λ:c

λ:e
pub:now

λ:a

λ:b

λ:d

λ:c

λ:e
pub:now

Snapshot G3

t(G3) = t+ 3

Figure 2: Volatile nodes becoming unproductive. Given τ = 1, L = 2, nodes
/i/pub/now/a/b/d and /i/pub/now/a/b are unproductive in snapshot G3.
They are not volatile and don’t match either. Note that volatile and unpro-
ductive index nodes are color-coded blue and orange, respectively.
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3 Unproductive Nodes

3.1 Introduction

When time passes and the database workload changes, volatile nodes cease to be volatile
and they become unproductive. When nodes are volatile, their volatility count has to be
at least τ . When time passes, insertions and deletions that increased the volatility count
drop out of the sliding window, causing the volatility count to decrease. If the volatility
count drops below threshold τ , the node ceases to be volatile. If the now non-volatile
node is also non-matching, and the same holds for its descendants, we call the node and
its descendants unproductive.

Unproductive index nodes slow down queries as traversing an unproductive node is
useless, because neither the node itself nor any of its descendants are matching and thus
cannot yield a query match. Additionally, unproductive nodes occupy storage space that
could otherwise be reclaimed. If the workload changes frequently, unproductive nodes
accumulate in the index and the query performance deteriorates over time [6].

Definition 5 (Unproductive Node). Index node n is unproductive iff n, and any de-
scendant of n, is neither matching (see Definition 2) nor volatile (see Definition 4), i.e.,

unproductive(n) ⇐⇒ ∀m(m ∈ ({n} ∪ desc(n)) ∧ ¬matching(m) ∧ ¬volatile(m))

Example 4 (Unproductive Node). In our running example (cf. Figure 2), transaction
T3 adds the property-value pair “pub” = “now” to /a/c/e to G2 and commits G3 at time
t(G3) = t+3. We assume the same parametrization as in the last example (τ = 1, L = 2).
Volatile and unproductive index nodes are color-coded blue and orange, respectively. In
snapshot G3, index nodes /i/pub/now/a/b/d and /i/pub/now/a/b cease to be volatile
because their volatility counts drop below the threshold. The sliding window has length
L = 2, so we only consider snapshots G2, G3 towards the volatility count. The two
nodes were not inserted or deleted in any of the mentioned snapshots and therefore
the volatility count is vol(/i/pub/now/a/b/d) = vol(/i/pub/now/a/b) = 0. Since the
threshold is τ = 1, the nodes are not volatile. In addition, they are not matching either
and therefore they are unproductive (cf. Definition 5). Index node /i/pub/now/a in
snapshot G3 has two volatile descendants (/i/pub/now/a/c/e, /i/pub/now/a/c) one of
which is matching and therefore is not unproductive.

In the example above, we saw how index nodes become unproductive after being
volatile. Index nodes do not necessarily have to be volatile before they become unpro-
ductive. If a non-volatile and non-matching index node with no matching descendants
has a volatile descendant, and that descendant ceases to be volatile, the index node
becomes unproductive, even though it was not volatile.

Example 5 (CAS Query with Unproductive Nodes). Consider CAS-QueryQ(pub, now, /a)
from Example 1 again. We apply the query to snapshot G3 in Figure 2. The query
executor has to traverse the four descendants of /i/pub/now/a. Traversing nodes
/i/pub/now/a/b/d and /i/pub/now/a/b is useless and slows down the query because
these nodes are unproductive. The query evaluates to Q(pub, now, /a) = {/a/c/e}.
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Figure 3: Query Runtime over the accumulated number of update operations.

3.2 Impact on Query Runtime

In this Section we study and quantify the impact of unproductive nodes on query run-
time. During query execution, traversing an unproductive node is useless, because nei-
ther the node itself nor any of its descendants are matching and therefore cannot con-
tribute a query match. We hypothesize that unproductive nodes significantly slow down
queries under a CMS workload. An index under a CMS workload (see Section 2.1) is
dominated by unproductive nodes, meaning that unproductive nodes constitute a large
percentage of all index nodes.

In order to find supporting evidence for the hypotheses above, we conduct a series
of experiments on Oak. The setup of the experimental evaluation and datasets will be
described in detail in Section 5. We record the query runtime throughout the experiment
and present the data below.

Figures 3a and 3b show the query runtime of the same query over the accumulated
number of update operations for the synthetic and real-world dataset, respectively. To
provide a better sense of time to the reader, we add a vertical line for each passed minute
during the simulation. Each point corresponds to the running median [3] over 10 time
points. We observe a sublinear increase of the runtime from 2ms to 50ms after running
the simulation for 5 minutes on the synthetic dataset and an increase from 2ms to 35ms
on the real-world dataset.

Next, we present data regarding the type of index nodes traversed during query exe-
cution. Figures 4a and 4b depict the total number of traversed nodes in addition to the
number of traversed volatile and unproductive nodes during query execution for each
dataset.

The total number of traversed nodes is increasing sublinearly over time. This explains
the increase in query runtime in Figures 3a and 3b. We believe the index becomes static
over time. As time passes, more and more content nodes are randomly drawn by the
CMS workload and their corresponding index nodes become volatile. After some time,
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Figure 4: Index composition during query execution.

these nodes most likely become unproductive and are not being pruned from the index
anymore. Therefore, the probability of picking a content node with no corresponding
index node (non-indexed) decreases over time. Since it becomes less and less likely for
a non-indexed content node to be randomly picked by the CMS workload, the rate of
growth of total traversed index nodes decreases over time. We expect that if we change
the workload sufficiently often, the number of total index nodes converges to the number
of content nodes.

Furthermore, we see the number of volatile nodes have a downward trend from the
30 second mark till the end of the experiment. We believe it becomes less likely for
nodes to become volatile if unproductive nodes are not pruned, as time passes. When
a workload randomly picks a content node whose index node is unproductive, the index
node becomes matching but was not physically added, thus the volatility count of the
index node does not increment. In comparison, if the workload randomly picks a non-
indexed content node, the corresponding index node’s volatility count increments. We
infer that it is less likely for an unproductive node to become volatile than a non-
indexed one. Our experimental evaluation suggests that the number of unproductive
nodes increases over time. Therefore, it becomes less likely for any node to become
volatile over time. This explains the downward trend of volatile nodes over time.

The sliding window of length L is set to 30 seconds, therefore we encounter no unpro-
ductive nodes during the first 30 seconds of the simulation. Once we reach the 30 second
mark, the query executor encounters unproductive nodes. From that point, we observe a
steep increase in traversed unproductive nodes. After 1 minute, we observe that the total
traversed nodes are dominated by unproductive nodes. The rate of growth of traversed
unproductive nodes seems to decrease over time. When content nodes are picked by
the workload, their corresponding index nodes are inserted into the WAPI, where some
become volatile. When the workload changes, these volatile index nodes most likely
become unproductive and accumulate in the index, hence the number of non-indexed
content nodes decreases. Since fewer non-indexed content nodes are available to become
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volatile and thereafter unproductive, the rate of growth of traversed unproductive nodes
decreases.

Additionally, we observe the functions of the unproductive and volatile index nodes
having the shape of a cycloid. In Figures 4a and 4b, each cusp [1] (30s, 60s, . . . , 300s)
represents a point in which the workload changes during the experiment. When the
workload changes, we initially see a steep decrease in volatile nodes. During that phase,
more nodes cease to be volatile than become volatile. Nodes need to reach the threshold
in order to become volatile and few do, since the skew in the workload only picks a
subset of nodes frequently. Before a new workload kicks in, we observe the opposite
phenomenon. More nodes become volatile than cease to be volatile, because many
nodes are on the verge of becoming volatile and therefore need to be picked only a few
times more to become volatile.

Lastly, we also observe the real-world dataset having a more gentle slope over the
synthetic dataset. Since the real-world dataset has more content nodes, it is less likely
for each content node to be picked by the workload. Having a smaller chance to be picked
by the workload implies fewer volatile and consequently fewer unproductive nodes in the
index.
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Figure 5: Node Ratio during query execution.

Figures 5a to 5b show the ratio of 1) volatile over total and 2) unproductive over total
index nodes, over the accumulated number of update operations for each dataset. These
Figures quantify how strongly unproductive nodes dominate the total traversed nodes.
After five minutes, unproductive nodes account for over 80% of the traversed nodes
whilst less than 20% are volatile on the synthetic dataset. Similarly, on the real-world
dataset, we observe 90% traversed unproductive and 10% traversed volatile index nodes.

Concluding, the experiments strongly support our hypothesis. The query runtime
increases by an order of magnitude after five minutes. Also, unproductive nodes, which
dominate the index, are accountable for the increase in query runtime.
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4 Cleaning Unproductive Nodes

In the previous Section, we saw how unproductive index nodes slow down query execu-
tion. To prevent unproductive nodes from accumulating in the index, we need strategies
to clean up the index. In the following two subsections, we suggest two different ap-
proaches for dealing with unproductive nodes. We will empirically investigate their
query performance in Sections 5.4 and 5.5.

4.1 Periodic Garbage Collection (GC)

First, we propose to clean the index periodically with a garbage collector. We add a
background process that periodically executes garbage collection of unproductive nodes
wrapped inside a single Oak transaction.

The näıve approach for garbage collection is to traverse the entire index subtree,
apply Definition 5 to each visited node n, and delete n if it is unproductive. Deciding
if n is unproductive, requires us to check that no descendant desc(n) of n is matching
or volatile. Checking the descendants of each index node n causes näıve GC to have a
quadratic time complexity.

Example 6 (Näıve GC). Assume we apply näıve GC to the index subtree depicted in
Figure 6. The subtree resembles the worst-case scenario for GC. It contains n nodes,
no node is unproductive because the leaf node is matching and each internal node has
a single child. In order to determine if root node a1 is unproductive, we have to tra-
verse each descendant of a1 and check if it is matching or volatile. The same holds for
determining if any of a1’s descendants is unproductive. In this example, a node ak has
exactly n − k descendants and to check if ak is unproductive, these n − k descendants
need to be traversed.

To determine if the n nodes in the subtree rooted at a1 are unproductive, we need to
traverse the following number of nodes:

(n− 1) + (n− 2) + · · ·+ (n− n− 1) + (n− n)

=
n∑
k=1

n− k

=
n∑
k=1

n−
n∑
k=1

k

= n2 − n(n+ 1)

2

= n2 − n2 + n

2

=
n2 − n

2
= Θ(n2)

We showed that applying näıve GC on an index subtree of n nodes is bound by Θ(n2)
in the worst case.
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a1

a2

...

an−1

an pub:now

Figure 6: Worst case scenario during näıve Garbage Collection. All internal nodes have
a single child. The leaf node is matching, thus no node is unproductive.

By applying a postorder tree walk [2], we can garbage collect the index subtree in
linear time complexity. The postorder tree walk allows us to process a node n’s descen-
dants before n. When visiting node n during a postorder tree walk, any unproductive
descendant of n was already pruned, hence no child of n can be unproductive. Thus,
if n has at least one child, n cannot be unproductive and therefore checking if n has
at least one child, in addition to checking if n is matching or volatile, is sufficient to
determine if n is unproductive, when applying a postorder tree walk. Figure 7 depicts
a postorder tree walk on snapshot G3 from Figure 2. The numbers represent the order
in which the nodes are checked and pruned if unproductive. A node’s descendants are
always evaluated before the node itself.

Algorithm 1 prunes all unproductive descendants of the index subtree rooted at /i.
The algorithm traverses the subtree rooted at /i using a postorder tree walk. If a
descendant n ∈ desc(/i) has no children and is neither matching, nor volatile, it is
unproductive and therefore pruned from the index. If n has at least one child, we infer
that n has at least one matching or volatile descendant, thus n cannot be unproductive.
The postorder tree walk ensures that the algorithm prunes a child before its parent node.
This guarantees that all unproductive nodes are pruned.

Algorithm 1: GarbageCollect

for node n ∈ desc(/i) in postorder tree walk do
if chd(n) = ∅ ∧ ¬matching(n) ∧ ¬volatile(n) then

delete node n
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Figure 7: Postorder tree walk on the index subtree rooted at /i of G3. The numbers rep-
resent the order the corresponding nodes where visited, e.g. /i/pub/now/a/b/d
was visited first, /i/pub/now/a/b second, etc.
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Figure 8: Garbage Collection applied on Oak. Assume nodes /i/pub/now/a/b/d

and i/pub/now/a/b are unproductive (color-coded orange) in snapshot G3.
Garbage collection is executed during transaction T4. G4 is the committed
snapshot.
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Example 7 (Periodic GC). Figure 8 shows snapshot G3 from Figure 2. Index nodes
/i/pub/now/a/b/d and /i/pub/now/a/b are unproductive in snapshot G3, as explained
in Example 4. Oak’s background process executes garbage collection during T4. While
executing GC, the index subtree of G3 is traversed in postorder. The first unproductive
node we visit and prune is /i/pub/now/a/b/d. Next, the garbage collector visits and
prunes /i/pub/now/a/b. No further unproductive node is left for pruning. We see the
cleaned index after garbage collection in snapshot G4.

/**

* Removes any unproductive descendant from the index subtree.

*

* @param root: latest Oak snapshot

*/

void garbageCollect(Root root) {

/* index subtree root */

Tree indexRoot = root.getTree(OAK_INDEX_PATH);

/* filter nodes which have children, are matching or volatile */

for (Tree unproductiveNode : filter(

(Tree n) -> n.getChildrenCount(1) == 0 &&

!isMatching(n) &&

!isVolatile(n),

/* postorder tree walk iterable */

postOrder(indexRoot)

) {

unproductiveNode.remove();

}

}

Figure 9: Periodic Garbage Collection implemented in Java.

Figure 9 shows the implementation of the periodic GC in Java inside Apache Jackrab-
bit Oak. Calling postOrder() returns a lazy sequence of nodes which correspond to
a postorder tree walk of the index subtree (cf. Figure 33 in the Appendix). Next, us-
ing filter() we remove any node that has children, is matching or volatile from the
sequence. All other nodes are unproductive and therefore pruned from the index.

By applying periodic GC on Oak, we introduce a new parameter. GC Period T
defines how often garbage collection is run by the background process on Oak. If we
pick a smaller period T , garbage collection is run more often and this reduces the number
of unproductive nodes in the index. As a result, we increase the query performance of
Oak, since the query executor has to traverse fewer unproductive nodes on average.
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It is also worth mentioning that GC uses system resources in order to clean the index.
If run too often, GC might degrade query performance, because the system is busy
cleaning the index, instead of processing queries.

We suggest running GC when the system is not busy executing queries, e.g, every day
during the early morning hours. Like so, garbage collection minimally interferes with
other transactions. We will revisit GC period in Section 5.4.1, where we conduct an
experiment in order to determine the impact of period T on unproductive nodes.

4.2 Query-Time Pruning (QTP)

While periodic garbage collection is explicitly executed by Oak in order to clean unpro-
ductive nodes, Query-Time Pruning is an approach which cleans unproductive nodes
whilst Oak answers queries. Doing so, we benefit by avoiding the cost of explicitly
traversing the index in comparison to GC.

Frequent queries also benefit from QTP. If a query is executed for the first time,
QTP cleans all unproductive nodes traversed during query execution. If the query is
executed a second time shortly thereafter and no new nodes become unproductive in the
meantime, the query executor encounters no unproductive nodes anymore and therefore
the query is answered faster.

If the path filter m of CAS query Q(k, v, m) (cf. Definition 1) changes often, the query
executor starts traversing new subtrees in the index and consequently, some subtrees
are not queried anymore. If an unproductive node is a member of a subtree that is not
queried anymore, it is not pruned and remains in the index. Such unproductive nodes
waste space because they contain no data but do not impact query performance since
they are not traversed during query execution.

When using QTP to query for all descendants of a content node with path m, we
apply a postorder tree walk. With the postorder tree walk, we traverse and clean all
unproductive nodes in the subtree of /i/k/v/m = /i/k/v/λ1/ . . . /λd in linear time
complexity, as explained in Section 4.1. In the same Section, we mention that during a
postorder tree walk, checking if node n has at least one child, in addition to checking if n
is matching or volatile, is sufficient to determine if n is unproductive. The postorder tree
walk ensures that the algorithm prunes a child before its parent node. This guarantees
that all unproductive nodes are pruned in the subtree rooted at /i/k/v/m.

Algorithm 2 takes a CAS query Q(k, v, m) as an argument, where k is a property, v a
value and m a content node’s path. We initialize set r as the empty set. r will hold all
content nodes satisfying the CAS query (cf. Definition 1). We traverse any descendant
n of /i/k/v/m = /i/k/v/λ1/ . . . /λd in a postorder tree walk. If node n is matching, we
add its corresponding content node to r and proceed to the next descendant. If node n
has no children and is neither matching, nor volatile, it is unproductive and therefore
pruned from the index. After we finish traversing all descendants n, we return the result
set r.
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Algorithm 2: QueryQTP

Data: Query Q(k, v,m), where k is a property, v a value and m (=
/λ1/ . . . /λd) a content node’s path.

Result: A set of nodes satisfying Q(k, v,m)
r ←− ∅
for node n ∈ desc(/i/k/v/λ1/ . . . /λd) in postorder tree walk do

if matching(n) then
r ←− r ∪ {∗n}

else if chd(n) = ∅ ∧ ¬volatile(n) then
delete node n

return r
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Figure 10: Query-Time Pruning applied on Oak. Assume nodes /i/pub/now/a/b/e and
/i/pub/now/a/c are unproductive in snapshot G5. Transaction T6 executes
CAS query Q(pub, now, /a/b) which queries for all descendants of /a/b with
“pub” set to “now” and commits the resulting snapshot G6. QTP is used
during query execution.

Example 8 (QTP). Consider Figure 10. Transaction T6 executes CAS queryQ(pub, now, /a/b)
which queries for all descendants of /a/b with “pub” set to “now” in snapshot G5. As-
sume the query executor uses QTP and nodes /i/pub/now/a/b/e and /i/pub/now/a/c

are unproductive. The query executor traverses all descendants of /i/pub/now/a/b

and therefore prunes the unproductive index node /i/pub/now/a/b/e. Since the other
unproductive index node (/i/pub/now/a/c) is not traversed during query execution, it
is not pruned and remains in the index unproductive. The resulting snapshot G6 is
committed by T6 after finishing query execution.
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/**

* Answers a CAS Query and prunes traversed unproductive index nodes.

*

* @param k: Property we query for

* @param v: Value we query for

* @param m: Path of content node which the descendants we query for

* @param root: Latest Oak snapshot

* @returns An iterable with content nodes satisfying the CAS query

*/

Iterable<Tree> QueryQTP(String k, String v, String m, Root root) {

/* e.g.: /oak:index/pub/:index/now */

String indexRootPath = concat(OAK_INDEX_PATH, k, v);

/* e.g.: /oak:index/pub/:index/now/a */

String queryNodePath = concat(indexRootPath, m);

/* map index nodes to corresponding content nodes */

return map((Tree n) -> {

return root.getTree(relativize(indexRootPath, n.getPath()));

},

/* filter non-matching index nodes */

filter((Tree n) -> {

boolean isMatchingMemo = isMatching(n);

/* prune if no children, not matching and not volatile */

if (n.getChildrenCount(1) == 0 &&

!isMatchingMemo &&

!isVolatile(n)

) {

n.remove();

}

return isMatchingMemo;

},

/* postorder tree walk of descendants of /i/k/v/m */

postOrder(root.getTree(queryNodePath))

)

);

}

Figure 11: Query-Time Pruning implemented in Java.

Figure 11 shows the Java implementation of QTP in Oak. The algorithm takes a
property k, value v, path m, a Root and returns a lazy sequence of content nodes satisfying
the CAS query Q(k, v, m). Calling postOrder(), we get a sequence of nodes representing
a postorder tree walk in the subtree rooted at /i/k/v/m. We remove any node that is
not matching from the sequence using filter(). If a node has no children and is neither
matching, nor volatile, it is unproductive and we prune it from the index.
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5 Experimental Evaluation

5.1 Goals

The goal of our experimental evaluation is to evaluate and compare GC and QTP under
different parametrizations and workloads. In Section 5.3 we see how the parameters
volatility threshold τ , sliding window length L, workload skew s and update operations
per second, impact the number of unproductive nodes in the index subtree. These
parameters directly impact the number of volatile nodes and therefore can affect the
production of unproductive nodes in the index. In Section 5.4, we evaluate the query
performance under GC and in Section 5.4.1 we investigate how GC period T affects
GC’s performance. The experimental methodology used on GC is also applied on QTP
in Section 5.5. Lastly, Section 5.6 compares GC and QTP directly and suggests under
which circumstances one might use periodic GC over QTP, and vice versa.

5.2 Preliminaries

5.2.1 Setup

We use a volatility threshold τ = 5 and sliding window of length L = 30s as defaults,
unless otherwise noted. All experiments are conducted on a 15” Macbook Pro 2015
inside a virtual machine running Linux Arch.2 We allocate 4 out of 8 virtual cores (Intel
i7-4980HQ 2.7 - 4.0 GHz) to the virtual machine and 12 GB of RAM. We allocated half
the available virtual cores of the machine because we wanted to ensure the machine’s
limited CPU cooling performance will not affect the simulations.

5.2.2 Datasets

We use two datasets in our experiments. Each dataset resembles the content subtree
of an Oak instance. The synthetic dataset is a complete binary tree of height 19, i.e. a
binary tree in which all leaf nodes have depth 19 [2]. It contains 220 ≈ 106 nodes, of which
50% are leaf nodes. Each node has a mean depth and fanout of 18 and 2, respectively.
The real-world dataset is based on DELL’s website (http://dell.com) which is built
on top of Adobe’s AEM that uses Oak.3 It is sparser than the synthetic dataset and

2https://www.archlinux.org/about/
3https://wwwimages2.adobe.com/content/dam/acom/en/customer-success/pdfs/dell-case-study.pdf

(a) Synthetic (b) Real-World

Figure 12: Excerpts of both datasets visualized.
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contains 13 · 106 nodes, 65% of which are leaf nodes. Each node has a mean depth and
fanout of 13.68 and 2.89, respectively. The tree’s nodes have a max depth and fanout
of 24 and 1729, respectively. Since the dataset is so sparse, there exist many nodes
with a single child and few with many children, forming linked lists (called “chains”)
sometimes. Figure 12 shows a sample subtree for each dataset.

5.2.3 Workload

In Section 2.1, we introduced the characteristics of a CMS workload. Using a running
example we explained that a CMS workload is skewed, update-heavy, changing and
CMSs frequently make use of a job-queuing system. For our experiments, we designed
a workload that has the noted characteristics.

The workload randomly draws content nodes and executes update operations on them.
We denote the set of nodes of the content subtree with depth greater than the mean
depth as the lower content subtree. The workload is only allowed to draw nodes from the
lower content subtree. Doing so, we increase the number of nodes in the index subtree
and make query execution more expensive. Assume the workload repeatedly draws a
leaf node n and executes update operations on it until its corresponding index node
becomes volatile and therefore remains in the index. If the workload then randomly
draws an ancestor of n, no nodes are added to the index. Since n is volatile, n and its
ancestors already exist in the index, hence no nodes have to be added. By only drawing
nodes from the lower content subtree, we decrease the likelihood of drawing nodes whose
corresponding index nodes already exist in the index and therefore more index nodes are
added. With more nodes in the index subtree, query execution becomes more expensive.

In order to have skew, we incorporate the Zipf distribution [7]. The Zipf distribution
picks a small subset of nodes more frequent than others. Let N be the number of nodes
inside the lower content subtree. We randomly and uniquely assign an integer k ∈ [1, N ]
to each node in the lower content subtree, creating a k → node mapping. The probability
of randomly drawing the k-th node from the lower content subtree according to the Zipf
distribution is:

Zipf(k,N, s) =

(
ks ·

N∑
i=1

1

is

)−1
The k-th node corresponds to the node which is assigned integer k in the mapping.

Skewness s of the Zipf distribution is parametrizable and we use s = 1 by default in our
experiments, unless otherwise noted. By having a smaller skew, the subset of nodes which
is frequently drawn, becomes bigger. With s = 0, the Zipf distribution corresponds to the
uniform distribution and every node has equal probability to be drawn. In Section 5.3.3,
we make an experiment to determine skew’s impact on unproductive nodes.

Figures 13a and 13b show Zipf’s Cumulative Distribution Function (CDF) for both
datasets and skew values s ∈ {0, 1

2
, 1, 3

2
, 2}. If we randomly draw a large sample of nodes

according to the distribution with s = 1, 80% of these nodes are amongst the same 30k
nodes (6% of all nodes) on the synthetic dataset and 40k nodes (5.9% of all nodes) on
the real-world dataset.
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Figure 13: CDF for the Zipf distribution for both datasets.

A CMS workload is also update-heavy. To simulate this, we execute many update
operations before executing a query operation. We fix the default update to query ratio
to 10:1, i.e., 10 update operations are executed for each query operation. Given our setup
(see Section 5.2.1), the ratio practically results in 46 update operations and 4.6 query
operations per second. In Section 5.3.4, we investigate the impact of update operations
per second on the production rate of unproductive nodes.

Additionally, the workload we design has to be changing. We periodically permute
the node mappings by reassigning a new random and unique integer k ∈ [1, N ] to each
node from the lower content subtree in order to change the hotspots of the simulation,
i.e. the subset of nodes which are frequently updated. We change the hotspot by default
every 30 seconds. During a five-minute experiment we expect 10 different workloads.

Lastly, the workload has to simulate a job-queuing system. An update operation
executed during the experiment is composed from two actions. We first set the “pub”
= “now” property-value pair to the node and then consecutively remove it. The actions
simulate a node being inserted into the queue and then being processed and removed.
Using our designed update operation, there can be at most one matching index node at
any instance of time.

−→ −→

Figure 14: CMS Workloads visualized. Red shaded nodes are frequently drawn nodes.

Figure 14 depicts heatmaps of a content subtree of Oak over time. These heatmaps
show how often the designed workload selects specific nodes inside the content subtree.
Red shaded nodes are the most frequently drawn nodes.
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5.3 Unproductive Nodes

5.3.1 Volatility Threshold τ

Volatility threshold τ determines after how many insertions/deletions of an index node
it becomes volatile (see Definition 4). In this Section, we study the impact of volatility
threshold τ on unproductive nodes, which directly affect query runtime.

We hypothesize that an increase in τ yields a decrease to the number of traversed
unproductive nodes during query execution under a CMS workload. If τ increases, it
is less likely for a node to become volatile. Having fewer volatile nodes should cause a
decrease to the number of unproductive nodes and consequently also query runtime in
the CMS workload.
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Figure 15: Unproductive Nodes over the accumulated number of update operations with
thresholds τ ∈ {1, 5, 10}.
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Figure 16: Unproductive Nodes over volatility threshold τ .
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Figures 15a and 15b show the increase in unproductive index nodes for different volatil-
ity thresholds τ ∈ {1, 5, 10} over the course of a five-minute experiment. We observe
a lower τ yields a steeper slope. A lower volatility threshold increases the likelihood
of a node becoming volatile. The number of volatile nodes also affects the number of
unproductive nodes, since volatile nodes eventually stop being frequently updated when
the workload changes and become unproductive. The increase in unproductive nodes
in the index also affects query runtime because Oak has to traverse these nodes during
query execution.

The Figures show that unproductive nodes increase linearly as update operations
increase. We expect the increase to be sublinear for longer experiments. As time passes,
the index becomes more static (see Section 3.2), because more volatile/unproductive
index nodes are retained and fewer nodes are pruned. As a result, fewer nodes become
volatile as the experiment progresses. The number of traversed unproductive nodes is
upper-bounded by the number of content nodes. This is the case because the index
subtree for a given property-value pair (e.g. “pub” = “now”) cannot have more nodes
than the content subtree, because the index subtree is a subset of the content subtree.
Eventually, we will reach the upper bound.

Figures 16a and 16b compare the number of traversed unproductive nodes during
query execution over a range of thresholds. We observe a decrease in unproductive
nodes while increasing threshold τ . As suggested earlier, a lower volatility threshold
increases the number of volatile nodes in the index and consequently also increases the
number of unproductive nodes.

We see the two variables sharing a power law relationship. We believe the workload’s
skew to be responsible for the power law relationship. At τ = 0, any node drawn by the
workload becomes volatile. This is why we see so many unproductive nodes. At τ = 2,
we observe a sudden drop in unproductive nodes. This is the case because content
nodes have to be drawn twice in order to become unproductive, and since the workload
is skewed, only a few nodes are drawn twice. For even larger values, the function flattens
out. Since the workload is skewed, only a handful of nodes are drawn enough times by
the workload to become volatile.

The query executor has to traverse 5k unproductive index nodes when Oak has a
threshold of τ = 5. By increasing the threshold to τ = 6, the average number of traversed
unproductive nodes does not decrease significantly because of the Zipf distribution’s
skewness. The majority of update operations are executed amongst a small subset of
nodes. This explains the power law relationship between traversed unproductive nodes
and τ .

Summarizing, all observations verify our hypotheses. Increasing volatility threshold τ
decreases the number of unproductive nodes traversed, which decreases query runtime.
Increasing the volatility threshold causes fewer nodes to become volatile. Since we
create fewer volatile nodes, we also reduce the number of unproductive nodes. Less
unproductive nodes yield lower WAPI query runtimes.

26



5.3.2 Sliding Window of Length L

The Sliding Window Length L determines the length of the recent workload that WAPI
considers to compute an index node’s volatility count (cf. Definition 4). Greater values
of L allow WAPI to count more updates and therefore increase the chances of a node
becoming volatile. In this Section, we study the effect of the sliding window on the
number of unproductive nodes.

We hypothesize that an increase in L yields an increase to the number of traversed
unproductive nodes during query execution. If L increases, it is more likely for a node to
become volatile, since more updates are considered towards the volatility count. Having
more volatile nodes should imply an increase in unproductive nodes and consequently
also query runtime.
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Figure 17: Unproductive Nodes over accumulated update operations with sliding window
lengths L ∈ {10s, 20s, 30s}.

Figures 17a and 17b visualize the number of unproductive nodes WAPI traverses dur-
ing query execution for three distinct lengths L ∈ {10s, 20s, 30s} of the sliding window
w.r.t. update operations. As expected, the number of unproductive nodes increases the
fastest for the longest sliding window length (L = 30s). In the long-term, the number of
unproductive nodes increases sublinearly w.r.t. time. We explained earlier that as time
passes, the index becomes more static and the number of unproductive nodes converges
towards the upper bound set by the number of content nodes.

Figures 18a and 18b show the number of unproductive nodes the query executor has
to traverse w.r.t. the sliding window length L. Greater sliding window lengths cause
a sublinear increase to the number of unproductive nodes traversed by WAPI during
query execution. Since the index becomes more static as explained earlier, the function
converges towards the upper bound. The Figures seem to suggest a linear relationship
between the two variables. This is the case because the number of content nodes is
greater by two orders of magnitude compared to the number of unproductive nodes we
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Figure 18: Unproductive Nodes over sliding window length L.

can produce during the entire five-minute experiment. We expect to see the function
converge if we run the experiment for a significantly longer duration of time.

Concluding, sliding window length L affects the rate of growth of unproductive nodes.
Increasing L increases the likelihood of an index node becoming volatile and later un-
productive.

No skew (s = 0) Normal skew (s = 1) High skew (s > 1)

Figure 19: Hotspots affected by different skew values. Red shaded nodes denote fre-
quently drawn nodes.

5.3.3 Workload Skew s

One of the key characteristics of the CMS Workload is skewness, as mentioned in Sec-
tion 2.1. A small subset of nodes is frequently updated, whereas the rest of the nodes
is not. We refer to the set of content nodes which are frequently drawn by the skewed
workload as hotspot. Nodes inside the hotspot most likely become volatile and later
on unproductive. We use the Zipf distribution to model a skewed workload (see Sec-
tion 5.2.3). If skew s increases, the hotspot becomes smaller but the hotspot’s member
nodes are drawn more frequently.

We expect skew s to affect the number of unproductive nodes WAPI traverses during
query execution. Since some nodes are updated more often, these nodes are more likely
to become volatile and also unproductive, later on. On the other hand, increasing skew
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s also reduces the size of the hotspot and therefore reduces the number of volatile nodes,
hence fewer nodes become unproductive.

Figure 19 visualizes workloads with different skew values for the reader’s convenience.
In the uniform workload, i.e. the workload with no skew (s = 0), each node is equally
likely to be drawn. The workload with skew s = 1 has a hotspot and nodes in the
hotspot are drawn more frequently than other nodes. The workload with high skew
(s > 1) has an even smaller hotspot, but member nodes are drawn more frequently.
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Figure 20: Unproductive Nodes over accumulated update operations with skew s ∈
{1, 3

2
, 2}.
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Figure 21: Unproductive Nodes over skew s.

Figures 20a and 20b show the number of unproductive nodes traversed by WAPI
during query execution with workloads having skew s ∈ {1, 3

2
, 2}. We see a smaller skew

s increases the number of unproductive nodes. We believe that when increasing s, the
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size of the hotspot decreases and therefore the number of nodes becoming volatile, and
eventually unproductive, decreases. We also see that a workload with s = 1 has barely
more unproductive nodes over time than a workload with s = 3

2
.

Figures 21a and 21b offer a more detailed perspective by showing the traversed un-
productive nodes w.r.t. skew s. We observe that the number of unproductive nodes
maximizes when s = 1. When the workload draws nodes with little to no skew (s < 1),
update operations are spread (almost) uniformly amongst nodes. As a result, fewer
nodes become volatile and later on unproductive. We see a sudden drop in unproduc-
tive nodes when skew is s = 2. The hotspot reaches a point where it loses a significant
number of nodes because the workload is so skewed. From there on, we see a sublinear
rate of convergence.

5.3.4 Update Operations per Second

One of our initial assumptions was that Oak’s workload is update heavy, amongst oth-
ers. To emphasize the implications of such an update heavy workload, we conduct the
following experiment. Oak is benchmarked with different number of update operations
per second, in order to show the effect of such a workload on unproductive nodes.
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Figure 22: Unproductive Nodes over time for 40, 50 and 60 updates per second.

Figures 22a and 22b show the number of traversed unproductive nodes over time. We
run the simulation for workloads having 40, 50 and 60 updates per second respectively.
An increase in the number of updates per second yields an increase in traversed unpro-
ductive nodes, an observation depicted in Figures 23a and 23b, as well. These Figures
show the number of traversed unproductive nodes over updates per second. A node
becomes volatile if it is updated τ times during a sliding window of length L. If we
increase the number of updates during a fixed interval, the node is more likely to reach
threshold τ and become volatile. If the number of volatile nodes increases, there is an
increase in unproductive nodes, too, as shown before.
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Figure 23: Unproductive Nodes over updates per second.

In addition, the increase we observe in Figures 23a and 23b is linear. Increasing
the number of update operations, should yield a proportional increase in volatile nodes
which later on become unproductive. Since the index becomes static as time passes (see
Section 3.2), we expect the increase to become sublinear if we run the experiment longer.

5.4 Garbage Collection

Our next experiment evaluates Oak’s query performance under periodic Garbage Collec-
tion. We record the average query runtime and the number of volatile and unproductive
index nodes during query execution while having periodic GC enabled.
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Figure 24: Query Runtime over accumulated update operations, periodic GC enabled.

Figures 24a and 24b show the resulting decrease in query runtime when applying
periodic GC on Oak. The garbage collector is run every 30 seconds. We observe the
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query runtime increase during the first minute of the simulation. When GC is run for the
first time (at 30 seconds), it does not encounter any unproductive nodes because with
L = 30s no volatile node has yet ceased to be volatile. Afterwards, every succeeding
GC encounters and prunes unproductive nodes. The pruned nodes are made visible by
the sawtooth pattern depicted in the Figure. Each drop in query runtime reflects the
speedup caused by cleaning unproductive nodes. The query runtime oscillates between
20 and 30 milliseconds with a mean of 25 milliseconds on the synthetic dataset. The
real world’s query runtime oscillates between 8 and 18 milliseconds with a mean value
of 13 milliseconds.

We also observe that queries executed on the real-world dataset are faster, on average.
We will see later that the synthetic dataset has more index nodes compared to the real-
world dataset. The query executor has to traverse more nodes under the synthetic
dataset, hence the query runtime increases.
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Figure 25: Index Nodes over accumulated update operations, periodic GC enabled.

Figures 25a and 25b visualize the index structure during query execution with periodic
GC. Unproductive nodes increase until GC is run, after which they are completely
removed again. It is evident when observing the Figures that the number of unproductive
nodes does not always drop to zero. This is the case because we use a running median
[3]. The running median removes outliers, and in our case also data points which had
zero unproductive nodes.

The volatile nodes also have a cycloid pattern. The cycloid pattern, as seen and
explained in Figures 4a and 4b, appears because many nodes cease to be volatile im-
mediately after a workload change and many nodes become volatile before a workload
change. In contrast to Figures 4a and 4b, we do not see the number of volatile nodes hav-
ing a downward trend anymore from the 30 second mark onward. Instead in Figures 25a
and 25b, the number of unproductive nodes oscillates around a constant throughout the
experiment. Since the likelihood of node becoming volatile remains constant, there is
no increase or decrease in volatile nodes, on average.
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Comparing the synthetic dataset to the real-world dataset, we observe another phe-
nomenon. The gap between traversed volatile and total traversed nodes is significantly
bigger in the synthetic dataset. In other words, the percentage of volatile index nodes is
higher in the real-world dataset. We believe that non-volatile ancestors of volatile nodes
account for the gap because ancestors of volatile nodes are more likely to become volatile
too in sparser subtrees. Sparse subtrees form long chains of nodes. If a leaf node in such
a chain becomes volatile, so do its ancestors, since they are also updated when the leaf
node is added/removed. The more sparse a subtree is, the longer the chains become.
Since the real-world dataset is sparser than the synthetic dataset (Section 5.2.2), the
percentage of volatile nodes is higher compared to the synthetic dataset.

5.4.1 GC Period T

In this Section we discuss the performance impact of GC period T . Oak can run GC
arbitrary many times. Given our setup, we would like to find out what the optimal
period of GC is. We run GC under a varying period and compare the results.

We expect the number of unproductive nodes to decrease as we run GC more often,
i.e., T decreases. GC uses system resources and if GC is run too often, we might decrease
the query performance because the system is busy garbage collecting instead of executing
queries. This negative impact of GC should be especially pronounced if the system is
under high load.

For the following experiments, we allocate only a single virtual core to the virtual
machine in order to disable parallel computation and simulate system resource short-
age. By doing so, we can demonstrate that GC, run on a different thread from query
execution, steals CPU time from the query executor.
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Figure 26: Avg. Query Runtime over GC Period T .

Figures 26a and 26b show the average query runtime w.r.t. period T . The optimal
period T ∗ seems to be in the interval T ∗ ∈ [500ms, 2000ms] for both datasets. If T < T ∗,
GC starts stealing CPU time from the query executor and queries take longer to process.
On the other hand, when T > T ∗, the query runtime increases sublinearly because the
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index fills up with unproductive nodes. We see a sublinear increase since the index
becomes more static over time, as explained previously.
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Figure 27: Unproductive Nodes over GC period T .

Figures 27a and 27b depict the number of unproductive nodes w.r.t. T . We see that
the number of unproductive nodes increases sublinearly as T increases. The function
converges because the index becomes more static over time, as explained previously.

When comparing Figures 27a and 27b to Figures 26a and 26b it becomes more clear
that although we have fewer unproductive index nodes under frequent GC (T < 2s), the
average query runtime increases because of the system resource shortage. For any period
T > 2s, the average query runtime seems to correlate with the number of unproductive
nodes. (a) Synthetic
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Figure 28: Unproductive Nodes over accumulated update operations with GC period
T ∈ {5s, 50s}.

Let us consider Figures 28a and 28b. They show the number of traversed unproductive
nodes for two different periods T ∈ {5s, 50s}, w.r.t. the accumulated number of update
operations. We clearly see that GC with period T = 5s has a smaller number of
unproductive nodes over time, on average.
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Figure 29: Query Runtime over accumulated update operations, QTP enabled.

5.5 Query-Time Pruning

In this Section, we evaluate Oak’s query performance under Query-Time Pruning. We
record the average query runtime and the number of volatile and unproductive index
nodes, similar to Section 5.4.

Figures 29a and 29b depict the resulting decrease in query runtime when applying
QTP on Oak. We see the runtime rise during the first 30 seconds and then see the
runtime fluctuate around 15ms for the synthetic and 10ms for the real-world dataset.
We believe that traversing volatile nodes dominates query runtime.

Figures 30a and 30b show the composition of the index with QTP enabled during query
execution. We observe the number of unproductive nodes to be close to 0 throughout
the entire simulation. This is because the index is continuously cleaned by QTP. As
long as query execution is continuous, so is our index cleaning. Since after ten updates
we always query the root content node in our experiment, we clean the whole index
subtree from unproductive nodes. QTP also cleans unproductive nodes the moment
they emerge. In contrast, periodic GC cleans these unproductive nodes 30 seconds after
they appear in our experiment. As a result, frequent queries benefit the most from QTP,
since a subsequent query with the same filter as its preceding query, does not traverse
any unproductive nodes under QTP.

As seen previously with GC (Section 5.4), we also observe a bigger gap between volatile
and total index nodes in the synthetic dataset compared to the real-world one due to
more non-volatile ancestors of volatile nodes.

Figure 31 depicts a cost breakdown of a CAS-query with QTP enabled. Assuming
we use Algorithm 2, a 20ms query spends on average 10ms (50%) traversing the index
subtree, 0.5ms (2.5%) checking the match property of visited nodes, 6ms (30%) checking
if the visited nodes have children, 0.5ms (2.5%) checking if the visited nodes are volatile
and 3ms (15%) writing, i.e. pruning unproductive nodes and committing the transaction.

QTP added a 9.5ms overhead to a 11.5ms query, which corresponds to an additional
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Figure 30: Index Nodes over update operations, QTP enabled.

90% runtime. The main overhead added by QTP in this experiment is checking if the
visited nodes have children. Checking the match property and checking if a node is
volatile, are cheap operations because Oak caches node properties internally. Writing
changes becomes a significant overhead when there are many unproductive nodes, e.g.
when a query has not been executed for a long time. Although QTP is adding an
overhead, it is still faster than using no QTP in the long-term because of unproductive
nodes (cf. Figure 3).
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Figure 31: The overhead of various steps during QTP based on Algorithm 2 are high-
lighted with different colors.
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5.6 Comparison

The previous Sections presented parameters affecting the rate of growth of unproductive
nodes in the index subtree and also benchmarked the two proposed approaches, periodic
GC and QTP. This Section directly compares the two solutions and provides general
outlines on choosing the most suitable approach.

(a) Synthetic

0.5 1.0 1.5 2.0 2.5
Query Period [s]

30

40

50

60

70

80

A
vg

.
Q

u
er

y
R

u
nt

im
e

[m
s]

GC

QTP

(b) Real-World

0.5 1.0 1.5 2.0 2.5 3.0
Query Period [s]

30

40

50

60

70

80

A
vg

.
Q

u
er

y
R

u
nt

im
e

[m
s]

GC

QTP

Figure 32: Periodic GC vs. QTP.

Figures 32a and 32b show the average query runtime over the query period, i.e. the
average time in between two consecutive queries, under GC and QTP. We observe that
QTP outperforms GC for a low query period. Queries occur often and the index is
continuously cleaned by QTP. Since there are so many queries during a fixed interval,
each query traverses a small number of unproductive nodes. The speedup gained by not
continuously traversing many unproductive nodes is significantly greater than QTP’s
overhead (Section 5.5).

On the other hand, as queries become more infrequent, periodic GC is preferred. When
two consecutive queries under QTP are far apart, many unproductive nodes gather in
the index subtree and when the latter query is run, it suffers from a hefty performance
penalty from traversing many unproductive nodes. Say GC is executed between the two
queries, then the latter query traverses considerably fewer unproductive nodes and is
faster because unproductive nodes were already cleaned up by the GC run.

Figures 32a and 32b each have a data point on which the two functions (GC, QTP)
intercept. For example, in Figure 32a, when τ = 5, L = 30s, s = 1, T = 30s and we
execute a query every 1.1 seconds, we are indifferent choosing between GC and QTP.
The same holds in Figure 32b for a query period of 0.5 seconds. We denote as query
runtime equilibrium point, the point on which queries under GC take, on average, as
long as queries under QTP, given τ, L, s, T and the query period.

The query performance under GC and QTP also depends on the production rate of
unproductive nodes in the index subtree. Assume we produce an extremely low number
of unproductive nodes over time. In this case, QTP should be more beneficial compared
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to GC because no matter how far queries are apart, unproductive nodes are not produced
fast enough so that queries take a notable performance hit.

The other extreme is if we produce significantly many unproductive nodes. In that
case, running GC might be more beneficial, or at least less expensive. Assume we produce
so many unproductive nodes over time, so that pruning an unproductive node with a
query under QTP is useless and wastes time, because it becomes unproductive again
before the next query starts. In this scenario, GC is superior (depending on T ) because
queries under GC do not take the performance penalty QTP imposes, for checking a
node’s productiveness and possibly deleting it.

We conjecture that the cost of a query under QTP increases at a higher rate compared
to GC if the number of traversed unproductive nodes increases. This would also explain
why the slope on QTP is steeper compared to GC, with respect to the query period
(cf. Figures 32a and 32b). If this is the case, the rate at which unproductive nodes are
produced impacts the position of the equilibrium point. If we produce more unproductive
nodes during a fixed interval, the equilibrium point might move towards the left. Under
such circumstances, if queries are faster under QTP and we increase the unproductive
node production rate, the queries might then suddenly run faster on GC.
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5.7 Summary

Section 5 focused on the experimental evaluation. We first conducted a series of exper-
iments to test parameters that impact the production rate of unproductive nodes. Our
main findings with respect to the production rate of unproductive nodes are:

� A lower volatility threshold τ increases the number of unproductive nodes in index
subtree. τ and unproductive nodes share a power law relationship (Section 5.3.1).

� A greater sliding window length L increases the number of unproductive nodes.
The results of the experiments suggest a linear relationship between L and the
number of unproductive nodes, but we expect a sublinear increase if the experiment
is run longer (Section 5.3.2).

� The production rate of unproductive nodes is the highest with skew s = 1. The
number of unproductive nodes drops rapidly for high values of s. The hotspot gets
smaller and therefore we observe fewer unproductive nodes (Section 5.3.3).

� More update operations per second increase the production rate of unproductive
nodes linearly. If the experiment is run longer, we expect to see a sublinear increase
(Section 5.3.4).

We then evaluated and compared GC and QTP. Both approaches reduced the number
of unproductive index nodes and increased Oak’s query performance significantly. We
present our main findings below:

� Queries under GC are executed faster due to fewer unproductive index nodes. The
number of unproductive nodes followed a sawtooth pattern over time. Running
GC more often reduces the number of unproductive nodes, but running GC too
often steals system resources from query execution and adds a performance penalty
to the queries. The system is busy garbage collecting instead of answering queries
(Section 5.4).

� Queries under QTP traverse near no unproductive nodes throughout the entire
five-minute experiment. That was the case, because queries under QTP were
cleaning the index continuously in comparison to the sawtooth pattern for GC.
This results in more stable query runtimes. We later analyzed the cost structure
of a query under QTP. The average query runtime increased from 11.5ms to 20ms.
The main overhead of QTP in this experiment was checking if visited nodes have
children, which is done to determine unproductive nodes. Although QTP is adding
an overhead, it is still significantly faster than using no QTP in the long-term
because of unproductive nodes (Section 5.5).

� QTP outperforms GC under workloads with frequent queries, depending on period
T . Otherwise, GC is the method of preference, given the circumstances of our
experiment. We conjecture that GC might outperform QTP under workloads
with a high unproductive node production rate (Section 5.6).
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6 Conclusion

We proposed two algorithms to detect and prune unproductive nodes in a workload-
aware hierarchical index (WAPI). Unproductive nodes are an unwanted by-product of
WAPI’s decision to not prune volatile nodes. They do not contain any data and are
therefore uselessly traversed during query execution. By pruning these unproductive
nodes, we are able to improve the index query performance since we only encounter
index nodes that do yield a query match, are volatile, or are an ancestor of such a node.
Additionally, we free storage space that was previously allocated to unproductive nodes.

The first approach is to periodically apply garbage collection (GC) on WAPI. Doing
so requires us to explicitly traverse the index subtree thus introducing a performance
penalty, but we are able to prune all unproductive nodes from the index. The second
approach is to prune unproductive nodes during query execution (QTP). Doing so we
avoid traversing the index explicitly, but we add a small overhead on query execution
because we have to check each visited node’s productiveness. Additionally, we only
prune unproductive nodes from subtrees which are being queried. We extend WAPI
by implementing periodic GC and QTP in Apache Jackrabbit Oak and our evaluation
shows that both approaches significantly decrease the query runtime of WAPI.

Our experimental evaluation also showed that volatility threshold τ , sliding window
of length L, skew s and the number of update operations per second, impact the number
of volatile nodes in the index subtree, which later on most likely become unproductive
and slow down queries. We then compare GC against QTP and conclude that deciding
between one of the two approaches depends, amongst others, on how often queries occur.

It is still open how concurrency control affects the performance of the two mentioned
algorithms. We believe QTP will take a bigger performance hit in comparison to GC,
since QTP continuously prunes and updates the index causing more index conflicts
under concurrent transactions than GC with its periodic updates. We also do not know
how much the query performance under QTP is affected when the query filter changes
more often and frequent queries do not benefit from QTP anymore. An analysis of
the impact of the unproductive node production rate on the query runtime equilibrium
point would also be of importance. We conjecture that GC outperforms QTP under a
high unproductive node production rate. Furthermore, we did not investigate what the
benefits and caveats are of running both periodic GC and QTP simultaneously on the
database system.
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7 Appendix

/**

* Returns an iterable which lazily traverses a subtree rooted at root

* in postorder.

*

* @param root: Root node of subtree we apply traversal on

* @returns: Iterable for postorder tree walk

*/

Iterable<Tree> postOrder(Tree root) {

return () -> {

/* Stacks */

Deque<Tree> s1 = new LinkedList();

Deque<Tree> s2 = new LinkedList();

s1.push(root);

return new Iterator<Tree>() {

@Override

public boolean hasNext() {

return s1.size() > 0 || s2.size() > 0;

}

@Override

public Tree next() {

while (s1.size() > 0 && (

s2.size() == 0 ||

isAncestor(

s2.peek().getPath(),

s1.peek().getPath()

)

)) {

Tree n = s1.pop();

s2.push(n);

for (Tree child : n.getChildren()) {

s1.push(child);

}

}

return s2.pop();

}

};

};

}

Figure 33: postOrder() implementation in Java.
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/**

* Higher order function, applies func to each element of iterable.

*

* @param func: The function to apply on each element of iterable

* @param iterable: The iterable func is applied on

* @returns: Resulting elements from applying func

*/

Iterable<R> map(Function<T,R> func, Iterable<T> iterable) {

return () -> {

Iterator<T> iterator = iterable.iterator();

return new Iterator<R>() {

@Override

public boolean hasNext() {

return iterator.hasNext();

}

@Override

public R next() {

return func.apply(iterator.next());

}

};

};

}

Figure 34: map() implementation in Java.
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/**

* Higher order function that removes all elements from an iterable

* not satisfying the predicate.

*

* @param predicate: The predicate that tests elements

* @param iterable: The iterable whose members are tested against

* @returns: An iterable with members satisfying the predicate

*/

Iterable<T> filter(Predicate<T> predicate, Iterable<T> iterable) {

return () -> {

Iterator<T> iterator = iterable.iterator();

T n = null;

return new Iterator<T>() {

@Override

public boolean hasNext() {

nextIfNeeded();

return n != null;

}

@Override

public T next() {

nextIfNeeded();

T tmp = n;

n = null;

return tmp;

}

@Override

private void nextIfNeeded() {

while (n == null && iterator.hasNext()) {

T candidate = iterator.next();

if (predicate.test(candidate)) {

n = candidate;

}

}

}

};

};

}

Figure 35: filter() implementation in Java.
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