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1 Introduction

It is well known that the best-response algorithm (BRA) converges to a (pure) Nash equilibrium

of every potential game. However, there is one assumption that is made implicitly, namely that

it is accurate or useful to model players as playing sequentially one after another in some sort of

round-robin scheme. This paper deals with relaxing this constraint and seeing what happens.
As an example, consider a game between 2 players given by the following matrix:

1\2 a b
a [0 2

0 2
b |3 1

3 1

This game is clearly an exact potential game, with potential function equal to the payoffs of
each player. It follows that it converges under best response dynamics. However, if the players
start at strategy profile (a,a) or (b,b) and move simultaneously, they will oscillate between those
2 non-equilibrium profiles indefinitely. If just one of the players is allowed to play alone, even if
only very rarely, the algorithm converges to a Nash equilibrium immediately when such a move
happens.

To analyze this behaviour, we need the concept of a revision protocol, which formalizes
the possible turn orders of the players. Based on a property of the revision protocol called
separability, it is possible to show exactly under which conditions a game converges to a Nash
equilibrium.

2 Formal Definitions

2.1 Games and Best Responses
Definition 1. A game is a triple (N, A, u) with
o A set of players N :={1,...,n}

o A set of action profiles A := [], A where Ay, is a set of actions for player k.



o A set of utility functions u = {uy, ..., up}.

Definition 2. The best response correspondence

BRy(x) := argmax  ug(a;z_)
aEAy

is the set of actions that maximizes the payoff for player k under action profile x.

The paper assumes that the best response correspondence is a function, i.e. that for every
player and every action profile, there is a unique best response that player can play. This is not
just a simplification; as it turns out this property is essential for certain proofs to hold.

The paper deals exclusively with a class of games called BR-potential games, which are
a generalization of exact potential games. Every exact potential game is also a BR-potential
game.

Definition 3. A game is a BR-potential game if it admits a funcion F : A — R (called the
potential) such that

BRy(x) := argmax F(a;z_j)
aEAy

2.2 Revision Protocols

A revision protocol is one way of modelling a distributed best-response dynamic, where several
players are reacting to their current situation in the game, without necessarily coordinating with
other players.

Definition 4. A revision protocol for a set N of players is a probability distribution p over all
subsets K C N, such that every player is contained in at least one of the subsets with strictly
positive probability.

The sets with strictly positive probability are known as the support of p, S(p) for short.

Note that this definition does not depend on the current strategy profile of the game or on
any property of the game for that matter.

As a simple example, consider the situation where at each timestep, each player randomly
chooses (with 50% probability) to either change their strategy to be a best response, or do
nothing. This results in there being a small probability (namely 27™) of any given subset of
players moving together.

Note that in this example, even though any group of players are capable of moving together,
there is no explicit coordination going on at all, no central authority giving players permission
to move. Arguably, this models many real world situations better than the more conventional
best response algorithm.



2.3 Separability

Definition 5. A revision protocol for a set of players N is separable if its support contains a
sequence of sets (K1, ..., K,) such that, for all i,

K\ K;

7<i

is a singleton.

In other words, it is possible to take some player that appears in a singleton set, remove
that player from all sets of the protocol, and end up with a separable revision protocol of the
remaining n — 1 players. This process could then continue by finding another singleton and
removing the corresponding player, until no players remain.

Separability is a property independent of the probabilities of each set being chosen, only
depending on the support of the distribution. Examples of separable supports include

o {{1},{2},{3}},

o {{1},{1,2},{1,2,3}},

o {11 {2}, {1,2,3}},

o {11 {2}, 3% {1, 2}, {1,3},{2,3},{1,2,3}}.

3 Convergence to Nash Equilibria for Separable Revision
Protocols

Now that the relevant definitions have been established, we move on to the first result of the
paper.

Consider a modified best response algorithm where the set of players moving next are drawn
according to a revision protocol, and then all selected players move to their best response simul-
taneously. If we denote the best response algorithm as BRA, from now on we must talk about
BRA(p) instead; the algorithm has become dependent on the revision protocol.

It turns out that separability is exactly the condition the protocol must fulfill for this process
to always converge to a Nash equilibrium:

Theorem 1. Let N be a set of players and p be a revision protocol over N. Algorithm BRA(p)
converges a.s. to a Nash equilibrium for all BR-potential games G over N if and only if p is
separable.

The proof is presented in 2 steps, first it is shown that the condition is sufficient and then
that it is also necessary.

Proof of 7<= (separability implies convergence to Nash equilibrium). We need to show this prop-
erty to hold for an arbitrary game G. We construct a Markov chain from G and BRA(p) as
follows: Every action profile € A is a node in the chain. Transition probabilities between nodes
are given by the probability that the algorithm will move from one profile directly to the other.



Note that several subsets of players may add to the probability of one transition (intuitively, the
Markov chain can be considered as a multigraph).

Now we define a set R consisting of all recurrent action profiles, that is those nodes in the
chain that are visited infinitely often. The proof idea is to show that R is made exclusively of
Nash equilibria.

We assume by contradiction that there exists a profile € R that is not a Nash equilibrium,
and we assume that x is the one with the highest potential among all possible choices for .

From that profile, the sequence (Kj, ..., K,) of sets of players (as given in the definition of
separability) has a positive probability of being chosen by the algorithm, generating the sequence
(X1,...,X,) of action profiles. Note that some of the X; may be equal to x.

Let 7 be the smallest index such that the action profile X; # x. It follows that X; is the best
response of exactly one player to action profile z. This has to be the case, since by definition, all
players who had the opportunity to deviate from x before the algorithm reached X;, chose not
to do so.

This implies that the potential strictly increases when going from z to X;, because it is a
unilateral deviation of only one player, and we are assuming that the best response is always
unique. If the potential didn’t strictly increase, it would imply that both z and X; are best
responses to x by that player.

Now we are almost done: if X; is a Nash equilibrium, then x cannot be visited infinitely often
(since it would lose probability mass to X; over time). However, if X; is not a Nash equilibrium,
it contradicts our assumption that x has highest potential among all recurrent profiles.

O

Proof of 7= (convergence to Nash equilibrium implies separability). We need to show that any
revision protocol p over N players which converges on every game is separable.

The proof is by induction, assuming the property to hold for every game of n — 1 players.
The induction base n =1 is trivial.

First we show the result with the additional assumption that p contains a singleton that has
positive probability. (This assumption is in fact true, as shown below).

We take some player k£ that occurs in a singleton, and remove them from all sets in p. This
results in a revision protocol p’ over n — 1 players. p’ converges for any game over n — 1 players,
because each such game G can be extended to a game G over n players by adding a dummy
player with only 1 action available. The sequence of states visited by BRA(p) on G™ is isomorphic
to the sequence of states visited by BRA(p') on G, and since BRA(p) always converges, so must
BRA(p'). By the TH, p’ must therefore be separable, and by definition of separability, so must
be p.

It remains to show that p must contain a singleton that has positive probability. For this
purpose, it is enough to exhibit one specific game that cannot ever converge to a Nash equilibrium
if p has no singletons.

This game, which we call G*, is defined as follows:

Each of the n players has a set of actions Ay := {0,...,p — 1}, where p is any prime larger
than N. The payoffs are symmetrical for every player and equal to the potential

F(z) := —(Z x mod p).
k

(Note that this way of constructing a game from a potential function works for any function
F and always results in an exact potential game.)



From this it follows that from a state with potential —h the best response for any player is
to deviate by exactly h from their current strategy (using modular arithmetic, of course), that is

BRy(z) := (zx —h mod p;x_y).

If m players play simultaneously from a state with potential —h this results in the next state
having potential

—h+mh mod p
=—(1-=m)h mod p,

which is zero only when m = 1, because p isn’t divisible by any number in the range {1, ...,n}.
Since h was chosen arbitrarily, this implies that if we start with any potential smaller than
0, we will never reach a Nash equilibrium, which all have potential 0 by construction. O

4 The Smoothed Best Response Algorithm

One of the typical weaknesses of any iterative optimization algorithm such as BRA is that they
often get stuck in local optima, in our case Nash equilibria with less than maximal potential.
One way to overcome this problem is to occasionally make deliberately suboptimal choices, which
allows breaking free from any local optimum that might have otherwise trapped the algorithm.

This process is usually guided by a temperature parameter, which controls how willing the
algorithm is to jump from a better to a worse state. If the temperature is decreased slowly over
time, the algorithm converges eventually. The final value is often, but not always, the global
optimum or a very good local optimum. This general approach is known as simulated annealing.

In the paper, a SmoothBRA algorithm is specified which implements this idea. At each state
x each player k, if chosen to act next, consults a probability distribution Qx(z) to determine
which action to take, defined as follows:

_ exp(Qug(a; 1))
ZﬁeA(k) exp(Quk(B; x—))

When the temperature 1/6 is infinite, this rule chooses uniformly at random between all
strategies. On the other extreme, as the temperature tends towards 0, the distribution tends
towards only ever picking the best response.

The transition probabilities of the Markov chain induced by a game and a revision protocol
can now be computed. The probability of an (z,y) edge, that is the probability that BRA(p)
will move directly from state = to state y, is given by the following formula:

Pr[Qk(x) := o]

exp(Qug (a; k)
P,,= p(V)
Y VQDiZH(I’y) klg/ ZﬁeA(k) exp(Oug (B; 1))

where Diff(z,y) := {k | xx # yx} is the set of players that must have moved if the state
jumps from z to y. This can be rewritten as a first order approximation, that is, the highest
order term is separated from lower order terms:

Py y = czyyexp(0)?v + o(exp(0)?)

Here, ¢4,y is called the order of P, ,, and it will be relevant for later proofs. The order can
be seen to be



= min max ug(o; T_g) —u ;T ,
Gy =, i (g (1 s r-0) = w))
where it should be recalled that S(p) is the support of p. The order is always positive, and 0
exactly when it is possible to go from z to y using a set of players that all play a best response
to x.
The concept of orders will turn out to be very relevant.

4.1 The Markov Chain Tree Theorem and Stochastic Stability

The paper makes use of a classic result established in [2] which allows to determine the stationary
distribution 7 of any Markov chain asymptotically.

Theorem 2 (Markov Chain Tree Theorem). Let T, be the set of spanning trees in the transition
graph with root in x. The stationary probability m, is proportional to the sum of the weights of
all such trees, i.e.

T X Z H P, .

TeTy (y,2)eT

The type of Markov chain we are working with has the property that for any action profile
x, there is a positive probability that it will be visited infinitely often.

However, as we observe the asymptotic behaviour of the chain as § — oo, some profiles will
stabilize at a positive probability (while others go to 0). These profiles are called stochastically
stable under p.

The stochastically stable profiles can be characterized by the following lemma, which follows
directly from the Markov chain tree theorem:

Lemma 1 (Stochastic stability characterization). Let

be the order of the minimal in-tree of state x.
x 1s stochastically stable if and only if q, is minimal, i.e.

€ min q,.
qx veh qy

4.2 Convergence to Nash Equilibria for Smoothed BRA

As mentioned above, for any fixed temperature 1/6, there must remain a small residue of prob-
ability mass even in states with very low potential. The low potential state loses almost all its
mass to other states at each timestep, but states with high potential lose a small fraction of their
mass to that state as well. At some point, those 2 flows will be balanced, resulting in a very low
(but not 0!) stable probability.
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Figure 1: Example of rerouting a tree to a different root, as used in the proof of Theorem 3.

Intuitively, running the algorithm with high temperature ensures fast convergence to the
stationary distribution because low potential states will bleed mass very fast, but the final dis-
tribution will have a larger amount of mass in non-equilibrium states, because the equilibria are
bleeding a lot as well. Conversely, running with a low temperature may take a longer time to
converge, but results in a better stationary distribution.

If we are going to talk about convergence for the SmoothBRA algorithm, we can only make a
claim as to the set of stochastically stable states. As it turns out, SmoothBRA always converges
to a Nash equilibrium in that weaker sense.

Theorem 3 (Convergence to Nash equilibrium). Let G be a BR-potential game, and p a separable
revision protocol. An acion profile x of G cannot be stochastically stable under p if it is not a
Nash equilibrium.

Proof. Suppose we run the non-smoothed version of the algorithm, BRA(p), starting at a state
x that is not a Nash equilibrium. Then, it follows from Theorem 1 that there is a finite sequence
of action profiles (X1, Xs,..., Xg) leading to a Nash equilibrium Xz. This sequence creates a
path of order 0, since it only consists of best responses by sets of players.

Let T be the tree with minimal order rooted in z. We construct a tree rooted in Xy by
adding the path defined above and removing all other edges outgoing from vertices in the path.
See Figure 1 for an example.

The added edges all have order 0, while at least one removed edge has order strictly greater
than 0, namely the one leading out of X. Therefore, this new tree has order strictly smaller
than T}, so by Lemma 1 z is not stochastically stable.

O

4.3 Nonconvergence to Optimal Nash Equilibria

We might hope that if we run the smoothed version of the BRA algoritm, it always converges to
the optimal Nash equilibrium. Unfortunately, this is not true for all games and revision protocols.
Here we provide an example that illustrates what can go wrong;:

We have a 3-player game where every player has 2 actions. The revision protocol has the
support

S(p) - {{1}’ {2}7 {3}7 {17 273}}'
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Figure 2: Example of a 3-player game that doesn’t converge to an optimal NE. The payoffs are
given in parenthesis. The minimal in-tree rooted in (0,0, 0) has order 9, while the one rooted in
(1,1,1) has order 6. Figure taken from the paper.



As in the previous example, the payoffs are symmetrical for each player and equal to the
potential. They are given in parentheses in Figure 2, where each action profile x is represented
as a vertex of the 3-cube.

The Nash equilibria are the antipodals (0,0, 0) and (1,1, 1). However, the minimal tree rooted
in (0,0,0) has order 9, while the one rooted in (1,1,1) has order 6. Therefore, only (1,1,1) is
stochastically stable, even though it doesn’t have optimal potential.

What happens here is that the non-local nature of the diagonal jump completely ignores the
bad neighborhood around (1,1, 1). If simultaneous play was not possible, a huge penalty would
have to be paid to reach any of (1,1, 1)’s three neighbors.

4.4 Special Cases

In some special cases it is possible to prove convergence to the optimal Nash equilibrium by the
smoothed algorithm. Two such cases are given in the paper. Here we just briefly mention them
without proof.

Theorem 4 (Convergence to optimal Nash equilibria for asynchronous revisions). Let G be an
ezact potential game. Under a revision protocol p with support

S(p) = {1}, {2}, . {n}},

containing only singletons, the only stochastically stable states are the optimal Nash equilibria.

Theorem 5 (Convergence to optimal Nash equilibria with 2 players). Let G be an exact potential
game between 2 players. Under a revision protocol p with support

S(p) = {{l}a {2}7 {17 2}}7

the only stochastically stable states are the optimal Nash equilibria.
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