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Abstract

Wrist-worn accelerometers are increasingly prominent in Human Activity Recognition (HAR)
within diverse sectors, encompassing sports and healthcare. Despite their potential, existing
HAR models encounter challenges in generalizing across varied, unseen datasets, especially
those originating from diverse devices and spanning distinct environmental contexts. This
study delves into assessing the performance of Multi-Task Self-Supervised Learning (MTSSL)
models in HAR across publicly available test datasets with unique domains, distinct from their
training datasets. Furthermore, we explore various additional techniques in a fine-tuning pro-
cess to generalize the model’s performance across different domains. The approach involves
integrating classic feature extraction methods, incorporating unknown samples into the train-
ing dataset, utilizing a loss function for improved activity distinction, and employing diverse
data augmentation techniques. Our study demonstrates that advanced fine-tuning techniques
significantly enhance cross-domain generalization and model adaptability. By integrating the
three aforementioned enhancements, on the cross-domain target dataset, the model showed a
balanced Accuracy improvement of 29% in the closed-set classification and 53% in performance
improvement in the open-set classification task. Further, our analysis of different augmenta-
tion strategies revealed their varied impact on model performance across testing scenarios. The
semantic analysis also sheds light on classification patterns and misclassification trends, empha-
sizing the value of customized augmentation approaches. These results underline the impor-
tance of tailored fine-tuning processes in addressing the challenges posed by dataset diversity
and environmental variability, paving the way for more robust and accurate HAR models.
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Chapter 1

Introduction

Over the last decade, large-scale time-series human movement data collection has been rev-
olutionized due to the advancement and widespread adoption of wearable sensors such as
smartphones, fitness trackers, and smartwatches. This made continuous, real-time monitoring
and analysis of human activities feasible. By using this data, understanding human behavior
through activity recognition known as Human Activity Recognition (HAR) has become of utmost
importance with the trend of digital transformation (Straczkiewicz et al., 2021). It can lead to
personalized user experiences, improved health outcomes, and enhanced performance metrics
across various fields from healthcare to sports analytics. The numerous researchers aim to con-
tribute to this endeavor, striving for a more transferable representation of HAR Task (Banos
et al., 2014; Bin Morshed et al., 2020; Morshed et al., 2019).

With the advancements in deep learning, various deep learning techniques have led to the
development of accurate and reliable HAR systems. Especially, the self-supervised learning
approach has emerged as a revolutionary technique in the field of HAR tasks by reducing the
annotation size and effort (Rani et al., 2023; Yuan et al., 2023). However, they typically assume
that the domain of the training and test dataset are identical. Unfortunately, it is often not realis-
tic in applications as the model aims to achieve “Train once, deploy everywhere" (Qin et al., 2022).
In practical scenarios, a significant challenge still arises when the distributions of training and
deployment conditions diverge substantially. This discrepancy can be attributed to various fac-
tors, including distinct sensor configurations, variations in device size, and disparities in data
collection environments. Such differences pose a threat to the model’s generalization perfor-
mance (Figure 1.1). Therefore we chose the following research question for this project.

Research Question

• How to tackle the model generalization issue of the HAR task by enhancing the fine-
tuning process while preserving the pre-trained model?

To tackle this research question, we investigate the model generalization performance of the
Multi-Task Self-Supervised Learning (MTSSL) pipeline introduced by Saeed et al. (2019) and ex-
tend the fine-tuning process of this model by integrating different approaches. The first key
approach involves adding a classic HAR feature extractor into the MTSSL model architecture.
This addition aims to leverage the strength of traditional feature engineering in HAR, proven
effective in various studies such as Gjoreski et al. (2016), to enhance the model’s capability to un-
derstand nuanced human activities. Secondly, one of the problems that may arise as the dataset
domain expands is that new types of activity signals, namely unknown activities, occur that ex-
isting models cannot predict. Therefore, we incorporated unknown samples into the fine-tuning
dataset and applied the objectosphere loss function, a novel approach inspired by Dhamija et al.
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(2018). This technique is designed to expand the model’s classification boundaries from the
closed-set to the open-set classification in order to classify known classes correctly while also
rejecting unknown classes. Lastly, even with the same activity, the intensity or characteristics of
the activity signal are slightly different depending on the domain. Hence, we explored several
augmentation techniques to artificially increase the domain capability of the training dataset.
Inspired by Xu et al. (2023), these augmentations introduce synthetic variability, enabling the
model to generalize better across diverse environments and sensor configurations. The whole
extended pipeline, incorporating these advancements, is presented in Figure 1.2.

Report Outline This report is outlined as follows.

• Related Work: In this chapter we provide a non-technical overview of relevant ap-
proaches, such as Multi-Task Self-Supervised Learning, Cross-Domain Evaluation, and
open-set Classification.

• Dataset Preparation: This chapter describes the process of dataset preparation. It in-
cludes the contents of the definition of the HAR dataset domain, types of various datasets,
and preprocessing steps for fine-tuning and evaluation steps.

• Methodology: In this chapter, we describe the MTSSL model as the base model and
introduce other variants. Evaluation matrices are also defined here.

• Evaluation and Results: This chapter explains the experimental setup for the model
evaluation and its results.

• Discussion: In this chapter we interpret the results and answer our research question.
Furthermore, we highlight the limitations of our work.

• Conclusion: In this chapter we conclude the project with our contribution and sugges-
tions for future work.
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Figure 1.1: PERFORMANCE DEGRADE WHEN TESTING THE MODEL INTO ANOTHER DATASET.
This figure shows the challenge that the performance of the Human Activity Recognition model is dropped
if the domain of the deployment is different from the domain of the training. Figure 1.1a describes the
deployment scenario in the real world. The model was trained with a dataset from Dataset-A which is
considered as a source domain dataset. However, it is usually deployed into another domain environ-
ment, such as Dataset-B and Dataset-C. These different datasets are named as target domain datasets.
Even though the MTSSL model is based on transferring the general HAR knowledge into the specific
downstream task, the HAR signal domains trained through a fine-tuning process cannot be infinite. As
a result, the model trained using a specific domain dataset performs badly when it is deployed into other
cross-domain environments (Figure 1.1b).
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Figure 1.2: ENHANCED MTSSL FINE-TUNING PROCESS. The figure highlights enhanced fine-tuning
steps investigated in this project. It preserves the pre-training process of the Multi-Task Self-Supervised
Learning(MTSSL) model. However, compared to the middle one which describes the traditional fine-
tuning process of the MTSSL model, the bottom enhanced fine-tuning process marked as a red box,
includes 3 additional function blocks to improve the model’s generalization performance across different
domains. 1. Blue item depicts aggregating classic HAR features on CNN-based features. These addi-
tional features are extracted by using statistical and mathematical ways. 2. Green item shows including
unknown samples in the fine-tuning dataset and sets the threshold to filter out uncertain predictions. 3.
Red item describes the augmentation techniques to increase the domain coverage of fine-tuning datasets.
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Milestones and Work
Distribution

Assuming 30 hours of work per week and a total of 15 ECTS credits with 30 hours of workload
per ECTS on average, this Master’s project is expected to take 15 weeks. We are a group of 2
students with experience in working online and distributing workload appropriately to work
in parallel.

Milestone 1

Week 1 to 2: Literature review regarding the following topics:

• Self-Supervised learning (Multi-Task and Contrastive Predictive Coding).

• Cross-Domain evaluation in the human activity recognition.

• Open-set classification.

Milestone 2

Week 3 to 6: Data preparation & pipeline development

• Review benchmark datasets for the task of human activity recognition.

• Development of fetching and preprocessing code for each of 16 datasets.

• Development of the training pipeline for the base model (MTSSL).

Milestone 3

Week 6 to 8: Explore methodologies

• Explore classic features for human activity recognition and implement them into the pipeline.

• Discuss threshold techniques for the Open-Set classification task and implement the cho-
sen method into the pipeline.

• Examine various augmentations and implement them into the pipeline.
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Milestone 4

Week 9 to 11: Experimental setup & Evaluation

• Explore multiple evaluation metrics for Cross-Domain evaluation from closed-set and
open-set perspectives.

• Set up the experiment plan and run fine-tuning for 10 different methodologies.

• Discuss the evaluation results and conduct additional evaluations based on the feedback.

Milestone 5

Week 12 to 15: Summarizing and wrap-up the project

• Review the project outcomes and organize the contents for the final report-out.

• Clean up the code repository to be deliverable.

• Write the final report and prepare the presentation.
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Tasks Practical Jobs Writing Report
Introduction and Related work - O. Oikonomou

Dataset
Fetching O. Oikonomou O. Oikonomou

Preprocessing H. Kim, O. Oikonomou O. Oikonomou

Methodology

Base H. Kim, O. Oikonomou H. Kim
var-C H. Kim H. Kim

var-CU H. Kim, O. Oikonomou H. Kim
var-CUA H. Kim H. Kim

Evaluation
and Results

Experimental Setup O. Oikonomou H. Kim, O. Oikonomou
Processing Results H. Kim, O. Oikonomou H. Kim, O. Oikonomou

Discussion and Conclusions - O. Oikonomou

Table 2.1: DISTRIBUTION OF PROJECT TASKS AMONG GROUP MEMBERS.





Chapter 3

Related Work

In this chapter, we introduce a brief overview of the related works of multi-task self-supervised
learning, the cross-domain evaluation, and the open-set classification for the Human Activity
Recognition (HAR) task. The detailed implementation of each technique is introduced in more
detail in Chapter 5.

3.1 Multi-Task Self-Supervised Learning
Human Activity Recognition (HAR) has been a focal point in the wearables domain, partic-
ularly using body-worn inertial sensors. Initially relying on tree-based methods with hand-
crafted features, traditional HAR models saw a paradigm shift toward deep learning (Yang
et al., 2015). Nevertheless, a significant impediment to the training of deep-learning network
models was the challenge of gathering extensive, high-quality labeled datasets.

Multi-Task Self-Supervised Learning (MTSSL), a subset of unsupervised learning, plays a
crucial role in addressing the limitations posed by small training datasets. As discussed in
studies by Saeed et al. (2019), the fundamental concept of MTSSL involves the transfer of the
knowledge pre-trained with unlabeled large-scale datasets into the specific downstream task.

Essentially, this methodology comprises two distinct stages: pre-training and fine-tuning. In
the pre-training stage, models extract general features from extensive, unlabeled datasets. This
is achieved through the implementation of self-devised pretexts or auxiliary tasks, thereby lay-
ing a solid foundation for comprehensive data comprehension. After this, the fine-tuning stage
involves applying these pre-trained parameters to a specific downstream task. Importantly, this
stage can efficiently utilize a relatively small amount of explicitly labeled data.

A recent study by Yuan et al. (2023) corroborates the notion that an augmented volume of
pre-training data correlates with enhanced performance in the downstream task. This under-
scores the significance of leveraging larger pre-training datasets to augment the efficacy of the
subsequent fine-tuning phase.

3.2 Cross-Domain Evaluation
Cross-domain evaluation is an important concept in the field of Human Activity Recognition
(HAR), which addresses the challenges of adapting models to operate effectively across diverse
contexts. This approach is essential for understanding how well a model can adapt and perform
when exposed to new, unseen data environments.
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In this context, Lu et al. (2021) has made a significant contribution in this regard. They fo-
cused on Substructure-level Matching for Domain Adaptation (SSDA), encapsulated in their
Substructural Optimal Transport (SOT) methodology. They employ clustering techniques to
better utilize the locality information in activity data, optimizing the coupling of weighted sub-
structures between different domains. This method is particularly effective in improving classi-
fication accuracy and efficiency, making it a valuable addition to the field of HAR. In a parallel
advancement, Tang et al. (2022) contributed to the accuracy of cross-domain evaluations with
their innovative triple attention mechanism. This mechanism is designed to enhance the pro-
cessing of sensor data by addressing the intricate cross-interaction between sensor dimensions,
temporal dimensions, and channel dimensions. This approach results in more accurate activity
recognition, leveraging the complex interplays within the sensor data.

Finally, Thukral et al. (2023) addressed the challenge of adapting HAR models to diverse
contexts with their ’Cross-Domain HAR’ framework. This method utilizes a teacher-student
self-training paradigm for effective transfer learning. The teacher model, trained on a labeled
source dataset, is used to generate soft pseudo-labels for target data. These pseudo-labels, along
with the labeled source data, are then employed to train a student model. This approach stands
out for its integration of few-shot learning, where the student model is fine-tuned with a min-
imal set of labeled target data, significantly improving performance in varied HAR scenarios.
Our project takes inspiration from these innovative approaches, aiming to enhance the fine-
tuning process of HAR models that are robust and versatile across real-world applications.

3.3 Open-Set Classification
In machine learning, open-set classification introduces specific terminology for understanding
and applying its concepts effectively. To lay the groundwork for discussing this approach, we
first define key terms as follows, inspired by the framework of Dhamija et al. (2018):

• Known Classes: These are pre-defined classes included in the original recognition task.
Training in closed-set models is confined to these classes.

• Unknown Classes: Representing the classes not encountered by the model during train-
ing or validation, these are often termed as ’unknown unknowns’.

• Negative Classes: These are a subset of classes added during training or validation, de-
signed to teach the model to reject certain non-target classes.

With these definitions in place, we delve into the concept of open-set classification, which marks
a paradigm shift in machine learning. This approach challenges classifiers to not only accu-
rately identify known classes but also to detect when a sample belongs to none of the known
categories. It’s a crucial capability for preventing false classifications and involves a careful bal-
ance between specialization in known categories and generalization towards unknown or open
space (Scheirer et al., 2013).

The relevance of open-set classification becomes particularly pronounced in Human Activ-
ity Recognition (HAR). Due to the diversity and unpredictability inherent in human activities,
correctly identifying and categorizing these activities becomes a complex task. For instance,
the study by Yang et al. (2019) introduces a model that enhances HAR systems by generating
synthetic samples for unknown activities, thus improving the system’s adaptability to novel
activities not included in its training dataset. Drawing upon this model and the principles,
our project incorporates open-set classification to develop a HAR system capable of efficiently
navigating the vast and varied landscape of human activities.



Chapter 4

Dataset Preparation

This chapter details the dataset preparation process for our cross-domain Human Activity Recog-
nition (HAR) study. Central to our approach is the strategic use of diverse datasets for source
and target domains, facilitating a nuanced cross-domain evaluation.

The definition of the domain in this context is the unique combination of the type of used
device and the setting of the measurement environment. The Human Activity dataset from
the source domain is mainly used for training the model. In contrast, the target domain dataset is
utilized to be not seen during training, but used for the testing. In other words, the purpose of
Cross-Domain evaluation is to evaluate the model’s performance on the target domain under
the condition that this model has no chance to learn knowledge about this domain. It is much
closer to the real-world scenario.

The Capture24 dataset, our primary source domain dataset, provides a comprehensive set
of activity label samples, augmented by 8 additional datasets that will provide extra activity
labels for negative and unknown samples. In parallel, our study incorporates 8 other datasets
from the target domain which has different domain attributes from the source domain. They
offer diverse scenarios essential for evaluating the generalization capability of our methods.

In Section 4.1, we introduce the definition of the domain and its attributes used for this
project. After this, in Section 4.2, we lay the groundwork for understanding the specific com-
ponents that define the source and target domain datasets in the context of different domains.
Lastly, in Section 4.3, we delve into the data preparation steps, including windowing, resam-
pling, relabeling, and splitting, which are vital to harmonizing the data across these varied
domains for effective fine-tuning and evaluation of our models.
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Group Device Alias

Wearable

Device

Axivity AX31 WD-AX

GENEActiv2 WD-GEN

Shimmer3 WD-SH

Empatica4 WD-EMP

Sensor

MPU-92505 S-MPU

ADXL3456 S-ADX

No info S-NaN

Table 4.1: THE DOMAIN DEFINITION BY DEVICE TYPE. This table shows different types of wearable
devices that are used in this project. It is largely divided into the Wearable Device Type and Sensor Type.
Then, grouped by the commonly used wearable device, and the alias for each device is defined. The Device
Type defined for the source domain in this project is ’WD-AX’ and it is underlined in the table.

4.1 Definition of Domain
At the heart of our study lies the innovative use of an unprecedented number of diverse HAR
datasets strategically categorized into source and target domain groups to facilitate a compre-
hensive cross-domain evaluation. The datasets consisting of the source domain serve as the
training bedrock, providing our models with a diverse array of scenarios and participant expe-
riences. In contrast, the datasets, that provide the target domain for evaluation, are crucial for
testing these models in uncharted territories — environments, activities, sensor conditions, and
other aspects representing the domain not covered during training. This approach ensures not
only deep foundational learning from the source domain datasets but also a rigorous validation
of our models’ adaptability and accuracy in new, real-world situations.

The first attribute of the domain is the category of devices employed for the acquisition
of Human Activity Signals. Datasets designed for HAR tasks are derived from a spectrum of
devices, each characterized by its unique specifications rather than adhering to standardized
ones. In real-world situations, fine-tuning must be carried out whenever the device in use
undergoes a change or there is an update in the sensor configuration, as such modifications
can alter the sensor signal. Consequently, it is imperative to scrutinize the model’s performance
and its generalizability across a diverse array of devices. Table 4.1 shows commonly used device
types in the field of HAR datasets and the reference links to check their diverse specifications.
In this project, we curated the dataset to encompass all types of devices, designating the dataset
collected by ’Axivity AX3 (WD-AX)’ for the source domain.

Apart from the category of device employed for the acquisition of Human Activity Signals,
our study focuses on the diversity in the environmental setup for data collection (Table 4.2).
This domain attribute is another critical aspect of HAR research, as it profoundly affects the na-

1https://axivity.com/product/ax3
2https://activinsights.com/technology/geneactiv
3https://shimmersensing.com/product/shimmer3-gsr-unit
4https://www.empatica.com/en-int
5https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250
6https://www.analog.com/en/products/adxl345.html
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Environment Signal Consistency Signal Naturality Alias

Unconstrained Low High XCON

Semi-Constrained Medium Medium SEMI-CON

Constrained High Low CON

No info - - NaN

Table 4.2: THE DOMAIN DEFINITION BY DATA COLLECTION ENVIRONMENTAL SETUP. This table
shows different types of Data Collection Environmental Setup that are used in this project. Each environ-
ment can be divided by the level of consistency and naturality of the measured signal. The environmental
setup defined as the source domain in this project is ’XCON’ and it is underlined in the table.

ture and quality of the data collected. In our analysis, we worked with settings that range from
unconstrained (natural free-living) environments to controlled constrained (in the laboratory)
environments. Collecting data in natural, everyday situations in unconstrained environments
(XCON) provides valuable insights into real-world scenarios. This is exemplified in a study
comparing diaries with a pair of wearable cameras and accelerometers from Gershuny et al.
(2020). In this study, participants wore an accelerometer that tracked their physical activity con-
tinuously throughout the 24 hours covered by the diary without any constrained. After that,
by using a self-report time-use diary and a camera recording, each participant’s activity was
mapped into the corresponding human activity label. In contrast, controlled constrained envi-
ronments (CON) offer more precision and consistency in data collection. This is highlighted in
Jarchi (2017). In this study, participants were asked to perform walking, jogging, and bike rid-
ing in the lab environment. Specific activity scripts including speed and duration were given to
participants for signal consistency. Semi-constrained environmental setting (SEMI-CON) tries
to gather activity signals that are consistent but also diverse in the same activities. This setting
is described in Roggen et al. (2012). Participants were instructed to follow the sequence of ac-
tivities in the preset room. However, to measure the signal realistically, there was no specific
guidance, such as speed or duration of walking activity, leaving them free interpretation from
the participant.

4.2 Description of Dataset
For our Cross-Domain experiment, we selected 17 HAR task datasets for the project among a
total of 36 investigated. One of them, known as the Capture24 dataset, was used for the source
domain dataset and made the performance baseline in this project. In contrast, 8 other datasets
represented the target domain datasets having diverse and different domain attributes with the
source domain. The remaining 8 datasets will be used to provide the knowledge of unknown
samples to extend the model into the open-set classifier task.

To better understand the dataset organization and a clear explanation for further process,
let us first depict the dataset by using symbols D = {SD, TD}, where SD is the source do-
main dataset and TD is the target domain dataset. Furthermore, it has two more categories of
parameters: train/test and known(kn)/negative(neg)/unknown(unkn). Consequently, we de-
note the source domain train dataset of known samples as SDtrain

kn and the corresponding test
set as SDtest

kn . Let SDtrain
neg be the train set of negative samples and SDtest

neg be the corresponding
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Id HAR Dataset Used for Reference

1 Capture24 SDtrain
kn and SDtest

kn Walmsley et al. (2022)

2 Gotov

SDtrain
neg and SDtest

neg

Paraschiakos et al. (2021)

3 Harvardleo Leotta et al. (2021)

4 Householdhu Hu et al. (2022)

5 Pamap2 Reiss (2012)

6 Realworld Sztyler (2016)

7 Wisdm Weiss (2019)

8 Commuting
SDtest

unkn

Garcia (2014)

9 Paal Climent i Pérez et al. (2022)

10 Adl

TDtest
kn and TDtest

unkn

Bruno et al. (2014)

11 Forthtrace Karagiannaki et al. (2016)

12 Ichi14 Borazio et al. (2014)

13 Mendeleydaily Ruzzon et al. (2020)

14 Newcastle van Hees et al. (2018)

15 Oppo Roggen et al. (2012)

16 Selfback Sani et al. (2016)

17 Wristppg Jarchi (2017)

Table 4.3: TOTAL 17 DATASETS USED FOR DIVERSE PURPOSES. This table shows the overall HAR
dataset used for this project and its purposes. There are 9 datasets for the source domain and 8 datasets
for the target domain. Under the same purpose, the dataset names are listed in alphabetical order.

test set. Similarly, let SDtest
unkn be the test set of unknown samples. Accordingly, we denote the

source domain full train set as SDtrain = SDtrain
kn ∪ SDtrain

neg , and the source domain full test
set as SDtest = SDtest

kn ∪ SDtest
neg ∪ SDtest

unkn. For the target domain dataset TD, only the test set
including known and unknown samples are utilized: TDtest = TDtest

kn ∪ TDtest
unkn. Table 4.3

shows all HAR datasets for the use of various purposes.

4.2.1 Datasets for the Source Domain

In this section, we describe the datasets representing the source domain, Capture24 which has
the source domain attribute: Collected using Axivity AX3 (WD-AX) under the unconstrained
environment (XCON). The other 6 datasets for negative samples and 2 datasets for unknown
samples are explained additionally.
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Willetts2018

Sit-Stand Sleep Mixed Walking Vehicle Bicycling

Figure 4.1: WILLETTS2018 HUMAN ACTIVITY LABEL TYPE. Following the labeling policy in Wil-
letts2018, all samples in Capture24 dataset can be labeled as one of six. Only these six labels are consid-
ered to be known labels that can be classified from the model in this project.

Known Samples

In our study, we use the Capture24 dataset as the primary dataset in the source domain, a
benchmark in the field of human activity recognition. Renowned for its extensive application
across numerous research studies, this dataset is instrumental in advancing our understanding
of human behaviors in naturalistic settings (Walmsley et al., 2022; Gershuny et al., 2020; Doherty
et al., 2018; Willetts et al., 2018). In particular, the dataset involves data from WD-AX(Activity
AX3) that is collected from participants in Oxfordshire between 2014 and 2016. The dataset
encapsulates a wide range of daily activities, recorded at a 100Hz sampling rate over approxi-
mately 4,000 hours. Out of these, more than 2,500 hours of activities have been labeled, and our
study exclusively utilizes this labeled portion of the dataset.

The extensive volume of data and the capacity for measurements in unconstrained environ-
ments facilitate the diverse labeling of samples within the Capture24 dataset, accommodating
various research objectives. Notably, for this project, we intend to predominantly employ the
Willetts2018 labeling scheme (Willetts et al., 2018). This methodology prioritizes the categoriza-
tion of human activities into six primary classes: Sit-Stand, Sleep, Mixed, Walking, Vehicle and
Bicycling, as illustrated in Figure 4.1. These labels consist of the main known labels during our
classification processes. Also, it is worth mentioning that the labels are distilled from a larger
set of more detailed annotations (Chan Chang et al., 2021) and are specifically chosen for their
relevance to unconstrained behavior patterns. Concentrating on these six labels allows us to
leverage the rich diversity of the dataset, ensuring both the manageability and the clarity of our
analysis.

Negative Samples

Following the principles of open-set classification, one of our proposed methodologies, outlined
in Section 5.3, involves training the network to discern known samples from unknown samples
by incorporating negative samples into the training process. Therefore, we need to prepare an-
other source that can provide negative samples to the training dataset, for that we include six
additional datasets to gather those samples specifically. In Table 4.3, the datasets used to pro-
vide negative samples are specified between Id 2 and Id 7. These datasets were chosen based on
their ability to introduce unknown labels in contrast to the existing known labels in Capture24,
specifically those related to activities such as Kicking, Jumping and Vacuuming. This approach
enables the integration of novel negative labels not previously addressed in Willetts2018 label
types, aiming to identify samples with low certainty, thereby enhancing the robustness and
accuracy of our model.
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Known Classes Negative Classes Unknown Classes

Bicycling Catching Blow Nose

Mixed Clapping Commuting

Sit-Stand Cutting Vegetable Open Bottle

Sleep Dribbling Put on a Jacket

Vehicle House Cleaning Put on a Shoes

Walking Jumping Put on Glasses

Kicking Salute

Open/Close Drawer Sneeze Cough

Relaxing Take off a Jacket

Stir-Frying Vegetable Take off a Shoes

Using Mouse Take off Glasses

Vacuuming

Table 4.4: ACTIVITY CLASSES FOR EACH GROUP IN SOURCE DOMAIN DATA. This table informs the
set of activity classes for known, negative, and unknown samples in the source domain dataset. Classes
for each group are listed alphabetically. HAR Datasets to be used for each group are selected to prevent
overlapping activity classes between groups. Activity labels in known classes are used as it is, but other
labels in negative classes and unknown classes are renamed as ’unknown’ by preprocessing.

Unknown Samples

To evaluate the performance of open-set classification, we prepare another 2 datasets that can
produce unknown samples to the source domain test dataset. These are listed on Table 4.3 in the
ID 8 and 9. Compared to negative samples, these samples are never seen during the training.
Therefore, the activity class of the unknown sample should not overlap with the known class
or the negative class. Datasets used to provide unknown samples in the source domain were
selected under these conditions. As a result, activity classes for each group of samples can be
grouped like Table 4.4

4.2.2 Datasets for the Target Domain
We employ 8 different HAR datasets as target domains for cross-domain evaluation. It can en-
compass combinations of various domain characteristics without overlapping with the source
domain - Axivity AX3(WD-AX), Unconstrained(XCON). The domain for each target dataset is
depicted in Table 4.5. This evaluation approach is integral to ensuring that our models are ro-
bust and effective in various real-world applications, mirroring the complexity and diversity of
human behaviors. Table 4.3 provides an overview of the diverse range of datasets used in our
study, from ID 10 to 17 correspond to this.

To offer a comprehensive understanding, we provide below detailed descriptions of each of
the 8 target domain datasets employed in our study. These descriptions highlight key charac-
teristics, data collection methods, and the types of activities recorded in each dataset:
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HAR Dataset
Domain Has

Known?

Has

Unknown?Device Env.

Adl S-NaN CON ✓ ✓

Forthtrace WD-SH CON ✓ ✓

Mendeleydaily S-MPU SEMI-CON ✓ ✓

Oppo S-NaN SEMI-CON ✓ ✗

Selfback WD-AX CON ✓ ✗

Wristppg WD-SH CON ✓ ✗

Ichi14 S-ADX CON ✓ ✗

Newcastle WD-GEN SEMI-CON ✓ ✗

Table 4.5: 8 DIFFERENT TARGET DOMAIN DATASETS FOR CROSS-DOMAIN EVALUATION. This
table shows domain specification and whether it contains known or unknown samples. It can be seen
that it is configured not to overlap with the characteristics of the source domain ’WD-AX & XCON’. All
target domain datasets provide at least one known label. However, unknown samples are only sourced by
Adl, Forthtrace, and Mendeleydaily.

• ADL This dataset records 16 volunteers performing 14 activities of daily living as Hu-
man Motion Primitives (HMP). They provide volunteers with a wrist-mounted tri-axial
accelerometer and ask them to perform each motion primitive multiple times.

• FORTHTRACE This dataset is collected from 15 volunteers wearing 5 wearable devices
provided by Shimmer, on different body positions including the wrist. They are asked to
perform 16 different activities related to sitting, standing, and walking.

• MENDELEYDAILY This dataset is organized with 9 activities of daily living from 10 vol-
unteers with IMU sensors. There are sequences of activities to ask and these are recorded
using an RGB Camera for data labeling purposes.

• OPPO This dataset collects human activities from 4 users with a customized motion jacket
equipped with sensors at various points across the body, including the wrist area. Users
are asked to follow a high-level script but leave them free interpretation to achieve natural
execution.

• SELFBACK This dataset has 9 activity classes recorded with Axivity AX3 from 33 partic-
ipants. Each activity is performed by each user for approximately 3 minutes.

• WRISTPPG This dataset records mainly photoplethysmography (PPG) signals, but also
other sensor signals including the accelerometer on the wrist. There are 8 participants to
ask for specific 4 activities, walking, running, and easy/hard bike riding.

• ICHI14 This dataset is created for Sleep detection with an wrist accelerometer sensor. 42
users participated in the sleeping lab session which is monitored for at least one night
under the given circumstance.
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0 200
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Figure 4.2: DIFFERENT SAMPLING RATES BY EACH HAR DATASET. This figure shows how different
the sampling rates between the datasets are. For consistent training and evaluations, we re-sampled all
dataset into 30 Hz.

• NEWCASTLE This dataset collects sleeping accelerometer data for the task ofSleepclassification.
28 Participants used the device GENEActiv and were invited to participate in the study at
the hospital.

4.3 Dataset Preprocessing
This section focuses on the preprocessing techniques employed on tri-axial accelerometer data
gathered from wrist-worn activity trackers, leading to the formation of the datasets mentioned
earlier. Despite their inherent differences in properties, these datasets were processed to achieve
a uniform format before fine-tuning and evaluation phases.

4.3.1 Resampling
The utilized 17 datasets present a variety of sampling rates in a range of 20 to 256 Hz, as can
be seen in Figure 4.2. To standardize our approach we decided to resample the signals linearly.
Following the same approach as in Yuan et al. (2023), each dataset has been linearly re-sampled
to a resolution of 30 Hz. This decision was guided by the understanding that most human activ-
ities have a frequency of less than 10 Hz. Moreover, according to Nyquist’s theorem, accurately
capturing these frequencies without aliasing requires a sampling rate at least twice the highest
frequency present in the signal. Thus, a resampling rate of 30 Hz that exceeds the presumed
Nyquist rate of 20 Hz is fitting and essential to prevent loss of useful signal.

4.3.2 Windowing
We segmented the accelerometer signals into windows of equal duration and frequency based
on Yuan et al. (2023); Bulling et al. (2014). This approach treats each window as an independent
input for HAR models, allowing us to label each window with a specific activity class. In partic-
ular, as human activities are continuous, often blur into one another making it difficult to define
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exact activity boundaries. In Bulling et al. (2014), they employed a moving window over the
time series data to extract segments for subsequent processing. The window size influences the
delay in the recognition system and the precision of segmentation. Lastly, following the same
approach as Yuan et al. (2023) we used a 10-second window that slides by 5 seconds, recogniz-
ing that this approach is neutral and does not depend on the specific type and structure of the
underlying time series data.

4.3.3 Relabeling
The main objective of dataset preprocessing is to ensure uniformity across all activity samples
from the 17 datasets. However, a notable challenge arises due to variances in labeling even for
the same human activity across different datasets. For example, the Walking activity is labeled
as Walk, Walk at slow pace, Walking upstairs, Walking fast, and so on. This divergence not only
complicates classification using a unified model but also poses challenges for consistent evalua-
tion. Especially, in the context of cross-domain evaluation tasks, the crucial step of realignment
that all original labels are standardized into a single scheme becomes necessary. Therefore, we
opted to realign the labels of the remaining 16 datasets to match each label into one of Wil-
letts2018 type labels (Figure 4.1): Sit-Stand, Sleep, Mixed, Walking, Vehicle, and Bicycling. The
specific steps involved in this process are illustrated in Figure 4.3 and described as follows:

1. Is it similar with one of the labels of Willetts2018 type?
If a label from the non-Capture24 dataset matches one of the six primary labels, Sit-Stand,
Sleep, Mixed, Walking, Vehicle, and Bicycling, change the label into the corresponding one.
For instance, Sitting and Standing is relabeled as Sit-Stand.

2. Is it described in ’annotation-label-dictionary.csv’ of Capture24 dataset?
When the original label does not align with the Willetts2018 type, we turn to the origi-
nal annotations of the Capture24 dataset for the reference of further steps. This process
is facilitated by a detailed file ’annotation-label-dictionary.csv’7, which is provided with
Capture24 dataset and contains both the original annotations of Capture24 and their cor-
responding label types from several studies. Let’s assume that there is a sample of the
label Eating. Table 4.6 shows one part of this file used for this example scenario. The
activity Eating is not one of 6 labels defined in Willetts2018 type. However, we can find
annotations in the file that describe the activity Eating and the corresponding label type
in Willetts2018. Therefore, we refer to this file to identify the most frequently related Wil-
lets2018 label of Eating and, finally, relabel it into Sit-Stand in this case.

3. What if neither 1 nor 2 applies to this label?
It is possible to happen that the label is not one of the Willetts2018 type but also, there is
no description of this label in the annotation file. All activities that could not be relabeled
based on the previous steps are assigned a new label: Unknown, since the activity has
never been seen during the Capture24 data collection.

In Section A.3, an example of the relabeling process and the relabeling results for each HAR
dataset are presented.

7https://ora.ox.ac.uk/objects/uuid:99d7c092-d865-4a19-b096-cc16440cd001/
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Figure 4.3: FLOWCHART FOR RELABELING PROCESS. This figure shows the workflow of relabeling
during the data preprocessing. The original label from non-Capture24 datasets is changed to either one
of the labels in Willetts2018 or ’Unknown’.

4.3.4 Dataset Splitting
After standardizing the formats of various datasets through preprocessing, we proceed to reor-
ganize and generate three distinct data splits for our experimental purposes. Table 4.7 shows
the counts of each sample by data splits.

First of all, the training dataset for the source domain (SDtrain) is assembled by combining
75% of Capture24 (Id 1) and an equal proportion of negative samples drawn from datasets
(Id 2 to Id 7). This set of samples serves as the training data for various models detailed in
Chapter 5, excluding the base model and var-C models, which do not require a negative class
during training. Secondly, the source domain test dataset (SDtest) comprises the remaining
25% of Capture24 and negative samples. Additionally, we introduce unknown samples sourced
from datasets (Id 8 and Id 9) to assess the performance of open-set classification. Lastly, the test
dataset for the target domain (TDtest) is constructed using the remaining 8 datasets (Id 10 to Id
17). As a result, TDtest consists of 6 known labels and unknown samples from diverse domain
set.
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annotation label:Willetts2018

eating standing indoor/outdoor;MET 2.0 Mixed

eating standing alone or with others;MET 2.0 Sit-Stand

buying foods or drinks as a takeaway;MET 2.3 Sit-Stand

Table 4.6: EXAMPLE OF THE ANNOTATION IN WILLETTS2018 LABEL TYPE. This table shows the
part of the result for the activity ’Eating’ in the annotation columns and its corresponding Willetts2018
labels. The Willetts2018 label, ’Sit-Stand’, ’Sleep’, ’Walking’, ’Bicycling’, ’Vehicle’, and ’Mixed’, do not
have ’Eating’. However, it can be considered as ’Sit-Stand’ since it appears in the annotation and ’Sit-
Stand’ is the majority label corresponding to Willetts2018.

Dataset Total
Known classes (Dkn) Negative

(Dneg)

Unknown

(Dunkn)sl ss wk mx vh bc

SDtrain 757.1K 271.6K 288.4K 42.4K 80.7K 19.0K 6.6K 48.3K -

SDtest 216.4K 68.4K 65.1K 14.9K 34.9K 15.3K 2.2K 12.1K 3.5K

TDtest 395.5K 370.6K 9.6K 10.4K 2.5K - 0.6K - 1.7K

Table 4.7: SAMPLE COUNTS FOR EACH CLASS BY DATA SPLITS. This table shows the number of
samples for each class by data splits. The name of the known class is abbreviated: ’sleep’ → ’sl’, ’sit-stand’
→ ’ss’, ’walking’ → ’wk’, ’mixed’ → ’mx’, ’vehicle’ → ’vh’, ’bicycle’ → ’bc’





Chapter 5

Methodology

In this project, we employs a systematic approach to enhance Human Activity Recognition
(HAR) for cross-domain datasets through a series of model variations. In this chapter, we in-
troduce the base model and progressively deliver enhancements in subsequent variants during
the downstream task. Also, we present a variety of evaluation metrics that will assist us in
evaluating certain strengths and weaknesses of our models.

The first subsection Section 5.1 is about the base model. It utilizes Multi-Task Self-Supervised
Learning (MTSSL) methodologies, incorporating a ResNet-type feature extractor. In Section 5.2,
the first variant model ’var-C’ is established to increase the generality of extracted features to
cover the common HAR task dataset for the downstream task. With Section 5.3, we introduce
the subsequent variant model ’var-CU’. On top of ’var-C’ features, we also trained it to dis-
tinguish between known and unknown samples by adding additional samples to the training
dataset intentionally. Consecutively, Section 5.4 describe the final variant model ’var-CUA’. It
extends the model ’var-CU’ capabilities further by incorporating diverse augmentation tech-
niques during fine-tuning. Lastly, 5.5 outlines the array of evaluation metrics we employ, in-
cluding quantitative measures such as balanced Accuracy and balanced Open-Set Classification Rate,
alongside qualitative assessments like the visualization of feature spaces, providing a compre-
hensive evaluation of our models’ performance across various dimensions.

5.1 base: Multi-Task Self-Supervised Learning
In this project, we choose the Multi-Task Self-Supervised Learning (MTSSL) method introduced
by Saeed et al. (2019) as a foundation model for HAR tasks. The MTSSL model, situated within
the broader realm of the HAR field, offers an innovative solution to challenges associated with
the requisite for extensive and accurately labeled datasets.

5.1.1 Network architecture
The referenced MTSSL architecture employed a ResNet-v2 (He et al., 2016) as the backbone of
the feature extractor. A total of five residual blocks are layered (Table 5.1), and each residual
block consists of an additional 1D convolutional layer at the beginning and a downsampling
unit at the end (Figure 5.1). All 1D convolutions have the same kernel size 5 with 2 paddings on
both sides. In addition, to prevent the downside of model performance caused by the shifting
of an input signal, we applied a specialized downsampling technique into the deep network
introduced by Zhang (2019). This technique uses a 1D convolution with the blurred box kernel
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Figure 5.1: 1ST LAYER OF MTSSL BACKBONE ARCHITECTURE. This figure shows the first layer of
the base MTSSL feature extractor. Several layers of this configuration come together to form an overall
feature extractor. The output size of the convolutional layer, the number of residual blocks, and down-
sampling configurations are parameterized.
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# of Residual
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Downsampling
Output Size

Factor Order

1 3 x 300 64 x 300 2 2 2 64 x 150

2 64 x 150 128 x 150 2 2 2 128 x 75

3 128 x 75 256 x 75 2 5 1 256 x 15

4 256 x 15 512 x 15 2 5 1 512 x 3

5 512 x 3 1024 x 3 0 3 1 1024 x 1

Table 5.1: PARAMETERS FOR THE FEATURE EXTRACTOR IN THE BASE MTSSL. This table shows
the parameters of each layer in the feature extractor. Input and output size are displayed in the form of
’Channel × Length’. Following this setting, the 3-axes accelerometer signal ’3 × 300’ passes through the
feature extractor and is finally transformed into a feature set size of ’1024 × 1’.

on each channel set by two attributes: Factor and Order. With these parameters, it creates the
blurred box kernel values and appropriate size of padding and stride. Consequently, the length
of each channel is exactly reduced into 1/Factor.

The classification layer that follows the feature extractor is simply constructed with fully
connected linear layers. However, it is used in different forms according to the purpose of each
process, pre-training and fine-tuning. For pretraining, the last layer of the feature extractor is
fully connected with multiple binary output layers. Each fully-connected layer is used to detect
a change in a signal affected by a predefined multi-task. On the other hand, the fine-tuning has
one type of fully connected layer which has an intermediate layer of size 512. In other words,
this fully connected layer for fine-tuning is configured to classify the 6 labels defined in the
HAR correctly. The classification layers for each purpose are expressed in the first and second
steps of Figure 5.2, respectively.
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Figure 5.2: PROCESS OF MULTI-TASK SELF-SUPERVISED LEARNING FOR HAR TASK. This figure
shows the basic workflow of Multi-Task Self-Supervised Learning(MTSSL) for HAR task. The methodol-
ogy involves training a temporal convolutional network to recognize diverse transformations as an initial
task (Step 1). The transformations are selected and randomly applied to the original unlabeled samples
beforehand. Lastly, the learned weights of the feature extractor are transferred to enhance the performance
of the actual activity recognition model in the subsequent step (Step 2).

5.1.2 Model training
The base model, MTSSL, has two phases for training. First, during the pre-training phase, the
network is trained to learn the general features of the HAR signal by classifying self-defined
tasks. In Algorithm 1, the large unlabeled accelerometer data DU is selected and transformed
by following the guidelines of pre-defined multi-tasks. For multi-tasks, we define a set of |T |
distinct transformations (or tasks) T = {Jt(.)}t∈T , where Jt(.) is a function that applies a par-
ticular signal alteration technique t to the temporal sequence x ∈ DU to yield a transformed
version of the signal Jt(x). The network Pθ(.) that has a common feature extractor and individ-
ual head for each task, takes an input sequence x and produces |T | logit values for each task. In
this network, θ represents the learnable parameters. Eventually, The backbone network layer is
trained by updating θ whether each sample is transformed into t or not. To do so, the binary
cross-entropy losses from each multi-task t are calculated and the mean loss is used to update
network weights θP (5.1).

LPT (x, y) = − 1

|T |
∑
t∈T

yt log [Sigmoid(Pθ(x)t)] + (1− yt) log [1− Sigmoid(Pθ(x)t)] (5.1)
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Algorithm 1: Pre-training of Multi-task Self-Supervised Learning
Input: unlabeled sample set DU , sample channel size C, sample length L, multi-tasks T ,

numbers of epochs EP

Output: Self-supervised network P
initialize (X,Y ) where X ∈ R( |DU |, C, L ) and Y ∈ R( |DU |, |T |);
initialize P with parameters θP ;
// Labeled data generation for multi-task self-supervision;
for each instance x ∈ R( C, L) in DU do

initialize y =
{
y1, ... , y|T |

}
;

for each transformation t ∈ T do
change (x, yt) to (Jt(x), 1) or (x, 0)

end
insert (x, y) to (X,Y );

end
// Pre-training the network for the multi-task self-supervision;
for each epoch ep from 1 to EP do

Randomly sample a mini-batch of m samples from (X,Y );
Update θP by descending along its gradient;
∇θP

[
1
m

∑m
i=1 LPT (xi, yi)

]
end

Secondly, the trained backbone network layer is transferred and fine-tuned for the specific
downstream task. Since the transferred layer has already learned how to extract features from
the general signal, the dataset for fine-tuning does not need to be as large as the pertaining
dataset. However, it has to be labeled appropriately to serve the specific purpose of downstream
tasks. This process is well illustrated in Algorithm 2. The labeled dataset for fine-tuning is
represented as DL, and a set of |C| activity classes needs to be classified. The network Fθ(.) has
the same feature extractor with Pθ(.), but it includes only one classification head, which has
the output size of activity classes |C|. Before training begins, the feature extractor parameters
θF are initialized to the corresponding parameters of the pre-training network θP . It means
the network exploits the knowledge gained from large unlabeled data DU . In the fine-tuning
process, the learnable parameter update is based on the multi-label cross-entry loss with the
softmax-activated function (5.2). However, labeled HAR data sets in reality generally contain
an imbalance problem of classes. Therefore, we try to solve it by assigning a weight according to
the sample class to the loss value. Each class weight is inversely proportional to their frequency
in DL (5.3).

LFT (x, y) = − log [Softmaxc(Fθ(x))] , where y is c ∈ C (5.2)

ψc =

[
1

N

N∑
i=1

1c(yi)

]−1

, where DL = {(xi, yi)}Ni=1 and c ∈ C (5.3)
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Algorithm 2: Fine-tuning of Multi-task Self-Supervised Learning
Input: Labeled Finetuning Dataset DL, numbers of epochs EF , Pre-trained model

parameters θP
Output: Activity classification model F with |C| classes
calculate and initialize the class weight ψc;
initialize learnable parameters θF ;
transfer feature extractor parameters of θP to θF ;
// Finetuning the network for the specific classification task;
for each epoch ef from 1 to EF do

Randomly sample a mini-batch of labeled samples from DL,
{( x1, ... , xm) , ( y1, ... , ym)} ;

Update θF by descending along its gradient;
∇θF

[
1
m

∑m
i=1 ψyi (LFT (xi, yi))

]
end

5.2 var-C: Adding Classic Feature Extractor
This variant model was designed to enhance the type and number of features extracted from
the MTSSL model. We selected various mathematical features traditionally used in HAR (Bao
and Intille, 2004; Ravi et al., 2005) and named them the classic features to distinguish them from
existing ResNet-based features. As shown in Figure 5.3, these classic features are used with the
feature extractor to deliver more intuitive and robust information to the classification layer.

As described in Table 5.2, the classic features are divided into two types depending on what
type of data is used: Axis-based(12) and Point-based(10). Axis-based classical features can be
obtained as statistical values of each of the three accelerometer axes. Therefore, all statistical
items have three values each. Point-based classical features are calculated using 300 Euclidean
distance values calculated from (x, y, z) sample points included in a window. In addition to
basic statistical values and frequency analysis values, this type of classic feature also includes
specific measurements for the accelerometer-based activity signal, Euclidean Norm Minus One
(ENMO) and Mean Amplitude Deviation (MAD). ENMO is used for adjusting for a gravity effect
on the signal via subtracting a fixed offset of one gravitational unit (Van Hees et al., 2013).
Moreover, MAD has the benefit of separating sedentary and pace-specific ambulatory activities
from each other (Aittasalo et al., 2015).

Hence, a total of 22 classic features are appended to the existing 1024 feature output and
all 1046 characteristics are delivered to the fully connected layer for classification. However,
in this process, the range of classical features shows a significant difference from the original
ResNet-based features. This range difference of feature values causes problems that slow the
convergence speed of the model or lower its performance. The main factor behind this is that
the model’s weight-updating process can be highly biased to large feature nodes. To prevent
this problem, we additionally performed normalization for each feature in the same batch.

The change from base to var-C can be explained through the newly defined downstream
network Fθ(.). It is originally defined as Cθ (Fθ (.)), which represent Fθ (.) as the feature extrac-
tor and Cθ (.) as the classification layer. For this variant model, we used an additional feature
extractor Fclassic (.) to consider classical features, but also the technique of batch normalization
BatchNorm to re-scale all features in (Fθ (x) ,Fclassic (x)) in the range of 0 and 1 by each. Even-
tually, Cθ (.) of the model var-C takes features from both Fθ (.) and Fclassic (.) with the same
scale (5.4).
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Figure 5.3: PROCESS OF VAR-C MODEL FINE-TUNING. It shows the activity recognition model archi-
tecture of var-C. Compared to the base model, it has Classic feature extractor additionally. Finally, 1024
features from the neural network and 22 classical features are appended together and used to predict the
activity through the classification layer.
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Fθ(x) = Cθ (BatchNorm (Fθ (x ) ,Fclassic (x ))) (5.4)

where Fθ (.) ∈ R1024 and Fclassic (.) ∈ R22 (5.5)

5.3 var-CU: Learning with Unknown Samples
In real-world HAR tasks, it is impossible to establish a dataset that can cover all human activity
classes. This restriction is problematic when responding to unknown activity samples (x, y),
which has y as c /∈ C where C is the set of the known activity class. Therefore, if unknown
samples can be removed through a certainty-based threshold in the prediction process, it is ex-
pected to prevent the case that the model unconditionally predicts all samples as one of the
known classes. To implement this concept, the training data and loss function were changed
while maintaining the model structure used in the model var-C. As a result, it can predict not
only the activity but also the accurate certainty level of the result. With the predicted infor-
mation, unknown samples are separated from the predicted value set through post-processing
such as the softmax threshold. The concept of the model var-CU is described in Figure 5.4.

Loss Function

There are two main ways to effectively remove unknown samples from cross-domain environ-
ments during prediction. The first is eliminating samples that are not known classes using
thresholding, and the second is adding dummy classes to the existing known class dataset so
that the features of the unknown sample are also learned during the training process. The ap-
proach of Dhamija et al. (2018) properly uses these two methods together. So, we decided to
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Data Type Feature Item # of Outputs

Array of each axis

in a 10-sec window

Mean 3

Standarad Deviation 3

Peak-to-Peak 3

Correlation Coefficient 3

Euclidean norm of

each sample points (x, y, z)

in a 10-sec window

Mean 1

Standard Deviation 1

Peak-to-Peak 1

Kurtosis 1

Skewness 1

ENMO 1

MAD 1

Freq. Analysis
Spectral Entropy 1

Peaks 2

Table 5.2: 22 CLASSICAL FEATURES. This table shows 22 feature items implemented in the classical
feature extractor. A total of 22 features are extracted from a 10-second window. Each item can be divided
into Axis-based and Euclidean Norm-based according to the type of data used to obtain features.

apply it to this project. The paper introduced a simple but effective new form of loss func-
tion: Entropic open-set and Objectosphere loss, that will help model learning features of unknown
samples and thresholding after the prediction.

• Entropic open-set loss

This loss function maintains the categorical cross-entropy loss upon softmax-activated
logits to known labels but, in the case of an unknown label, it uses the maximum entropy
distribution of uniform softmax scores over the known classes. It is described in (5.6)
with following the definition of Fθ(x) in (5.4). As a result, this loss function affects net-
work layers to consider not only the high probability for the correct prediction of known
samples but also having maximal entropy to the resulting probability distribution against
unknown samples.

Lent(x, y) =

{
− log [Softmaxc(Fθ (x))] where y is c ∈ C
− 1

|C|
∑

c′∈C log [Softmaxc′(Fθ (x))] where y is c /∈ C
(5.6)

• Objectosphere Loss

The term Objectosphere has a meaning of the boundary with a magnitude ξ in the deep fea-
ture space. Following the equation below, this part of the loss function trains the network
to put known samples out of this boundary whilst pushing unknown samples inside of it.
φ(x) ∈ RN for each sample x represents the feature vector with size N and ∥φ(x)∥2 is the
magnitude of it. Consequently, by summing Entropic open-set with Objectosphere loss
(5.7), known samples have large feature magnitude with low entropy, and unknown sam-
ples have small feature magnitude with high entropy. In other words, it helps to easily
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Figure 5.4: PROCESS OF VAR-CU MODEL FINE-TUNING. It shows the activity recognition model
architecture of var-CU. Compared to the var-C model, it uses negative samples together during training
to get an appropriate threshold filtering out unknown samples. The added blocks are colored as Green in
the diagram.
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distinguish between known and unknown samples by the softmax threshold after the in-
ference. Finally, this loss function is used for updating the fine-tuning network parameter
θF (5.8).

Lobj(x, y) = Lent(x, y) + λ

{
max(ξ − ∥φ(x)∥, 0)2 where y is c ∈ C
∥φ(x)∥2 where y is c /∈ C

(5.7)

LFT (x, y) = Lobj(x, y) (5.8)

Note that this loss function has λ and ξ that require an optimization process. However, the
optimization process requires a lot of computing power and is outside the scope of this
project. Therefore, we simply set λ as 1 and ξ as 1.38, which is the 90th percentile ∥φ(x)∥2
value when testing with x ∈ SDtest

kn on the var-C model with .

As we refer to SDtrain in Table 4.7, the small size of fine-tuning data is prone to inherit
imbalances on the data between known classes, but also total known samples and unknown
samples. Especially, the size inequality of known and unknown samples can act as a factor that
hinders the influence of the Entropic open-set and Objectosphere loss function on the model.
Hence, while maintaining the weighting ratio between the existing known classes (5.3), we
also tried to consider the weighting between the known and the unknown sample (5.9). For
the convenience of the symbols to be used in the following equation, the labels in the training
dataset are depicted as yi with i is 1...N , and the set of unknown activity labels is defined as
c′ /∈ C.

ψc =


[

1
N

∑N
i=1 1c(yi)

]−1 [
1− 1

N

∑N
i=1 1c′(yi)

]−1

where c ∈ C[
1
N

∑N
i=1 1c′(yi)

]−2

where c /∈ C
(5.9)
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Figure 5.5: PROCESS OF VAR-CUA MODEL FINE-TUNING. It shows the activity recognition model
architecture of var-CUA. Compared to the var-CU model, it has Data Augmentation Process during the
training dataset.

5.4 var-CUA: Training Data Augmentation
This variant model augments the training dataset in several forms to keep the model perfor-
mance constant even on various domain datasets. The importance of data augmentation tech-
niques for HAR tasks has also been researched in Um et al. (2017); Xu et al. (2023). They inves-
tigated various data augmentation techniques for Parkinson’s Disease Monitoring tasks. As a
result, appropriate augmentation improves the classification performance by around 12% from
the original model which has no augmentation processes.

Augmentation Techniques

In this project, we choose 3 different data augmentation techniques that are commonly used in
the wearable device dataset: Switching Axes, Rotating Axes, and Amplitude Scaling. Figure 5.6
shows 10-second window samples augmented to a different form. These augmentation tech-
niques are used depending on the type of variant model, which can be confirmed through the
alias augmentation techniques added at the end of the model name. For example, in the case
of a model using the switching axes technique, it is indicated as var-CUA-s, and when two or
more techniques are used together, it is indicated as var-CUA-xxx.

• Switching Axes (s)

The axis orientation of accelerometer sensors can be varied by the type of wearable device
since there is no universal standard for sensor axis settings across all wearable devices.
Therefore, we apply the switching axes for one of the augmentation techniques in this
experiment. As a result, the original axes order x, y, and z are switched randomly into one
of 6 different combinations of 3-axes orders. All possible sets of switching schemes are
chosen with a uniform distribution.

• Rotating Axes (r)
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Figure 5.6: EXAMPLE OF 3 DIFFERENT TYPES OF THE AUGMENTATION TECHNIQUE. This figure
shows an example of the result of data augmentation. After applying 3 different types of data augmenta-
tion, the original signal input (left) is transformed into one of the signals (right). It is also possible that
multiple augmentations are applied on the sample at the same time. ( Switching Axes: (x,y,z)→(y,z,x),
Rotating Axes: 45◦ with a reference axis (1,1,1), Amplitude Scaling: 0.6 )

The augmentation of rotating axes is beneficial to overcome the challenges coming from
different participants. Since the sensor placement is different between participants or its
position on the human body, the difference in the angle of the sensor’s default axes is
a common occurrence in real-world scenarios. Hence, by rotating all axes to some de-
gree together, the training sample can be augmented to handle various scenarios from
unseen participants and wearing locations. To rotate axes, the model multiplies the rota-
tion matrix which includes the information of randomly selected angle( −π ∼ π ) and the
reference axis for rotating. In other words, each sample point (x, y, z) in a 10-sec window
is rotated by a randomly selected angle around the reference axis.

• Amplitude Scaling (a)

This approach involves changing the magnitude of the data in a window by applying a
random scalar. Depending on participants and wearable device settings, the actual am-
plitude of the signal may differ in a certain range. To tackle this signal invariance, scaling
with various factors is a commonly used technique in time-series sensors. However, if the
scaling factor is too large, it may also damage the label information. Therefore, we limited
the range of the scalar factor from 0.6 to 1.4 linearly.

As a result, a total of seven different var-CUA models are created: var-CUA-s, var-CUA-r,
var-CUA-a, var-CUA-sr, var-CUA-sa, var-CUA-ra, and var-CUA-sra. During fine-tuning each
model, all training samples go through an augmentation process. Therefore, the overall process
of var-CUA training can be expressed as shown in Figure 5.5.
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5.5 Evaluation Metrices
Following model training, we conduct a thorough evaluation of our various models for the
different domains. To achieve this, a series of qualitative and quantitative evaluation matrices
are used in this project.

5.5.1 Balanced Accuracy
Identifying the ratio of the number of correct predictions to the total test of samples can be
achieved by calculating the overall accuracy of a model. However, in cases where datasets
have an imbalanced number of each class, the performance of the frequently-appeared labels
will be dominant in the overall performance. To tackle that, a balanced Accuracy is needed,
by employing, for example, a macro-averaging method (5.10). For convenience, the Softmax
function is symbolized as S(x). This method calculates the accuracy separately for each known
class c ∈ C. Hence, it involves only the known classes of each dataset, denoted as Dc∈C and
averages the result across all classes. This technique guarantees that each class, irrespective of
its size in the dataset, equally contributes to the overall accuracy metric.

balanced Accuracy =
1

|C|
∑
c∈C

|{x | x ∈ Dkn,c ∧ argmaxS(x) = c}|
|Dkn,c|

(5.10)

5.5.2 Balanced Open-Set Classification Rate
For model creation cases that involve unknown samples like var-CU and var-CUA, it is impor-
tant to assess a model’s ability to distinguish correctly between known samples as well as satisfy
a specific false positive rate for the unknown samples. For that scope, Dhamija et al. (2018) pro-
posed an Open-set Classification Rate. This is an evaluation metric that conceptually parallels
the Receiver Operating Characteristic (ROC) curve by illustrating a classification model’s per-
formance across various classification thresholds. Moreover, it diverges by being specifically
designed for open-set classification tasks, which entail handling datasets that include unknown
samples. Its calculation process commences with the computation of the softmax function S(x)
for each test sample. Then, depending on the sample whether it is the set of known samples DC
or unknown samples DU , both the Correct Classification Rate (CCR) and the False Positive Rate
(FPR) are computed by adjusting the softmax score threshold θ, as delineated in (5.11).

In case of class imbalances in the used datasets, a macro-averaging method should be em-
ployed for the calculation of CCR. In other words, for each class c ∈ C, the CCR is calculated
individually at the specified threshold, and then these rates are averaged across all the classes in
C. Macro-averaging ensures that each class, regardless of its size or frequency within a dataset,
contributes equally to the overall CCR metric. This approach is particularly crucial for datasets,
where class imbalances could skew the evaluation if not accounted for.

The main goal of this evaluation metric is to identify the appropriate threshold for each
model and the best-performed model configuration in the point of balanced CCR when FPR
equals 0.1. This refined methodology allows us to comparatively evaluate models in a manner
that is both equitable and representative of their ability to classify across a diverse set of classes.
In the curve depicting balanced OSCR, a higher threshold corresponds to the left side, while a
lower threshold corresponds to the right. Ideally, a robust and accurate classifier achieves a
high balanced CCR at a certain FPR. Also, it is worth mentioning that the value of balanced CCR
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when FPR equals 1 represents balanced Accuracy used in the closed-set evaluation since S(.) > θ
becomes always true.

FPR(θ) =
|{x | x ∈ DU ∧maxS(x) ≥ θ}|

|DU |

balanced CCR(θ) =
1

|C|
∑
c∈C

|{x | x ∈ Dc ∧ argmaxS(x) = c ∧ Sc(x) > θ}|
|Dc|

(5.11)

5.5.3 Semantic Analysis
In addition to assessing a model’s capability to accurately identify activities, exploring how
test samples are distributed within a deep feature space is pivotal. This examination can re-
veal potential semantic similarities among relabeled categories. This semantical analysis can be
utilized by visualizing each class sample on the feature space. By analyzing its clustering, the
model becomes more explainable.

However, the visualization of the high-dimensional features, 1024 or 1046 in our case, is
impractical due to the dimensional limitations perceivable by the human eye. To navigate this
complexity, we incorporate the cutting-edge dimensionality reduction technique Uniform Man-
ifold Approximation and Projection (UMAP), as proposed by McInnes et al. (2020). UMAP
aims to project the data into a lower-dimensional space that closely mirrors the original high-
dimensional space’s fuzzy topological structure. This method is particularly chosen for its abil-
ity to handle non-linearities, akin to t-SNE, while also offering superior runtime performance.

Note that the primary focus of UMAP is on the relative distances between samples since
this method is based on calculating the distance between samples. In other words, UMAP
tries to make a group of samples which has smaller distance as dense as possible, but far apart
from other groups. Hence, the distribution and scale of the original feature values may not be
preserved after the reduction.
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Experiments and Results

In this chapter, we focus on the experimental setup and evaluating our advanced Human Ac-
tivity Recognition (HAR) models. Section 6.1 presents the experimental setup, detailing the
fine-tuning processes for three model variants, var-C, var-CU, and var-CUA, and the choices of
evaluation metrics used to assess their predictions across closed-set and open-set scenarios for
both SDtest and TDtest. Then, Section 6.2 presents the results of these evaluations, across the
different variants and scenarios.

6.1 Experimental Setup
In this section, we describe the pre-trained model that served as a foundation for our exper-
iments, along with details of the fine-tuning process and the dataset utilized therein. Subse-
quently, we introduce various scenarios in which we will assess the performance of the variant
models, along with the specific metrics we plan to employ.

6.1.1 Pre-Training and Fine-Tuning
Pre-training and Fine-tuning follow the processes of Algorithm 1 and Algorithm 2, respectively.
However, depending on each model variant, some of the existing network components, such as
Loss Function L(.) and the Downstream Network model F (.), are replaced and the configura-
tion of the dataset SDtrain is changed.

First of all, the pre-training model, we use the pre-trained public HAR model because the
size of the unlabeled dataset is hard to access publicly and the process of pre-training needs high
computing power. However, the shared model pre-trained by (Yuan et al., 2023), utilizes the
UK-Biobank dataset containing the data from more than 100,000 participants wearing the device
in seven days. Also, it follows well-defined self-supervision tasks: Arrow of Time, Permutation,
and Time warping. It is described shortly in Table 6.1

After then, perform HAR tasks for label types in Figure 4.1, we further fine-tuned the pre-
trained model on the small-size labeled dataset, SDtrain in Table 4.7. Since the base and var-C
model only consider closed-set classification, 708.8K samples are used without 48.3K negative
samples. On the other hand, other models var-CU and var-CUA, used all samples 757.1K in
SDtrain including negative samples. The entire network is optimized using Adam (Kingma
and Ba, 2017) with a learning rate of 1e-3 and a batch size of 1000.



36 Chapter 6. Experiments and Results

Self-Supervision Task Description

Arrow of Time Reverses the signal by flipping it along the time axis. It is
the same with playing the signal backward.

Permutation
Divides the signal into time-series segments and rear-
ranges them in a random order. It introduces invariant
permutations on the samples.

Time warping
Alters the duration of arbitrary segments of the signal, ef-
fectively introducing random variations in speed by slow-
ing down and speeding up.

Table 6.1: SELF-SUPERVISED TASKS USED FOR THE PRE-TRAINING MODEL. This table lists the
item of self-supervision tasks which are used for the pre-trained model.

6.1.2 Evaluation Scenarios

After fine-tuning the pre-trained model for each purpose, all variant models will undergo a
rigorous evaluation using datasets classified by SDtest and TDtest, as detailed in Table 4.7.
Initially, we utilize SDtest to establish a baseline for performance. Our analysis then extends to
include assessing model performance on TDtest. To ensure an effective assessment, our models
are evaluated from various perspectives: closed-set, open-set, and semantic analysis.

First, we assess our models in the context of a closed-set scenario, as we aim to measure
their ability to identify known activities correctly. Considering the significant label imbalances
in SDtest and TDtest, we will use balanced Accuracy to achieve a fair evaluation as presented in
5.5.1. Since this evaluation scenario considers how many known samples are correctly classi-
fied, we exclude all unknown samples from test datasets in this evaluation.

Furthermore, as our models also incorporate unknown samples, it is crucial to evaluate them
in open-set classification scenarios. Here, given the label imbalances in SDtest and TDtest, we
employ balanced OSCR, as presented in 5.5.2 for a comprehensive assessment. The algorithm
was applied to the following processes. First, a softmax value is derived through logit values
of each sample. Next, balanced CCR and FPR are calculated using the obtained softmax values
as parameters. Finally, after plotting each pair of balanced CCR and FPR, the value of balanced
CCR and threshold when FPR is 0.1 are checked through interpolation.

Finally, we aim to expand our analysis to the qualitative aspects, which are critical for captur-
ing potential complex relationships within the data. This approach helps us identify semantic
overlaps and intricate patterns in our models. To achieve this, we explore the feature values of
test samples from each model by visualizing them on the feature space. However, our original
feature space is too large for practical visualization. Therefore, as mentioned in 5.5.3, we adopt
the UMAP dimensionality reduction technique. In the initial stage of semantic analysis, we
carefully resample 1000 samples by each class from SDtest and TDtest, respectively. It ensures
an even distribution of samples across labels to mitigate potential visualization errors caused
by data imbalance. Lastly, we perform standardization on the feature vectors to fit into the con-
sistent scaling for the UMAP algorithm. In conclusion, the dimension of feature vectors for each
sample is reduced from 1024 to 2 for the base model, and 1046 to 2 for other variant models.
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6.2 Results
In this section, we present the results of our experiments, analyzing the evaluation metrics
presented in Section 6.1. The findings are based on each model variation applied to SDtest and
TDtest. We are focusing on understanding the effects of different classical features, unknown
samples, and augmentation techniques. The results are substantiated through a combination of
statistical data, confusion matrices, and graph representations.

6.2.1 Balanced Accuracy
For closed-set scenario experiments, we calculate the balanced Accuracy for each model varia-
tion involving only known samples. As outlined in Table 6.2, we observe that balanced accuracy
yields similar patterns in the results for both SDtest and TDtest. Notably, the var-CUA variant
demonstrates the highest accuracy in both domains, with the combinations of augmentation
techniques consistently leading to improved outcomes. In particular, the accuracy in SDtest

increased by approximately 0.01 (2%) from the base model, while in TDtest increased even
more by approximately 0.06 (29%). This emphasizes the significant impact of data augmenta-
tion techniques on enhancing the correct classification of known labels, especially in the case of
TDtest.

In the SDtest, the combination of switching and rotating axes (var-CUA-sr) emerges as the
most effective variation, achieving an overall balanced Accuracy of 0.6772. This was closely
followed by the variation that combines rotating axes and amplitude scaling (var-CUA-ra), and
then by the model that uses only rotating axes (var-CUA-r). However, these two model varia-
tions have little difference from the best-performed one with a marginal difference of only 0.001
to 0.002. Similarly, in TDtest, the combination of rotating axes and amplitude scaling (var-CUA-
ra) exhibited the best performance, followed closely by the combination of switching axes and
amplitude scaling (var-CUA-sa), and integration of all three techniques (var-CUA-sra). This
trend reaffirms that combinations of augmentation techniques generally surpass both the other
models that have no augmentation, and the var-CUA model with a single augmentation.

Further examination of the classification outcomes for each category was conducted through
an in-depth analysis using the confusion matrix, as depicted in Figure 6.1. Each cell in the
matrix means the number of samples corresponding to the pair of the truth and predicted label.
In addition, normalization was applied for each true value to minimize the visual effect of the
label imbalance. The analysis highlights that the SDtest yields a high rate of true positives
for all labels in every model. Nonetheless, the labels Mixed and Walking present noticeable
challenges in terms of classification, with a notable number of samples being misclassified by
each other. However, by improving the model from base to var-CUA, this problem becomes
resolved gradually. It can be shown that the instances of Walking samples erroneously classified
as Mixed have reduced, while the correct classification of Walking samples has increased.

Intriguingly, when comparing findings from the SDtest, the confusion matrix for the TDtest

indicates a substantial misclassification across almost all labels. This is particularly evident in
the case of Sleep samples, which are frequently misclassified as Sit-Stand. Also, in the case of
Bicycling samples, they are frequently misclassified as Mixed or Vehicle. However, in the case
of var-C, there is a significant improvement in their correct classification and a decrease in the
ratio of misclassification from each other. Moreover, it is worth mentioning that compared to the
base model, all variant models have led to improvement in the correct classification of Walking
samples like the similar trend in SDtest. Last but not least, despite the absence of Vehicle samples
in TDtest, each model consistently misclassified Sit-Stand and Bicycling samples as Vehicle.
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Table 6.2: BALANCED ACCURACY RESULTS FOR DIFFERENT MODELS. This table shows the result of
the balanced Accuracy of each model by test dataset SDtest and TDtest. Table 6.2a shows the overview
of differences between the base and its variant. Note that the value of var-CUA for SDtest and TDtest is
the same as the highest value in Table 6.2b for each. The highest accuracy for each case is highlighted in
bold. And, the second and third are underlined.

(a) for the base model and its variants

base var-C var-CU var-CUA
SDtest 0.6638 0.6506 0.6393 0.6772
TDtest 0.2174 0.2448 0.2268 0.2805

(b) all var-CUA cases

var-CUA
s r a sr sa ra sra

SDtest 0.6710 0.6754 0.6383 0.6772 0.6621 0.6765 0.6723
TDtest 0.2188 0.2074 0.2588 0.2241 0.2635 0.2805 0.2630

(a) Confusion matrix of SDtest

(b) Confusion matrix of TDtest

Figure 6.1: CONFUSION MATRIX FOR DIFFERENT MODELS. This figure shows the ratio of prediction
labels by each true label. It means that the more dark-colored labels for each true label, the more likely they
are predicted. Figure 6.1a and Figure 6.1b are derived from SDtest and TDtest, respectively. For the
model var-CUA, ’sr’ and ’ra’, which showed the highest values in Table 6.2b, were chosen and arranged.
The remaining var-CUA models are in Figure A.2. The name of the known class is abbreviated: ’sit-
stand’→’ss’, ’sleep’→’sl’, ’mixed’→’mx’, ’walking’→’wk’, ’bicycle’→’bc’, ’vehicle’→’vh’
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6.2.2 Balanced OSCR

In the case of open-set scenario experiments, we calculated the balaced OSCR for each model
variation incorporating unknown samples. The findings presented in Table 6.3a indicate that
selecting the appropriate augmentation technique enables the var-CUA model to attain a higher
CCR at an FPR of 0.1 for both domains, reaching values of 0.5777 for the SDtest and 0.0843 for
the TDtest. Comparing the two models, var-CU and var-CUA, that specifically take Open-Set
Classification into account, the effect of augmentation techniques is remarkable. The addition
of augmentation shows improvements of 13% and 54% for SDtest and TDtest, respectively.
Specifically, in the Table 6.3b, we can observe the details of var-CUA performance. For the
SDtest, the one that exhibits high performance is the var-CUA-s model followed by var-CUA-
ra and var-CUA sr. On the other hand, for the TDtest, the one that exhibits high performance is
the var-CUA-a model followed by var-CUA-sra and var-CUA sa. Those findings indicate that
for both domains the single augmentation shows better performance than multi-augmentation.

Furthermore, the balanced OSCR curve in Figure 6.3 shows other insights into the balanced
CCR of different models for each dataset. In particular, for the SDtest as depicted in Figure 6.3a,
var-CUA is plotted based on the range between the augmentation techniques that presented
minimum and maximum balanced CCR at each FPR, in this case, the var-CUA-a and var-CUA-
s respectively. We can observe that all cases of var-CUA always performed better than var-CU
and it is worth mentioning that the performance of var-CUA-s and var-CUA-a intersect with
each other when FPR is 0.05. These two findings are represented in detail through the subplots
A and B on the right side of the figure. Similarly, for the TDtest as depicted in Figure 6.3b
var-CUA was presented in a range between the var-CUA-r and var-CUA-a. These are the aug-
mentation techniques that presented a minimum and maximum balanced CCR corresponding
to each FPR in TDtest. Moreover, it is noticeable that var-CUA-r always shows a higher balanced
CCR compared to other models. However, other augmentation models show lower perfor-
mance than even var-CU when FPR is 0.1. In particular, var-CUA-s, r, and sr show this trend
continually even when FPR increases. These two findings are also represented in detail through
the subplots A and B on the right side of the figure.

The OSCR curve shows the pair of values in FPR and CCR according to changes in Softmax.
Therefore, it is possible to analyze the phenomenon of the OSCR curve from another perspective
through the histogram of the known sample and the unknown sample by the value of Softmax
having the range from 0 to 1. For this purpose, Figure 6.2 illustrates the histogram of known
and unknown samples by the softmax score across different domains and model variations. The
more the distribution between the unknown sample and the known sample is distinguished, the
higher the chance of having a highly balanced CCR at a certain FPR. First of all, for the SDtest

in Figure 6.2a, var-C presents a positive change in comparison to the base model since the
overlaps between the histograms for known and unknown samples are reduced. On the other
hand, as we see in TDtest (Figure 6.2b), the overlaps of known and unknown distributions
tend to increase from the base to the var-C model. However, from the var-C to the var-CU
and further to var-CUA, both domains not only present a noticeable decrease in the softmax
scores of unknown samples but also overlap between the area of known and unknown. As
introduced in 5.3, this seems to be the expected effect of using the unknown sample in the
training dataset and applying the objectosphere loss function. As a result, this change in the
fine-tuning process can be interpreted as playing an important role in improving the open-set
classification performance for both cases, SDtest and TDtest.



40 Chapter 6. Experiments and Results

Table 6.3: BALANCED CCR RESULTS AT FPR OF 0.1 FOR DIFFERENT MODELS. This table shows
the result of the balanced CCR at FPR of 0.1. Table 6.3a shows the overview of differences between the
base and its variant models. And, Table 6.3b shows the detailed result of each augmentation technique in
the var-CUA model. The highest accuracy for each case is highlighted in bold. And, the second and third
are underlined. Note that the value of var-CUA for SDtest and TDtest in Table 6.3a is the same as the
highest value in Table 6.3b for each.

(a) the base model and variants

base var-C var-CU var-CUA
SDtest 0.0003 0.2971 0.5106 0.5777
TDtest 0.0197 0.0160 0.0546 0.0843

(b) all var-CUA cases

var-CUA
s r a sr sa ra sra

SDtest 0.5777 0.5439 0.5124 0.5446 0.5427 0.5482 0.5444
TDtest 0.0379 0.0322 0.0843 0.0475 0.0479 0.0448 0.0516

(a) histogram of SDtest softmax score

(b) histogram of TDtest softmax score

Figure 6.2: SOFTMAX SCORE HISTOGRAM BY KNOWN AND UNKNOWN SAMPLES. This graph
shows the distribution of the softmax score by known and unknown samples for the base and its variations.
In each softmax, the density of the known sample and the unknown sample is expressed in green and
red, separately. Figure 6.2a and Figure 6.2b represent the result from SDtest and TDtest, respectively.
For the model var-CUA here, ’s’ is selected for SDtest and ’a’ is selected for TDtest because these two
augmentations are the highest balanced CCR in Table 6.3b for each dataset. The remaining var-CUA
models are in Figure A.3 and the comparison between each known label vs. unknown is depicted in
Figure A.4. Note that the lower area overlapped between the green and red, the easier distinction between
known and unknown samples through softmax thresholding.
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(a) Source domain test dataset SDtest
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(b) Target domain test dataset TDtest

Figure 6.3: BALANCED OSCR CURVE FOR DIFFERENT MODELS BY SOURCE AND TARGET. This
figure shows the values of the pairs of balanced CCR and FPR that vary with the softmax threshold.
Figure 6.3a and Figure 6.3b represent the result from SDtest and TDtest, respectively. Each model is
depicted with different colors. In particular, the model var-CUA is expressed in the form of a range with
maximum and minimum values because various results can be obtained depending on which augmenta-
tion was used. In addition, specific ranges such as A and B are displayed as detailed plots on the right
side of each main plot. Accordingly, it is possible to compare the balanced CCR value between various
augmentation types belonging to the var-CUA and the surrounding values.
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6.2.3 Semantic Analysis in Deep Feature Space
Aside from quantitative analysis, we have chosen to derive also qualitative insights from the
feature space visualization, particularly on semantic overlaps in the feature space.

Starting with analyzing SDtest, Figure 6.4a highlights a clear separation of Unknown features
from other classes in all models. Furthermore, as models progress from base to var-CUA-sr, the
distance between the cluster of Unknown cases and those of known samples increases. In other
words, as the finetuning process is newly defined, this phenomenon supports that the values
of features extracted from the Unknown samples have a different distribution from the feature
values of other known samples.

Let’s take a closer look at the distribution of known samples in Figure 6.4a. It is worth men-
tioning that Bicycling stands out as distinctly clustered apart from others, followed by Vehicle
and Sleep showing similar phenomena. In particular, the distinction between Bicycling and Ve-
hicle grows as the model’s enhancements advance from the base to the var-CUA model. This
can also be seen as a situation in which the Vehicle cluster absorbs into the larger central cluster,
which includes Sit-Stand and Mixed. However, unlike Vehicle, Walking shows a phenomenon of
increasing separation from the central cluster. As a result, as the model evolves, the Unkown,
Bicycle, Sleep, Walking classes have more and more clear features, while the features of Sit-Stand,
Vehicle, Mixed seem to become more ambiguous.

Interestingly, in the feature space visualization using TDtest, it can be seen that the overlap
between classes is more prominent. As illustrated in Figure 6.4b, the deep feature space for
TDtest shows that the Unknown samples are centrally positioned among other clusters, caus-
ing overlaps with various samples. Notably, in the TDtest domain, there’s a marked overlap
between features attributed to the Unknown and Sit-stand categories. Furthermore, the Walking
category exhibits a dispersed clustering pattern, appearing adjacent to multiple other clusters
rather than forming a distinct group. This dispersion is consistently observed across all models,
with the Walking cluster notably aligning closely with the Mixed cluster. Looking at the change
according to the model, it can be seen that the boundaries between classes become ambiguous
when changing from var-C to var-CU. However, it can be seen that the boundaries become clear
again when changing from var-CU to var-CUA.
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(a) The distribution of 1000 source test samples in the feature space of each model

(b) The distribution of 1000 target test samples in the feature space of each model

Figure 6.4: VISUALIZATION OF THE DISTRIBUTION OF SAMPLES IN THE DEEP FEATURE SPACE.
This figure visualizes the distribution of test samples from SDtest and TDtest. To prevent visual bias
caused by data imbalance, 1000 samples were randomly selected and plotted for each label. For the var-
CUA models, the models that have the highest performance in closed-set and open-set are chosen by
each dataset. The remaining var-CUA models are in Figure A.1. Due to the nature of UMAP used for
dimensional reduction, the axis scale and axis values are not visualized because they have no specific
meaning. Only relative distances between samples or clusters in the same plot matter.





Chapter 7

Discussion

This project begins with a fundamental question: ’How to tackle the model generalization issue
of the HAR task by enhancing the fine-tuning process while preserving the pre-trained model?’. This
inquiry is pivotal as it aims to ensure that we can build models for Human Activity Recogni-
tion (HAR) that accurately classify activities regardless of the device used, its body location,
or the surrounding environment. The significance of preserving the pre-trained model lies in
the fact that these models are built upon vast amounts of data and computational resources,
which might not be readily available for all projects. By focusing on fine-tuning these models
with smaller, domain-specific datasets, we aim to leverage the extensive learning and insights
they contain. This approach underscores the efficiency and necessity of exploring advanced
fine-tuning techniques. It represents a strategic method to enhance model generalization and
performance across diverse conditions, making it an essential step towards harnessing the full
potential of pre-trained models for HAR tasks.

Our initial analysis, using diverse evaluation metrics, uncovered a notable performance
drop in the TDtest compared to the SDtest with the base model. This decline emphasizes
the significant impact of domain-specific factors, such as device type and environmental set-
tings, on sensor signal characteristics. Despite leveraging a large dataset of 700,000 activity
samples, for the creation of the pretraining model, these domain differences posed challenges
to the MTSSL model’s conventional fine-tuning process. In addressing these issues, we system-
atically improved the model from the base model to the var-CUA model, leading to significant
enhancements in cross-domain performance. This demonstrates how methodical refinements
to the fine-tuning approach can be applied with successful outcomes while preserving the same
pre-trained model.

Impact of Enhanced MTSSL Fine-Tuning Process

Initiating our enhancement with var-C, we integrated 22 classical features to broaden domain
coverage. This inclusion, as detailed in Table 6.2, yielded a performance uplift in TDtest, en-
hancing the baseline by roughly 0.03 (12%). This was evident in Figure 6.1b, where activities
such as Walking saw improved classification accuracy in both SDtest and TDtest. This success,
however, did not uniformly extend to other activities in TDtest that presented an increased rate
of misclassification as Sit-Stand, which shows high overlaps with other activities in the seman-
tic analysis. This result is potentially derived from the relabeling process of original datasets
involved in TDtest. For instance, in the dataset ADL which is a part of TDtest, the relabeling
process showcases the phenomenon of semantic overlap. Following the Table A.7a, for exam-
ple, activities like Sit Down Chair and Stand Up Chair, which have a transitional nature, were
both labeled as Sit-Stand. However, this caused some confusion, especially with activities like
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Getup Bed, which is also a transitional nature. As it was not stated clearly sit or stand it was
labeled as Unknown. This approach, while intended to make things clearer, actually made it
harder to differentiate between some activities, illustrating the challenge of labeling transitional
movements accurately.

Following this, with var-CU, we assessed the model’s capacity to distinguish false positives
through the inclusion of unknown samples. As depicted in Figure 6.2, this addition led to a re-
duced overlap of histogram regions representing known and unknown samples. That is also ev-
ident in Figure 6.4, which demonstrates a more precise feature space clustering for the Unknown
category in SDtest, suggesting improved identification of Unknown cases. Despite this advance-
ment, balanced Accuracy metrics indicated a reduction compared to var-C, pointing to a trade-
off in classifying known cases. This likely results from our customized weighted loss function’s
focus on minimizing false positives by correctly identifying unknown samples, a strategy that
necessitates a more cautious approach in classifying known classes, thereby slightly reducing
precision. Yet, a detailed examination of the balanced OSCR in (Table 6.3) showed var-CU sig-
nificantly improved balanced CCR across both domains at a fixed FPR of 0.1, outperforming
both base and var-C models. Notably, in TDtest, balanced CCR with var-CU was more than
threefold higher than with var-C, highlighting var-CU’s effectiveness in open-set scenarios by
better filtering out unknown samples, thereby enhancing generalization. This distinction in
performance indicates that although var-CU experiences a decrease in balanced Accuracy, it
significantly excels in open-set classification. This is particularly true for TDtest, where var-
CU’s ability to effectively distinguish unknown samples marks a notable advancement, under-
scoring its benefits in scenarios where identifying unknown samples is critical. Thus, var-CU’s
advantage is most pronounced in situations that demand accurate identification of unknowns,
making it particularly beneficial for TDtest compared to TDtest.

Lastly, we explored the impact of multiple augmentation techniques with var-CUA, which
outperformed previous models in balanced Accuracy across both domains, as detailed in Ta-
ble 6.2. In particular, var-CUA for the majority of the augmentation technique combinations
showed better closed-set classification results compared to other variant models for both SDtest

and TDtest. Notably, for the appropriate augmentation technique var-CUA achieved an in-
crease in balanced Accuracy by approximately 0.06 (29%) in TDtest and 0.01 (2%) in SDtest

when compared to their respective base models. This suggests that augmentation techniques
not only improve the correct classification of known samples but also enhance the model’s
generalizability. Importantly, these augmentation techniques effectively mitigate performance
drops that came from the model var-CU. Furthermore, balanced OSCR measurements (Ta-
ble 6.3) indicate that var-CUA models exhibit a substantial increase in balanced CCR at a fixed
FPR of 0.1. In particular, the var-CUA model with the appropriate augmentation techniques
presents an overall increase of 13% in SDtest and an overall increase of 54% in TDtest from
their respective var-CU model. Those observations highlight the model’s enhanced capability
to accurately identify both known and unknown activities, essential for maintaining efficacy in
real-world applications.

Diving deeper into our analysis, we found that different augmentation techniques in the var-
CUA model affected performance in complex ways. While most techniques improved results,
a few made performance slightly worse. This shows how tricky it can be to pick the right
augmentation strategy: some work better for certain types of tests, like open-set or closed-
set classifications. For example, the augmentation with switching axes consistently improved
results in SDtest for both closed- and open-set scenarios. On the other hand, the augmentation
with amplitude scaling was particularly helpful in TDtest, indicating that it is better suited for
more complicated contexts. This highlights the importance of choosing the right augmentations
to best suit the specific needs of different tests, ensuring our model performs well in a variety
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of situations.

Limitations

Despite the progress made with the var-C, var-CU, and var-CUA models in enhancing model
performance and generalizability, there are limitations to our approach. Following we outline
these limitations and suggest directions for future research:

• Since the domain had to be defined between the available datasets, this project proceeded
with a cross-domain evaluation under a limited domain definition of a combination of
device type and data collection environment setting. While the experiment within this
predefined domain has provided valuable perspectives on the challenges and potential
solutions associated with cross-domain evaluations, it is expected that a deeper consid-
eration of the domain definition and specifically customized dataset for Cross-Domain
Evaluation will help us understand this problem more accurately.

• An additional limitation of this project stems from the presence of imbalanced labels
within the dataset. While we implemented a weighted loss function and correspondingly
adjusted evaluation metrics to mitigate the impact of this imbalance, it is important to ac-
knowledge that no approach can provide foolproof prevention of biased model training
or ensure optimal performance. A dataset with a good balance between labels of each do-
main’s dataset and between known and unknown samples is required. In cases where ob-
taining such datasets proves challenging in practice, the necessity for more sophisticated
weighting strategies in both loss functions and evaluation metrics becomes apparent.

• The datasets utilized in this study varied in the level of detail provided in their label
descriptions. Consequently, our relabeling process relied solely on the original names of
each label. This approach, while straightforward, inadvertently led to frequent overlaps
in the feature space, as activities with different practical implications were often relabeled
into the same class. This issue, partly stemming from label ambiguity as highlighted in
Willets2018, posed significant challenges in training our classifier model. Such limitations
became apparent in the confusion matrix and in the overlaps observed in the feature space
representations. These findings underscore the need for revisiting the criteria for defining
known labels and suggest the potential benefits of a more refined relabeling process that
more accurately accounts for semantic differences between activities.

• In this project, we employed the Multi-Task Self-Supervised learning model as the founda-
tional framework, enhancing the fine-tuning process based on this model. However, this
particular setup can not represent the overall cross-domain evaluation of Self-Supervised
learning in HAR models. Notably, Haresamudram et al. (2022) shows various types of
Self-Supervised HAR models. Exploring cross-domain evaluation with different types
of Self-Supervised models presents an intriguing avenue for future investigation. Addi-
tionally, there is potential to identify common strategies that enhance the generalization
performance of Self-Supervised learning models across diverse domains.

• The objective of this project was to explore diverse avenues to enhance cross-domain per-
formance, prioritizing comprehensive strategies within each method rather than delving
into the intricacies of a single method. Consequently, when incorporating the objectsphere
loss into the var-CU model, the detailed exploration of various hyperparameters was in-
tentionally omitted. The possibility remains that the identification of an optional hyper-
parameter could yield performance enhancements.
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• For the variant model var-CUA, we focused on implementing 3 different augmentation
techniques in this project. However, these data augmentation techniques for HAR tasks
can be varied. By comparing the effect of each method presented in Um et al. (2017),
it is expected that the effect of data augmentation on cross-domain performance can be
analyzed from more diverse perspectives.
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Conclusion

Our investigation into enhancing the generalization capabilities of self-supervised Human Ac-
tivity Recognition (HAR) models across diverse datasets has led to several discoveries. By in-
corporating classic human activity features, integrating unknown samples, and employing a
strategic mix of data augmentation techniques, we’ve addressed the inherent complexity and
variability of human activities across different domains. This multi-faceted approach not only
improved the base model, Multi-Task Self-Supervised Learning (MTSSL)’s performance, but
also highlighted the importance of a nuanced fine-tuning process for effective cross-domain
application.

A notable outcome of this research is the clear demonstration that no single enhancement
method suffices on its own. Instead, the synergy among the introduced methodologies—classic
feature integration, unknown sample inclusion, and data augmentation—collectively contributed
to a marked improvement in model performance. These methods, particularly when combined
in the var-CUA model, significantly elevated both the balanced Accuracy and the model’s ro-
bustness across diverse datasets. This underscores the pivotal role of tailored fine-tuning strate-
gies in overcoming the challenges posed by the variability of activities and environmental con-
ditions in HAR tasks.

Despite these advancements, our exploration acknowledges the persisting challenges of
dataset variability and environmental diversity as substantial hurdles in HAR model gener-
alization. This research journey has systematically assessed the impact of each fine-tuning
method, laying a solid groundwork for future exploration. As we move forward, it’s clear that
continuous refinement and exploration of fine-tuning techniques are essential in enhancing the
adaptability and accuracy of HAR models, paving the way for their application in a wider array
of real-world scenarios.
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Attachments

A.1 Dataset Details

Dataset Total
Willetts2018

unknown
Sit-Stand Sleep Mixed walking vehicle bicycling

CAPTURE24 909,535
353,443

(39%)

340,076

(37%)

115,586

(13%)

57,239

(6%)

34,380

(4%)

8,811

(1%)
-

PAMAP2 5,250
1,366

(26%)

385

(7%)

870

(17%)

1,282

(24%)

109

(2%)

329

(6%)

909

(17%)

GOTOV 18,873
4,922

(26%)

2,708

(14%)

1,370

(7%)

4,451

(24%)
-

2,736

(14%)

2,686

(14%)

REALWORLD 13,109
3,764

(29%)

1,896

(14%)

2,066

(16%)

5,114

(39%)
- -

269

(2%)

SELFBACK 9,642
2,359

(24%)

1,182

(12%)

1,569

(16%)

4,532

(47%)
- - -

ADL 1,594
572

(36%)
-

167

(10%)

558

(35%)
- -

297

(19%)

WISDM 29,136
13,697

(47%)
-

6,880

(24%)

3,420

(12%)
- -

5,139

(18%)

HARVARDLEO 3,089
800

(26%)
-

1,200

(39%)

692

(22%)
- -

397

(13%)

MENDELEYDAILY 3,644
1,064

(29%)
-

521

(14%)

824

(23%)
- -

1,235

(34%)

PAAL 8,871
3,837

(43%)
-

3,004

(34%)
- - -

2,030

(23%)

COMMUTING 5,545
1,712

(31%)
-

2,319

(42%)
- - -

1,514

(27%)

OPPO 3,882
2,931

(76%)

165

(4%)
-

786

(20%)
- - -

FORTH-TRACE 6,139
2,723

(44%)
- -

3,285

(54%)
- -

131

(2%)

HOUSEHOLDHU 93,065
21,224

(23%)
-

20,838

(22%)
- - -

51,003

(55%)

WRISTPPG 1,327 - -
292

(22%)

437

(33%)
-

598

(45%)
-

NEWCASTLE 365,776 -
365,776

(100%)
- - - - -

ICHI14 3,488 -
3,488

(100%)
- - - - -

Table A.1: THE COUNT OF LABELS FOR EACH DATASET. This table describes the counts and per-
centile of each label after overall dataset preprocessing.
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A.2 Additional results of experiment
In this section, we attached additional results of our experiment. This includes detailed evalua-
tion results skipped from the main contents in Section 6.2.

(a) The distribution of 1000 source test samples in the feature space of each model

(b) The distribution of 1000 target test samples in the feature space of each model

Figure A.1: VISUALIZATION OF THE DISTRIBUTION OF SAMPLES IN THE DEEP FEATURE SPACE
FOR REMAINING VAR-CUA MODELS. To prevent visual bias caused by data imbalance, 1000 samples
were randomly selected and plotted for each label. Due to the nature of UMAP used for dimensional
reduction, the axis scale and axis values are not visualized because they have no specific meaning. Only
relative distances between samples or clusters in the same plot matter.
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(a) Confusion matrix of SDtest

(b) Confusion matrix of TDtest

Figure A.2: CONFUSION MATRIX FOR REMAINING VAR-CUA MODELS. The name of the known
class is abbreviated: ’sit-stand’→’ss’, ’sleep’→’sl’, ’mixed’→’mx’, ’walking’→’wk’, ’bicycle’→’bc’,
’vehicle’→’vh’
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(a) histogram of SDtest softmax score

(b) histogram of TDtest softmax score

Figure A.3: SOFTMAX SCORE HISTOGRAM BY KNOWN AND UNKNOWN SAMPLES FOR REMAIN-
ING VAR-CUA MODELS. In each softmax, the density of the known sample and the unknown sample is
expressed in green and red, separately.
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(a) histogram of SDtest softmax score

(b) histogram of TDtest softmax score

Figure A.4: SOFTMAX SCORE HISTOGRAM BY EACH KNOWN LABEL AND UNKNOWN SAMPLES.
Unknown samples are expressed in black color.
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A.3 Example of the relabeling process
In this section, we illustrate the relabeling process applied to the SELFBACK (Table A.6a) and
PAAL (Table A.10) datasets, showcasing how Willetts2018 label type has been consistently im-
plemented. For example, activities such as Lying, Sitting, and Standing are uniformly relabeled
across both datasets to Sleep and Sit-Stand. This uniformity is in line with Willetts’ categoriza-
tion within the Capture24 dataset, ensuring coherence in labeling across different datasets.

In relabeling the PAAL dataset, we differentiate notably between Mixed and the newly added
Unknown categories. Mixed includes activities like Washing hands from PAAL, recognized in
Capture24 but not aligning with the other 5 specific labels (e.g. Sleep, Walking, etc.). These are
activities acknowledged within the dataset but lacking a precise classification.

Conversely, Unknown is introduced for activities beyond the Willetts framework and Cap-
ture24’s scope, such as Salute, Sneeze cough, and Blow nose from PAAL. These do not fit any
existing categories, marking them as Unknown and expanding our dataset’s range of activities.
This distinction enriches our understanding of human behaviors, addressing previously unrec-
ognized activities in the research.

After outlining the relabeling process in our datasets, it is essential to emphasize the diverse
range of activities in both the source and target domain datasets, specifically those categorized
as Unknown. Table 4.4 illustrates these unique activities, highlighting the non-overlapping na-
ture crucial for effective cross-domain evaluation. This diversity ensures that our fine-tuning
phase encompasses a broad behavioral spectrum, distinct from the patterns tested in cross-
domain evaluations.
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Table A.2: RELABELING RESULTS FOR THE DATASET ’PAMAP2’ AND ’WISDM’.

(a) PAMAP2 Dataset

PAMAP2

Original Label Capture24 Label

lying Sleep

sitting
sit-stand

standing

walking walking

cycling bicycling

car driving vehicle

running Mixed

ironing

unknown

folding laundry

vacuum cleaning

house cleaning

playing soccer

rope jumping

(b) WISDM Dataset

WISDM

Original Label Capture24 Label

sitting

sit-stand

standing

typing

soup

chips

pasta

sandwich

writing

walking
walking

stairs

jogging

mixed
teeth

drinking

folding

kicking

unknown
catch

dribbling

clapping
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Table A.3: RELABELING RESULTS FOR THE DATASET ’HARVARDLEO’ AND ’HOUSE-
HOLDHU’.

(a) HARVARDLEO Dataset

HARVARDLEO

Original Label Capture24 Label

Keyboard_Writing

sit-stand
Laptop

Handwriting

Eating

Downstairs

walking

Walking

Walking_Fast

Upstairs_Fast

Upstairs

Handwashing

mixed

Facewashing

Teethbrush

Sweeping

Dusting

Rubbin

Relax
unknown

Vacuuming

(b) HOUSEHOLDHU Dataset

HOUSEHOLDHU

Original Label Capture24 Label

Keyboard typing
sit-stand

Handwriting

Wiping the table
mixed

Sweeping floor

Using mouse

unknown

Cutting vegetables

Stir-frying
vegetables

Using vacuum to
vacuum

Open and close
drawer
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Table A.4: RELABELING RESULTS FOR THE DATASET ’OPPORTUNITY’ AND ’WRISTPPG’.

(a) OPPORTUNITY Dataset

OPPORTUNITY

Original Label Capture24 Label

lie Sleep

sit
sit-stand

stand

walk walking

(b) WRISTPPG Dataset

WRISTPPG

Original Label Capture24 Label

walk walking

high_resistance_bike
bicycling

low_resistance_bike

run Mixed

Table A.5: RELABELING RESULTS FOR THE DATASET ’COMMUTING’ AND ’MENDELEY-
DAILY’.

(a) COMMUTING Dataset

COMMUTING

Original Label Capture24 Label

computer

sit-stand
dinner

lunch

work

shopping walking

brush_teeth

mixedshower

exercise

commuting unknown

(b) MENDELEYDAILY Dataset

MENDELEYDAILY

Original Label Capture24 Label

BrushTeeth

sit-stand
DrinkGlass

StandUp

SitDown

Walk walking

CleanTable Mixed

PourWater

unknownCloseDoor

OpenDoor
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Table A.6: RELABELING RESULTS FOR THE DATASET ’SELFBACK’ AND ’REALWORLD’.

(a) SELFBACK Dataset

SELFBACK

Original Label Capture24 Label

Lying Sleep

Standing
sit-stand

Sitting

Walking Upstairs

walking

Walking Downstairs

Walking in slow
pace

Walking in medium
pace

Walking in fast pace

Jogging Mixed

(b) REALWORLD Dataset

REALWORLD

Original Label Capture24 Label

lying Sleep

standing
sit-stand

sitting

climbingdown

walkingclimbingup

walking

running Mixed

jumping unknown
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Table A.7: RELABELING RESULTS FOR THE DATASET ’ADL’ AND ’FORTH-TRACE’.

(a) ADL Dataset

ADL

Original Label Capture24 Label

comb_hair

sit-stand

drink_glass

standup_chair

sitdown_chair

eat_meat

eat_soup

use_telephone

climb_stairs

walkingdescend_stairs

walk

brush_teeth Mixed

getup_bed

unknownliedown_bed

pour_water

(b) FORTH-TRACE Dataset

FORTH-TRACE

Original Label Capture24 Label

stand

sit-stand

sit

sit and talk

stand ->sit

sit ->stand

stand ->sit and talk

sit and talk ->stand

walk

walking

walk and talk

climb stairs

climb stairs and talk

climb stairs ->walk

climb stairs and talk
->walk and talk

stand ->walk

unknown
walk ->stand

stand ->climb stairs

stand ->climb stairs
and talk

Table A.8: RELABELING RESULTS FOR THE DATASET ’ICHI14’ AND ’NEWCASTLE’.

(a) ICHI14 Dataset

ICHI14

Original Label Capture24 Label

Sleep Sleep

(b) NEWCASTLE Dataset

NEWCASTLE

Original Label Capture24 Label

Sleep Sleep
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Table A.9: RELABELING RESULTS FOR THE DATASET ’GOTOV’.

GOTOV

Original Label Capture24 Label

lyingDownLeft
sleep

lyingDownRight

standing

sit-stand
sittingSofa

sittingCouch

sittingChair

step

walking

walkingStairsUp

walkingSlow

walkingNormal

walkingFast

cycling bicycling

dishwashing Mixed

syncJumping

unknownstakingShelves

vacuumCleaning
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Table A.10: RELABELING RESULTS FOR ’PAAL’.

PAAL

Original Label Capture24 Label

writing

sit-stand

type_on_a_keyboard

brush_teeth

brush_hair

drink_water

phone_call

eat_meal

sit_down

stand_up

washing_dishes

mixed

ironing

washing_hands

dusting

open_a_box

put_on_a_shoe

unknown

put_on_a_jacket

take_off_a_jacket

take_off_a_shoe

blow_nose

put_on_glasses

open_a_bottle

salute

sneeze_cough

take_off_glasses
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(2017). Data augmentation of wearable sensor data for parkinson’s disease monitoring us-
ing convolutional neural networks. In Proceedings of the 19th ACM international conference on
multimodal interaction, pages 216–220.

van Hees, V., Charman, S., and Anderson, K. (2018). Newcastle polysomnography and ac-
celerometer data.

Van Hees, V. T., Gorzelniak, L., Dean León, E. C., Eder, M., Pias, M., Taherian, S., Ekelund,
U., Renström, F., Franks, P. W., Horsch, A., et al. (2013). Separating movement and gravity
components in an acceleration signal and implications for the assessment of human daily
physical activity. PloS one, 8(4):e61691.

Walmsley, R., Chan, S., Smith-Byrne, K., Ramakrishnan, R., Woodward, M., Rahimi, K., Dwyer,
T., Bennett, D., and Doherty, A. (2022). Reallocation of time between device-measured move-
ment behaviours and risk of incident cardiovascular disease. British journal of sports medicine,
56(18):1008–1017.

Weiss, G. (2019). WISDM Smartphone and Smartwatch Activity and Biometrics Dataset . UCI
Machine Learning Repository. DOI: https://doi.org/10.24432/C5HK59.

Willetts, M., Hollowell, S., Aslett, L., Holmes, C., and Doherty, A. (2018). Statistical machine
learning of sleep and physical activity phenotypes from sensor data in 96,220 uk biobank
participants. Scientific reports, 8(1):7961.



70 BIBLIOGRAPHY

Xu, H., Zhou, P., Tan, R., and Li, M. (2023). Practically adopting human activity recognition.
In Proceedings of the 29th Annual International Conference on Mobile Computing and Networking,
ACM MobiCom ’23, New York, NY, USA. Association for Computing Machinery.

Yang, J., Nguyen, M. N., San, P. P., Li, X., and Krishnaswamy, S. (2015). Deep convolutional neu-
ral networks on multichannel time series for human activity recognition. In Ijcai, volume 15,
pages 3995–4001. Buenos Aires, Argentina.

Yang, Y., Hou, C., Lang, Y., Guan, D., Huang, D., and Xu, J. (2019). Open-set human activity
recognition based on micro-doppler signatures. Pattern Recognition, 85:60–69.

Yuan, H., Chan, S., Creagh, A. P., Tong, C., Clifton, D. A., and Doherty, A. (2023). Self-supervised
learning for human activity recognition using 700,000 person-days of wearable data.

Zhang, R. (2019). Making convolutional networks shift-invariant again.


	Introduction
	Milestones and Work Distribution
	Related Work
	Multi-Task Self-Supervised Learning
	Cross-Domain Evaluation
	Open-Set Classification

	Dataset Preparation
	Definition of Domain
	Description of Dataset
	Datasets for the Source Domain
	Datasets for the Target Domain

	Dataset Preprocessing
	Resampling
	Windowing
	Relabeling
	Dataset Splitting


	Methodology
	base: Multi-Task Self-Supervised Learning
	Network architecture
	Model training

	var-C: Adding Classic Feature Extractor
	var-CU: Learning with Unknown Samples
	var-CUA: Training Data Augmentation
	Evaluation Metrices
	Balanced Accuracy
	Balanced Open-Set Classification Rate
	Semantic Analysis


	Experiments and Results
	Experimental Setup
	Pre-Training and Fine-Tuning
	Evaluation Scenarios

	Results
	Balanced Accuracy
	Balanced OSCR
	Semantic Analysis in Deep Feature Space 


	Discussion
	Conclusion
	Attachments
	Dataset Details
	Additional results of experiment
	Example of the relabeling process


