
�1 Fabrizio Füchslin 14-701-577

Informatik-Vertiefung Report
Datenbanktechnologie

Table of Contents

1. Task 1
2. MonetDB 2
3. Structure of MonetDB-Trees 2
4. Example: JOIN-Operation 3
5. Implementation 4
6. Conclusion 5

1. Task

The task of this project is to install the database management system „MonetDB“ and
study the execution level of it in a first step. The execution level includes the creation of
so-called MAL plans and the execution of queries using MAL instructions. In a next step,
the LAPACK library should be included into the compilation process of MonetDB. An
external function should be included into MonetDB that calls the LAPACK library for the
internal MonetDB function of vector addition.
The data from the database should be copied in this process and the executed query
should have the form „SELECT x + y from t;“, where x and y are numeric values in the
table t. Afterwards, the run times of the data being processed solely by MonetDB and the
data being processed with a partial external execution (vector operation is delegated to
LAPACK) should be compared and repeated with different number of rows (1000, 10000,
1000000).
There is an optional part of the task where the data of the database should not be copied
to LAPACK but rather just passed on to the LAPACK function. Additionally, run times
should be compared with this optimized function where the values are passed on to
LAPACK.

�2 Fabrizio Füchslin 14-701-577

2. MonetDB

For this task, the column-oriented database management system „MonetDB“ is used.
MonetDB is an open source system that is primarily used to perform complex queries on
large databases. Its advantage over other DBMS is the high performance, that allows
processing millions of rows at an incomparable speed for applications such as data
mining, online analytical processing and other fields that deal with an enormous amount of
data.
What separates MonetDB from traditional DBMS is the architecture. There are three layers
which process date with their own set of optimizers. The top layer is the front-end, which
provides an interface for database languages like SQL. Incoming queries are parsed into
specific representations like relational algebra. Afterwards, there is a translation into the
MonetDB Assembly Language (MAL) that is passed to the back-end layer, which optimizes
based on costs. From there, the database kernel acts as the bottom layer, providing
access to the data in a special storage model. MonetDB uses vertical fragmentation, which
stores every column in a so-called Binary Association Table (BAT). This table contains
Binary Units (BUN) which themselves contain a head and a tail value. The head value is
an OID, that stores a unique ID for the tail value. The tail value is basically the value that
was inserted into the column.
For a table with the columns x and y there are two BAT’s. If the values 10 and 25 are
inserted into column x, BAT x will have two BUN’s which are [OID: 1, VAL: 10] and [OID: 2,
VAL: 25]. The OID is the same for all values in
one tuple, this means that if the values 15 and 35
are inserted into column y, BAT y will have two
BUN’s with following OID’s:
[OID: 1, VAL: 15] and [OID: 2, VAL: 35].
This architecture generally allows for a fast
lookup when it comes to queries that use
statements like JOIN or similar.

3. Structure of MonetDB-trees

As in many DBMS, one of the reasons why MonetDB performs so well is the breakdown of
incoming queries into different tree-structures. The resulting structure is optimized and
ensures this way a performance improvement with every breakdown-step. The first step
includes the breakdown of the query into a relation tree. In this tree, all parent nodes are
statements and all child nodes are tables. Optimizing can be achieved for example by
changing the order of the statements.
In the next step, a statement tree is created where the structure is broken down to BAT’s
and operations. This structure is the base for the conversion into the MAL-plan where the
programmatic steps for the query-execution get put together. The MAL-plan gets executed
and the result get computed.

Two BAT’s filled with values

�3 Fabrizio Füchslin 14-701-577

4. Example: JOIN-Operation

This example demonstrates the processing of MonetDB by executing a query containing a
JOIN-Operation and a condition that applies to it. Assume two relations table1 and table2
with the schema a and b for table1 and x and y for table2.

The columns are filled with the following
values:

(10, 25, 40) for a,
(20, 50, 85) for b,
(15, 20, 25) for x,
(30, 50, 60) for y.

The query has the following form:
SELECT * FROM table1 JOIN table2 ON a = x;

Before the query is executed, MonetDB transforms the query into
a relation tree. The nodes of such a tree can either be relations or
relational algebra operators. All of the relations involved are leaf-
nodes in this tree. The other nodes are operators, they have
child-nodes that can be relations or other operators. In this
example, there is a parent-node that contains the JOIN-Statement
including the condition „a = x“. It has two children, table1 and
table2, which are the leaves in this tree.

After the creation of the relation tree, the structure is further broken down into a statement
tree. The leaves of the statement tree are BAT’s from the columns of all the tables that are
involved in the JOIN-Operation. The BAT’s that represent the columns which are
mentioned in the condition (a and x in this example) are left-fetch joined and deliver the
OID’s from the BAT’s which are „stored“ in a parent-node. For this query, „Bat a“ and „Bat
x“ compare their values through iteration and find OID 2 for Bat a and OID 3 for Bat x,
because both BAT’s store the value 25 at this position. The resulting node plays a crucial
part in the next step of the building of the statement tree. Every leaf-node now performs a
left-fetch join with the node that was created in the previous step. For every BAT, the
corresponding OID from the same table gets selected and put out as a result. In this
example, OID 2 (from x) is used for BAT’s from table1 and OID 3 (from a) is used for BAT’s

Schema for table1 and table2

Relation tree

�4 Fabrizio Füchslin 14-701-577
from table2. This yields the values (25, 50) for (a, b) and (25, 60) for (x, y). The result of
the query is therefore the row (25, 50, 25, 60) for (a, b, x, y).

5. Implementation

By implementing a function that is based on copying the data into an array, adding the
values and copying it back into a BAT, it should be shown that MonetDB’s own
implementation is faster than a simple function based on copying values.
The implemented function takes several parameters as an input, including the two BAT’s
that should be added and a BAT where the result should be filled in. Memory is allocated
for two arrays of type double which are filled with the function „BATloop" that iterates over
the values in the BAT’s. Additionally, the memory for the resulting BAT is allocated and the
result-array is pointed to this memory. A for-loop fills the result-array by adding the array-
values of the two arrays. After that, the memory is freed.
The comparison of the runtimes for tables with 1’000, 10’000 and 100’000 yielded to the
following results:

Statement tree, LFJ = left-fetch join

0

300

600

900

1200

1'000 10'000 100'000

MonetDB Native Implementation

2.1ms
72 ms

7.8 ms

280 ms

30.2 ms

1100 ms

�5 Fabrizio Füchslin 14-701-577

MonetDB’s original implementation performed several times better than the
implementation based on copying. When copying the data, there is an increased memory
usage because memory needs to be allocated for two double arrays and one result-array.
Assuming a size of 8 bytes for a double, the three cases need following capacity:

1’000 entries: 24’000 bytes around 0.02 Megabytes
10’000 entries: 240’000 bytes around 0.22 Megabytes
100’000 entries: 2’400’000 bytes around 2.28 Megabytes

6. Conclusion

I gained some interesting insights into the inner workings of MonetDB, a column-oriented
DBMS. In addition to studying the structure and how queries are broken down, I
implemented a function on the lowest level in the C language and analyzed the difference
of performance. Unfortunately, there was not enough time to implement the optional part
that includes the LAPACK library but nevertheless, this project was an interesting
experience in the big field of database systems.

