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Abstract— In this paper, we tackle the problem of mapping
multiple 3D rigid structures and estimating their motions
from perspective views through a car-mounted camera. The
proposed method complements conventional localization and
mapping algorithms (such as Visual Odometry and SLAM)
to estimate motions of other moving objects in addition to
the vehicle’s motion. We present a theoretical framework for
robust estimation of multiple motions and structures from
perspective images. The method is based on the factorization
of the projective trajectory matrix without explicit estimation
of projective depth values. We exploit the epipolar geometry of
calibrated cameras to generate several hypotheses for motion
segments. Once the hypotheses are obtained, they are evaluated
in an iterative scheme by alternating between estimation of 3D
structures and estimation of multiple motions. The proposed
framework does not require any knowledge about the number
of motions and is robust to noisy image measurements. The
method is evaluated on street-level sequences from a car-
mounted camera. A benchmark dataset is also used to compare
the results with previous works, although most of the related
works use synthetic scenes simulating desktop environments.

I. INTRODUCTION

This paper addresses the problem of simultaneous
estimation of multiple motions of rigid objects and their 3D
structure from 2D image correspondences. Such 2D points
belong to a sequence of images captured by a car-mounted
camera under perspective camera model. The method
presented in this article has strong ties to Structure from
Motion (SfM), and consequently it provides complementary
capabilities to related problems in robotics, i.e. Visual
Odometry (VO) and SLAM.

A. Motivations

During the last decade, VO and SLAM have been widely
studied and recent advancements in VO have resulted in
fairly accurate estimation of vehicles’ motion with respect
to the environment [1]. Using VO, the vehicle can localize
itself with respect to the static parts of the scene while all
the moving parts are treated as outliers. The VO pipeline can
provide a sparse reconstruction of the environment as well
as the positions of the vehicle with respect to the sparse
map. The missing parts in this pipeline are localization of
other moving objects and estimation of their motions as well
as reconstructing the 3D structures of these objects. Such
additions to VO would be beneficial to driver assistance
systems in estimating the motions of other vehicles and
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pedestrians. This paper proposes a framework that provides
the aforementioned missing parts in navigation algorithms
that are widely used in robotics.

B. Related Work

The problem of estimating multiple motions and structures
from 2D correspondences of multiple images is known as
Multi-body Structure from Motion or motion segmentation
and estimation. The works on multi-body SfM problem can
be categorized into two major groups: i) approaches for affine
camera model, and ii) methods that can also be applied
to perspective camera model. Solving this problem under
perspective camera model is more challenging, because it
requires estimation of the perspective depth scales, which
is also a challenging problem by itself. Murakami et al.
[2] studied the conditions that a projective factorization is
feasible without estimating the projective depth values, and
showed that is possible only under strict assumptions; i.e. all
the camera coordinates lie on a single plane that is parallel
to all image planes.

There are several works in the literature that provide
rather good motion segmentation and estimation under affine
camera model. The seminal work of Costeira and Kanade [3]
formulated the multi-body SfM as a factorization problem.
The framework proposed by them is for the affine and
orthographic camera models, as discussed in details in
Section II. Since this method is purely based on algebraic
calculations, it is very sensitive to noise and outliers. Yan
and Pollefeys contribution in [4] can fairly handle outliers
but since it relies on local estimation of subspaces, it cannot
handle the cases where two or more parts of the scene have
the same motion but are not spatially correlated.

On the contrary, the multi-body SfM problem has not been
well studied for perspective images. Vidal et al. [5] proposed
a geometric approach to estimate multiple structures and
motions from two perspective views. This work was then
extended to three views in [6], but since both methods are
geometric based approaches, they are not robust to noise and,
thus, cannot be used for real-world applications. Schindler et
al. [7] proposed a method for n-view multi-body SfM based
on model selection. Their method uses 2-view geometry
and, by linking motion segments between multiple pairs of
frames, it propagates the initial segmentation to n-views.
Differently, Li et al. [8] proposed a factorization approach
to identify multiple rigid motions in perspective images. The
method is based on an initial estimation of projective depth
scales and consequently is not robust to noise. The details
of this approach are discussed in Section II.



The opportunities that multi-body SfM provides to the
robotics applications, especially to VO, is rarely investigated
in the literature. Furthermore, most of the experiments in
the literature are based on synthetic datasets. One of the few
works in this context was done by Vidal in [9], who applied
subspace clustering techniques to motion segmentation in
perspective images. However, the motion segmentation was
applied on optical flow information of an outdoor sequence
to segment the motions but not for estimating the motions.

C. Contributions

This article proposes a theoretical framework to estimate
motions and 3D structures of multiple rigid-body objects
from perspective views collected by a car-mounted camera.
The method is based on matrix factorization and assumes
that the camera is calibrated. Unlike other factorization
methods, which are based on a good initialization of motion
segments, our method generates several hypotheses for initial
motion-segments, which makes it more robust to noise.
Experiments on a real-world dataset show that, despite the
presence of many outliers in case of change of illumination in
outdoor environments, the method provides accurate motion
segmentation and reliable reconstruction. Furthermore since
the proposed framework estimates motions and structures in
an incremental way (does not need all the image frames at
once), it is intrinsically compatible with similar problems in
robotics (e.g. SLAM and VO) and can be easily integrated
in such approaches.

D. Structure of the Paper

In section II, the theoretical background of single-body
and multi-body SfM both for affine and perspective views is
discussed. The discussion in the next section is mainly based
on the factorization approaches to different variations of
SfM problem for rigid motions. In Section III, the proposed
framework and its theoretical concepts are thoroughly
described. Results of the proposed approach on a street-
level dataset as well as comparisons with other methods on
a benchmark dataset are presented in Section IV.

II. STRUCTURE AND MOTION: A FACTORIZATION
APPROACH

Structure from motion can be considered as the
simultaneous solution for two dual problems: i) recovering
an unknown structure from known camera positions, ii)
determining of viewer’s positions or camera motion from a
set of known 2D correspondences. In general, 3D structure
and camera motion can be estimated by applying epipolar
geometry between every pair of images or using the multi-
view geometry. The inter-image relations are linked by the
fact that a unique shape is projected onto the images captured
from different views. Since the extracted features are sparse
2D image points, the estimated 3D structure is also a sparse
3D point cloud.

Consider a set of p 2D point correspondences in multiple
views accumulated in a matrix W. Given matrix W, the SfM
problem consists of solving simultaneously for the position

of points in 3-D space, denoted as S, and the relative pose
of the cameras representing the motion, denoted as M. A
set of popular approaches estimate M and S matrices via
factorization approaches using solely the collection of such
2D image point correspondences (i.e. matrix W) [10], [11]
and [3].

A. Single Motion, Rigid Object and Affine Camera

For the affine camera model, rigid SfM problem can be
formulated in the mathematical context of bilinear matrix
factorization. So, the 2D image trajectories used by SfM can
be described by bilinear matrix models [11]. In more detail,
by defining the image coordinate of a point i in frame g as
the vector wgi = [xgi ygi]

T , we may write the measurement
matrix W that gathers the coordinates of all the points in all
the views as:

W=

 w11 . . . w1p
...

. . .
...

w f 1 . . . w f p

= [w1 . . . wp] , (1)

where f is the number of frames (g = 1 . . . f ), p is the
number of points (i = 1 . . . p) and vector wi is column i of
matrix W that represents image coordinates for i-th point in f
views. In case of a rigid object, the camera motion matrices
Mg and the 3D points si can be expressed as:

Mg =

[
Rg1 Rg3 Rg5
Rg2 Rg4 Rg6

∣∣∣∣ tg1
tg2

]
and si =


Xi
Yi
Zi
1

 , (2)

where Mg ∈R2×4 is the projection matrix containing rotation
and translation components and si is a 4-vector containing
the coordinate of the i-th point in 3D space. The recovered
structure si and motion Mg are up to a nonsingular linear
transformation and Euclidean upgrade is possible via a 4×4
transformation matrix. So, a 2D point i in a frame g is given
by wgi = Mg si.

We can collect all the image measurements and their
respective bilinear components Mg and si in a global matrix
form. Thus, the factorization model of image trajectories can
be formulated as

W2 f×p = M2 f×4 S4×p, (3)

where the bilinear components M and S are defined as:

M=

 M1
...
M f

 and S=
[

s1 · · · sp
]
. (4)

In general, the rank of W is constrained to be rank{W} ≤ r
where r�min{2× f , p}. For case of affine camera model
the rank of matrix W would be at most four. In practice, the
image measurements cannot be noise free, which increases
the rank of matrix W. So, the rank-four constraint should be
enforced in the factorization.



B. Single Motion, Rigid Object and Perspective Camera

In case of the perspective camera model, vector wgi in
Eq. (1) denotes the homogeneous coordinates of i-th point
in g-th image frame that is scaled by the projective depth
λgi, such that

wgi = λgi [xgi ygi 1]> = [ugi vgi λgi]
> . (5)

Consequently, Eq. (3) becomes:

W3 f×p = M3 f×4 S4×p . (6)

The rank-4 factorization of Eq. (6) is possible if the depth
scales λgi are known. Using epipolar geometry, Sturm and
Triggs [10] proposed a method to estimate λgi up to a
global scale factor. This can be achieved by estimating the
fundamental matrices Fgg′ and, consequently, the epipoles
egg′ that relate every pair of consecutive frames g and g′.
These two elements (Fgg′ and egg′ ) can be estimated in
a least-squares manner using the 8-point algorithm [12].
Thus, the relation between depth scales λgi and λg′i in two
consecutive frames will be as:

λgi =

(
egg′ ×wgi

)> (
Fgg′wg′i

)∥∥egg′ ×wgi
∥∥2 λg′i . (7)

By writing Eq. (7) for every pair of corresponding image
points and every pair of consecutive image frames, the depth
values can be recovered recursively up to an arbitrary initial
value for λ1i. In practice, the image measurements are noisy,
and relying only on geometric estimations will not provide
enough robustness. The robustness can be increased by
iteratively alternating between two steps: i) rank-4 estimation
of matrices of structure S and motion M (given an initial
estimate for depth values λgi), ii) estimating the depth values
that improve the previous estimations of structure and motion
[13]. In more detail, if the depth values are initialized as
λgi = 1, then the best rank-4 estimation of W will be:

W3 f×p ≈ M̃3 f×4 S̃4×p,

W̃ = M̃ S̃,
(8)

where S̃ and M̃ are the best rank-4 estimations for structure
and motion, respectively, and W̃ is an approximation of W

given by S̃ and M̃. Once the estimations for motion and
structure are obtained, the depth values are estimated as:

λgi =
∥∥wig− w̃ig

∥∥ , (9)

where w̃ig is an approximation of wig given by Eq. (8). In
[13] the convergence of such iterative scheme for estimation
of depth scale as well as structure and motion is proved.

C. Multiple Motions of Rigid Objects

If the 2D image correspondences belong to the motions
of multiple objects, the image measurement matrix W that
envelopes all the image correspondences belonging to several
motions can be written as:

W= [W1|W2| . . . |Wn] , (10)

where n is the number of motions and W j, j = 1 . . . n, is
the matrix containing 2D point correspondences belonging
to the j-th motion. Basically, matrix W is the horizontal
concatenation of W j matrices, each containing p j points that

comply with motion j, where p =
n
∑
j=1

p j is the total number

of points for all the motions. So, the camera motion matrix
M and the structure matrix S can be written as:

M= [M1|M2| . . . |Mn] and S=


S1 0 . . . 0

0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sn

 . (11)

In this case, the generic SfM equation, W = M S, can be
rewritten as:

[W1| . . . |Wn] = [M1| . . . |Mn] ·

 S1
. . .

Sn

 . (12)

For the affine camera model, W ∈ R2 f×p and W j ∈
R2 f×p j contain image coordinates. So, the camera motion
matrix M belongs to R2 f×4n, which represents the horizontal
concatenation of individual motion matrices M j ∈ R2 f×4.
Similarly, the structure matrix S ∈ R4n×p is the diagonal
concatenation of individual structures S j ∈R4×p j . To recover
multiple structures and motions, the sparse structure of S

is employed and, using Eq. (12), the image measurement
matrix W is factorized in a way that minimizes the noise in
zero areas of matrix S. This can be achieved by iteratively
alternating between estimating two components: i) the 3D
structures by maximizing the sparsity of matrix S, ii) the
motion matrices by minimizing the reprojection error and
discarding the points from matrices W and S that cause
large reprojection errors. Costeira and Kanade [3] proposed
this factorization method for the orthographic and affine
camera models. The main flaw of this method is that a good
initialization—usually close to the final solution—of motion
segmentation is required, otherwise, most of the points will
be discarded as they violate the sparsity constraint.

For the case of perspective camera model, matrix W

belongs to R3 f×p and matrix W j ∈ R3 f×p j , both holding
homogenous image coordinates scaled by depth values λgi.
Consequently, matrix M is a 3 f × 4n matrix which contains
individual motion matrices M j ∈R3 f×4. Li et al. [8] proposed
an approach for projective factorization of multiple rigid
motions based on depth estimation of Strum and Triggs
[10]. In their method, an initial motion segmentation as
well as initial depth estimation are required. An iterative
refinement stage alternates between estimating the depth
values and motion segments. Once the motion segments and
depth values are converged, motion and structure for each
motion-segment are estimated via factorization.



III. METHOD

In this section, the proposed methodology for estimating
relative motion and structure of independently moving
objects is discussed. Given f perspective views of p points
belonging to rigid objects moving under n classes of motions,
the goal is to segment these points based on their motions,
estimate the motions, and recover the position of these points
in the 3D coordinate.

In more detail, consider set P =
{

P1, . . . Pp
}

containing
indices for p point trajectories, such that:

P =
n⋃

j=1

P j, (13)

where P j is the set of point trajectories that obey motion j.
Thus, set P j will include p j columns of matrix W (see Eq.
(1)) such that:

P j =
{

w(1)
j , . . . , w(p j)

j

}
,

W j =
[
w(1)

j , . . . , w(p j)
j

]
,

(14)

where matrix W j contains all columns of matrix W that had a
similar motion among f frames.

So, finding subsets of P , holding Eq. (13), results in a
motion segmentation hypothesis. Given ψ hypotheses for
motion segments, they should be evaluated by calculating the
reprojection error with respect to all the estimated motions
and structures. In the evaluation phase, matrices W, S, and
M as in Eq. (12) are formed with respect to one of the
motion hypotheses. After initializing these matrices, the
reprojection error is minimized by iteratively alternating
between estimating the structures S while fixing matrix M

and estimating the motions M while fixing matrix S. The
reprojection error for all motion segmentation hypotheses
are calculated and the ones with the smallest reprojection
error is reported as the best motion segmentation hypothesis
describing the trajectory matrix W. The outline of our
algorithm is presented in Alg. (1).

Algorithm 1 Outline of Simultaneous Motion Segmentation
and Reconstruction

Input: 2D image correspondences
Output: Motions and structures of rigid bodies
——————————————————————

1: Generate hypotheses for motion segments (see Alg. (2))
2: Compute reprojection error for every motion

segmentation hypothesis (see Alg. (3))
3: return The structures and motions for the hypothesis

with the smallest reprojection error

A. Generating Hypotheses for Motion Segments

In this section, our approach for generating hypotheses for
segmenting p point trajectories into n motions is discussed.
Such hypotheses for motion segments is used to initialize the
algorithm. To generate a hypothesis, a set of sample points

from the trajectory matrix W that have been moved similarly
among the f frames are selected. Then, by estimating
the motion from these sample points, other points in the
trajectory matrix are evaluated to identify those that comply
with the same motion as the sample set. This process is
repeated with the reminders of matrix W in a multi-RANSAC
scheme, as presented in [14], fitting a single-motion rigid-
body SfM model to identify the motion segments.

Given set P , we would like to sample k points from this
set that represent a unique motion, where k is the minimum
number of points that represent a motion. Given the fact that
the points closer to each other are more probable to be from
the same structure, such minimal set is generated in a way
that neighboring points are selected with higher probability.
So, if point Pi has already been selected, then point P′i will
be selected with the following probability:

P(Pi|P′i ) =

 1
ζ

exp− ‖Pi−P′i ‖
2

σ2 if Pi 6= P′i

0 if Pi = P′i
, (15)

where ζ is the normalization constant and σ will be selected
heuristically [14].

Considering Eq. (15), for each hypothesis, k points from
set P are selected, and a new trajectory matrix W

(s)
j is

constructed using these points. Afterwards, the set of point
trajectories encapsulated in matrix W

(s)
j should be verified

to see if they represent a unique motion. To that end, for
every pair of frames, point correspondences in matrix W

(s)
j

are triangulated and the perspective camera motion as well as
the 3D structure will be estimated by enforcing the epipolar
constraints [15], such that:

(wg′i⊗wgi) E= 0, (16)

where vectors wg′i and wgi are normalized vectors
in homogeneous coordinates (i.e. wgi = [xgi ygi 1]>)
representing two corresponding points on a pair of frames
and matrix E is the essential matrix.1

By writing Eq. (16) for all the k points, we will have a
linear system of equations, of which the essential matrix E

will be the null space of (wg′i ⊗wgi). Once the essential
matrix is estimated, the motion matrix M will be given by
singular value decomposition of E as:

E= T̂ R,

T̂=

 0 −tz ty
tz 0 −tx
−ty tx 0

 , t = [tx ty tz]>,

M= [R | t],

(17)

where R∈R3×3 and M∈R3×4. The estimated motion matrix M

in Eq. (17) represents the relative motion (including rotation

1Operator ⊗ denotes the Kronecker product.



and translation) between two frames up to an arbitrary scale
factor.

A calibrated camera can be described by an image plane
perpendicular to the Z-axis and distanced 1 from the origin
[15]. So, Eq. (5) turns to wgi = [xgi ygi 1] and there is no
need to estimate the depth scales as in Eq. (9). Furthermore,
if the image points are normalized to lie on the unit sphere
(i.e. x2

gi + y2
gi + z2

gi = 1) instead of the image plane, the 3D
structure can be estimated up to a general scale factor. Thus,
the estimation of 3D structure and camera motion can be
formulated as a bilinear factorization problem (see Eq. (6)).

All k points in trajectory matrix W
(s)
j agree on a unique

motion if the reprojection error of the estimated structure is
less than a threshold ε , such that:

‖W(s)j − (M j S
(s)
j )‖< ε, (18)

where matrix M j is the estimated camera motion and matrix
S
(s)
j contains the estimated structure. If Eq. (18) does not

hold, sampling points from matrix W continues until a set of
points that have a similar motion is identified.

Once a motion is identified, other points in set P will be
verified to check whether they comply with the identified
motion using:

S j = M>j W j, (19)

where matrices S j and W j represent the points that are in set
P−P j.

To generate a motion segmentation hypothesis, this
process will be repeated until all the points in P (or the
columns of trajectory matrix W) are associated to a motion-
segment. Alg. (2) shows the algorithm for generating ψ

motion segmentation hypothesis.

Algorithm 2 Generating hypotheses for motion segmentation
Input: 2D image correspondences
Output: Several motion segmentation hypotheses
——————————————————————

1: for c = 1 to ψ do
. % generate ψ hypotheses for motion segments%

2: while P 6=∅ do
3: j=1 . % j represents the motion index%
4: while (reprojection error > ε) do

. % reject invalid hypotheses%
5: Sample k points from set P and form W

(s)
j

6: Estimate M j and S
(s)
j

. % using epipolar geometry%
7: Calculate the reprojection error
8: end while
9: Remove points W

(s)
j from W

10: Estimate structure for W with respect to M j
11: Remove points from P that comply with M j
12: j=j+1
13: end while
14: end for

B. Evaluating Motion Segmentation Hypotheses

From every hypothesis, an initial estimate for motion
segments and 3D structures is given. This helps to form
matrices W, M and S as in Eq. (12). Once these matrices
are formed, the estimation of structures and motion-segments
is refined iteratively. This can be achieved by alternatively
estimating the structures matrix S̃ while fixing motions and
estimating the motions matrix M̃ while fixing structures,
where matrices M̃ and S̃ are defined in Eq. (8).

Considering (8) and (12), given the multiple motions
matrix M̃, estimation of multiple structures matrix S̃ can be
formalized as an optimization problem that solves a linear
system of equations.

In more detail, Eq. (8) can be rewritten in form of Ax = b,
such as:

M̂
−→
S = vec(W̃), (20)

where matrix M̂ ∈R3 f p×4np contains 4np j columns for every
motion in a block-diagonal way, and is defined as:

M̂=


M̂1

M̂2
. . .

M̂n


3 f p×4np

,

M̂ j =
[
M̆
( j)
1 M̆

( j)
2 . . . M̆

( j)
f

]>
3 f p j×4np j

, j = 1 . . . n,

M̆
( j)
g =

 M̃g
. . .

M̃g


3p j×4np j

, g = 1 . . . f ,

M̃g =
[
M̃g1 | M̃g2 | . . . | M̃gn

]
, M̃g ∈ R3×4n,

(21)

and
−→
S is a column-wise vectorization of matrix S̃, such that:

−→
S 4np×1 =[
s1 0a s2 . . . 0a sp1 0a′ . . . 0a sp j 0a′ . . . 0a spn

]>
,

(22)

where 0a and 0a′ are vectors of a and a′ zeros, where
a = 4(n−1) and a′ = 4n. Finally, vec(W̃) is the column-wise
vectorization of W̃. Structure of these matrices is shown in
Fig. (1).

Now, we can solve Eq. (20) to estimate the structures.
The equations belonging to non-zero values of

−→
S can be

used to create systems of equations to estimate structures in
a least-squares sense. To that end, every non-zero block of−→
S —representing a moving structure—forms an independent
linear system of equations which can be solved individually.
Note that, it is also possible to exploit the sparsity of vector−→
S as an additional constraint in the optimization process (as
in [3]) and solve Eq. (20) for all the structures and motions
simultaneously.

To estimate the motions, we can rewrite Eq. (8) as:



(S̃
>⊗ I3 f ) vec(M̃) = vec(W̃), (23)

where I3 f is a 3 f ×3 f identity matrix, vec(M̃) is column-wise
vectorization of M̃.

Fig. 1. Structure of matrices in Eq. (20) for p points having n motions in
f frames.

Using Eq. (20) and Eq. (23) the algorithm alternates
between estimating multiple structures and multiple motions
until they converge. The algorithm to identify the best motion
segmentation hypothesis is outlined in Alg. (3).

Algorithm 3 Evaluate hypotheses
Input: Motion segmentation hypothesis
Output: Reprojection error for each hypothesis
——————————————————————

1: for all motion hypotheses do
2: Generate multi-body SfM matrices W, S and M

. % with respect to Eq. (12)%
3: repeat
4: Given motion matrix M Solve Eq. (20) for S
5: Given structure matrix S Solve Eq. (23) for M
6: until Convergence
7: return Reprojection error
8: end for

IV. EXPERIMENTS

A popular street-level dataset—KITTI dataset2—is used
for the experiments. This dataset was originally created
to benchmark VO algorithms [16]. It consists of several
sequences collected by a perspective car-mounted camera
driving in urban areas. The whole dataset was visually
inspected and several sequences containing different types
of multiple motions were extracted.

Although the motion model could be constrained, in the
experiments, the motion-segments are modeled as a 6-degree
of freedom motion. Thus, the 8-point algorithm [12] is used
to estimate the unconstrained motions. In this case, at least 8
points are required (k = 8), but in the constrained case, fewer
points would be enough to identify individual motions.

The case of pedestrians is not studied, because pedestrian’s
motion cannot be considered as a rigid motion. Furthermore,
in most cases, there are not sufficient and stable features on
pedestrians to be considered as individual bodies.

2http://www.cvlibs.net/datasets/kitti/

The input to our pipeline is the sequence of images. First,
feature points are extracted from the images and matched
between consecutive frames. In our experiments, SIFT
features [17] are used to detect feature points and to track
the features among the frames two-way matching scheme is
used to reduce the rate of outliers. The feature matches are
then passed to the algorithm, which automatically rejects the
outliers during motions’ hypotheses generation stage. The
outputs of the algorithm are the estimated structures and
motions.

Fig. (2) to (5) show samples from different scenarios and
the results obtained by our algorithm. As the sequences are
from a car-mounted camera, in all these figures the camera
is moving forward and consequently the static parts of the
scene are identified as individual motions. In Fig. (2) the
camera equipped car is moving forward and passing another
car. So, in addition to the motion belonging to the static parts
of the scene, the relative backward motion of the front car is
identified as a different motion. Fig. (3) shows the case when
a vehicle is moving perpendicularly to the camera motion.
Another scenario is presented in Fig. (4), which shows a
vehicle coming from the opposite direction while turning left.
In this experiment, although there are some false negatives
from the car, most of the points are segmented correctly.
Fig. (5) shows the case where a car is coming straight
from the opposite direction and its corresponding motion
is segmented from the camera motion. Table I shows the
amount of reprojection error and percentage of misclassified
points for the sequences presented in Fig. (2) to (5). The
reprojection error for each point on every frame is calculated
as ‖wig− w̃ig‖, and the classification error is defined as:

Classification Error = 100 · No. of misclassified points
Total No. of points

.

Our algorithm is also tested on the Checkerboard sequence
from the Hopkins 155 dataset [18], which consists of
104 sub-sequences.3 For this sequence, median and mean
reprojection errors among all the sub-sequences are 1.03 and
0.77 pixels, respectively. Since the sequences are collected
by a hand held camera, in some cases where the camera is
almost static, the camera motion is not large enough to be
identified as an individual motion-segment by our algorithm.
In these cases, the camera motion will be joined with the
most similar one in the scene (such as Fig. (6)) or will not
be detected at all. In such cases, by ignoring the small camera
motion, the mean and median classification errors are 0.35%
and 0.23%, but considering camera motion, the classification
error raises up to 23.5%. Fig. (6) shows the result of our
algorithm on a sample of Checkerboard sequence. For this
sample, although the algorithm cannot identify the camera
movement as an individual motion segment, the other two
motions are segmented with zero classification error. In the
literature, according to [19], the best performance obtained
for the Checkerboard sequence has mean classification error
1.24% and median classification error 0.0%.

3http://www.vision.jhu.edu/data/hopkins155/



Fig. 2. Forward-Backward: car-mounted camera is moving forward passing another car which is also moving forward (moving backward with respect to
the camera). Different colors represent the segmented trajectories.

Fig. 3. Forward-Perpendicular: car-mounted camera is moving forward and a motorbike is driving perpendicularly to the car’s motion. Different colors
represent the segmented trajectories.

Fig. 4. Forward-Backward Curve: car-mounted camera is moving forward and another car is coming backward from the opposite direction and turning
left. Different colors represent the segmented trajectories.

Fig. 5. Forward-Backward: car-mounted camera is moving forward and another car is coming from the opposite direction. Different colors represent the
segmented trajectories.



TABLE I
REPROJECTION AND SEGMENTATION ERRORS FOR SEQUENCES FROM KITTI DATASET (FIG. (2) TO (5))

Sequence Number of Number of Number of Mean Reprojection Median Reprojection Segmentation
Related to Frames Points Misclassified Points Error (pixels) Error (pixels) Error (%)

Fig. (2) 5 193 0 1.63 1.43 0
Fig. (3) 5 608 3 1.69 1.54 0.49
Fig. (4) 5 573 9 2.14 1.67 1.57
Fig. (5) 5 283 0 2.31 2.26 0

Fig. 6. A sample of Checkerboard sequence from Hopkins 15: the obtained
classification error was zero (ignoring near-constant camera motion); median
and mean reprojection error are 0.93 and 1.05 pixels, respectively. The
difference between camera motion (points on the up-right checkerboard)
and another motion in the scene was not large enough to be distinguished.

In our experiments, parameter σ (in Eq. (15)) is in domain
of [0.05,0.3] and the evaluation of feature point classification
is done visually.

V. CONCLUSIONS AND FUTURE PERSPECTIVE

This paper provided a theoretical framework for estimating
3D structures of rigid objects, together with the motion
associated to each structure, from perspective images. The
motivation of this research was to complement visual
navigation algorithms, like VO and SLAM, with the
capability of considering both static and dynamic parts of
the scene for localization and mapping. The experiments
were designed to be compatible with the motivation. Thus,
street-level sequences were mainly used for the experiments,
although a benchmark dataset was also used to compare the
performance of our method with previous works.

Although the current implementation of our algorithm
does not run in real-time, this can be improved by an
implementation for parallel processing or by using motion
constraints. Since generating and evaluating each hypothesis
is independent of other hypotheses, these two processes can
be highly parallelized. Moreover, using motion constraints
(e.g. planar motion), the 6-degree of freedom motion models
used in this work can be reduced to fewer degrees of
freedom, which results in a considerable boost in timing.
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