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Summary. This paper presents a new and robust method for extracting and match
ing visual vertical features between images taken by an omnidirectional camera. 
Matching robustness is achieved by creating a descriptor which is unique and dis
tinctive for each feature. Furthermore, the proposed descriptor is invariant to ro
tation. The robustness of the approach is validated through real experiments with 
a wheeled robot equipped with an omnidirectional camera. We show that vertical 
lines are very well extracted and tracked during the robot motion. At the end, we 
also present an application of our algorithm to the robot simultaneous localization 
and mapping in an unknown environment. 

1 Introduction 

One of the most important problems in vision based robot navigation systems 
is the search for correspondences in images taken from different viewpoints. 
In the last decades, the feature correspondence problem has been largely in
vestigated for standard perspective cameras. Furthermore, some works have 
provided robust solutions for wide-baseline stereo matching, structure from 
motion, ego-motion estimation, and robot navigation (see [1], [2], [3], [4], [5], 
[6], [7], [8], and [9]). Some of these works normalize the region around each 
detected feature using a local affine transformation, which attempts to com
pensate for the distortion introduced by the perspective projection. However, 
such methods cannot be directly applied to images taken by omnidirectional 
imaging devices because of the non-linear distortions introduced by their large 
field of view. In order to apply those methods, one needs first to generate a 
perspective view out of the omnidirectional image, provided that the imag
ing model is known and that the omnidirectional camera possesses a single 
effective viewpoint [10]. An application of this approach can be found in [11]. 
There, the authors generate perspective views from each region of interest of 
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the omnidirectional image. This image unwrapping removes the distortions 
of the omnidirectional imaging device and enables the use of state-of-the-
art wide-baseline algorithms designed for perspective cameras. Nevertheless, 
other researchers have attempted to apply to omnidirectional images stan
dard feature detectors and matching techniques, which have been tradition
ally employed for perspective images. In [15], for instance, the authors check 
the candidate correspondences between two views using RANSAC algorithm. 
Finally, other works have been developed, which extract one-dimensional fea
tures from new images called Epipolar plane images, under the assumption 
that the camera is moving on a flat surface [16]. These images are generated 
by converting each omnidirectional picture into a 1D circular image, which 
is obtained by averaging the scan lines of a cylindrical panorama. Then, 1D 
features are extracted directly from such kinds of images. 
In this paper, the features we want to track from omnidirectional images 
are real world vertical features, which are predominant in structured envi
ronments. In our experiments, we used a wheeled robot equipped with an 
omnidirectional camera, which had the camera axis perpendicular to the di
rection of motion of the robot. Because of this settings and assuming the 
environment to be flat, all world vertical lines project into radial lines on the 
image plane. 
The novelty of this paper consists of a robust method to match vertical lines 
between images taken by an omnidirectional camera during the motion of 
the robot. Matching robustness is achieved by creating a descriptor which is 
unique and distinctive for each feature. Furthermore, the proposed descriptor 
is invariant to rotation. This descriptor is based on the image gradients. The 
robustness of the approach was validated through real experiments by using a 
robot equipped with an omnidirectional camera. In this paper, we show that 
vertical lines are very well extracted and tracked during the robot motion. At 
the end, we also present an application of our algorithm to the robot Simul
taneous Localization And Mapping (SLAM) in an unknown environment. 
This paper is organized as follows. In section 2, we will discuss the verti
cal line extraction. In section 3, we will illustrate how to mark a feature by 
means of a descriptor, and, in section 4, we will describe the feature matching 
process. Finally, in section 5, we will present our experimental results and the 
application of our algorithm to SLAM. 

2 Vertical Line Extraction 

Our platform consists of a wheeled robot equipped with an omnidirectional 
camera looking upwards. The main advantage of such kind of camera is that 
it provides a 360◦ field of view of the scene, which gives a very rich and sparse 
information. 
Figure 1 shows a sample picture taken by our omnidirectional camera. As the 
circular external boundary of the mirror is visible in the image, we use a circle 
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detector to determine the location of the center. 
In our arrangement, we set the camera-mirror system perpendicular to the 
floor where the robot moves. This guarantees that all vertical lines of the en
vironment converge towards the image center. To extract the vertical lines, 
we first compute the image gradients (e.g. we used a Sobel filter), and then we 
keep only those gradients whose orientation looks towards the image center 
up to ±5◦. This 10◦ tolerance allows us to deal with the effects of the floor 
irregularities in the projections of the 3D vertical lines. After this filtering, we 
apply non-maxima suppression and we end up with a binary edge map (Fig. 
2). 
The next step will be identifying the most reliable vertical lines. To this 
end, we divide the omnidirectional image into 720 predefined uniform sec
tors, which give us an angular resolution of 0.5◦. By summing up all binary 
pixels that vote for the same sector, we obtain the histogram shown in Fig. 3. 
As observed in Fig. 2, there are many potential vertical lines in a structured 
environment. To keep the most reliable and robust features, we choose only 
those lines whose length covers at least half of the angle of view (Fig. 3). 
Finally, we use non-maxima suppression to avoid the features to be too close 
(Fig. 4). 

Fig. 1. An image taken by our omni- Fig. 2. The final binary edge map after 
directional camera. non-maxima suppression. 

3 Building the Descriptor 

In section 4, we will describe our method for matching vertical lines between 
consecutive frames while the robot is moving in an unknown environment. 
To make the feature correspondence robust to false positives, each vertical 
line is given a descriptor, which is unique and distinctive for each feature. 
Furthermore, this descriptor is invariant to rotation. In this way, finding the 
correspondent of a vertical line can be done by looking for the line with the 
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Fig. 3. The number of binary pixels vot- Fig. 4. Extraction of the most reliable 
ing for a given orientation angle. The ori vertical features from an omnidirectional
entation axis ranges from 0 to 720 half de- image. 
grees. 

closest descriptor. In the next subsections, we will describe how to build this 
descriptor. 

3.1 Rotation Invariance 

To build the descriptor, we extract a predefined number of circular areas 
(namely 3 areas) in fixed position along a given radial line (Fig. 5). The 
centers of these circular areas are equally spaced and the radius is chosen 
such that the circles touch without overlapping. Then, each area is smoothed 
by a Gaussian window of variance σ and the image gradients (magnitude and 
phase) are computed within each of these areas. The rotation invariance is 
achieved redefining the gradient phase relatively to the radial line’s angle. 
(Fig. 5). 

3.2 Orientation Histograms 

To make the descriptor robust to false matches, we split each circular area 
into two parts and consider each one individually (Fig. 6). In this way, we 
preserve the information about what we have on the left and right sides of 
the feature. For each side of each circular area, we compute an orientation 
histogram (Fig. 7) of all gradient vectors. The whole orientation space (from 
-π to π) is divided into Nb equally spaced bins. In order to decide how much 
of a certain gradient magnitude m belongs to the adjacent inferior bin b and 
how much to the adjacent superior bin, each magnitude m is weighted by the 
factor (1 − w), where 

w = Nb · o − b 
(1)

2π 
with o being the observed orientation in radians. Thus, m(1 − w) will vote 
for the adjacent inferior bin, while mw will vote for the adjacent superior bin. 
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According to what has been mentioned so far, each bin contains the sum of the 
weighted gradient magnitudes which belong to the correspondent orientation 
interval. We observed that this weighted sum made the orientation histogram 
more robust to image noise. The reader observe that the orientation histogram 
is already rotation invariant because the gradient angles have been referred 
to the radial line’s angle. 

Fig. 5. Extraction of the circular areas. Fig. 6. Two parts of a circular area. 
To have rotation invariance, the gradient 
phase is referred to the orientation of the 
vertical line. 

Fig. 7. An example of gradient orientation histograms for the left and right sides 
of a circular area. 

3.3 Building the Feature descriptor 

The computed orientation histograms help to build the feature descriptor. 
Indeed, the descriptor is an N -element vector containing all histogram values 
of the circular areas. For instance, by extracting 3 circular areas for each 
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vertical feature and choosing 30 bins for each histogram, the length of the 
feature descriptor will be 

N = 3areas 2parts · 30bins = 180 (2)· 

Finally, it is important to know that all feature descriptors have the same 
length N . To achieve slight illumination invariance, every descriptor is nor
malized to 1. This choice relies on the hypothesis that the image intensity 
changes linearly with illumination. Although this is not true in nature, this 
approximation proved to work properly. 

4 Feature Matching 

As every vertical feature has its own descriptor, the correspondent of a vertical 
line in the consecutive images can be searched among the features with the 
closest descriptor. As a distance measure between two vector descriptors A 
and B, we use the Euclidean distance: 

����
N

d(A, B) = 
�

(A(k) − B(k))2 (3) 
k=1 

As a consequence, the correspondent of a feature, in the current image, is 
expected to be the one, in the consecutive image, with the minimum distance. 
However, if a feature is no longer present in the next image, there will be a 
closest feature anyway. For this reason, we define three tests to decide whether 
a feature correspondent exists and which the correspondent is. Before describ
ing the three criterions, let us introduce some definitions. 
Say {A1, A2, ..., ANA } and {B1, B2, ..., BNB } two sets of feature descriptors 
extracted at time t and t − 1 respectively (where NA and NB are the number 
of features in the first and second image). Then, say 

Di = {d(Ai, Bj), j = 1, 2, ..., NB )} (4) 

the set of all distances between a given Ai and all Bj (j = 1, 2, , NB ). Finally, 
say minDi = min(Di) the minimum of the distances between Ai and all Bj. 

First Test 

The first test checks that the distance from the closest descriptor is smaller 
than a given threshold. As the threshold depends on the length of the descrip
tor, we set 

minDi N (5)= F1 · 
where N is the descriptor length. By this criterion, we actually set a bound 
for the maximum acceptable distance to the closest descriptor. 
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Second Test 

The second test checks that the distance from the closest descriptor is smaller 
enough than the mean of the distances from all other descriptors, that is: 

minDi < Di > (6)= F2· 
where < Di > is the mean value of Di and F2 clearly ranges from 0 to 
1. This criterion comes out of experimental results. In Table 1, we show a 
real comparison among the distances between the descriptor A1 at time t 
and all the descriptors at time t − 1. There, the descriptor B1 is the correct 
correspondent of A1. The reader might also observe that its distance is smaller 
than the mean of all other distances. 

Table 1. The distances between the descriptor A1 at time t and all descriptors Bj 

, j = 1, 2, .., NB at time t − 1 

B1 B2 B3 B4 B5 B6 B7 
2.38 5.42 4.55 5.79 5.66 6.17 5.43 

Third Test 

Finally, the third test checks that the distance from the closest descriptor is 
smaller than the distance from the second closest descriptor: 

minDi SecondSmallestDistance, (7)= F3 · 
where F3 clearly ranges from 0 to 1. As in the previous test, the third test 
raises from the observation that, if the correct correspondence exists, then 
there must be a big jump between the closest and the second closest descriptor. 
Factors F1, F2, and F3 are to be determined experimentally. The empirical 
values we used for these parameters are shown in Table 2. 

Table 2. The parameters used by our algorithm with their empirical values 

F1 = 0.0075 F2 = 0.55 F3 = 0.85 

5 Experimental Results 

In this section, we present some experimental results obtained by moving 
our robot in a real indoor environment. In the first subsection, we show the 
performance of our feature tracker during the motion of the robot, while in 
the second one, we present the results of our feature tracker applied to SLAM. 
In these experiments, the robot was moving at about 0.15 m/s. The image 
size was 640x480 pixels and the frame rate was 3 Hz. 
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5.1 Performance of the Feature Tracking 

In this experiment, we guided our robot through an office-like environment for 
about 70 meters. The results of the feature tracking are shown in Fig. 8. The 
plot refers to a short path of the whole trajectory while the robot was coping 
with an L-shaped trajectory. As the reader may observe, many features are 
detected and tracked over the time. Indeed, all lines of the plot appear to be 
smooth and homogeneous. Furthermore, the lines do not intersect, meaning 
that there was no false matching. We can also notice that the algorithm was 
able to match vertical elements even when the correspondent features were not 
observed in the previous image (e.g. observe the large gap between the dots 
pointed to by the arrow in Fig. 8). Indeed, when the correspondence is not 
found in the last frame, our algorithm starts looking into all previous frames 
(actually up to the twentieth frame), and stops when the correspondence 
is found. By zooming into the plot of Fig. 8, we found that some lines are 
given different numbers. For instance, feature number 24 is labeled as 31 
after some frames. And the same happens with features 42 and 49. When this 
happens, it means that the algorithm found no correspondence for the current 
feature, and thus, the feature is labeled as a new entry, but in fact this is a 
false new entry. After having visually checked every single frame of the video 
sequence, we found 6 false matches and 22 false new entries. Comparing these 
errors to the 2631 corresponding pairs detected by the algorithm over the 
whole video sequence, we had 1.06% of mismatches. Furthermore, we found 
that the false matches occurred every time the camera was facing objects 
with repetitive texture. Thus, the ambiguity was caused by the presence of 
vertical elements which were almost identical. On the other hand, a few of 
false new entries occurred whenever the displacement of the robot between 
two successive images was big. However, the reader should observe that when 
a feature matches with no other previous feature of the last frames, it is better 
to believe this feature to be new rather than commit a false matching. 

5.2 Application to SLAM 

We applied our feature tracker to two important problems in autonomous 
navigation, that is, sensor self-calibration and SLAM. Regarding the former, 
the results can be found in [12], [13], and [14]. In this section, we show only 
the results we obtained for SLAM. We implemented the standard EKF based 
SLAM. In particular, the EKF estimates the vector: 

TX = [xr , yr , θr , X1, Y1, ..., XNO , YNO ] (8) 

where [xr , yr , θr ] is the robot configuration, Xi, Yi are the Cartesian coordi
nates of the i-feature in the map, and NO is the number of observed features. 
Our mobile robot is equipped with wheel encoders and with the same omni
directional camera adopted in the experiments described in section 5.1. The 
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Fig. 8. Feature tracking during the robot motion. In y-axis, we have the angle of 
sight of each feature, and in the x-axis, the frame number. Each dot represents a 
feature detected in the current frame. The lines represent the tracked features. The 
number reported on some dot appears only when a new feature is detected. 

bearing observations provided by the omnidirectional camera consist of the 
vector z whose components are: 

z1 = arctan( 
Y1 − yr )
X1 − xr 

. . . (9) 
YNO= arctan( 

− yr )zNO XNO − xr 

To initialize a new feature in the map, consecutive bearing observations as in 
[14], which refer to the same feature, are integrated with the odometry. Then, 
the estimation is improved by integrating the information coming from all the 
bearing observations through the EKF. The result is shown in Fig. 9 where 
both the robot trajectory and the position of the features are shown. 

6 Conclusion 

In this paper we introduced and discussed a new and robust method to ex
tract and match vertical lines between images taken by an omnidirectional 
camera. The basic idea to achieve robust feature matching consists of creat
ing a descriptor which is unique and distinctive for each feature. Furthermore, 
this descriptor is invariant to rotation. To evaluate the performance of our ap
proach, we performed real experiments where we evaluated the quality of the 
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Fig. 9. The results obtained by implementing a simple EKF-SLAM, which uses the 
proposed feature tracker. The black line is the trajectory estimated by using the 
odometry alone. The red line is the trajectory estimated by the EKF using both 
the odometry and vertical lines. The blue points represent the map ground truth 
provided by a laser range finder. The red circles are the detected verticals features. 

matching. We conclude that the proposed approach is very robust and pre
cise. Finally, we adopted the proposed method to implement an EKF based 
SLAM. 
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