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Abstract— Exploring and mapping previously unknown en-
vironments while avoiding collisions with obstacles is a fun-
damental task for autonomous robots. In scenarios where this
needs to be done rapidly, multi-rotors are a good choice for
the task, as they can cover ground at potentially very high
velocities. Flying at high velocities, however, implies the ability
to rapidly plan trajectories and to react to new information
quickly. In this paper, we propose an extension to classical
frontier-based exploration that facilitates exploration at high
speeds. The extension consists of a reactive mode in which
the multi-rotor rapidly selects a goal frontier from its field of
view. The goal frontier is selected in a way that minimizes the
change in velocity necessary to reach it. While this approach
can increase the total path length, it significantly reduces the
exploration time, since the multi-rotor can fly at consistently
higher speeds.

MULTIMEDIA MATERIAL

A video attachment to this work is available at https:
//youtu.be/54s6gGZLpJo.

I. INTRODUCTION

Exploring and mapping previously unknown environments
is a fundamental task for autonomous robots. Given an envi-
ronment with free (traversable) and occupied (untraversable)
space, the task is to detect free space within a target area.
This can be used to map previously unseen environments
or to search for objects or people, such as in search and
rescue scenarios. The task can be further specified depending
on further requirements. In search and rescue, for instance,
it is important to find survivors rapidly. Thus, an objective
would be to cover the area as quickly as possible. A related
objective would be to expend as little energy as possible, for
example when mapping with an energy-constrained robot.

Another objective would be to minimize the uncertainty of
the map. Many exploration algorithms assume that pose esti-
mation and free space detection are good enough that effects
of uncertainty can be ignored, or reduced to the uncertainty
of depth sensors only. This assumption, however, cannot be
made generally, since real systems do exhibit uncertainty.
Exploration algorithms that take uncertainty into account are
usually more complex and less generally applicable than
algorithms that make the simplifying assumption, since they
need to consider specific aspects of the underlying mapping
algorithm. In our work, we make this assumption and focus
on the case where exploration is performed with a single
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Fig. 1. We propose an algorithm for exploration with multi-rotors at high
speeds. While our approach sometimes ends up traveling a larger distance,
it is able to complete the exploration task faster, as it is capable of flying
at higher speeds, as can be seen in this data of a single run. Note that a
lot of time is spent at almost 100% coverage, as the robot needs to travel
some distance to complete the final portions of undiscovered space.

multi-rotor robot. Most related work in the same setting
designs the exploration algorithm in a way that minimizes
the distance traveled. At the same time, it is often assumed
that the multi-rotor flies at low velocities, which relaxes
design constraints when it comes to execution time and
trajectory generation. However, a multi-rotor expends energy
on hovering and thus its limited energy supply is best used
when flying at velocities that are not near-hover.

In this paper, we propose an exploration algorithm that is
designed to fly at high velocities as much as possible. To
that end, we introduce a reactive mode, which, instead of
planning trajectories generates instantaneous velocity com-
mands based on currently observed frontiers. This control
loop is able to run at high frequency, allowing high velocity
flight and rapid incorporation of new information. Frontiers
that drop out of the current field of view are added to a data
structure with global frontiers and we fall back to classical
frontier-based exploration as soon as no frontiers are left
in the field of view. We evaluate our approach, compare it
to previous approaches and show that while it can result in
larger distances traveled, the exploration time is lower than
with other approaches, in particular at higher velocities.

II. RELATED WORK

As previously stated, exploration is the task of detecting
free space within a given area. This is achieved with a robot
that is capable of detecting free space, typically with a depth
sensor such as an RGBD camera or a laser range finder. Since
a robot normally cannot perceive the whole environment

https://youtu.be/54s6gGZLpJo
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from one position, exploration reduces to repeatedly deciding
where to move next at a given time when the area is
already partially explored. This is essentially the same as
the next-best-view (NBV) problem, which has been studied
for reconstructing 3D objects with a sequence of depth scans
for several decades [1], [2].

An adaptation of the NBV problem to a robotic context has
been performed in [3]. It consists of adding two constraints:
Firstly, a view may only be considered if a safely navigable
path to it exists. Secondly, enough overlap between the cur-
rent and next view must exist, such that the robot can register
the two views. The proposed solution is to sample poses in
the known free space, and to calculate for each sample a
utility function that consists of the expected gain in terms of
area that can be discovered and the cost to reach it. Then,
from reachable samples that satisfy the overlap constraint,
the one that maximizes the utility function is chosen. The
cost is typically set to be proportional to the distance to the
sample, but can also encode practical considerations such as
minimizing behaviors that increase uncertainty [4]. In our
approach, we assign a high cost to changes in velocity.

Frontier-based exploration is an alternative to NBV ap-
proaches that was proposed in [5]. The environment is
discretized into a 2D or 3D grid, where each cell is labeled
as occupied, free or unknown. Frontier cells are defined
as free cells that are adjacent to unknown cells. Instead
of sampling candidate views, frontier-based exploration as-
sumes that simply navigating to a frontier will result in the
exploration of new space. In [5], the robot navigates to the
closest frontier found by depth-first search. Frontier-based
exploration has become a popular exploration approach that
has been extended in several publications, for example to
support exploration using multiple robots [6], [7]. Extensions
also exist for single robots systems, but it has been repeatedly
shown that classic frontier-based exploration remains com-
petitive [8] or even outperforms [9] these extensions. [8] also
shows that the frontier-based approach outperforms the NBV
approach presented in [3]. As a consequence, we will use as
one baseline the nearest-frontier approach as implemented
in [9]. For situations where uncertainty cannot be neglected,
[9] shows that algorithms designed for that scenario, such as
[10] or [11] result in a lower map error.

Exploration specifically using multi-rotors has been shown
in [12], [13] and [14], among others. In [12], the authors
propose a frontier-based exploration strategy for quadrotors
using the 3D occupancy map OctoMap [15]. As in [8],
this occupancy map is continuously updated, and thus more
information is captured. Furthermore, before targeting a new
frontier, flood-fill is used to reject unreachable frontiers,
reducing time spent in trying to reach them. [13] proposes
a novel way of determining frontier locations, which does
not rely on explicitly representing the full space; only oc-
cupied space is represented. Rather than representing free
and unknown space, particles are sampled within known free
space. These particles are then used to simulate a gas that
is contained by the known occupied space, and frontiers
are identified as the places in which the gas expands. In
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Fig. 2. Forces acting on the multi-rotor during horizontal flight.

terms of exploration speed, however, their experiments show
that the frontier exploration approach by [7] performs better.
[14] revisits NBV-based exploration. Instead of sampling
poses in the free space, feasible trajectories are sampled
using RRT* [16]. They do not execute a full trajectory, but
rather the first part of the planning tree that is common to
most trajectories with high utility. Then, the planning step is
repeated in a receding horizon fashion. The authors compare
their approach with [3] and show superior performance with
faster calculation times and more explored space. We will
use their publically available method as a second baseline
for our comparisons.

III. FLIGHT VELOCITY FOR OPTIMAL ENERGY USE

An important motivation for our work is that the limited
multi-rotor energy supply is not well used when flying near-
hover. This is intuitive: when hovering, energy is used while
no new ground is being covered. As we put more energy
into motion, less is “wasted” on hovering. However, very
large velocities are also inefficient due to aerodynamic drag.
Thus, given a direction of motion, there must be an optimal
velocity v? at which most distance is traveled per energy
use. Let us consider horizontal motion. The optimal velocity
can be expressed as:

v? = argmax
v

v

P
∼ argmax

v

v

T
(1)

where P is the power used. Since P is roughly proportional
to the thrust T , we can P with T . To estimate a typical v?,
we consider the multi-rotor model from [17]. We extend their
translational dynamics model with an approximation of the
aerodynamic drag of the quadrotor body, see Fig. 2:

m~a = ~FT + ~Fg + ~Fr + ~Fa

= TR~e3 −mg~e3 − TkR~v ~v·R~v
~v·~v − |~v|~vcaero,

(2)

with m the multi-rotor mass, ~a the acceleration, R the rota-
tion matrix representing the multi-rotor attitude, ~e3 the unit
vector in z-direction of the world frame, g the gravitational
constant, k a first-order drag coefficient due to rotors, derived
in [17] and caero the second-order drag coefficient due to
the multi-rotor body. We make the assumption that caero is
isotropic. In steady-state motion, ~a = 0 and all forces act in
a plane spanned by ~v and ~e3. Then, considering horizontal
motion, (2) can be decomposed into a horizontal and vertical
component:

caerov
2 + cos2 φkTv = sinφT

sinφ cosφkTv + cosφT = mg
(3)
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Fig. 3. Efficiency v
T

and corresponding pitch φ as a function of the
horizontal velocity v calculated using the model (3). The parameters
m = 1.9kg, k = 0.21

gs
and caero = 0.15 are taken from the quadrotor

specifications in [17]. While the values do not represent all multi-rotors,
they give an idea of the magnitude of the optimal velocity.

where φ is the pitch angle. Using the multi-rotor specifi-
cations from [17], we solve this system of equations for
different v and plot v

T (v) in Fig. 3. As we can see, v? is just
above 10m

s , with the pitch just above 50◦, which motivates
flight at high speeds. In practice, there is an upper limit on the
velocity vmax due to thrust limits, obstacle avoidance reaction
time and speed limits of state estimation. We will henceforth
assume v? > vmax and consider vmax a parameter.

To enable effective obstacle avoidance, we align the depth
sensor, for which we assume a limited field of view, with
the flight direction ~v as much as is possible using only yaw.

IV. METHODOLOGY

We approximate the environment with a regular 3D voxel
grid V = {~x} with voxel dimensions s3, where each voxel is
represented by its centroid. Voxels are labeled free, occupied
or unknown: V = Vfree ∪ Vocc ∪ Vunk. The labeling is
obtained from the robot’s RGBD sensor measurements using
OctoMap [15], assuming a perfect pose estimate but noisy
depth measurements. We define the global set of frontiers

Fg := {~xi ∈ Vfree : ∃~xj ∈ Vunk : |~xi − ~xj | = s}. (4)

Previous frontier-based approaches typically decide where
to move next by considering all Fg . One approach is to
run the Dijkstra algorithm [18], starting from the position
of the robot and allowing transitions between adjacent ~x ∈
Vfree until a frontier ~x ∈ Fg is reached [9]. [14] samples
possible trajectories using RRT* and moves towards the
most promising direction. What can be observed with these
approaches is that they require time to calculate, resulting
in a stop-and-go behavior in which the robot moves for a
while, stops to perform the calculation, then moves again.
Furthermore, the goal frontier often lies behind the robot.
A multi-rotor flying at a non-zero velocity would thus need
to reverse its flight direction and re-visit ground that it has
already covered. Evidently, all frontiers need to be visited
sooner or later. But we find that choosing a direction and
maintaining it, and only later returning, can result in faster
coverage than going back and forth in a breadth-first-search
manner, especially when flying at high speeds.

To avoid these problems, we propose to restrict the con-
sidered frontiers to those that are in the current field of view:
Fv ⊆ Fg . This has three advantages: firstly, Fv can be

~v
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tclassic
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Fig. 4. The gist of our approach is that in frontier selection, we prefer
frontiers which lie in flight direction. This allows continuous flight at high
speeds and reduces the time spent flying through known areas.

calculated very efficiently from the operations that anyways
need to be performed at every depth measurement. Secondly,
the size of Fv is small enough that it allows a rapid decision
and makes path planning inexpensive. Finally, any ~x ∈ Fv

will lie in flight direction of the multi-rotor, avoiding the
effort to change the current velocity and avoiding flying
back and forth, see Fig. 4. One could consider a different
restriction, such as picking frontiers that lie in front of
the robot, but that would require to perform a query in
Octomap, whereas obtaining Fv can be easily combined
with the most recent incorporation of depth measurements.
Furthermore, Fv is guaranteed not to contain any frontiers
that are currently occluded and thus not directly reachable.
Note that Fv depends on the field of view of the robot - a
broader field of view will result in a larger Fv .

From Fv we select the frontier ~x?i with the lowest cost
ci = |~vi − ~vcurr|, the norm of the difference between the
current velocity and the desired velocity at the frontier, ~vi.
Recall from Section III that we on one hand aim to fly at
vmax as much as possible. On the other hand, we want to have
a velocity that allows us to react to yet unknown obstacles.
Thus, we define the desired velocity for a frontier as

~v(~xi) = (~xi − ~xr) ·
vmax

rsensor
, (5)

~xr being the robot position. For frontiers that are at the
detection range rsensor of the depth sensor, the desired
velocity will be vmax and pointing towards the unknown
volume, while for frontiers closer to the robot the desired
velocity will be lower. This imposes a slower approach of
frontiers behind which there might be nearby obstacles.

Once we have determined ~x?i , we set the robot velocity
to ~vi. Lest the robot tries to reach a physically unreachable
frontier, we further restrict the choice of frontiers to the ones
that are accessible from the current position:

Fa = {~x ∈ Fv : A(~x)} (6)
A(~x) : @~xocc ∈ Vocc, ~xs ∈ Sr(~x) : |~xocc − ~xs| < dsafe (7)

with Sr(~x) the set of points on the segment between the
current position and the frontier ~x and dsafe a minimum safety
radius (see Fig. 5). The control loop runs every 20ms.
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Fig. 5. Two dimensional illustration of determining the accessibility of
members of the visible frontier set.

As soon as Fa = ∅, the algorithm switches to a clas-
sical frontier selection method, which is implemented as
discussed in [9]: a shortest path with waypoints W (~xi) =
{~w1, ~w2, ..., ~wm} to any frontier ~xi ∈ Fg is sought using
the Dijkstra algorithm. If no such path is found, exploration
is considered complete. Otherwise, the robot will track W .
This path tracking is aborted if one of two conditions occurs:
if ~wm has been reached or is unreachable, the frontier ~xi
that had generated the path is removed from Fg and a new
path W is calculated. Alternatively, if at any point of the
waypoint tracking Fa 6= ∅, the control switches back to the
rapid frontier selection method.

In order to fly close to vmax during W tracking, the multi-
rotor velocity is set such that it flies at the fastest safe speed
towards the furthest accessible waypoint:

~vr ← ~v(argmax
~wj

j : A(~wj)) (8)

where ~v(~x) is the same as in (5), with the norm truncated to
vmax.

V. EXPERIMENTS

In order to evaluate and compare the performance of the
proposed approach, simulation studies have been performed
using RotorS [19] and Gazebo. Furthermore, a real world
experiment has been conducted to demonstrate the rapid
exploration algorithm on a real quadrotor. In all experiments
we use the control architecture from [20].

A. Simulation

The simulated multi-rotor is equipped with a depth camera
mounted in a forward-looking configuration. The stereo
camera has a field of view (FoV) of [60, 115]◦ in vertical
and horizontal direction. The proposed algorithm (“Rapid”)
is compared with the classic frontier-based exploration as
implemented in [9] (“Classic”) as well as with the next-
best-view approach presented in [14] (“NBV”). To make a
fair comparison, we have tried to make the quadrotor fly at
the same maximum speed vmax for all approaches, as far as

Fig. 6. Fully explored Juliá scenario, with dimensions 38x26x3 m. For
visualization reasons, the map is truncated at a height of 2.5 meters.

Fig. 7. Fully explored Office scenario, with dimensions 38x23x3 m. For
visualization reasons, the map is truncated at a height of 2.5 meters.

this is possible with the selected trajectories. To that end, we
employ the same waypoint-based navigation for Classic as
discussed in Section IV. NBV is limited to low speeds and we
were not able to deploy it at the full range of velocities that
we evaluate. The reason for this speed limitation is the way
the quadrotor navigates to its new goal. Instead of generating
a smooth trajectory, the quadrotor attempts to navigate to
the next node of the generated random tree in a straight
line. Since this results in instantaneous changes of direction
at every node of the tree, for velocities above 0.7 meters
per second the quadrotor fails to follow the trajectory. This
often results in a crash into nearby obstacles. Furthermore,
the maximum yaw rate was limited to 0.75 rad/s for NBV
for the same reasons.

We perform simulations on three different scenarios:
“Juliá”, an environment mimicking Scenario 2 from [9],
see Fig. 6. This 2D scenario is dominated by corridors and
contains two open spaces. “Office”, another 2D scenario
with a more open, office-like layout as depicted in Fig. 7.
And finally “Powerplant”, a 3D scenario of a powerplant

obtained from the Gazebo model library1. The original pow-
erplant model is cropped to smaller dimensions as depicted
in Fig. 8. Specific parameters for the scenarios are listed in
tables I and II. Parameters dplanner

max , λ, Nmax and the maximum
edge length of the RRT tree refer to the setup of NBV and
are explained in [14]. Since exploration performance can

1https://bitbucket.org/osrf/gazebo_models/src

Parameter Value Parameter Value

vmax {0.3, 0.7, 1.5, 2.5}m/s FoV [60x115]◦

Resolution 0.2m ϕ̇max 1.5rad/s

dsafe 0.6m ϕ̇NBV
max 0.75rad/s

TABLE I
PARAMETERS COMMON IN THE DIFFERENT SIMULATION SCENARIOS.

https://bitbucket.org/osrf/gazebo_models/src


Fig. 8. Fully explored Powerplant scenario, with dimensions 33x31x26 m.

Juliá Office Powerplant

Dimensions [m] 38x26x3 38x23x3 33x31x26

dsensor
max [m] 5.0 5.0 7.0

d
planner
max [m] 1.5 1.5 2.0

λ 0.3 0.2 0.2

Nmax 20 20 30

RRT max edge length [m] 1.0 1.0 3.0

TABLE II
PARAMETERS CHANGING FOR THE DIFFERENT SCENARIOS.

be dependent on the initial position of the robot, simulations
were performed for multiple initial positions. Furthermore,
the maximum velocity of the quadrotor was varied and a
complete set of six simulations was performed for each
velocity. Note that our method is defined in 3D. Thus, the
2D scenarios are extruded to a height of 2.5m and closed
with floor and ceiling. The height is low enough so that the
area can be covered while flying at a single altitude.

B. Real World Experiments

To verify that the speeds achieved in simulation can also
be reached in the real world, we implemented our exploration
algorithm on a real quadrotor, and made it explore both an
indoor and an outdoor scenario: The indoor scenario is a
room with dimensions 6.5x6.8x2.6 meters, see Fig. 9, and the
outdoor scenario is a forest, see Fig. 10. Since there were
no natural bounds in the outdoor scenario, we artificially
restricted the motion of the quadrotor to a bounding box
expressed relative to its starting point. This results in an
inconsistent amount of free space between different runs, and
we had to change the experiment location frequently due to
lighting conditions, so we only present quantitative results
for the indoor scenario. The depth sensor used for both real
world scenarios was the Intel RealSense R200 with a FoV of
[56,43] degrees in horizontal and vertical direction, respec-
tively, and was mounted in a forward-looking configuration
at a pitch angle of 0 degrees. A summary of the parameters
applied in the indoor scenario is given in Table III. Note that
the sensor range is set at different values that are all below the
actual range of the sensor. We have done this to require the

Fig. 9. Quadrotor flying in the indoor real world scenario.

Fig. 10. Quadrotor flying in the outdoor real world scenario.

quadrotor to move – had we used the full sensor range, the
quadrotor would not have needed to move very far to explore
the room at hand. At higher velocities, however, we need to
increase the sensor range such that the quadrotor is able to
react to obstacles. The outdoor experiments were performed
at {1, 1.5, 2}ms and with rsensor = 5m. For state estimation,
we use the pipeline described in [20], which relies on visual
odometry by SVO [21] that is fused with an IMU estimate
using MSF [22].

C. Measurements

In each experiment, the count of cells currently estimated
free |Vfree|(t), the state at which the robot is in (rapid
exploration, calculating W or tracking W ) as well as the
current position and velocity of the quadrotor are sampled
at 5Hz. From this, the coverage ratio |Vfree|

|V ?
free|

(t), where V ?
free

is the actual free space, and the distance traveled dtot(t)
are measured for all samples at times t. To compare the
approaches, we report as main performance metric the time
at which the scenario is fully explored tmax, the total distance

Parameter Value Parameter Value

vmax {0.3, 0.7, 1, 1.5, 2}m/s FoV [43x56]◦

Resolution 0.2m ϕ̇max 1.5rad/s

rsensor {3, 3.5, 4} m dsafe 0.7m

TABLE III
PARAMETERS USED FOR THE INDOOR EXPERIMENT.
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traveled dmax and the expected voxel discovery time

texp =
1

|V ?
free|

∑
~x∈V ?

free

min{t : ~x ∈ Vfree(t)}. (9)

The last metric is more meaningful than tmax for scenarios
where the goal is to find several objects in an unknown
environment as quickly as possible (see related discussion
in [9]).

We have found that with our implementation of Dijkstra,
the robot often spends a significant amount of time calculat-
ing the path W . Especially in later stages of the exploration
process, where the path to the next frontier tends to become
longer, the path calculation can take up to 10 seconds. In
order to estimate only the quality of the resulting flight
behavior, we adjust for this calculation time by not counting
time spent on it when calculating the above performance
metrics. This mainly benefits tmax and tmean of the classic
frontier approach. The calculation time of both the reactive
mode and of the NBV method are negligible, and so we do
not need to adjust for them.

VI. RESULTS

A. Simulation

The main results are reported in Table IV. For the office
scenario, the comparison of the main performance metrics
for different values of vmax are visualized in Figs. 11,
12 and 13. As can be seen, our approach consistently
outperforms classical Frontier-based exploration and next-
best-view exploration across all scenarios with respect to
tmax. The improvement is even more significant for texp,
as in our approach there is often a significant amount of
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Fig. 13. Expected voxel exploration time for office scenario. Each dot
represents one of six runs.

time at the end used only for re-visiting frontiers that have
been previously skipped. This behavior is well illustrated in
Fig. 1, which shows the evolution of |Vfree|

|V ?
free|

(t) and dtot(t) for
one instance of Rapid and Classic each in scenario Juliá,
vmax = 2.5. Within the approaches, tmax and texp decrease as
vmax increases, as can be expected. However, as our approach
is designed for high speeds, its decrease in tmax and texp is
most significant, in particular in the Juliá and Powerplant
scenarios.

We are surprised by the poor results that we obtained from
NBV, in spite of parameter tuning. In particular, in Juliá it
consistently gets stuck in one part of the map and does not
move towards the unexplored regions. Thus, we cannot report
any results for that scenario. For the scenarios in which it did
succeed, its performance was mostly inferior to the other two
approaches. This is consistent with the results in [8], which
shows longer exploration times for a previous NBV-based
approach [3], compared to a classic frontier-based approach.
In Fig. 14 it can be seen that the NBV trajectory is less
smooth than the trajectories performed by the other two
approaches.

Of particular interest is the behavior of dmax. Within the
runs of both the NBV planner and classic frontier-based
exploration, dmax is not significantly affected by vmax. For the
proposed exploration algorithm, however, it increases with
vmax. We assume that this happens because a higher vmax
will cause the multi-rotor both to overshoot in dead ends
and to make wider turns. The comparison of dmax between
Rapid and Classic Frontier exploration is not consistent.
For Juliá and Powerplant, dmax is generally higher for our
approach than for Classic Frontier exploration. However,
dmax is lower for our approach in the Office scenario. Here,
we discern two effects: on one hand, our approach does
not minimize distance traveled as does the Classic Frontier-
based approach. On the other hand, our approach, which is
more reactive, results in smoother trajectories. As can be
seen in Fig. 14, this is beneficial in the Office scenario. In
a scenario which is more cluttered and which imposes more
narrow turns, we would expect a smaller difference in overall
performance between our approach and classic frontier based
exploration.

Another observation that can be made is that classical
frontier based exploration outperforms NBV exploration in



Rapid NBV Planner Classic Frontier

Scenario vmax[
m
s
] dmax[m] tmax[s] texp[s] dmax[m] tmax[s] texp[s] dmax[m] tmax[s] texp[s]

Julia

0.3 262±8.9 1074± 55 379± 31 268± 24 1261±124 490± 34

0.7 273± 15 553± 59 202± 13 258± 14 636± 28 264± 15

1.5 310± 28 408± 49 121± 15 263± 19 531± 78 221± 35

2.5 315± 30 360± 39 105±8.7 260± 26 505± 58 211± 14

Office
0.3 223± 14 866± 55 318± 29 466± 30 1698±158 573± 91 275± 11 1266± 50 452± 74

0.7 237± 20 471± 53 178± 22 474± 54 983± 96 346± 49 272± 26 657± 73 278± 30

1.5 253± 12 332± 29 117±4.1 261± 25 433± 38 176± 41

Powerplant
0.7 692± 53 1245±151 364± 31 1363±290 2104±406 613±131 692± 57 2397±170 852± 86

1.5 710± 65 717± 94 198±2.1 692± 32 1519± 88 567± 31

2.5 728± 49 582± 26 150±3.9 684± 56 1437±123 565± 80

TABLE IV
MEAN AND STANDARD DEVIATION FOR THE TOTAL DISTANCE TRAVELED sMAX , THE TOTAL TIME SPENT EXPLORING tMAX AND THE EXPECTED CELL

DISCOVERY TIME tEXP ACCROSS ALL EXPERIMENTS.

t = 6 s t = 17 s t = 23 s

t = 29 s t = 39 s t = 46 s

Fig. 15. Real world exploration of an empty room that is halfway separated by a wall. The top speed of the quadrotor is 2m
s

.

the two dimensional case of office exploration. In the 3D
case, however, classic frontier based exploration shows poor
performance. A reason for this drop in performance is the
limited field of view of the sensor. While in the 2D case,
the sensor usually manages to simultaneously detect floor
and ceiling at the same time, in the large 3D environment
this is no longer the case. As a result, the quadrotor selects
frontiers on the border of the view frustum of the camera and
moves step-wise up or down, without large movements in the
xy-plane. The NBV controller is better able to handle this
and outperforms the classical frontier-based method. Rapid
exploration, however, again shows the best performance in
the 3D case, since the quadrotor will fly with the maximum
velocity for long distances.

B. Real World Experiments

The quadrotor successfully managed to map the real
world scenarios at the tested speeds. Table V shows the
performance of the proposed approach on the indoor scenario

Trajectories in Office Scenario
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Fig. 14. Comparison of trajectories in Office scenario.



Rapid

vmax[
m
s
] dmax[m] tmax[s] texp[s]

0.3 29.4 125.7 42.6

0.5 21.3 66.9 26.2

0.7 27.7 77.6 27.8

1.0 24.1 63.3 23.5

1.5 26.4 54.4 19.9

2.0 28.7 52.5 23.6

TABLE V
TOTAL DISTANCE TRAVELED dMAX , THE TOTAL TIME SPENT EXPLORING

tMAX AND THE EXPECTED CELL DISCOVERY TIME tEXP OBTAINED FOR

THE INDOOR REAL WORLD EXPERIMENT.

with respect to the three metrics for various vmax. Apart
from vmax = {0.3, 0.7}ms , the total exploration time tmax,
as well as the expected exploration time texp decrease with
larger velocities. Since only one run was performed for each
velocity, we consider vmax = {0.3, 0.7}ms to be outliers.

Most of the failures that were experienced in the real
world can be attributed to one of three causes: firstly, pose
estimation failures, particularly with rapid changes in attitude
above terrain. This is due to the visual odometry being based
on the image of a down-looking camera, whose image would
rapidly change. To prevent such failures indoors, we set the
room up such that attitude above terrain changes would be
minimal. Outdoors, we chose locations dominated by tree
trunks, with little vegetation on the ground. Secondly, the
RealSense sensor would sometimes fail to see objects, in
particular the curtain that we had on one side of the room,
which would rapidly flap as the quadrotor would approach it.
Clamping the bottom of the curtain significantly decreased
the frequency at which this problem occurred. Thirdly, the
geometry of the sensor placement and field of view resulted
in a blind spot for obstacles at certain low-radius turns
executed in the reactive mode. This problem was solved by
artificially restricting the field of view when considering the
set of visible frontiers Fv .

Fig. 15 depicts the indoor exploration process at six
distinct time instances and illustrates the growth of the
map representing the environment at vmax = 2m

s . Note that
after starting the exploration task, the quadrotor waits for 3
seconds to assure a sufficient OctoMap representation of the
environment before it starts to navigate to frontiers. For more
insights, we invite the reader to take a look at the multimedia
material at https://youtu.be/54s6gGZLpJo.

VII. CONCLUSION

Within this work, an exploration algorithm was proposed
that is designed specifically for multi-rotor exploration at
high speeds. The reactive behavior of the algorithm al-
lows for fast incorporation of new information and results
in efficient trajectories. Compared to classic frontier-based
exploration, the approach can occasionally exhibit a small
increase in the total path traveled to explore an area, but
at the same time achieves smaller exploration times for
the same maximum velocity constraint. These properties are

demonstrated in multiple simulations for different explo-
ration scenarios and validated with real world experiments.
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