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Abstract

This thesis addresses the limitation of closed-set classification algorithms, designed for prede-
fined classes, in real-world scenarios where unknown samples may be encountered. Building
on prior work by Dhamija et al. (2018), who introduced the entropic open set loss and objec-
tosphere loss as strategies to mitigate the extraction of features from unknown samples with the
underlying idea that if a network refrains from extracting these features, it becomes more manage-
able and effective to apply a threshold to the outputted probabilities, our objective is to enhance
the robustness of convolutional neural networks (CNNs) in identifying unknown samples while
maintaining closed-set classification performance. In pursuit of this objective, we aim to inves-
tigate whether we can further hinder the network’s learning process of extracting features from
unknown samples. We attempt this by removing the deep-feature layer, extracting logits directly
from the convolutional features and further impose non-negativity on the convolutional features
and enforce the use of positive weights in the subsequent layer with two distinct approaches. We
hope that this modification allows us to exert better control over these features. Additionally,
we investigate the integration of these networks with an out-of-distribution classification net-
work. Our experiments reveal that the altered networks exhibit comparable performance to the
original topology but may not inherently improve open-set classification capabilities. While the
suggested combination strategies yield promising outcomes upon evaluation using open-set clas-
sification rate curves, it is noteworthy that, despite some of the explored approaches effectively
suppressing feature extraction for unknown samples, we do not achieve more favorable outcomes
with networks extracting lower magnitudes for unknown samples compared to the magnitudes
of known samples.
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Chapter 1

Introduction

In the past, numerous algorithms have been designed and refined for closed set classification,
assuming a finite and predefined set of classes. These networks have demonstrated highly im-
pressive and promising results in the domain of image recognition (Huang et al., 2017) and, for
instance, even in the field of object detection (Girshick, 2015). However, as Scheirer et al. (2013)
acknowledged, this closed world assumption does not align well with many real-world use cases
and should be addressed. The reason is that the world is incredibly diverse, potentially encom-
passing an almost infinite number of classes. Attempting to train a machine learning network to
recognize and categorize all these possible classes is not only impractical but almost infeasible.
This limitation poses a significant challenge for traditional closed set classification methods when
confronted with scenarios where the class distribution is open, and new classes can emerge. As
a result, open set classification has gained prominence as an alternative approach to address this
issue by allowing models to handle uncertainty and acknowledge the existence of unknown or
unseen classes.

1.1 Problem formulation
In this thesis, our primary objective is to enhance the robustness of convolutional neural networks
in distinguishing unknown samples, all the while ensuring that their performance in closed-set
classification remains unaffected. Our research builds upon the foundation laid by Dhamija et al.
(2018), who introduced several novel contributions, including two distinct loss functions: the
entropic open set loss and the objectosphere loss. These innovative loss functions are specifically
designed to mitigate the extraction of features from images of unknown samples. At that time,
an aspect which has not been investigated further was the characteristics of the fully connected
layer responsible for extracting deep features from the convolutional features. As the rationale
behind these loss functions centers on inhibiting the extraction of features from unknown images,
a potential concern arises because the convolutional layers maintain the ability to learn to extract
features from unknown samples, but the fully connected layer can aggregate these values in a
way that the deep feature layer might still produce a zero vector. This deep feature zero vector
would incorrectly imply that no features have been extracted. But given that the objective is to
prevent the convolutional layer from learning features for unknown samples, this outcome is not
aligned with our desired goal.

The intuition behind the underlying problem is that the network might learn to associate the
presence of, for example, two specific learned features, suggesting that the input is an unknown
sample. Nonetheless, as the network needs to subsequently identify various new unknowns, it
cannot be assumed that these particular features will consistently co-occur. Hence, the preferable
strategy is to prevent the network from learning these features in the initial stages.
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Figure 1.1: CONVOLUTIONAL NEURAL NETWORK OVERVIEW. In this figure, a schematic represen-
tation of a convolutional neural network is depicted. Inside the black box layer, there exist N convolutional
layers typically integrated with MaxPooling layers. Subsequently, a flattening operation is applied, ulti-
mately producing the convolutional features as the concluding output. These values are then transformed
into deep features ϕk through a fully connected layer. Another fully connected layer subsequently generates
the logits zc from the deep features. The SoftMax activation, S(z), is then used to compute the SoftMax
scores pc. Together with the targets, the scores p are utilized to compute the loss that we use for optimization
during the training.

1.2 Our contribution
To tackle this issue, we consider eliminating the additional layer and directly extracting the logits
from the convolutional features. Additionally, to eliminate the possibility of cancellation effects,
we take the approach of not only ensuring non-negativity within the convolutional features but
also enforcing the subsequent layer to exclusively employ positive weights. To address this, we
explore two distinct approaches. In the first approach, we ensure that negative values on the
weights are prevented by mapping any negative values to zero. In the second approach, we test
the feasibility of using a penalty function for negative weights, with the aim of encouraging the
network to exclusively train positive values.

We also attempt to apply this method to both a categorical open-set classification network,
tasked with categorizing inputs into distinct known classes, and to an out-of-distribution binary
classification network, designed to discern whether an input belongs to the known classes or
is unknown. Finally, we explore the potential for combining these ideas. This leads us to the
following research questions of this thesis:

• RQ 1: Is it possible for a network to achieve effective performance when it has been trained
exclusively with positive deep-features and positive weights in the last layer?

– RQ 1a: How does the performance of a categorical classification network with these
adjustments compare to that of the original topology in a closed-set context?

– RQ 1b: How does the performance of a categorical classification network with these
adjustments compare to that of the original topology in a open-set context?

– RQ 1c: How does the performance of a binary classification network with these adjust-
ments compare to that of the original topology?

• RQ 2: Is it possible for a network to achieve effective performance when the deep-feature
layer has been removed and it has been trained exclusively with positive features in the
convolutional features and positive weights in the last layer?
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(a) Closed Set (b) Open Set

Figure 1.2: CLOSED VS. OPEN SET. (a) depicts the domain that the network identifies and anticipates
the input to be assigned to, encompassing all inputs the network can allocate to a learned class. In contrast,
(b) portrays the real-world scenario confronted by the network, where the learned closed set in the middle
represents only a portion of the diverse inputs it may encounter. source: Boult et al. (2019)

– RQ 2a: In a closed-set context, how do these modifications affect the performance of a
categorical classification network in comparison to the original topology?

– RQ 2b: In an open-set context, how do these modifications affect the performance of a
categorical classification network in comparison to the original topology?

– RQ 2c: How do these modifications affect the performance of a binary classification
network in comparison to the original topology?

• RQ 3: How can the out-of-distribution detection capability of binary classifiers be integrated
into a categorical classification network?

• RQ 4: Did the methodology described in research questions 2 or 3 successfully prevent the
network from extracting convolutional features from unknown samples?

Thesis Outline The thesis is structured as follows:
Chapter 2 provides an overview of open set classification methods, showing how different ap-
proaches have been used in the past and highlights the promising networks that have emerged
from them. Chapter 3 goes into depth about the research that this thesis is based on and intro-
duces the notation that is utilized. In Chapter 4, we elaborate on all the modifications made to the
network and provide a comprehensive explanation of the procedures involved in running and
evaluating our experiments. Additionally, Chapter 5 offers an overview of the dataset we uti-
lized and illustrates how we are employing it in our research and provides all the information to
ensure the reproducibility of the experiments. Chapter 6 unveils the experimental results, which
are then thoroughly discussed in Chapter 7. To sum things up, Chapter 8 closes the thesis with a
conclusion.





Chapter 2

Related Work

In this chapter, we emphasize the differences between traditional closed-set and open-set classifi-
cation, and provide a comprehensive review of the relevant research efforts aimed at addressing
this issue.

2.1 Open Set Classification
The open set classification problem, as outlined by Boult et al. (2019), is conceptualized in the fol-
lowing manner. By zooming out from the training data space, wherein all classes are known, and
each input is assignable to a specific class, the concept of open space becomes evident. The open
set denotes the territory situated directly around and up to far away from the training samples
(see Figure 1.2). A traditional closed set classifier, when faced with these unknown inputs, has
no other choice but to assign labels to them within the trained classes, even for points that are
extremely distant.

Mahdavi and Carvalho (2021) identify two fundamental approaches to tackle open-set classifi-
cation in the context of predicting probability distributions over known classes: the background/-
garbage class approach and the thresholding SoftMax scores approach. We further elaborate on
these methods in Section 2.1.1 and Section 2.1.2. In addition to these, various other strategies
exist, including the OpenMax technique proposed by Bendale and Boult (2016), or the Uncer-
tainty Estimation method introduced by Lakshminarayanan et al. (2017). Considering that this
thesis is primarily built upon the framework that tries to predict probabilities, the main focus lies
on the first two approaches, namely, the incorporation of a background/garbage class and the
implementation of SoftMax score thresholds.

2.1.1 Background/Garbage Class
The utilization of the background or garbage class approach can be perceived as a basic exten-
sion of conventional closed-set networks, which offers a simple mechanism for these networks to
classify unknown inputs accordingly. In contrast to the conventional SoftMax approach, which
will further be elaborated on in Section 3.2, we incorporate an extra class, resulting in a total of
C + 1 output classes. Furthermore, acquiring additional training data becomes imperative as we
must provide the network with examples, called the negative classes, enabling it to discern their
distinctions from the known ones. Although these negatives might not share direct similarities,
they are assigned the same target label to ultimately be categorized under the background class.
According to Dhamija et al. (2018), this strategy can prove highly effective, particularly when
the negative classes adequately represent the entirety of the unknowns. While this holds true
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for certain academic datasets like PASCAL (Everingham et al., 2010), its applicability in a real-
world context may be less certain. Boult et al. (2019) noted that the problem with Background-
class-based methodologies is that while they do capture certain aspects of the negatives, these
approaches do not restrict the space to contain a finite number of positively labeled open spaces
and are therefore not formally Open-Set recognition approaches.

2.1.2 Thresholding Softmax Scores
Another widely adopted technique to enable the network to label inputs as unknown involves
assigning the probabilities generated by the SoftMax layer to one of the known classes only when
the probability surpasses a predetermined threshold θ. Nevertheless, as Mahdavi and Carvalho
(2021) discovered, establishing a fixed global threshold without any prior information about the
potential unknown classes the network might encounter during testing poses significant chal-
lenges. As highlighted by Matan et al. (1990), a notable issue with this method is that the tra-
ditional SoftMax relies on the disparities in the logit values to determine the probabilities. This
means, a class could potentially receive a high probability even with a low logit value, solely
because the other classes have even lower values.

In addressing this challenge, Dhamija et al. (2018) suggested additional improvements to the
existing method. The objective was to align the resultant probabilities more closely with a uni-
form distribution by incorporating negative samples during training. Subsequently, efforts were
made to ensure that negative samples exhibited similar logit values across all classes and, in a
subsequent stage, even induce small feature magnitudes for unknown inputs. These approaches
facilitate improved thresholding capabilities and are known as the EOS and Objectosphere loss
functions, elaborated upon extensively in Section 3.4.1 and Section 3.4.2.

2.2 Out of Distribution Detection
Given the absence of a consistent definition for out-of-distribution classification and its distinc-
tion from the open set classification task, we adopt the following definition: Open set recognition
entails the multi-class classifier accurately classifying test samples from known classes while de-
tecting test samples from unknown classes simultaneously. In contrast, out-of-distribution detec-
tion is primarily focused on recognizing or rejecting invalid inputs (Yang et al., 2022) (Gillert and
von Lukas, 2021).

According to the findings of Cui and Wang (2022), various out-of-distribution approaches
can be classified based on the underlying machine learning paradigm. These approaches fall
into three main categories: supervised, semi-supervised, or unsupervised. Additionally, they
can be further categorized based on technical means, such as model-based, distance-based, or
density-based methods. Therefore, in our study, our primary emphasis will be on supervised
model-based deep learning methods. Methods belonging to a similar category include anomaly
detection (Chandola et al., 2009), novelty detection (Pimentel et al., 2014), and outlier detection
(Hodge and Austin, 2004).

Out-of-distribution detection has proven successful in a range of applications, notably in med-
ical image processing (Mårtensson et al., 2020) (Gao and Wu, 2020), intrusion detection, fraud
detection, and system health monitoring, showing that this type of classification is also viable in
security and risk-critical fields. But despite the positive outcomes, there are certain challenges as-
sociated with out-of-distribution detection using deep learning. While this approach performs ef-
fectively in low-dimensional space, out-of-distribution features are not easily discernible in high-
dimensional space, and many existing methods primarily rely on point features. Addressing the
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detection of conditional features and group features represents unresolved challenges in this con-
text (Cui and Wang, 2022).





Chapter 3

Background

In this chapter, we familiarize ourselves with significant network topologies, loss functions, and
the central concepts that form the basis of our proposed network, along with the introduction of
relevant notation and terminology. We will begin by exploring the architecture of convolutional
neural networks. Following this introduction, we will provide a succinct overview of the struc-
ture of the LeNet++ and the SmallScale-CNN topologies, before we will delve into the definition
of the SoftMax and the Binary-Cross-Entropy loss. Finally, we will present two techniques de-
signed to enhance its effectiveness in open-set classification: the Entropic Open-Set loss and the
Objectosphere loss.

3.1 Convolutional Neural Networks
A convolutional neural network is a specialized deep learning model primarily designed to pro-
cess and analyze visual data, such as images. In addition to the fully connected layers, they
integrate various image-specific operation layers, including convolutional layers and pooling lay-
ers, to effectively capture features at different levels of abstraction. By convolving filters across
the input image and progressively reducing the spatial dimensions, CNNs can detect patterns,
shapes, and complex structures within the data, making them highly effective in tasks such as
image classification. However, in this thesis, our primary emphasis is not on the intricacies of the
convolutional layers, referred to later as the blackblox, but rather on the three following layers
responsible for computing the deep features, the logits, and the SoftMax scores. As depicted in
Figure 1.1 the initial CNN that served as the starting point employs a fully connected layer that
takes the convolutional features, the final layer within the blackbox, and combines these values
through a fully connected layer to yield the deep features. These represent the high-level abstract
representations of the input data learned through the network’s layers. These features capture
complex patterns and distinctive characteristics within the data, enabling the network to differ-
entiate between various classes. The last fully connected layer - connecting the deep features
to the logits - is responsible for detecting the presence or absence of specific deep features and
endeavors to identify patterns, thereby determining plausible combinations relevant to various
classes.

In a fully connected layer, values are computed by combining inputs through a set of weights
and biases. Each neuron in such a layer is linked to every neuron in the preceding layer. To
determine the value of an output node, each input from the previous layer is multiplied by its
associated weight w, signifying the connection strength between neurons. The products of these
multiplications are aggregated by adding them up, yielding the output for that particular node.
This process is then reiterated for each output node in the layer, incorporating distinct weights
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Algorithm 1: LeNet++ Forward Function
Input: data x

1 x← PReLU(MaxPool2d(BatchNorm2d(Conv2d2(Conv2d1(x)))));
2 x← PReLU(MaxPool2d(BatchNorm2d(Conv2d4(Conv2d3(x)))));
3 x← PReLU(MaxPool2d(BatchNorm2d(Conv2d6(Conv2d5(x)))));
4 x← x.view(−1, self.Conv2d6.out_channels · 3 · 3);
5 df ← Linear1(x);
6 logits← Linear2(df);
7 return logits, df ;

and biases for each node. Mathematically, this can be articulated as follows:

yi =

J∑
j=1

(xj · wij) + bi) (3.1)

where yi is an output node and xj ,∀j ∈ {1, . . . , J} is the value of an input node. Alternatively,
for simplicity and clarity, we can represent it in vector notation as:

y = W · x+ b (3.2)

here W denotes the weight matrix, where each row encapsulates the connection strengths for an
output node.

By employing a SoftMax activation, we can calculate probabilities from the logits, which, in
conjunction with the ground truth labels, are instrumental in computing the loss for the provided
input data (see Section 3.2). Utilizing the principles of backpropagation, we iteratively tweak the
network’s parameters to minimize the disparity between the predicted and actual target outputs
for various inputs. This process aims to optimize the network’s weights and biases, enhancing its
capacity to precisely classify the input data (Skansi, 2018) (Krizhevsky et al., 2012).

3.1.1 LeNet++
In our pursuit to enhance the capabilities of the network originally presented by Dhamija et al.
(2018), we have adopted the same foundational architecture as they did, namely the extended
version of the original LeNet 5 architecture (Lecun et al., 1998) known as LeNet++.

This network comprises a total of six convolutional layers, which are subsequently followed
by two fully connected layers, each equipped with learnable parameters. The convolutional lay-
ers have been enhanced through a combination of max pooling, batch normalization and ReLU
activation techniques. This network is equipped with 2 deep-feature nodes. In our classical case,
when tasked with categorizing the 10 MNIST classes, it uses 10 logit nodes and we denote the
network as the categorical classification network. However, this configuration needs adjustment
when the network is assigned the task of classifying a different dataset with a varying number of
classes.

To conclude the architecture, we employ a SoftMax classifier, responsible for categorizing the
input images into their respective classes.
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Algorithm 2: SmallScale-CNN Forward Function
Input: data x

1 x←MaxPool2d(ReLU(Conv2d1(x)));
2 x←MaxPool2d(ReLU(Conv2d2(x)));
3 x← x.view(−1, self.Conv2d2.out_channels · 7 · 7);
4 df ← Linear1(x);
5 logits← Linear2(df);
6 return logits, df ;

3.1.2 SmallScale Convolutional Neural Network

In contrast, the SmallScale-CNN architecture, a simpler variant, consists of two convolutional lay-
ers. These convolutional layers are enhanced with ReLU activation and max-pooling techniques.
The two fully connected layers and the SoftMax activation function have remained unchanged
from the previous LeNet++ configuration, except for the expansion of the deep features to 500.

3.2 SoftMax
In order to transform the raw output values generated by the logit layer into normalized probabil-
ities suitable for the output layer, we employ the SoftMax function. Mathematically, the SoftMax
function can be expressed as:

pc = Sc(z) =
ezc∑

c′∈C ezc′
∈ (0, 1) (3.3)

where zc is the logit value of the class of interest and c′ ∈ C are all the known classes. Through
element-wise application to all classes in the set C we obtain the probability distribution p =
(p1, ..., pC) (Goodfellow et al., 2016). This function ensures that each resulting probability falls
within the range [0, 1] and collectively, the probabilities sum to 1 i.e.

∑
c∈C pc = 1. It is noteworthy

that in the special case where all logits are equal, the SoftMax function yields a probability distri-
bution in which each class is assigned an equal probability of 1

|C| i.e. zc = k, ∀c ∈ C ⇒ pc = 1
|C| ,

where |C| denotes the total number of classes.

Categorical Cross-entropy Loss The CCE loss function takes probabilities (often denoted as p)
and their corresponding target values t, and it quantifies the error that the network incurs for
a given input. This information serves as crucial feedback for the network, enabling it to itera-
tively enhance its performance. The closed-set loss function serves as the foundational building
block upon which we introduce additional open-set loss functions in Section 3.4. The CCE loss is
defined as:

JCCE(p) = −
C∑

c=1

tc log pc = − log pc (3.4)

as the target values t in (3.4) are all 0 for except for the ground-truth class, the equation can be
simplified.
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3.3 Binary Cross Entropy
In a binary decision case, where a network contains only a single logit node instead of possess-
ing N nodes, the use of the SoftMax activation function is not feasible for obtaining the desired
probabilities. In such instances, we use the logistic activation function, which accepts logit values
within the range of (−∞,∞) and produces a probability output ranging from 0 to 1. The logistic
activation function is defined as:

p = σ(z) =
1

1 + e−z
∈ (0, 1) (3.5)

Binary Cross Entropy Loss Training a network of this nature requires a loss function designed
specifically for single output nodes. In contrast to the Categorical Cross-Entropy (CCE) used
previously, we can employ the Binary Cross-Entropy loss function in this scenario, defined as
follows:

JBCE(p) = −(t · log p+ (1− t) · log(1− p)) (3.6)

Here, t ∈ {0, 1} represents the target class of the current input, and p denotes the corresponding
outputted probability (= σ(z)). This implies that when t is 1, only the first part becomes active,
and if t is 0, the second part becomes active. Multiplying it by the logarithm of the corresponding
probability provides a metric for the distance between the probability and the ground truth.
This could also be directly computed from the logits:

JBCE(z) =

{
z − zt+ log(1 + e−z), if z ≥ 0

−zt+ log(1 + ez), if z < 0
(3.7)

which can be simplified to:

JBCE(z) = max(z, 0)− zt+ log(1 + e|z|) (3.8)

During training, it might be more convenient to compute the loss directly from the logit value.
However, during testing, it is necessary to activate that value using the logistic activation function
(3.5) to obtain the desired probability.

3.4 Extensions for Open-Set Classification
Dhamija et al. (2018) introduced two distinct enhancements built upon the SoftMax loss function.
Their aim was to train neural networks such that, for unknown samples, the network should
produce a uniform distribution, making each class equally likely. This uniform distribution has
practical implications, particularly in score thresholding, where it enhances decision-making pro-
cesses for open-set classification.

As open-set classification lacks a consistent definition, we will adopt the notation proposed by
Dhamija et al. (2018), which operates as follows:

• C = {1, ..., C} ⊂ Y : The known classes of interest that the network shall identify.

• U = Y \ C: The unknown classes containing all types of classes the network needs to reject.
The set U can further be divided:

– B ⊂ U : The negative classes.
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– A = U \ B = Y \ (C ∪ B): The unknown classes, which represent the remainder.

The samples observed during training are denoted as D′
b when they belong to B or D′

c when they
belong to C. Conversely, the samples observed during testing are denoted as Db or Dc respectively.

3.4.1 Entropic Open-Set Loss
The Entropic Open-Set loss can be considered an extension of the SoftMax loss, as it broadens the
loss function’s applicability to encompass unknown samples. At its core, EOS aims to train the
network in a way that, for any negative sample xi ∈ D′

b, the resulting probability distribution p
exhibits maximum entropy across C classes. The EOS loss can be defined as:

JEOS(p) =

{
− log pc, if x ∈ D′

c

− 1
C

∑C
c=1 log pc, if x ∈ D′

b

(3.9)

If we define the target values tc as tc = 1
C ,∀c ∈ C for all negative samples D′

b it can be rewritten
very similar to the JCCE loss function:

JEOS(p) = −
C∑

c=1

tc log pc (3.10)

It has been shown that JEOS is minimized when all SoftMax values in p from (3.3) are equal
(Shannon, 1948). However, given that our thesis primarily focuses on restraining feature extrac-
tion from unknown samples, it is important to note that the logit values z do not have to be zero.
Rather, any set of logits with equal values leads to uniformly distributed SoftMax scores. Conse-
quently, this loss function does not inherently encourage a reduction in feature magnitudes.

3.4.2 Objectosphere Loss
While EOS encourages the generation of logit values with equal magnitudes for negative and
unknown samples, it does not impose the requirement to make them small. Therefore, it does
not compel the network to suppress the extraction of features from unknown samples, which
can then lead to poor results on unknown samples that have not been seen during training.
The objectosphere loss addresses this issue by promoting large feature magnitudes and low en-
tropy in known samples through a penalty for small feature magnitudes. Conversely, it penalizes
large feature magnitudes in negative samples to minimize feature length and maximize entropy
(Dhamija et al., 2018). The loss function is defined as:

JR = JEOS + λ

{
max(ξ − ∥ϕ∥, 0)2 if x ∈ D′

c

∥ϕ∥2 if x ∈ D′
b

(3.11)

where ∥ϕ∥ is the absolute magnitude of the deep feature vector, ξ is the minimal feature magni-
tude that is accepted for known samples and λ ∈ R+ can be viewed as the weight of the regular-
ization term.





Chapter 4

Approach

In this chapter, we elaborate on our ideas regarding the adjustment of the network architecture
to suppress feature extraction for unknown samples. Initially, we introduce all the adjustments
to a standard open-set classification network as the one Dhamija et al. (2018) used. Subsequently,
we present the out-of-distribution detection network architecture. Finally, we demonstrate how
we plan to combine these techniques first independently and then into a novel unified single
network.

4.1 Categorical Network
To address Research Question 1, we largely retain the network architecture as depicted in Fig-
ure 1.1 without significant alterations. The primary adjustment is the restriction of the deep fea-
ture layer from producing negative values. To achieve this, we still permit the network to train
deep features ∈ R, but any negative values are then mapped to 0. For the second part of our ad-
justments, we aim to ensure that all the weights in the last fully connected layer, which connects
the deep features layer to the logits layer, are positive. To achieve this, we employ two distinct
approaches that should yield the desired result. The first idea is to utilize a different type of layer.
Here, before each multiplication of the features with the corresponding weights (see Section 3.1),
the weight is mapped to zero if it happens to be negative, similar to the function applied to the
deep features. But this essentially means, that once a weight is negative, it implies that it is not
going to be updated further. To address this issue, we ensure that all weights in this layer are ini-
tially set to positive values. The second idea involves incentivizing the network to train positive
values on its own. We introduce a penalty for negative values in that layer, effectively increasing
the loss when negativity is detected. The penalty we choose to implement is defined as:

penalty =
∑

w∈W−

w ·
(
|W−|
|W|

)
(4.1)

where |W| is the total number of weights in the layer and W− is the set of all negative weights.
Depending on the weighting assigned to this penalty, the network should primarily train val-

ues greater than 0. To ensure the network functions as intended and is unable to produce any
negative outputs, we do not allow these layers to have a bias term. By implementing these mea-
sures, we can guarantee that the only way to produce a logits vector with all zeros is for the deep
features to be zero as well.

For answering Research Question 2, we employ a very similar approach to what was described
in the paragraph above, with one additional change. Instead of including an extra fully connected
layer immediately after the convolutional features, i.e. the last layer in the blackbox, where we aim
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Figure 4.1: MODIFIED NETWORK OVERVIEW. This figure presents the newly proposed architecture,
illustrating all the adaptations made to the network introduced in Figure 1.1. The blackbox layers remain
unchanged. However, the deep feature layer has been eliminated, and the convolutional features are directly
linked to the logits layer through a fully connected layer. The computation of the SoftMax scores and the
subsequent calculation of the resulting loss remain unchanged.

Table 4.1: OVERVIEW OVER THE DIFFERENT NETWORK TYPES. This table presents an overview of
the six distinct network types we implement. The column labeled "Deep-Features" signifies the retention
status of the deep feature layer. Meanwhile, "pos. Features" indicates whether the features from the last
feature layer before the logits undergo ReLu activation. The "Restriction" column specifies the type of
positive weight enforcement applied.

Network Deep-Features pos. Features Restriction
regular Yes No -

mod. 1A Yes Yes ReLu
mod. 1b Yes Yes Penalty
mod. 2 No No -

mod. 2A No Yes ReLu
mod. 2B No Yes Penalty

to extract the deep features, we bypass that step and directly utilize the convolutional features to
derive the corresponding logits (see Figure 4.1). The additional modifications, wherein we restrict
the network from having negative weight values and a bias term in the last layer, and enforce the
use of only positive values for the convolutional feature values (analogously to the strictly non
negative deep features described above), are also applied in this context.

To make things more clear, we will refer to the different adaptations in the upcoming sections
using the following names, which are additionally summarized in Table 4.1. The networks that
serve as baseline values, remaining unaltered from their original state, will be referred to as reg-
ular. We assign the label modification 1A to the modification involving the use of solely positive
values and weights for the deep feature layer, accomplished through ReLU implementation. Sim-
ilarly, we term the approach involving weight training using the penalty function as modification
1B. Modification 2 entails removing the deep feature layer from the network without imposing
additional constraints on either the features or the weights. Similarly to before, we term the modi-
fications in which the deep feature layer was eliminated modification 2A for the weights activated
with ReLU and modification 2B for the weights trained with the penalty function.
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Figure 4.2: COMBINED NETWORK OVERVIEW. This figure presents the proposed architecture for the
combined network (without the deep feature layer). In contrast to Figure 4.1, the current setup includes
two distinct logits and probability layers, both linked to the convolutional features layer through a fully
connected layer. Subsequently, we compute the SoftMax scores from the categorical logits in a manner
consistent with our previous approach. Additionally, in parallel, we calculate a sigmoid score from the
binary logit. Subsequently, the loss is computed for both score layers and then aggregated by adding
J1(p, t) + J2(p, t).

4.2 Binary Network

For both research question 1 and research question 2, we want to provide answers not only for the
conventional categorical classification network but also for a second type of networks termed the
out-of-distribution binary classification network that we would like to introduce. This network
is dedicated to the specific task of determining whether an input belongs to the classes of interest
in C. Consequently, there is no requirement for the logit layer to possess |C| output nodes but a
single node suffices. Hence, the sole adjustment to the topology we need to make is to reduce
the number of output classes to 1 while leaving all the other architectural aspects mentioned
above unchanged. In addition, we change the activation function to the logistic activation and
employ the binary cross-entropy loss function for training. To ensure the proper functionality of
this network, we again incorporate a bias term, the specifics of which are explained in detail in
Section 5.2. Furthermore, to enable the network to process the input data, the necessity for distinct
target values for the known classes C is eliminated, and they are now designated as 1, while the
negative/unknown classes U are designated as 0. Once more, our curiosity lies in understanding
whether our new adaptations can exert control over feature extraction and if the behavior of
feature extraction differs from that observed in the above described classification networks.
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4.3 Combined Network
With research question 3 we are particularly interested to explore whether we can enhance the
performance of open-set classification by combining a categorical network as described above
with a secondary component that focuses exclusively on classifying inputs into either known or
unknown. Furthermore, we intend to implement all the previously described network topologies
for both categorical networks and out-of-distribution binary networks and evaluate all possible
combinations of successful approaches. By doing this, we want to assess the feasibility of this
idea and determine if there exists a combination of two networks that outperforms the others or
if they all exhibit similar performance levels.

The simplest and most direct approach to combine both of these networks is to train them
independently. Then, during the evaluation phase, we can combine them by multiplying the
output probabilities:

pcomb = pcateg · pbinary (4.2)

where pcateg are the SoftMax scores from the categorical network for each class c ∈ C and pbinary
is the probability of the input belonging to the known classes C from the binary network.

Another approach we intend to explore is training a single network with two parallel output
logit layers. We want to integrate both components into a unified network with the expectation
that it will yield a more user-friendly system. This approach offers the benefits of more efficient
training processes, as only one network needs to be trained. Additionally, we anticipate the po-
tential to enhance the convolutional layer’s focus on positive features, thereby creating a more
meaningful and effective network. Here, in the first output, we maintain the typical number of
nodes corresponding to the classes of interest, enabling us to assign inputs to one of these classes.
However, the other output will consist of just one node, which will assist us in determining the
probability of the input belonging to either the known or the unknown classes. We then attempt
to compute a loss by utilizing the binary cross-entropy loss function for the binary output logits
and either of the categorical loss functions described in Section 3.2 and Section 3.4 for the cat-
egorical output logits (see Figure 4.2). Our goal during training is to minimize this combined
loss. In doing so, our aspiration is that a single network can effectively handle both aspects of the
two-part network described previously.

4.4 Magnitudes
To facilitate the analysis of the extracted magnitudes from the distinct networks, we have to es-
tablish a clear definition beforehand. These magnitudes are characterized as follows:

mag =

∑
f∈F f

2

|F|
(4.3)

where F describes the features within the convolutional features. This implies that we derive the
mean squared magnitude across all nodes within the convolutional features.
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Experiments

5.1 Data
Given that this thesis primarily relies on the research of Dhamija et al. (2018), we intended to
adopt a similar dataset and known and unknown split as their study. For training they em-
ployed the MNIST digits (Figure 5.1(a)) Lecun et al. (1998) as the known classes of interest and
the NIST letters (Grother and Hanaoka, 2016) as the negative classes. For testing they then used
the datasets Devanagri (Pant et al., 2012), NotMNIST, and CIFAR10 (Krizhevsky, 2012) as the
unknown classes.

For simplicity, we planned to conduct our experiments using the MNIST digits (Figure 5.1(a))
as the known classes and the first half of the EMNIST letters (Figure 5.1(c)) Cohen et al. (2017)
as the negatives i.e. Db ∪ D′

b and the second half as the unknowns i.e. Da ∪ D′
a. However, as

demonstrated by Van den Bergh (2023), there are disparities in the conversion process applied
to the EMNIST dataset, such as distinct downsampling methods. Consequently, the resulting
images tend to be slightly more blurry in comparison to MNIST. This blurriness provides neural
networks with the ability to discern whether a sample is known or unknown. To address this,
he introduced a new dataset split by utilizing the EMNIST MNIST dataset (Figure 5.1(b)), which
includes all the digits from 0 to 9 but is generated using the same conversion process as the
unknown set.

Furthermore, due to the existence of character and digit pairs with limited distinguishability,
such as "9" and "g" or "1" and "l," the author advocated for a revised dataset split that takes this
into consideration. His rationale behind this adjustment is to facilitate the creation of more visu-
ally clear and readily interpretable visualizations. Consequently, for all subsequent experiments,
we adopt the following dataset configuration: the known dataset comprises all the digits from the
EMNIST MNIST dataset. For the unknown dataset, we utilize the initial 11 letters from the alpha-
bet, excluding ’o,’ ’i,’ and ’l,’ as negatives, and the final 11 letters, excluding ’g,’ as the unknown
letters.

5.2 Experimental Setup
To conduct our experiments, we use two different types of network designs. The first one is the
two-dimensional LeNet++, which we chose based on the configuration used by Dhamija et al.
(2018) in their experiments. The second one is the SmallScale-CNN architecture with 500 dimen-
sions. Both of these designs are thoroughly explained in Section 3.1. We then implement the exact
same modifications, which are outlined below, for both of these network variants.
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(a) MNIST Digits (b) EMNIST Digits (c) EMNIST Letters

Figure 5.1: MNIST DIGITS, EMNIST DIGITS AND EMNIST LETTERS. The MNIST dataset (a) and
the EMNIST MNIST dataset (b) encompass hand-written digits spanning from 0 to 9, while the EMNIST
Letters dataset (c) comprises lower and upper case letters from ’a’ to ’z,’ all depicted in grayscale. Each
image within these datasets is a 28x28 pixel square, resulting in a total of 784 pixels per image.

To examine research question one, we implement the proposed modification outlined in Sec-
tion 4.1. For the first part, we want to prohibit negative values for the deep features, which we
try to achieve by applying the ReLU function from the torch.nn.functional package to the
deep features. For the second adjustment, where we seek to permit only positive weights on the
associated layer, we have two distinct implementations. In the first approach, we introduce a
novel layer type where we conventionally initialize the weights and, if present, the bias. How-
ever, during the forward pass, we incorporate a ReLU activation, using the same method from
the torch.nn.functional package, on each weight before multiplying them with the feature
values. In the second approach, the penalty term for negative weights, as described in (4.1), is
calculated, multiplied by a factor of two, and then added to the loss.

To address research question two, where the omission of the deep feature layer is intended,
we straightforwardly eliminate the second-to-last layer. Subsequently, we adjust the incoming
number of nodes from the preceding layer to match the incoming nodes from the original second-
to-last layer. All the modifications described above concerning the non-negativity of the features
and weights will be applied here in a one-to-one fashion.

Because we want to investigate the previously mentioned adjustments within both the closed
set and open set contexts, we train the suggested configurations using the three distinct loss
functions, namely SoftMax (CrossEntropyLoss from the torch.nn package), EOS, and Ob-
jectosphere (entropic_openset_loss and objectoSphere_loss from the vast package),
described in Section 3.4.

In line with our research questions, we will investigate RQ 1 and RQ 2 using a binary classifier.
To arrive at such a network, we will utilize the same architectures mentioned earlier, modifying
only the number of output nodes to one. To train the model, we will use the Binary Cross Entropy
function (BCEWithLogitsLoss) from the torch.nn package. It is important to note that after
making the necessary adjustments to allow only positive features and weights, the network will
be limited to computing logits z ≥ 0. Consequently, the Binary Cross Entropy function applies the
sigmoid activation function to map these logits to probabilities. This function assigns a probability
p = sig(z) ≥ 0.5,∀z ≥ 0. To accommodate probabilities below 0.5, we will incorporate a bias to
adjust the threshold. The rest remains unaltered and is implemented in the same manner as the
categorical classification network.

Regarding RQ 3, which examines the integration of a categorical classification network with
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an out-of-distribution binary classification network, we employ the two approaches outlined in
Section 4.3. For the first approach, where we train the networks separately, we employ the previ-
ously trained networks used to address research questions 1 and 2. We then evaluate the perfor-
mance of each resultant combination for the closed-set and open-set context using the evaluation
metrics described in Section 5.4. In the second approach, we aim to construct a unified network
that handles both the categorical classification task and the binary classification task. We intend
to reintegrate all the successful architectural modifications from the previous approach. The bi-
nary output logit layer is consequently optimized using the BCEWithLogitsLoss, while the
categorical output logit layer is trained with the three established loss functions: CCE, EOS, and
Objectosphere. It is important to note that both output logit layers are subject to identical archi-
tectural modifications. In practical terms, this signifies that if, for instance, we train a network
without an additional deep feature layer and solely employ positive weights in the final layer,
this adjustment will consistently impact both the binary and categorical logit layers.

For the final research question, RQ4, where we aim to explore whether the adjustments made
in the preceding inquiries effectively suppresses feature extraction for unknown samples, we un-
dertake the following process: For every network, we extract the values of the convolutional fea-
tures, consisting of 2450 dimensions for the SmallScale-CNN architecture and 1152 dimensions for
the LeNet++ architecture. Additionally, for Modification 1A and 2A, we perform this extraction
process only after the values have undergone ReLU activation. We then compute the magnitude
for each sample according to the definition in (4.3). Furthermore, we construct a histogram that
showcases the relationship between the magnitudes of all samples in the set and their correspond-
ing frequencies, differentiating between samples from the known set Dc and the unknown set Du.

Data All training procedures are conducted utilizing the data described in chapter 5.1

Details The implementation details are publicly available.1

5.3 Experiments

For our experiments, we follow a method where each suggested network from RQ 1 is imple-
mented, trained, and evaluated. Subsequently, we only proceed with the promising results for
RQ 2, while discarding the other networks. These selected networks are then adapted for RQ
2 and trained and evaluated again. We will then eliminate the underperforming networks once
more, ensuring we are left with only the well-performing ones, which we subsequently consider
for RQ 3, aiming to explore potential combinations between them.

Training All networks are trained using the stochastic gradient descent optimization technique, a
learning rate of 0.01, and a batch size of 128. When we train a network with the Objectosphere loss
function, we utilize the parameters ξ = 50 and λ = 0.0001. During the training, we evaluate the
network’s performance using the confidence metric outlined in (5.4) or (5.3), respectively. In each
epoch, we compare this value with the performance of the previously best-performing network
and save the current network only if it surpasses the previous one. If, over 10 epochs, the network
fails to exhibit improvement, we stop the training. Furthermore, we impose a maximum limit of
70 epochs during the training of the network. The training and experiments are conducted using
Nvidia GeForce RTX 2080 Ti GPUs.

1https://github.com/larsuzh/osc_thesis/

https://github.com/larsuzh/osc_thesis/
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5.4 Evaluation
To assess the performance of our trained networks on the provided data, we employ three dif-
ferent metrics: the accuracy metric (5.1) and (5.2), the confidence metric (5.3) and (5.4), and the
OSCR Curve, comprising equations (5.5) and (5.6).

We must emphasize that throughout the training process, to assess the combined network’s
performance, we consistently rely on the metrics of the categorical part of the network, concen-
trating solely on the classification output of the known inputs.

5.4.1 Accuracy
We define accuracy for the out-of-distribution network as:

accood =
|{x|⌊P (c|x) + 1

2⌋ = c′binary}|
|Dc ∪ Du|

,∀x ∈ Dc ∪ Du (5.1)

where P (c|x) represents the probability output for a given input x. Adding 1
2 and flooring the

result converts the probability to either 0 or 1. In this context, the target class c′binary is 0 for
unknown samples and 1 for known samples.

Additionally, we define accuracy for the categorical network as:

acccn =
|{x | arg maxcP (c|x) = c′categ}|

|Dc|
,∀x ∈ Dc (5.2)

where c′categ denotes the class of the data point, ranging from 0 to 9. In this context, only the
known classes are considered, and inputs belonging to the unknown class are excluded. This
metric provides insight into the network’s performance in accurately classifying inputs into their
respective classes.

5.4.2 Confidence
Furthermore, we define confidence for the out-of-distribution network as:

confood =

∑
x∈Dc

P (c|x) +
∑

x∈Du
(1− P (c|x))

|Dc ∪ Du|
(5.3)

and define confidence for the categorical network as:

confcn =

∑
x∈Dc

P (c′categ|x) +
∑

x∈Du
[1 + 1

|C| −maxcP (c|x)]
|Dc ∪ Du|

(5.4)

where c′ represents the corresponding target label for the current input x and therefore
∑

x∈Dc
P (c′|x)

represents the aggregate of the returned probabilities for the ground truth class. The sum
∑

x∈Du
[1+

1
|C| −maxP (c|x)] offers an indication of how effectively the network achieves a uniform distribu-
tion for unknown inputs. The inclusion of the term 1

|C| is crucial, as in the optimal scenario, we
anticipate all probabilities to be of that magnitude. Consequently, we aim to penalize any devia-
tion from this ideal state. Summing these terms and dividing by the size of the training dataset
yields a metric that not only characterizes the network’s classification accuracy but also the con-
fidence with which it does so (Palechor et al., 2023). This implies that a confidence of 1 can be
attained if, for all known inputs, the network consistently outputs a probability of 1 for the cor-
rect class and 0 for the rest. For unknown inputs, it should return a probability of 1

|C| for all classes,
effectively maximizing entropy.
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5.4.3 OSCR Curve
For a more comprehensive analysis of performance on the open set, we employ the OSCR curve,
initially introduced by Dhamija et al. (2018). This curve later underwent subsequent enhance-
ments by Palechor et al. (2023) and Bisgin et al. (2023).This curve plots the values of two distinct
metrics against each other. These metrics include the correct classification rate (CCR), which
addresses the known samples, and the false positive rate (FPR), which addresses the unknown
samples and both of which are defined as a function of θ:

FPR(θ) =
|{x |x ∈ Da ∧maxcP (c|x) ≥ θ}|

|Dc|
(5.5)

CCR(θ) =
|{x |x ∈ Dc ∧ arg maxcP (c|x) = c′ ∧ P (c′|x) ≥ θ}|

|Dc|
(5.6)

where, FPR(θ) signifies the proportion of misclassified inputs, where the probability for any class
is expected to be low, but is actually higher than the specified threshold. CCR(θ) on the other hand
represents the fraction of accurately classified inputs, where the highest probability not only cor-
responds to the correct class but is also greater than the specified threshold. The OSCR curves are
constructed by plotting the resulting CCR values against the FPR values while gradually increas-
ing the threshold θ from 0 to 1.

When interpreting the curve, it is crucial to consider that the plot is influenced by the selected
θ, although this variable is not directly depicted in the plot. In essence, our goal is to maximize
the CCR as close to 1 as possible across all FPR values, particularly focusing on lower values.
This signifies that the network effectively classifies inputs correctly while minimizing misclassi-
fications of unknown samples as known ones to obtain a straight line at the top of the CCR-axis
for all FPR values.
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Results

This chapter presents the results of all the conducted experiments. We reference the various net-
work types using the same naming convention introduced in Section 4.1 and summarized in
Table 4.1.

6.1 Evaluation of Network Topology Adjustments
Due to unsatisfactory results obtained with the LeNet++ architecture, we have chosen to exclu-
sively showcase the outcomes of the SmallScale-CNN in this presentation. Section 7 will elaborate
on the shortcomings of the LeNet++ architecture. Furthermore, all subsequent experiments fol-
lowing modification 1 are conducted exclusively using the SmallScale-CNN architecture.

6.1.1 Research Question 1
Table 6.1 shows the performance metric results for the SmallScale-CNN architecture with the reg-
ular, modification 1A, and modification 1B topologies. With this network architecture, it is evident
that all three topologies demonstrate high performance after beeing trained with the SoftMax,
EOS, or Objectosphere loss. In all of these cases, the accuracy consistently exceeds 99% for the
training dataset and remains above 98% for both the validation and test sets. Furthermore, the
confidence remains above 93% for all cases on the training and validation sets. On the test set, the
networks attain a confidence level around 60% to 80%, with no clear deviation of modification 1A
and 1B from the regular network.

In Figure 6.1, we provide the results for the different SmallScale-CNN network topologies
within the OSCR context. Additionally, we offer a comprehensive breakdown of the test-set re-
sults in Table A.4. Here, it is evident that on the validation set, all three topologies exhibit im-
proved performance when trained with the EOS or Objectosphere loss compared to the SoftMax
loss. However, on the test set, this advantage diminishes, with all three topologies demonstrating
roughly similar performance regardless of the loss function used during training. It gets clear
from this, that the networks achieve similar performance even with the additional modifications
1A and 1B.

In Table 6.2, we showcase the performance metrics of the SmallScale-CNN architecture in an
out-of-distribution context. The table demonstrates that the original network, when trained with
an output node and a BCEWithLogitsLoss, can indeed yield good results in terms of accuracy
and confidence during the training and validation phase. It attains nearly 100% accuracy and
confidence on the training set and approximately 98% on the validation set. The same holds true
for modification 1A and 1B, where we also achieve nearly 100% on the training set and slightly
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Table 6.1: SMALLSCALE-CNN PERFORMANCE OF MODIFICATION 1A AND 1B. This table displays
the accuracy and confidence metric results for the regular, 1A, and 1B topologies across the training, vali-
dation, and test sets.

Arch Loss Training Validation Test
Acc Conf Acc Conf Acc Conf

regular
SoftMax 1 0.99988 0.9929 0.99251 0.9933 0.60162

EOS 0.99575 0.94703 0.9898 0.93967 0.9898 0.8012
Objectosphere 0.9938 0.93925 0.9895 0.93365 0.9895 0.79968

mod. 1A
SoftMax 1 0.99980 0.99360 0.99301 0.99360 0.60677

EOS 1 0.99844 0.99220 0.98090 0.99220 0.80132
Objectosphere 0.99997 0.99568 0.99140 0.97921 0.99140 0.79485

mod. 1B
SoftMax 1 0.99981 0.9943 0.99322 0.9943 0.60825

EOS 1 0.99846 0.9931 0.9803 0.9931 0.798
Objectosphere 0.99985 0.99565 0.9924 0.98029 0.9924 0.79722

Table 6.2: SMALLSCALE-CNN OUT-OF-DISTRIBUTION PERFORMANCE OF MODIFICATION 1A
AND 1B. This table displays the accuracy and confidence metric results for the regular, 1A, and 1B topolo-
gies across the training, validation, and test sets in an out-of-distribution context.

Arch Training Validation Test
Acc Conf Acc Conf Acc Conf

regular 0.99832 0.99709 0.97835 0.97746 0.53191 0.75626
mod. 1A 0.99999 0.99955 0.98553 0.98422 0.53191 0.64921
mod. 1B 1 0.99984 0.98532 0.98468 0.53191 0.75913

over 98% on the validation set. On the test set, all three topologies exhibit unfavorable outcomes,
reaching a maximum of 53% accuracy and 75% confidence for the regular and modification 1B,
and an even lower 65% for modification 1A.

6.1.2 Research Question 2
In Table 6.3, we are presenting the performance metric results of the 2, 2A and 2B modifications.
Here you can see that all three approaches deliver very good results, regardless of the type of
loss function utilized. In these instances, no clear differences can be observed between the three
modifications. It is also noteworthy that the accuracy on the test set is approximately 99% for all
cases and even the decline in confidence compared to other datasets is fairly consistent for the
three networks.

The OSCR curve in Figure 6.2 (the results for the test set are once more comprehensively
illustrated in Table A.5) presents the open set performance results for Modification 2, 2A and
2B. In the validation set, networks trained with EOS and Objectosphere loss functions exhibit
commendable outcomes, achieving CCRs ranging between 60% to 80% for FPRs as low as 10−3.
Conversely, the network trained with the SoftMax loss lags behind, producing acceptable CCR
only at approximately 10−1 FPR. Nonetheless, on the test set, all of the networks encounter a
decline in performance relative to the validation set, with the curves closely resembling those
illustrated in Figure 6.1.

In Table A.6, we present the performance metrics of the adjusted SmallScale-CNN architec-
ture without the deep feature layer in an out-of-distribution context. The table highlights that the
networks with Modification 2, 2A, and 2B, when trained with one output node and a BCEWith-
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(a) regular (b) mod. 1A (c) mod. 1B

Figure 6.1: SMALLSCALE-CNN OSCR CURVES. This figure presents the OSCR (Open-Set Classifica-
tion Rate) curve for the regular architecture (a), modification 1A (b), and modification 1B (c). The first row
represents the validation set, while the second row depicts the test set.

LogitsLoss, are capable of delivering high performance outcomes. They achieve just over 98%
accuracy and 97% confidence on the training set and approximately 97% on the validation set.
Once again, there is a noticeable performance decline when assessing all three networks on the
test set, with all of them achieving only 53% accuracy and 75% confidence for modification 2A,
76% for modification 2, and 77% for modification 2B.

6.2 Combination Strategies
This section showcases the outcomes of the various approaches we employed to integrate a cat-
egorical network with a binary network. Initially, we present the results for the technique where
the networks were trained independently and then merged for evaluation. Throughout these re-
sults, we label the networks as follows: name of the categorical network - name of the binary
network.

Combined Networks Figure 6.3 depicts the OSCR curves for all the carried out combinations.
Additionally, a more comprehensive view of the test set results from these experiments is pro-
vided in Table A.7. On the validation set, the combinations demonstrate similar outcomes for
the EOS and Objectosphere loss functions compared to the previous results, with the SoftMax
loss function showing even better performance. For all three loss functions, around an FPR of
approximately 10−3, a CCR of 60% to 80% is noticeable, which escalates to over 80% at 10−2 and
gradually converges to 1 with increasing FPRs. What is interesting to note here, in contrast to
the preceding findings, is the remarkable similarity between the performance on the test set and
that on the validation set, with instances where the test set performance is even better. Among
the tested combinations, only the regular - regular pairing demonstrates a minor decline in per-
formance on the test set, particularly in the objectosphere case. In contrast, the mod. 2B - mod.
2B combination exhibits the most impressive performance, where there are clear advantages of
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Table 6.3: SMALLSCALE-CNN PERFORMANCE OF MODIFICATION 2, 2A AND 2B. This table dis-
plays the accuracy and confidence metric results for the 2A and 2B topologies across the training, validation,
and test sets.

Arch Loss Training Validation Test
Acc Conf Acc Conf Acc Conf

mod. 2
SoftMax 1 0.99949 0.9928 0.99174 0.9928 0.60842

EOS 0.99555 0.94414 0.9918 0.93776 0.9918 0.8064
Objectosphere 0.99447 0.94389 0.9892 0.93819 0.9892 0.80183

mod. 2A
SoftMax 0.99950 0.99821 0.99220 0.99039 0.99220 0.61264

EOS 0.99370 0.94168 0.98830 0.93518 0.98830 0.80748
Objectosphere 0.99298 0.94293 0.98760 0.93661 0.98760 0.81352

mod. 2B
SoftMax 1 0.9997 0.9934 0.99188 0.9934 0.60798

EOS 0.99567 0.94464 0.9904 0.93772 0.9904 0.80724
Objectosphere 0.99498 0.94334 0.989 0.93654 0.989 0.80547

the EOS and Objectosphere loss functions over the SoftMax loss function. For the remaining net-
works, we do not observe a definitive trend indicating that one of the loss functions is clearly
superior in distinguishing known inputs from unknown inputs.

Mixed Networks For the mixed network approaches depicted in Figure 6.4 and Table A.9,
we note slightly inferior results on the validation set compared to the results of the combination
approach. However, the results appear to be consistently comparable to those achieved with
the corresponding modifications from Figure 6.1 and Figure 6.2 with the notable exception of
the SoftMax results, which exhibit significantly better performance in this case. Again, we can
see that the results on the test set remain consistent with those on the validation set. Moreover,
the EOS and Objectosphere results for the mod. 2B network continue to demonstrate highly
impressive outcomes, boasting above-average CCR values, particularly for very low FPR values.
With Σ = 3.848, this particular network, when being trained with the Objectosphere loss, attains
the highest cumulative sum over the FPRs among all the conducted experiments. For the sake
of completeness, we furnish the accuracy and confidence performance for the categorical part of
these networks in Table A.8.

6.3 Feature Extraction Suppression
Table A.10, Table A.11, and Table A.12 present the extracted magnitudes from distinct networks
at the convolutional features layer. The provided data includes the mean and standard deviation
for each network and dataset split. The data suggests that there is a considerable range in mag-
nitudes between different modifications. For instance, mod. 1A, trained with Objectosphere loss,
displays significantly larger magnitudes, reaching up to 33. In contrast, mod. 2A maintains much
lower magnitudes, as low as 0.653. Additionally, the resulting magnitudes for each input set ex-
hibit a relatively minor standard deviation. For instance, for the regular network trained with
the SoftMax loss function, the mean ranges from 2.197 to 2.239, with the standard deviation con-
sistently below 0.641. In the case of categorical networks, all architectures successfully achieved
lower magnitudes for the Da and Db split compared to the Dc split after being trained with either
the EOS or Objectosphere loss function. It is noteworthy that this trend does not hold true for
SoftMax, as it occasionally results in higher values for negative or unknown data. In the out-of-
distribution network, all suggested architectures yielded lower values, except for the regular one,
which recorded magnitudes of 0.154 for known values and 0.157 for negative values. With modi-
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(a) mod. 2 (b) mod. 2A (c) mod. 2B

Figure 6.2: MODIFIED SMALLSCALE-CNN OSCR CURVES. This figure presents the OSCR (Open-Set
Classification Rate) curve for the modification 2 (a) 2A (b) and modification 2B (c). The first row represents
the validation set, while the second row depicts the test set.

fication 2A, the network succeeded in suppressing only half of the magnitudes, specifically 0.006
for the unknown samples compared to the 0.012 for the positive values. In the mixed networks,
all experiments, including those incorporating the SoftMax loss, consistently produced lower val-
ues for the negative and unknown cases. In both Figure 6.5 and Figure A.4, we attempted to
visualize the results graphically. The plots showcase the extracted magnitudes plotted against
their respective frequencies for the various networks. The red line corresponds to the magnitudes
of the known inputs, while the blue line represents the magnitudes of the unknown inputs. Note
that the top figure corresponds to the validation set, whereas the bottom figure corresponds to
the test set. Once more, one can observe that there is a variance in magnitudes between the two
datasets, as the blue lines are consistently to the left of the red lines.
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(a) reg - reg (b) reg - mod. 2B (c) mod. 2B - reg

(d) mod. 2B - mod. 2B (e) mod. 2A - reg (f) mod. 2A - mod. 2B

Figure 6.3: COMBINED SMALLSCALE-CNN OSCR CURVES. This figure presents the OSCR (Open-
Set Classification Rate) curve for all the implemented combinations of categorical and binary networks.
Each combination is associated with two figures, with the upper row displaying the validation set results
and the lower row showcasing the results for the test set.
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(a) regular (b) mod. 2A (c) mod. 2B

Figure 6.4: MIXED SMALLSCALE-CNN OSCR CURVES. This figure presents the OSCR (Open-Set
Classification Rate) curve for all the mixed networks. The first row displays the validation set results and
the second row displays the results for the test set.

(a) regular (b) mod. 2 (c) mod. 2A (d) mod. 2B

Figure 6.5: MAGNITUDE PLOTS FOR THE SMALLSCALE-CNN WITH EOS LOSS FUNCTION. This
figure presents the extracted magnitudes for the regular architecture (a), modification 2 (b), modification
2A (c), and modification 2B (d) after being trained with the EOS loss function. We graph the resulting
magnitudes extracted from the unknown input in blue, and from the known inputs in red, against the
frequencies at which they occurred across all inputs in the set. The first row represents the resulting
magnitudes of the validation set, while the second row depicts the resulting magnitudes from the test set.
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Discussion

The LeNet++ architecture with the regular topology demonstrates high performance across all
data-set splits, irrespective of the three loss functions used during training. However, modifi-
cation 1A does not surpass 70% accuracy for any dataset split, regardless of the loss function
utilized. Furthermore, modification 1B performs even lower, with a maximum accuracy of 10%,
failing to surpass the accuracy attainable by chance alone.

Given that, in an open-set context, modification 1A consistently is not exceeding 70%, and
modification 1B remains at 10% across all false positive rates (FPRs), it is clear that both modifica-
tions demonstrate performance deficiencies in comparison to the regular network regarding the
open-set classification task (The complete set of results can be found in the appendix in Table A.1,
Figure A.1, and Table A.2).

Following a similar approach to Wen et al. (2016), in Figure 7.1, we present the resulting 2-D
deep features displayed on a two-dimensional plane, illustrating the distribution of the LeNet++
network trained using the EOS loss. Here it is very exciting to see that the regular network (Fig-
ure 7.1(a)) is able to separate the 10 classes very clearly from each other. Especially on the valida-
tion set the unknown classes (shown in dark blue) are near the middle. However, Figure 7.1(b)
depicts the deep features of the network with modification 1A, and it becomes evident that re-
stricting the values exclusively to positive values significantly restricts the feature space, allowing
only six classes to be distinctly separated from each other and the remaining features seem to be
mapped to the 0/0 point. Additionally, as Figure 7.1(c) shows, modification 1B yields an uninfor-
mative network, as no discernible features are extracted, causing all classes to converge precisely
at the center.

In the out-of-distribution context, as illustrated in Table A.3, both the regular topology and
mod. 1A demonstrate strong performance on the training and validation sets, but neither network
exceeds random chance performance on the test set. Once again, the feature plot illustrated in
Figure A.2 emphasizes that these adjustments fail to produce meaningful results, especially on
the test set.

In summary, we can conclude that constraining the LeNet++ architecture to utilize only posi-
tive features significantly narrows the network’s feature space. This limitation hinders the ability
to effectively distinguishing the classes in both the categorical and the binary case, as the available
feature space becomes insufficient for proper class differentiation.

On the other hand, as the results outlined in Section 6.1.1 suggest, the same is not applica-
ble to the SmallScale-CNN. In the categorical context, both modifications 1A and 1B consistently
show very similar performance to the regular baseline, regardless of the loss function used dur-
ing training, in both closed and open set evaluations. In the binary context, all three networks
exhibit very similar performance with no clearly noticeable deviation, achieving high accuracy
and confidence on the training and validation sets. However, when it comes to the test set, results
cannot surpass those expected by chance alone.
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(a) Regular (b) mod. 1A (c) mod. 1B

Figure 7.1: LENET++ CATEGORICAL CLASSIFICATION FEATURE-PLOT. This figure illustrates the
extracted features for the regular topology (a), modification 1A (b), and modification 1B (c) of the two-
dimensional LeNet++ trained with the EOS loss function. Feature pairs attributed to different classes are
represented in distinct colors. The first row represents the validation set, while the second row depicts the
test set.

To summarize the findings for Research Question 1, it can be concluded that the modified
SmallScale-CNN performs very similar to the regular topology in both closed and open set con-
texts for the categorical case, and it also demonstrates it’s competence in the out-of-distribution
context. Given that the tested networks primarily differ in the number of features in the last
layer, these results suggest that, for a CNN, employing such alterations is feasible when sufficient
feature space is provided.

For Research Question 2, the numbers presented in Section 6.1.2 indicate that the performance
of the modifcation 2, 2A and 2B remains consistent with the baseline results across all cases —
whether categorical or binary, and in both closed and open set scenarios. Hence, we can con-
clude that a network with the deep feature layer removed can still perform effectively, even when
trained with additional weight restrictions. Nevertheless, while these networks maintained sim-
ilar performance to the baseline, it does not imply an improvement with these approaches. The
confidence on the test set experiences a decrease compared to the training and validation sets,
and the OSCR curves illustrate that we are still unable to attain satisfactory results.

In response to Research Question 3, our findings indicate that both of our proposed implemen-
tation ideas are effective. This implies that it is viable to train a categorical network alongside a
binary out-of-distribution network. Subsequently, combining the output probabilities in the way
we described in Section 4.3 enables the acquisition of open-set classification capabilities. In this
scenario, there is no discernible difference between the proposed topologies, and none of the three
applied loss functions demonstrates a clear advantage over the others, but all tests yield promis-
ing results. Moreover, the mixed network implementation proves its effectiveness in achieving
strong open-set classification performance. Interestingly, the objectosphere loss function outper-
forms both SoftMax and EOS loss functions for all network topologies but there seems to be no
evident advantage of one topology over the other among the four investigated in this context.

To asses the results for Research Question 4 for the categorical networks, we perform a one-
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Table 7.1: EFFECT SIZE OF THE DIFFERNCES IN EXTRACTED MAGNITUDES OF THE CATEGORICAL
AND MIXED NETWORKS. This table presents the avarage Cohen’s D value and its corresponding standard
deviation of the differences in extracted magnitudes between the known and unknown samples.

Arch Loss Cohen’s D
classical mixed

regular EOS 0.804± 0.016 0.559± 0.015
Objectosphere 0.612± 0.015 0.569± 0.014

mod. 2 EOS 0.670± 0.015 0.449± 0.015
Objectosphere 0.833± 0.015 0.940± 0.015

mod. 2A EOS 0.696± 0.015 0.987± 0.015
Objectosphere 0.926± 0.015 1.047± 0.016

mod. 2B EOS 0.717± 0.016 0.579± 0.016
Objectosphere 0.792± 0.016 0.945± 0.015

sided t-test to check if the magnitudes extracted for negative or unknown samples are smaller
than those for known samples. Here, we state the null hypothesis H0 : µ2 ≥ µ1 and the alter-
native hypothesis H1 : µ2 < µ1, with µ2 being the mean of the extracted magnitudes from Da

and µ1 being the mean of the extracted magnitudes from Dc. The conducted tests show that all
the topologies, except for the regular and modification 2 networks after being trained with the
SoftMax loss, showed a p-value much smaller than 0.05 and thus indicate a significant difference.
Considering Cohen’s D statistics (see Table 7.1), the effect sizes for the classical networks range
from the upper end of medium to high (Brydges, 2019). Here we obtained the mean Cohen’s D
and its corresponding standard deviation values through the application of bootstrapping. The
Objectosphere loss in mod. 2A yielded the highest effect size at 0.926 ± 0.015. Nevertheless, this
architecture, despite utilizing the same approach, only attained a value of 0.696 ± 0.015, failing
to surpass the analogous result of the standard network. Hence, the inference is that the newly
proposed architectures may exhibit notably reduced feature magnitudes for unknown samples,
indicating considerable effect sizes. However, attributing this solely to the implemented modi-
fications is unclear, given the inconsistency in effect sizes and the lack of substantial differences
compared to the baseline. Examining the results for the mixed networks reveals notable achieve-
ments, particularly with mod. 2A displaying very high effect sizes. Additionally, the Objecto-
sphere results for mod. 2 and 2B are high as well. In contrast, the regular topology only attains
0.559 ± 0.015 or 0.569 ± 0.014, respectively. However, the high effect sizes do not consistently
align with the outcomes in open set classification tests. For instance, mod. 2B with EOS performs
exceptionally well in OSCR curve analysis but does not exhibit a correspondingly high effect size
when we evaluate its magnitudes. For the out-of-distribution networks, the differences are much
bigger. The regular network attains a notably low effect size of 0.039± 0.014, while modification
2 reaches 0.112 ± 0.0.16 and 2B achieves 0.421 ± 0.016. In stark contrast, mod. 2A demonstrates
a substantial effect size of 0.896 ± 0.014. However, it is important to note that these topologies
include a bias term, introducing a complexity that makes the results less interpretable, since the
presence of these bias values may hinder the networks from strictly combining positive values in
the last layer.





Chapter 8

Conclusion

In this thesis, our primary aim was to assess the impact of removing deep features, introducing
a positive feature, and imposing weight restrictions on the suppression of convolutional feature
extraction from unknown samples. We wanted to investigate the consequences of these modifica-
tions on the performance of out-of-distribution classification networks in the open set context and
categorical networks in both open and closed set contexts. Our investigation encompassed train-
ing on EMNIST Digits as known classes and EMNIST Letters as negative and unknown classes.
Additionally, we explored the integration of categorical and out-of-distribution network types
into a unified classification network and evaluated its performance.

Our findings indicated that introducing these alterations to a convolutional neural network
did not lead to a significant variation in performance, provided the network possessed a high-
dimensional feature space. However, we also observed no improvement in performance for the
proposed topologies over the regular one. Despite this, our combination efforts yielded promis-
ing results. Both the combination of distinct networks and the proposed mixed network demon-
strated increased correct classification rates, particularly at low false positive rates, compared to
the initial networks. Nevertheless, despite the implemented modifications successfully achieving
the suppression of feature extraction for unknown samples, we were unable to demonstrate a
consistent superiority over what can be achieved with EOS or Objectosphere loss independently.
Moreover, classical and mixed networks that effectively achieved suppression did not consistently
exhibit improved performance in open-set classification tasks, leaving us uncertain as to whether
the suppression effect was insufficiently large or if the introduced alterations had not brought
about meaningful improvements.

Looking forward, numerous avenues for future research emerge. Most importantly it should
be investigated whether the observed high correct classification rate values for the combined net-
works are reproducible when applied to a larger dataset with more complex inputs, resembling
real-life scenarios. Furthermore, delving into feature visualization to comprehend the extracted
features and their differences from those of the original networks would probably offer valuable
insights into the underlying mechanisms of our proposed modifications. Finally, additional re-
search efforts aimed at understanding whether the good performance of these networks comes
from their ability to refrain from extracting features from unknown samples or what other factors
contribute to distinguishing the unknown from the known would be desirable.
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Table A.1: LENET++ PERFORMANCE OF MODIFICATION 1A AND 1B. This table displays the accu-
racy and confidence metric results for the regular, 1A, and 1B topologies across the training, validation,
and test sets.

Arch Loss Training Validation Test
Acc Conf Acc Conf Acc Conf

regular
SoftMax 1 0.99991 0.991 0.98989 0.9906 0.63553

EOS 0.99982 0.99823 0.9872 0.98262 0.9848 0.7982
Objectosphere 0.99932 0.99472 0.9886 0.98192 0.986 0.80183

mod. 1A
SoftMax 0.19982 0.23058 0.19960 0.23179 0.19960 0.19960

EOS 0.69355 0.81958 0.68840 0.81567 0.68140 0.70859
Objectosphere 0.49638 0.74324 0.49400 0.74389 0.49240 0.68763

mod. 1B
SoftMax 0.0998 0.10004 0.1 0.1 0.1 0.52128

EOS 0.09992 0.52125 0.1 0.52128 0.1 0.52128
Objectosphere 0.09992 0.52124 0.1 0.52128 0.1 0.52128

Table A.2: LENET++ OPEN-SET PERFORMANCE OF MODIFICATION 1A AND 1B. The table exhibits
the achieved test-set CCR (Correct Classification Rate) results at various FPR (False Positive Rate) levels
of 10−3, 10−2, 10−1, and 100, along with the cumulative sum across these values, for the regular, 1A, and
1B topologies.

Arch Loss 1e-3 1e-2 1e-1 1e-0 Σ

regular
SoftMax 0.0369 0.2514 0.8431 0.9907 2.1221

EOS 0.0796 0.2605 0.7752 0.9849 2.1002
Objectosphere 0.1233 0.3135 0.7892 0.986 2.212

mod. 1A
SoftMax 0.03 0.0723 0.0984 0.1996 0.4003

EOS 0.0097 0.0836 0.5048 0.6813 1.2794
Objectosphere 0.0039 0.1057 0.3904 0.4923 0.9923

mod. 1B
SoftMax 0.1 0.1 0.1 0.1 0.4

EOS 0.1 0.1 0.1 0.1 0.4
Objectosphere 0.1 0.1 0.1 0.1 0.4

Table A.3: LENET++ OUT-OF-DISTRIBUTION PERFORMANCE OF MODIFICATION 1A AND 1B.
This table displays the accuracy and confidence metric results for the regular, 1A, and 1B topologies across
the training, validation, and test sets in an out-of-distribution context.

Arch Training Validation Test
Acc Conf Acc Conf Acc Conf

regular 1 1 0.98947 0.98919 0.53191 0.7559
mod. 1A 0.99984 0.99957 0.98968 0.98920 0.53191 0.75162
mod. 1B 0.53191 0.50198 0.53191 0.5026 0.53191 0.5026
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Table A.4: SMALLSCALE-CNN OPEN-SET PERFORMANCE OF MODIFICATION 1A AND 1B. The
table exhibits the achieved test-set CCR (Correct Classification Rate) results at various FPR (False Positive
Rate) levels of 10−3, 10−2, 10−1, and 100, along with the cumulative sum across these values, for the
regular, 1A, and 1B topologies.

Arch Loss 1e-3 1e-2 1e-1 1e-0 Σ

regular
SoftMax 0.1246 0.1246 0.4864 0.9933 1.7289

EOS 0.1137 0.3304 0.78 0.9898 2.2139
Objectosphere 0.0444 0.1729 0.7334 0.9895 1.9402

mod. 1A
SoftMax 0.0349 0.0572 0.5161 0.9936 1.6018

EOS 0.2059 0.2059 0.6954 0.9922 2.0994
Objectosphere 0.2292 0.2292 0.6353 0.9914 2.0851

mod. 1B
SoftMax 0.0222 0.0785 0.5139 0.9943 1.6089

EOS 0.1386 0.2009 0.7306 0.9931 2.0632
Objectosphere 0.1821 0.1821 0.6846 0.9924 2.0412

Table A.5: SMALLSCALE-CNN OPEN-SET PERFORMANCE OF MODIFICATION 2, 2A AND 2B. The
table exhibits the achieved test-set CCR (Correct Classification Rate) results at various FPR (False Positive
Rate) levels of 10−3, 10−2, 10−1, and 100, along with the cumulative sum across these values, for the 2A
and 2B topologies.

Arch Loss 1e-3 1e-2 1e-1 1e-0 Σ

mod. 2
SoftMax 0.0194 0.1124 0.4876 0.9928 1.6122

EOS 0.0566 0.3232 0.8135 0.9918 2.1851
Objectosphere 0.0735 0.2808 0.7729 0.9892 2.1164

mod. 2A
SoftMax 0.0274 0.1194 0.5179 0.9922 1.6569

EOS 0.1498 0.3438 0.7871 0.9883 2.269
Objectosphere 0.1012 0.2865 0.7937 0.9876 2.169

mod. 2B
SoftMax 0.0304 0.1207 0.5019 0.9934 1.6464

EOS 0.0956 0.3623 0.8172 0.9904 2.2655
Objectosphere 0.0877 0.3114 0.8028 0.989 2.1909

Table A.6: SMALLSCALE-CNN OUT-OF-DISTRIBUTION PERFORMANCE OF MODIFICATION 2, 2A
AND 2B. This table displays the accuracy and confidence metric results for the 2A and 2B topologies across
the training, validation, and test sets in an out-of-distribution context.

Arch Training Validation Test
Acc Conf Acc Conf Acc Conf

mod. 2 0.99199 0.98592 0.97883 0.97439 0.53191 0.75818
mod. 2A 0.98454 0.97145 0.97362 0.96276 0.53191 0.75690
mod. 2B 0.98309 0.97134 0.97479 0.96505 0.53191 0.7789
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Table A.7: OPEN-SET PERFORMANCE OF IMPLEMENTED COMBINATIONS. The table exhibits the
achieved test-set CCR (Correct Classification Rate) results at various FPR (False Positive Rate) levels
of 10−3, 10−2, 10−1, and 100, along with the cumulative sum across these values, for all implemented
combinations of the categorical and binary networks.

Arch Loss 1e-3 1e-2 1e-1 1e-0 Σ
categ. binary

regular regular
SoftMax 0.7764 0.9517 0.9907 0.9933 3.7121

EOS 0.7109 0.9677 0.9872 0.9898 3.6556
Objectosphere 0.585 0.968 0.9871 0.9895 3.5296

regular mod. 2B
SoftMax 0.7139 0.9486 0.9895 0.9933 3.6453

EOS 0.8487 0.9625 0.9857 0.9898 3.7867
Objectosphere 0.829 0.9623 0.9855 0.9895 3.7663

mod. 2B regular
SoftMax 0.7571 0.9518 0.9909 0.9934 3.6932

EOS 0.706 0.9672 0.9878 0.9904 3.6514
Objectosphere 0.6572 0.9652 0.9866 0.989 3.598

mod. 2B mod. 2B
SoftMax 0.7781 0.9478 0.9896 0.9934 3.7089

EOS 0.8479 0.9619 0.9863 0.9904 3.7865
Objectosphere 0.8389 0.9592 0.9849 0.989 3.772

mod. 2A regular
SoftMax 0.7751 0.9517 0.9896 0.9922 3.7086

EOS 0.6131 0.9674 0.9862 0.9883 3.555
Objectosphere 0.6248 0.9641 0.9855 0.9876 3.562

mod. 2A mod. 2B
SoftMax 0.8063 0.9481 0.9881 0.9922 3.7347

EOS 0.8333 0.9621 0.9847 0.9883 3.7684
Objectosphere 0.8313 0.9594 0.9839 0.9876 3.7622

Table A.8: PERFORMANCE OF THE MIXED SMALLSCALE-CNN NETWORK TOPOLOGIES. This table
displays the accuracy and confidence metric results for mixed topologies across the training, validation, and
test sets.

Arch Loss Training Validation Test
Acc Conf Acc Conf Acc Conf

regular
SoftMax 0.98458 0.66629 0.9857 0.68007 0.9857 0.65244

EOS 0.99323 0.93345 0.9891 0.92902 0.9891 0.79308
Objectosphere 0.99233 0.93401 0.9883 0.92945 0.9883 0.79033

mod. 2
SoftMax 0.98483 0.67052 0.9858 0.68363 0.9858 0.65448

EOS 0.9943 0.93777 0.9894 0.9314 0.9894 0.79544
Objectosphere 0.99395 0.93731 0.9892 0.93033 0.9892 0.7965

mod. 2A
SoftMax 0.97825 0.67313 0.97880 0.68239 0.97880 0.65753

EOS 0.98652 0.92074 0.98280 0.91657 0.98280 0.79507
Objectosphere 0.98650 0.92415 0.98120 0.91961 0.98120 0.79020

mod. 2B
SoftMax 0.98482 0.67095 0.986 0.68502 0.986 0.6551

EOS 0.99423 0.94017 0.989 0.93268 0.989 0.79449
Objectosphere 0.99387 0.93879 0.9881 0.93272 0.9881 0.79708
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Table A.9: OPEN-SET PERFORMANCE OF THE MIXED SMALLSCALE-CNN NETWORK TOPOLO-
GIES. The table exhibits the achieved test-set CCR (Correct Classification Rate) results at various FPR
(False Positive Rate) levels of 10−3, 10−2, 10−1, and 100, along with the cumulative sum across these
values, for all implemented mixed Network Topologies.

Arch Loss 1e-3 1e-2 1e-1 1e-0 Σ

regular
SoftMax 0.5845 0.8439 0.963 0.9857 3.3771

EOS 0.7984 0.9675 0.986 0.9891 3.741
Objectosphere 0.7388 0.9651 0.9848 0.9883 3.677

mod. 2
SoftMax 0.591 0.8485 0.9632 0.9858 3.3885

EOS 0.8416 0.9667 0.9864 0.9894 3.7841
Objectosphere 0.8703 0.9684 0.9862 0.9892 3.8141

mod. 2A
SoftMax 0.5833 0.8102 0.9535 0.9788 3.3258

EOS 0.8209 0.9484 0.9761 0.9828 3.7282
Objectosphere 0.8423 0.9432 0.9762 0.9812 3.7429

mod. 2B
SoftMax 0.593 0.8459 0.9634 0.986 3.3883

EOS 0.8642 0.9668 0.9866 0.989 3.8066
Objectosphere 0.9058 0.969 0.9851 0.9881 3.848

Table A.10: EXTRACTED MAGNITUDES OF THE CATEGORICAL NETWORKS. This table presents the
resulting extracted magnitudes of the various categorical networks. In the different columns, we have
provided the mean and corresponding standard deviation for both the known and unknown categories on
the validation and test sets, respectively.

Arch Loss Dc Db Da

Mean Std Mean Std Mean Std

regular
SoftMax 2.197 0.641 2.239 0.604 2.217 0.596

EOS 0.035 0.010 0.023 0.006 0.027 0.009
Objectosphere 0.456 0.122 0.326 0.082 0.385 0.110

mod. 1A
SoftMax 5.629 1.731 5.573 1.625 5.534 1.603

EOS 14.038 3.827 13.771 3.443 13.836 3.508
Objectosphere 34.680 9.184 33.989 8.504 34.193 8.565

mod. 1B
SoftMax 3.545 1.046 3.500 0.988 3.480 0.974

EOS 10.840 2.909 10.644 2.656 10.661 2.707
Objectosphere 22.001 5.626 21.308 5.233 21.562 5.367

mod. 2
SoftMax 4.106 1.143 4.138 1.085 4.101 1.077

EOS 0.105 0.030 0.077 0.020 0.086 0.026
Objectosphere 0.595 0.336 0.142 0.127 0.343 0.260

mod. 2A
SoftMax 4.978 1.305 4.953 1.230 4.917 1.239

EOS 0.127 0.037 0.089 0.027 0.103 0.033
Objectosphere 0.653 0.336 0.162 0.146 0.368 0.275

mod. 2B
SoftMax 4.792 1.218 4.806 1.158 4.796 1.139

EOS 0.113 0.030 0.080 0.020 0.092 0.028
Objectosphere 0.559 0.295 0.154 0.128 0.340 0.255
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Table A.11: EXTRACTED MAGNITUDES OF THE OUT-OF-DISTRIBUTION NETWORKS. This table
presents the resulting extracted magnitudes of the various binary networks. In the different columns, we
have provided the mean and corresponding standard deviation for both the known and unknown categories
on the validation and test sets, respectively.

Arch Dc Db Da

Mean Std Mean Std Mean Std
regular 0.154 0.031 0.157 0.035 0.153 0.035

mod. 1A 6.254 1.319 6.137 1.324 6.161 1.323
mod. 1B 4.032 0.866 3.982 0.837 3.974 0.854
mod. 2 0.849 0.145 0.818 0.177 0.832 0.167

mod. 2A 0.012 0.007 0.005 0.003 0.006 0.005
mod. 2B 0.404 0.072 0.391 0.096 0.372 0.083

Table A.12: EXTRACTED MAGNITUDES OF THE MIXED NETWORKS.. This table presents the resulting
extracted magnitudes of the various mixed networks. In the different columns, we have provided the mean
and corresponding standard deviation for both the known and unknown categories on the validation and
test sets, respectively.

Arch Loss Dc Db Da

Mean Std Mean Std Mean Std

regular
SoftMax 0.315 0.074 0.306 0.073 0.310 0.072

EOS 0.094 0.022 0.076 0.017 0.082 0.020
Objectosphere 0.374 0.100 0.285 0.065 0.320 0.090

mod. 2
SoftMax 0.505 0.123 0.497 0.122 0.500 0.120

EOS 0.309 0.067 0.266 0.055 0.280 0.064
Objectosphere 0.558 0.255 0.204 0.116 0.343 0.194

mod. 2A
SoftMax 0.273 0.097 0.256 0.075 0.254 0.081

EOS 0.085 0.029 0.051 0.016 0.06 0.022
Objectosphere 0.46 0.203 0.203 0.111 0.273 0.145

mod. 2B
SoftMax 0.498 0.122 0.493 0.122 0.495 0.120

EOS 0.308 0.085 0.245 0.056 0.261 0.074
Objectosphere 0.541 0.229 0.211 0.114 0.344 0.183
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(a) regular (b) mod. 1A

Figure A.1: LENET++ OSCR CURVES. This figure presents the OSCR (Open-Set Classification Rate)
curve for the regular architecture (a) and modification 1A (b). The first row represents the validation set,
while the second row depicts the test set.
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(a) regular (b) mod. 1A (c) mod. 1B

Figure A.2: LENET++ BINARY CLASSIFICATION FEATURE-PLOT. This figure illustrates the extracted
features for the regular topology (a), modification 1A (b), and modification 1B (c) of the two-dimensional
LeNet++ with one output node trained with the BCEWithLogitsLoss function. Feature pairs attributed to
the known or unknown classes are represented in distinct colors. The first row represents the validation set,
while the second row depicts the test set.

(a) regular (b) mod. 2 (c) mod. 2A (d) mod. 2B

Figure A.3: MAGNITUDE PLOTS FOR THE MIXED SMALLSCALE-CNN WITH EOS LOSS FUNC-
TION. This figure presents the extracted magnitudes for the regular architecture (a), modification 2 (b),
modification 2A (c), and modification 2B (d) after being trained with the EOS loss function. We graph the
resulting magnitudes extracted from the unknown input in blue, and from the known inputs in red, against
the frequencies at which they occurred across all inputs in the set. The first row represents the resulting
magnitudes of the validation set, while the second row depicts the resulting magnitudes from the test set.
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(a) regular (b) mod. 2A (c) mod. 2B

Figure A.4: MAGNITUDE PLOTS FOR THE OUT-OF-DISTRIBUTION CONTEXT. This figure presents
the extracted magnitudes for the regular architecture (a), modification 2A (b), and modification 2B (c) for
the Out-of-Distribution binary Network. We graph the resulting magnitudes extracted from the unknown
input in blue, and from the known inputs in red, against the frequencies at which they occurred across all
inputs in the set. The first row represents the resulting magnitudes of the validation set, while the second
row depicts the resulting magnitudes from the test set.
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