
Software Engineering, HS 2016

A Short Introduction to
UML Sequence Diagrams
with some remarks on class diagrams

Software Engineering, HS 2016
Exercise session of 27th of September



Software Engineering, HS 2016

Overview

• Part I: Sequence Diagrams

• Part II: Class Diagrams



3

Software Engineering, HS 2016

An Example

What does a programmer see here?

[1]



4

Software Engineering, HS 2016

Set of Objects Communicating

malory : Waiter
carol : Cook

alice : Guest

t1 : Table

bob : Guest

c1 : Chair

m1 : Meal



5

Software Engineering, HS 2016

Basics

• Time is increasing from top to bottom
• Communication participants and messages are aligned

horizontally

[2]



6

Software Engineering, HS 2016

Communication Participants: Lifelines

name : Type
• Represent exactly one single participant

in a communication

• Represents roles
• Name is often omitted (anonymous

lifeline)

• Notation:
• Box und dashed line
• Other symbols instead of box are

allowed



7

Software Engineering, HS 2016

Messages

• Horizonally from one lifeline to another

• Different types:

Asynchronous message

Synchronous message

Reply message



8

Software Engineering, HS 2016

Message parameters

• Notation:
• Only the name is mandatory

• Example:

name(argument : type) : return_type

soup : Meal: Guest

eat(spoon : Cutlery) : boolean



10

Software Engineering, HS 2016

Occurrence Specifications

• Illustrates the timespan during which a 
lifeline is acitve (has the execution
focus)

• Starts and ends with an execution
occurrence (normally a message being
sent or received)

• Shown as grey or white boxes
• Drawing is optional
• Sometimes called «activation»

name : Type



11

Software Engineering, HS 2016

Combined Fragments

• Used to model diverging control flows
• Interaction operators

• Notation:

operator

[condition1]

[condition2]



14

Software Engineering, HS 2016

Restaurant example

01
02
03
04
05
06
07
08
09
10

public class Waiter {

//...

public void serve(Guest aGuest, Cook theCook) {
String order = aGuest.getOrder();
Meal orderedMeal = theCook.getMeal(order);
aGuest.serveMeal(orderedMeal);

}
}



15

Software Engineering, HS 2016

Restaurant example

01
02
03
04
05
06
07
08
09
10
11
12
13
14

public class Guest {

//...

public String getOrder() {
return "Spaghetti";

}

public void serveMeal(Meal orderedMeal) {
while (!orderedMeal.equals("finished")) {

orderedMeal.eat();
}

}
}



16

Software Engineering, HS 2016

Restaurant example

01
02
03
04
05
06
07

public class Cook {

public Meal getMeal(String order) {
Meal newMeal = new Meal(order);
return newMeal;

}
}



17

Software Engineering, HS 2016

Restaurant example

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

public class Meal {

//...

public boolean eat() {
if (remainingParts > 1) {

this.remainingParts--;
this.state = "eating";
return true;

} else {
this.remainingParts--;
this.state = "finished";
return false;

}
}

}



18

Software Engineering, HS 2016

Complete restaurant example



Software Engineering, HS 2016

Class Diagrams

• What should be included?



20

Software Engineering, HS 2016

Is this class diagram complete?

«There are exactly three methods that can be called on an 
instance of class Foo.»

Foo

- attribute1 : int
- attribute2 : int

+ op1() : void
+ op2(arg : int) : boolean

01
02
03
04
05
06
07
08
09
10
11
12

public class Foo {
private int attribute1;
private int attribute2;

public void op1() {
this.attribute1++;

}

public boolean op2(int arg) {
return this.attribute2 > arg;

}
}



21

Software Engineering, HS 2016

Is this class diagram complete?

Foo

- attribute1 : int
- attribute2 : int

+ op1() : void
+ op2(arg : int) : boolean

01
02
03
04
05
06
07
08
09
10
11
12

public class Foo {
private int attribute1;
private int attribute2;

public void op1() {
this.attribute1++;

}

public boolean op2(int arg) {
return this.attribute2 > arg;

}
}

Object

myFoo.toString();



22

Software Engineering, HS 2016

Pragmatism in Class Diagrams

• You cannot infer anything from absence in a UML class
diagram

• If something is not present in a class diagram, this can
mean that it actually does not exist or the modeler
deemed it unimportant.

• It’s the obligation of the modeler to decide what should be
shown in a class diagram and what shouldn’t.

• This depends on the use of the model
(pragmatism).

• It’s important to make sure that all involved parties have a 
common understanding of the model (iterations with
validation)



23

Software Engineering, HS 2016

Probably not so good examples

[3]

[4]



Software Engineering, HS 2016

Questions…



Software Engineering, HS 2016

Thank you for your 
attention.


