Efficient Algorithms for Frequently Asked Questions

5. Width Measures

Prof. Dan Olteanu

March 21, 2022

https://lms.uzh.ch/url/RepositoryEntry/17185308706

Choosing a Good Decomposition

Hypergraphs Choose the left or the right decomposition? 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10 6, 7, 8, 9, 10, 1, 2 2, 3 4, 5 3, 4 11, 12, 13, 14, 15 6, 7 7, 8 8, 9 9, 10 11 - 12 - 13 - 14 - 15 11,12 12,13 13,14 14,15 11, 12, 13, 14, 15, 16,17 17,18/ 18,19/ 19,20/ 16, 17, 18, 19, 20 16 - 17 - 18 - 19 - 20 2 1, 2, 3 1, 2, 4

3 4

Choosing a Good Decomposition

Hypergraphs Choose the left or the right decomposition? 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 6, 7, 8, 9, 10, 1, 2 2, 3 4, 5 3, 4 11, 12, 13, 14, 15 7, 8 6, 7 8, 9 9, 10 11 - 12 - 13 - 14 - 15 11,12 12,13 13,14 14,15 11, 12, 13, 14, 15, 16,17 17,18/ 18,19/ 19,20 16, 17, 18, 19, 20 16 - 17 - 18 - 19 - 20 2 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4 3 4

TL;DR: We need to measure the goodness of a hypertree decomposition

Overview of Width Measures Covered in This Lecture

We will look at a variety of measures of goodness typically called widths

- Treewidth tw
- Edge cover number ρ and fractional edge cover number ρ^*
- Hypertree width hw and fractional hypertree width fhw

$$ho(\mathcal{H}) \underbrace{\geq}_{|\mathcal{E}|-1} ext{hw}(\mathcal{H}) \quad ext{ and } \quad
ho^*(\mathcal{H}) \underbrace{\geq}_{|\mathcal{E}|-1} ext{fhw}(\mathcal{H})$$

Given FAQ Φ with hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and factors of size N

- The time to compute Φ is $O(N^{\mathbb{W}(\mathcal{H})})$, where
- the width w is any of: ρ ; ρ^* ; hw; fhw; tw + 1

Treewidth: Counting the Number of Vertices in a Bag

Given: Hypergraph \mathcal{H} with set $T(\mathcal{H})$ of decompositions

• Treewidth tw of hypertree decomposition $\mathcal{T} = (T, \chi)$:

```
\texttt{tw}(\mathcal{T}) = \max_{t \in \mathcal{T}} |\chi(t)| - 1
```

In words: The size of the largest bag in ${\mathcal T}$ minus one

• Treewidth tw(H) of hypergraph H:

$$\mathtt{tw}(\mathcal{H}) = \min_{\mathcal{T}\in \mathtt{T}(\mathcal{H})} \mathtt{tw}(\mathcal{T})$$

In words: The smallest treewidth of any of its decompositions

The computation time is $O(N^{tw(H)+1})$, where N is max domain size for variables

Quiz: What is the treewidth for the grid and 4-cycle hypergraphs?

Width Measures Based on Factor Sizes

Use factor sizes instead of domain sizes

- Treewidth assumes factors \approx the products of the domains of their variables
- However, factors are typically much smaller than the products of the domains of their variables in many domains (e.g., DB, CSP, SAT)

Measures Based on Factor Sizes: The Triangle Example

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

- Assumption: $|\psi_{ij}| < N$
- Upper bound on computation time: $|\psi_{12}| \cdot |\psi_{23}| = N^2$
 - Iterate over all combinations of tuples in ψ_{12} and ψ_{23}
 - Ensure the combinations use the same x_2 in both ψ_{12} and ψ_{23} and also use (x_1, x_3) that occur in ψ_{13}

Triangle query: $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

- Assumption: $|\psi_{ij}| < N$
- Upper bound on computation time: $|\psi_{12}| \cdot |\psi_{23}| = N^2$
 - Iterate over all combinations of tuples in ψ_{12} and ψ_{23}
 - Ensure the combinations use the same x_2 in both ψ_{12} and ψ_{23} and also use (x_1, x_3) that occur in ψ_{13}
- Lower bound: There are factors for which the computation time is at least N
 - $\psi_{12} = \{1\} \times [N], \psi_{23} = [N] \times \{1\}, \psi_{13} \supseteq \{(1,1)\}$

Can we close the gap between lower and upper bounds on computation time?

We can generalise the analysis of the triangle query

For the upper bound:

- Cover all nodes (variables) by k edges (factors) \Rightarrow size $\leq N^k$.
- Pick the smallest k so to reduce the complexity
- The smallest k is the edge cover number denoted ρ
- This is an edge cover of the query hypergraph!

For the lower bound:

- *m* independent nodes (variables) \Rightarrow construct factors such that size $\ge N^m$.
- Pick the largest m so to get a realistic/higher lower bound on the complexity
- This is an independent set of the query hypergraph!

Minimum Edge Cover of hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$:

minimise $\sum_{S \in \mathcal{E}} W_S$

subject to
$$\sum_{S \in \mathcal{E}: v \in S} w_S \ge 1 \quad \forall v \in \mathcal{V},$$

$$w_{\mathcal{S}} \in \{0, 1\}$$
 $\forall \mathcal{S} \in \mathcal{E}$

The cost of an optimal feasible solution is the edge cover number ρ

Maximum Independent Set of hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$: maximise $\sum_{v \in \mathcal{V}} w_v$ subject to $w_{v_1} + w_{v_2} \leq 1 \quad \forall v_1, v_2 \in S, S \in \mathcal{E}$ $w_v \in \{0, 1\} \quad \forall v \in \mathcal{V}$

The costs of feasible solutions for the two optimisation programs may differ

Relaxation of the two optimisation problems as linear programs:

- Variables can now range between 0 and 1 instead of being either 0 or 1
- By duality of linear programming, the two linear programs have the same cost of feasible solutions
- This cost ρ^{*}(H) is called the fractional edge cover number

$$\begin{array}{ll} \text{minimise} & \sum_{S \in \mathcal{E}} w_S \\ \text{subject to} & \sum_{S \in \mathcal{E}: v \in S} w_S \geq 1 \ \forall v \in \mathcal{V}, \\ & 0 \leq w_S \leq 1 \qquad \forall S \in \mathcal{E} \end{array}$$

Example (1/3): Fractional Edge Cover for an Acyclic Hypergraph

 $\Phi(x_1, \ldots, x_6) = \psi_{123}(x_1, x_2, x_3) \otimes \psi_{124}(x_1, x_2, x_4) \otimes \psi_{15}(x_1, x_5) \otimes \psi_{56}(x_5, x_6)$

- The three edges (factors) ψ₁₂₃, ψ₁₂₄, ψ₅₆ can cover all nodes (variables)
 ρ^{*}(H) = ρ(H) < 3
- Each node (variable) 3, 4, and 6 must be covered by a distinct edge (factor) $({\rm Fractional}) {\rm IndependentSet}(\mathcal{H}) \geq 3$

$$\Rightarrow
ho^*(\mathcal{H}) =
ho(\mathcal{H}) = 3$$

 \Rightarrow For input size *N*, Φ takes time $O(N^3)$ and for some inputs this is $\Theta(N^3)$

 $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

Our previous upper bound was $O(N^2)$, since the edge cover number is 2:

• Set any two of $w_{\psi_{12}}, w_{\psi_{13}}, w_{\psi_{23}}$ to 1

What is the fractional edge cover number for the triangle hypergraph \mathcal{H} ?

 $\Phi(x_1, x_2, x_3) = \psi_{12}(x_1, x_2) \otimes \psi_{23}(x_2, x_3) \otimes \psi_{13}(x_1, x_3)$

Our previous upper bound was $O(N^2)$, since the edge cover number is 2:

• Set any two of $w_{\psi_{12}}, w_{\psi_{13}}, w_{\psi_{23}}$ to 1

What is the fractional edge cover number for the triangle hypergraph \mathcal{H} ?

We can do better: $w_{\psi_{12}} = w_{\psi_{13}} = w_{\psi_{23}} = 1/2$. Then, $\rho^*(\mathcal{H}) = 3/2$

Lower bound reaches $N^{3/2}$ for $\psi_{12} = \psi_{13} = \psi_{23} = [N^{1/2}] \times [N^{1/2}]$

Example (3/3): Fractional Edge Cover for 4-Cycle Hypergraph

$$\Phi(x_1,\ldots,x_4) = \psi_{12}(x_1,x_2) \otimes \psi_{23}(x_2,x_3) \otimes \psi_{34}(x_3,x_4) \otimes \psi_{14}(x_1,x_4)$$

The linear program for the fractional edge cover number:

Solution: $w_{\psi_{12}} = w_{\psi_{34}} = 1$. Alternative: $w_{\psi_{23}} = w_{\psi_{14}} = 1$. Then, $\rho^*(\mathcal{H}) = 2$.

Lower bound reaches N^2 for $\psi_{12} = \psi_{34} = \psi_{14} = [N] \times \{1\}$ and $\psi_{23} = \{1\} \times [N]$.

Refinement under Cardinality Constraints

Recall the linear program for computing the fractional edge cover number ho^*

$$\begin{array}{ll} \text{minimise} & \sum_{S \in \mathcal{E}} w_S \\ \text{subject to} & \sum_{S \in \mathcal{E}: v \in S} w_S \geq 1 \ \forall v \in \mathcal{V}, \\ & 0 \leq w_S \leq 1 \qquad \forall S \in \mathcal{E} \end{array}$$

Equivalent formulation of minimisation objective assuming each factor has size N:

$$N^{\sum_{S\in\mathcal{E}}w_S}=\prod_{S\in\mathcal{E}}N^{w_S}$$

[We show here the refinement for ρ^* ; it works similarly for ρ]

Refinement under Cardinality Constraints

Recall the linear program for computing the fractional edge cover number ho^*

$$\begin{array}{ll} \text{minimise} & \sum_{S \in \mathcal{E}} w_S \\ \text{subject to} & \sum_{S \in \mathcal{E}: v \in S} w_S \geq 1 \ \forall v \in \mathcal{V}, \\ & 0 \leq w_S \leq 1 \qquad \forall S \in \mathcal{E} \end{array}$$

Equivalent formulation of minimisation objective assuming each factor has size N:

$$N^{\sum_{S\in\mathcal{E}}w_S}=\prod_{S\in\mathcal{E}}N^{w_S}$$

In practice, factors have different sizes, i.e., ψ_S has size N_S :

$$\prod_{S \in \mathcal{E}} N_S^{w_S} \quad \text{or by taking the log} \quad \sum_{S \in \mathcal{E}} w_S \log N_S$$

[We show here the refinement for ρ^* ; it works similarly for ρ]

Hypertree Width and Fractional Hypertree Width

- So far, we applied ρ or ρ^* to the entire hypergraph $\mathcal H$ of an FAQ
- We can also apply them to each bag of a hypertree decomposition ${\mathcal T}$ of ${\mathcal H}$
- This leads to (fractional) hypertree width of $\mathcal{T} = (T, \chi)$ and of \mathcal{H}

$$\operatorname{htw}(\mathcal{T}) = \max_{t \in \mathcal{T}} \rho(\chi(t))$$
 and $\operatorname{fhtw}(\mathcal{T}) = \max_{t \in \mathcal{T}} \rho^*(\chi(t))$

In words: The (fractional) hypertree width of a hypertree decomposition is the maximum (fractional) edge cover number of any of its bags

$$\mathtt{htw}(\mathcal{H}) = \min_{\mathcal{T} \in \mathtt{T}(\mathcal{H})} \mathtt{htw}(\mathcal{T}) \qquad \text{and} \qquad \mathtt{fhtw}(\mathcal{H}) = \min_{\mathcal{T} \in \mathtt{T}(\mathcal{H})} \mathtt{fhtw}(\mathcal{T})$$

In words: The (fractional) hypertree width of a hypergraph is the minimum (fractional) hypertree width of any of its hypertree decompositions

Examples (1/3): (Fractional) Hypertree Width for Acyclic Hypergraph

hypertree decomposition

- Each bag of the decomposition only has variables from one hyperedge
- $\bullet \ \Rightarrow$ the (fractional) edge cover number is 1 for each bag
- $\bullet \ \Rightarrow$ the (fractional) hypertree width is 1 for the decomposition
- $\bullet \ \Rightarrow$ the (fractional) hypertree width is 1 for the hypergraph

The (fractional) hypertree width of any $\alpha\text{-acyclic}$ hypergraph is one

Examples (2/3): Hypertree Width for Bowtie Hypergraph

Consider the bowtie hypergraph \mathcal{H} and two possible decompositions \mathcal{T}_1 and \mathcal{T}_2

Examples (2/3): Hypertree Width for Bowtie Hypergraph

Consider the bowtie hypergraph ${\cal H}$ and two possible decompositions ${\cal T}_1$ and ${\cal T}_2$

Left hypertree decomposition \mathcal{T}_1 is one bag for the entire hypergraph $\mathcal H$

- With the above weight assignments: $\rho(\mathcal{H}) = 3$
- $htw(\mathcal{T}_1) = \rho(\mathcal{H}) = 3$, since we only have one bag

Examples (2/3): Hypertree Width for Bowtie Hypergraph

Consider the bowtie hypergraph ${\cal H}$ and two possible decompositions ${\cal T}_1$ and ${\cal T}_2$

Left hypertree decomposition \mathcal{T}_1 is one bag for the entire hypergraph $\mathcal H$

- With the above weight assignments: $\rho(\mathcal{H}) = 3$
- $htw(\mathcal{T}_1) = \rho(\mathcal{H}) = 3$, since we only have one bag

Right hypertree decomposition \mathcal{T}_2 has one bag per triangle in the hypergraph \mathcal{H}

- We treat each bag independently: $\rho(\{1,2,3\}) = 2$, $\rho(\{3,4,5\}) = 2$
- $htw(T_2) = max\{\rho(\{1,2,3\}), \rho(\{3,4,5\})\} = 2$

Overall, $htw(\mathcal{H}) = htw(\mathcal{T}_2) = 2$, while $\rho(\mathcal{H}) = 3$

Examples (2/3): Fractional Hypertree Width for Bowtie Hypergraph

Consider again the bowtie hypergraph \mathcal{H} and two decompositions \mathcal{T}_1 and \mathcal{T}_2

Examples (2/3): Fractional Hypertree Width for Bowtie Hypergraph

Consider again the bowtie hypergraph \mathcal{H} and two decompositions \mathcal{T}_1 and \mathcal{T}_2

Left hypertree decomposition \mathcal{T}_1 is one bag for the entire hypergraph $\mathcal H$

- With the above weight assignments: $\rho^*(\mathcal{H}) = 5/2$
- $fhtw(\mathcal{T}_1) = \rho^*(\mathcal{H}) = 5/2$, since we only have one bag

Examples (2/3): Fractional Hypertree Width for Bowtie Hypergraph

Consider again the bowtie hypergraph \mathcal{H} and two decompositions \mathcal{T}_1 and \mathcal{T}_2

Left hypertree decomposition \mathcal{T}_1 is one bag for the entire hypergraph $\mathcal H$

- With the above weight assignments: $\rho^*(\mathcal{H}) = 5/2$
- $fhtw(\mathcal{T}_1) = \rho^*(\mathcal{H}) = 5/2$, since we only have one bag

Right hypertree decomposition \mathcal{T}_2 has one bag per triangle in the hypergraph \mathcal{H}

- We treat each bag independently: $\rho^*(\{1,2,3\}) = 3/2$, $\rho^*(\{3,4,5\}) = 3/2$
- $fhtw(\mathcal{T}_2) = max\{\rho^*(\{1,2,3\}), \rho^*(\{3,4,5\})\} = 3/2$

Overall, $\mathtt{fhtw}(\mathcal{H}) = \mathtt{fhtw}(\mathcal{T}_2) = 3/2,$ while $ho^*(\mathcal{H}) = 5/2$

Consider the grid hypergraph \mathcal{H} and two possible decompositions \mathcal{T}_1 and \mathcal{T}_2

Consider the grid hypergraph ${\cal H}$ and two possible decompositions ${\cal T}_1$ and ${\cal T}_2$

Left hypertree decomposition \mathcal{T}_1 has one bag for each two consecutive rows

- With the above weight assignments: $\rho^*(b) = \rho(b) = 5$ for each bag b in \mathcal{T}_1
- This means $\mathtt{htw}(\mathcal{T}_1) \leq 5$ and $\mathtt{fhtw}(\mathcal{T}_1) \leq 5$

Consider the grid hypergraph ${\cal H}$ and two possible decompositions ${\cal T}_1$ and ${\cal T}_2$

Left hypertree decomposition \mathcal{T}_1 has one bag for each two consecutive rows

- With the above weight assignments: $\rho^*(b) = \rho(b) = 5$ for each bag b in \mathcal{T}_1
- This means $\mathtt{htw}(\mathcal{T}_1) \leq 5$ and $\mathtt{fhtw}(\mathcal{T}_1) \leq 5$

Right hypertree decomposition \mathcal{T}_2 has one bag for each two consecutive columns

- With the above weight assignments: $\rho^*(b) = \rho(b) = 4$ for each bag b in \mathcal{T}_2
- This means $\mathtt{htw}(\mathcal{T}_2) \leq 4$ and $\mathtt{fhtw}(\mathcal{T}_2) \leq 4$

Consider the grid hypergraph ${\cal H}$ and two possible decompositions ${\cal T}_1$ and ${\cal T}_2$

Left hypertree decomposition \mathcal{T}_1 has one bag for each two consecutive rows

- With the above weight assignments: $\rho^*(b) = \rho(b) = 5$ for each bag b in \mathcal{T}_1
- This means $\mathtt{htw}(\mathcal{T}_1) \leq 5$ and $\mathtt{fhtw}(\mathcal{T}_1) \leq 5$

Right hypertree decomposition \mathcal{T}_2 has one bag for each two consecutive columns

- With the above weight assignments: $\rho^*(b) = \rho(b) = 4$ for each bag b in \mathcal{T}_2
- This means $\mathtt{htw}(\mathcal{T}_2) \leq 4$ and $\mathtt{fhtw}(\mathcal{T}_2) \leq 4$

 $\text{Overall},\,\mathtt{htw}(\mathcal{H})\leq\mathtt{htw}(\mathcal{T}_2)\leq 4 \text{ and }\mathtt{fhtw}(\mathcal{H})\leq\mathtt{fhtw}(\mathcal{T}_2)\leq 4$

- Previous slides: Hypergraphs for FAQs without free variables
- Consider now: FAQs with hypergraph \mathcal{H} and free variables [f]
- Free-connex property: The hypertree decomposition has a connected subtree that consists of all free variables [*f*] and no bound variables
- Let T_[f](H) ⊆ T(H) be the set of hypertree decompositions of H that satisfy the free-connex property for free variables [f]
- The (fractional) hypertree width of hypergraph \mathcal{H} and free variables [f]

$$\mathtt{htw}(\mathcal{H},[f]) = \min_{\mathcal{T}_{[f]} \in \mathbf{T}_{[f]}(\mathcal{H})} \mathtt{htw}(\mathcal{T}_{[f]}) \quad \text{ and } \quad \mathtt{fhtw}(\mathcal{H},[f]) = \min_{\mathcal{T}_{[f]} \in \mathbf{T}_{[f]}(\mathcal{H})} \mathtt{fhtw}(\mathcal{T}_{[f]})$$

 $\alpha\text{-acyclic}$ hypergraph $\mathcal H$

all/no variables free

 $\alpha\text{-acyclic}$ hypergraph $\mathcal H$

all/no variables free

Possible join tree for ${\cal H}$

$$\mathtt{htw}(\mathcal{T}) = \mathtt{fhtw}(\mathcal{T}) = 1$$

 α -acyclic hypergraph \mathcal{H} all/no variables free

Possible join tree for \mathcal{H}

 $\mathtt{htw}(\mathcal{T}) = \mathtt{fhtw}(\mathcal{T}) = \mathtt{1}$

 α -acyclic hypergraph \mathcal{H}

Possible join tree for \mathcal{H}

 $\mathtt{htw}(\mathcal{T}) = \mathtt{fhtw}(\mathcal{T}) = 1$

Possible decomposition

 $\mathtt{htw}(\mathcal{T}_{3,4}) = \mathtt{fhtw}(\mathcal{T}_{3,4}) = \mathtt{2}$