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Choosing a Good Decomposition

Hypergraphs Choose the left or the right decomposition?
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TL;DR: We need to measure the goodness of a hypertree decomposition
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Overview of Width Measures Covered in This Lecture

We will look at a variety of measures of goodness typically called widths

• Treewidth tw

• Edge cover number ρ and fractional edge cover number ρ∗

• Hypertree width hw and fractional hypertree width fhw

ρ(H) ≥︸︷︷︸
|E|−1

hw(H) and ρ∗(H) ≥︸︷︷︸
|E|−1

fhw(H)

Given FAQ Φ with hypergraph H = (V, E) and factors of size N

• The time to compute Φ is O(Nw(H)), where

• the width w is any of: ρ; ρ∗; hw; fhw; tw + 1



Treewidth: Counting the Number of Vertices in a Bag

Given: Hypergraph H with set T(H) of decompositions

• Treewidth tw of hypertree decomposition T = (T , χ):

tw(T ) = max
t∈T
|χ(t)| − 1

In words: The size of the largest bag in T minus one

• Treewidth tw(H) of hypergraph H:

tw(H) = min
T ∈T(H)

tw(T )

In words: The smallest treewidth of any of its decompositions

The computation time is O(Ntw(H)+1), where N is max domain size for variables

Quiz: What is the treewidth for the grid and 4-cycle hypergraphs?



Width Measures Based on Factor Sizes

Use factor sizes instead of domain sizes

• Treewidth assumes factors ≈ the products of the domains of their variables

• However, factors are typically much smaller than the products of the
domains of their variables in many domains (e.g., DB, CSP, SAT)



Measures Based on Factor Sizes: The Triangle Example

Triangle query: Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

• Assumption: |ψij | < N

• Upper bound on computation time: |ψ12| · |ψ23| = N2

• Iterate over all combinations of tuples in ψ12 and ψ23

• Ensure the combinations use the same x2 in both ψ12 and ψ23 and also use
(x1, x3) that occur in ψ13

• Lower bound: There are factors for which the computation time is at least N

• ψ12 = {1} × [N], ψ23 = [N]× {1}, ψ13 ⊇ {(1, 1)}

Can we close the gap between lower and upper bounds on computation time?
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Edge Covers and Independent Sets

We can generalise the analysis of the triangle query

For the upper bound:

• Cover all nodes (variables) by k edges (factors)⇒ size ≤ Nk .

• Pick the smallest k so to reduce the complexity

• The smallest k is the edge cover number denoted ρ

• This is an edge cover of the query hypergraph!

For the lower bound:

• m independent nodes (variables)⇒ construct factors such that size ≥ Nm.

• Pick the largest m so to get a realistic/higher lower bound on the complexity

• This is an independent set of the query hypergraph!



Edge Covers and Independent Sets Expressed using Integer Programming

Minimum Edge Cover of hypergraph H = (V, E):

minimise
∑

S∈E wS

subject to
∑

S∈E:v∈S wS ≥ 1 ∀v ∈ V,

wS ∈ {0, 1} ∀S ∈ E

The cost of an optimal feasible solution is the edge cover number ρ

Maximum Independent Set of hypergraph H = (V, E):

maximise
∑

v∈V wv

subject to wv1 + wv2 ≤ 1 ∀v1, v2 ∈ S,S ∈ E

wv ∈ {0, 1} ∀v ∈ V

The costs of feasible solutions for the two optimisation programs may differ



Fractional Edge Covers and Fractional Independent Sets

Relaxation of the two optimisation problems as linear programs:

• Variables can now range between 0 and 1 instead of being either 0 or 1

• By duality of linear programming, the two linear programs have the same
cost of feasible solutions

• This cost ρ∗(H) is called the fractional edge cover number

minimise
∑

S∈E wS

subject to
∑

S∈E:v∈S wS ≥ 1 ∀v ∈ V,

0 ≤ wS ≤ 1 ∀S ∈ E



Example (1/3): Fractional Edge Cover for an Acyclic Hypergraph

Φ(x1, . . . , x6) = ψ123(x1, x2, x3)⊗ ψ124(x1, x2, x4)⊗ ψ15(x1, x5)⊗ ψ56(x5, x6)

1

2

3 4

5

6

• The three edges (factors) ψ123, ψ124, ψ56 can cover all nodes (variables)

ρ∗(H) = ρ(H) ≤ 3

• Each node (variable) 3, 4, and 6 must be covered by a distinct edge (factor)

(Fractional)IndependentSet(H) ≥ 3

⇒ ρ∗(H) = ρ(H) = 3

⇒ For input size N, Φ takes time O(N3) and for some inputs this is Θ(N3)



Example (2/3): Fractional Edge Cover for the Triangle Hypergraph

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

minimise wψ12 + wψ13 + wψ23

subject to
1 : wψ12 + wψ13 ≥ 1
2 : wψ12 + wψ23 ≥ 1
3 : wψ13 + wψ23 ≥ 1

wψ12 ≥ 0 wψ13 ≥ 0 wψ23 ≥ 0

Our previous upper bound was O(N2), since the edge cover number is 2:

• Set any two of wψ12 ,wψ13 ,wψ23 to 1

What is the fractional edge cover number for the triangle hypergraph H?

We can do better: wψ12 = wψ13 = wψ23 = 1/2. Then, ρ∗(H) = 3/2

Lower bound reaches N3/2 for ψ12 = ψ13 = ψ23 = [N1/2]× [N1/2]
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Example (3/3): Fractional Edge Cover for 4-Cycle Hypergraph

Φ(x1, . . . , x4) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ34(x3, x4)⊗ ψ14(x1, x4)

The linear program for the fractional edge cover number:

1 2

34

minimise wψ12 + wψ23 + wψ34 + wψ14

subject to
1 : wψ12 + wψ14 ≥ 1
2 : wψ12 + wψ23 ≥ 1
3 : wψ23 + wψ34 ≥ 1
4 : wψ34 + wψ14 ≥ 1

wψ12 ≥ 0 wψ23 ≥ 0 wψ34 ≥ 0 wψ14 ≥ 0

Solution: wψ12 = wψ34 = 1. Alternative: wψ23 = wψ14 = 1. Then, ρ∗(H) = 2.

Lower bound reaches N2 for ψ12 = ψ34 = ψ14 = [N]× {1} and ψ23 = {1} × [N].



Refinement under Cardinality Constraints

Recall the linear program for computing the fractional edge cover number ρ∗

minimise
∑
S∈E

wS

subject to
∑

S∈E:v∈S

wS ≥ 1 ∀v ∈ V,

0 ≤ wS ≤ 1 ∀S ∈ E

Equivalent formulation of minimisation objective assuming each factor has size N:

N
∑

S∈E wS =
∏
S∈E

NwS

In practice, factors have different sizes, i.e., ψS has size NS :

∏
S∈E

NwS
S or by taking the log

∑
S∈E

wS log NS

[We show here the refinement for ρ∗; it works similarly for ρ]
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Hypertree Width and Fractional Hypertree Width

• So far, we applied ρ or ρ∗ to the entire hypergraph H of an FAQ

• We can also apply them to each bag of a hypertree decomposition T of H

• This leads to (fractional) hypertree width of T = (T , χ) and of H

htw(T ) = max
t∈T

ρ(χ(t)) and fhtw(T ) = max
t∈T

ρ∗(χ(t))

In words: The (fractional) hypertree width of a hypertree decomposition is
the maximum (fractional) edge cover number of any of its bags

htw(H) = min
T ∈T(H)

htw(T ) and fhtw(H) = min
T ∈T(H)

fhtw(T )

In words: The (fractional) hypertree width of a hypergraph is the minimum
(fractional) hypertree width of any of its hypertree decompositions



Examples (1/3): (Fractional) Hypertree Width for Acyclic Hypergraph

α-acyclic hypergraph hypertree decomposition

1
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1, 2, 3
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5, 6

• Each bag of the decomposition only has variables from one hyperedge

• ⇒ the (fractional) edge cover number is 1 for each bag

• ⇒ the (fractional) hypertree width is 1 for the decomposition

• ⇒ the (fractional) hypertree width is 1 for the hypergraph

The (fractional) hypertree width of any α-acyclic hypergraph is one



Examples (2/3): Hypertree Width for Bowtie Hypergraph

Consider the bowtie hypergraph H and two possible decompositions T1 and T2

1

2

3

4

5

1

1

0

1

0

11

1

0

0

0

1

1, 2, 3, 4, 5

1, 2, 3, 4, 5
1, 2, 3

3, 4, 5

1, 2, 3

3, 4, 5

Left hypertree decomposition T1 is one bag for the entire hypergraph H

• With the above weight assignments: ρ(H) = 3

• htw(T1) = ρ(H) = 3, since we only have one bag

Right hypertree decomposition T2 has one bag per triangle in the hypergraph H

• We treat each bag independently: ρ({1, 2, 3}) = 2, ρ({3, 4, 5}) = 2

• htw(T2) = max{ρ({1, 2, 3}), ρ({3, 4, 5})} = 2

Overall, htw(H) = htw(T2) = 2, while ρ(H) = 3
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Examples (2/3): Fractional Hypertree Width for Bowtie Hypergraph

Consider again the bowtie hypergraph H and two decompositions T1 and T2
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Left hypertree decomposition T1 is one bag for the entire hypergraph H

• With the above weight assignments: ρ∗(H) = 5/2

• fhtw(T1) = ρ∗(H) = 5/2, since we only have one bag

Right hypertree decomposition T2 has one bag per triangle in the hypergraph H

• We treat each bag independently: ρ∗({1, 2, 3}) = 3/2, ρ∗({3, 4, 5}) = 3/2

• fhtw(T2) = max{ρ∗({1, 2, 3}), ρ∗({3, 4, 5})} = 3/2

Overall, fhtw(H) = fhtw(T2) = 3/2, while ρ∗(H) = 5/2
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Examples (3/3): (Fractional) Hypertree Width for the Grid Hypergraph

Consider the grid hypergraph H and two possible decompositions T1 and T2
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Left hypertree decomposition T1 has one bag for each two consecutive rows

• With the above weight assignments: ρ∗(b) = ρ(b) = 5 for each bag b in T1

• This means htw(T1) ≤ 5 and fhtw(T1) ≤ 5

Right hypertree decomposition T2 has one bag for each two consecutive columns

• With the above weight assignments: ρ∗(b) = ρ(b) = 4 for each bag b in T2

• This means htw(T2) ≤ 4 and fhtw(T2) ≤ 4

Overall, htw(H) ≤ htw(T2) ≤ 4 and fhtw(H) ≤ fhtw(T2) ≤ 4
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11, 12, 13, 14, 15,
16, 17, 18, 19, 20
11, 12, 13, 14, 15,
16, 17, 18, 19, 20

11, 12, 13, 14, 15,
16, 17, 18, 19, 20

1, 2
6, 7
11,12
16,17

1, 2
6, 7
11,12
16,17

1, 2
6, 7
11,12
16,17

2, 3
7, 8
12,13
17,18

2, 3
7, 8
12,13
17,18

2, 3
7, 8
12,13
17,18

3, 4
8, 9
13,14
18,19

3, 4
8, 9
13,14
18,19

3, 4
8, 9
13,14
18,19

4, 5
9, 10
14,15
19,20

4, 5
9, 10
14,15
19,20

4, 5
9, 10
14,15
19,20

Left hypertree decomposition T1 has one bag for each two consecutive rows

• With the above weight assignments: ρ∗(b) = ρ(b) = 5 for each bag b in T1

• This means htw(T1) ≤ 5 and fhtw(T1) ≤ 5

Right hypertree decomposition T2 has one bag for each two consecutive columns

• With the above weight assignments: ρ∗(b) = ρ(b) = 4 for each bag b in T2

• This means htw(T2) ≤ 4 and fhtw(T2) ≤ 4

Overall, htw(H) ≤ htw(T2) ≤ 4 and fhtw(H) ≤ fhtw(T2) ≤ 4



(Fractional) Hypertree Width in the Presence of Arbitrary Free Variables

• Previous slides: Hypergraphs for FAQs without free variables

• Consider now: FAQs with hypergraph H and free variables [f ]

• Free-connex property: The hypertree decomposition has a connected
subtree that consists of all free variables [f ] and no bound variables

• Let T[f ](H) ⊆ T(H) be the set of hypertree decompositions of H that satisfy
the free-connex property for free variables [f ]

• The (fractional) hypertree width of hypergraph H and free variables [f ]

htw(H, [f ]) = min
T[f ]∈T[f ](H)

htw(T[f ]) and fhtw(H, [f ]) = min
T[f ]∈T[f ](H)

fhtw(T[f ])



Example: Hypertree Width for Acyclic Hypergraph with Free Variables

α-acyclic hypergraph H
all/no variables free

1

2

3 4

5

6

choose {3, 4}
as free variables

1

2

3 4

5

6

Possible join tree for H

1, 2, 3

1, 2, 4 1, 5

5, 6

htw(T ) = fhtw(T ) = 1

Possible decomposition

1, 2, 3, 4

3, 4 1, 5

5, 6

htw(T3,4) = fhtw(T3,4) = 2
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Possible join tree for H
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htw(T3,4) = fhtw(T3,4) = 2


