
Contention-Management in Indexes for

Hierarchical Data1

Dmytro Polyanskyy2

June 2019

Department of Informatics
Master Basic Module

Kevin Wellenzohn & Michael H. Böhlen

1I am grateful for the helpful input of Kevin Wellenzohn and Professor. Böhlen
2Matriculation Number : 16-909-160, dmytro.polyanskyy@uzh.ch

Abstract

Today, hierarchical index structures exist for many various indexing appli-
cations. Particularly, in this Master Basic Module, we look at the contention
management of transactions from the perspective of a Content Management
System (CMS) that has a hierarchical setup. In such a system, we can envi-
sion information being constantly published, removed and/or updated. Such
frequent operations oftentimes lead to conflicts particularly when insert and
delete operations in the index ultimately propagate to a common ancestor.
This is particularly a problem in a Property-and-Path Index (PP-Index). The
purpose of this basic module is to experimentally show that is it possible to im-
prove overall performance of such indexing operations by locating frequently
updated regions in the data structure where additions/deletions occur regu-
larly. Once these regions are identified, the proposed structure - a Robust
Property and Path Index (RPP-Index) identifies such volatile nodes (which
would otherwise be constantly inserted and/or deleted by a regular PP In-
dex) and keeps them in the index. Although this sacrifices query performance
(since we have a bigger data structure to index), we reduce conflicts which
ultimately improves the throughput of the system.

2

CONTENTS

Contents

1 Intuition and Motivation 2

2 RPP Index 3
2.1 Volatile Nodes and Sliding Windows 3

2.1.1 Path Conflicts . 3
2.2 Threshold . 3
2.3 Computing Volatility . 3

3 Experimental Setup 4
3.1 Skew . 4

4 Experiments and Discussion 5
4.1 Abort Ratio . 5
4.2 Throughput . 5

5 Conclusion 7

References 8

1

1. INTUITION AND MOTIVATION

1 Intuition and Motivation

We consider a Property and Path Index (PP-Index) that supports insertion, deletion
and querying. A PP-Index does not assign a special status nor does it distinguish
nodes which are updated more frequently than others in its structure. In such an
index, path conflicts are prone to occurring because nodes are constantly being
added and deleted and in this process, concurrent additions and deletions are likely
to occur. This in turn causes conflicts between transactions as some nodes are bound
to share common ancestors. In fact, when such an event occurs, that is, when both
an insert and delete happen concurrently on the same node, a path conflict occurs
and a transaction is subsequently aborted thus decreasing performance. In Figure
1, we can see an example of such a conflict: Suppose we want to insert a node called
Apple under an existing node dubbed as Phones. However, concurrently, we also
want to delete the node Blackberry and its upward ancestor node, Phones. Thus,
we have two operations that conflict as an operation would like to add a node (in
green) to a deleted segment (in red).

Figure 1: Transaction Conflicts

The goal of this Basic Module is to implement and experimentally evaluate a
Robust Property and Path Index (RPP-Index). The RPP-Index improves contention
management by isolating highly volatile nodes in the index - that is, nodes which
have operations performed on them often. Thus after classifying a node as volatile,
an RPP-Index elects to leave that particular node in place rather than delete it
(and likely having to reinsert it later). The RPP-Index detects and suspends the
deletion of these so called volatile nodes to decrease the number of conflicts which
lead to an abort. However it is important to note that the RPP-Index does come
with a compromise in the sense that the index to traverse will be larger in size.
This is because nodes that would otherwise have been deleted in a PP-Index may
be classified as volatile and thus not be removed in an RPP-Index. The goal for
this experiment is to investigate parameters for an RPP-Index (called a threshold)

2

2. RPP INDEX

using a real world data set to determine how sensitive the index should be towards
classifying nodes as volatile and also how threshold parameters impact different
types of workloads.

2 RPP Index

2.1 Volatile Nodes and Sliding Windows

Here we define two terms, volatility as well as the sliding window. Simply put, the
volatility of a node is defined by the number of times it was inserted or deleted. The
sliding window parameter helps classify a node as volatile or not; it is the measure of
how much of a recent workload is used to determine if a node is volatile or not. As
the sliding window parameter is increased, the likelihood of a node being classified as
volatile in also increased - this is because the sliding window forces the RPP-Index
to consider a larger transaction history for a node.

2.1.1 Path Conflicts

Volatile nodes in an index are the key contributor for path conflicts and transaction
aborts. These nodes often exist where transactions modify their children nodes
regularly (i.e. often insert/delete its leaf nodes). What an RPP-Index does is holds
off on removing these volatile node since it is reasonably likely to have operations
done on it again in the near future.

2.2 Threshold

The threshold parameter, t is the heart of an RPP-Index. It sets the value for
determining if a node in the index is to be classified as volatile or not. A threshold
value of infinity is equivalent to a regular PP-Index as this indicates nodes will never
become volatile. At lower threshold values, nodes are more likely to be classified
as volatile. In this subsequent sections we will experimentally examine threshold
values in more detail.

2.3 Computing Volatility

The RPP-Index attempts to prevent aborts by doing a Volatility Computation.
In the Figure 2 below, we can see that the function isVolatile whose purpose is
to determine whether or not a node is to be classified as volatile has two main
components - the threshold and the sliding window. The functions main purpose is
to determine whether a node in the path is not a child node and also has a volatility
that falls within the specified threshold (Line 14). Thus, within Jackrabbit Oak,
each of our nodes has a field called deleted (Line 11) which contains information on
whether a node was inserted or deleted and also a timestamp on when the operation
occurred. Subsequently, by using the sliding window and comparing the reference
time with the timestamp from the deleted field, we are able to determine whether
a node should be classified as volatile or not for a given threshold.

3

3. EXPERIMENTAL SETUP

Figure 2: Volatility Code

3 Experimental Setup

The implementation of the RPP-Index and its subsequent volatility node determina-
tion is done in conjunction with Java and Apache Jackrabbit Oak.3 Each experiment
was run for 5 minutes in a balanced workload manner at a prepopulation factor of
0.1 (10%) - meaning that the index already contained 10% of the nodes from the
data-set before the experiment actually began. The data used is a real-life dataset
from the Dell website and contains 12.244.893 nodes.4

3.1 Skew

Skew is important for our experiment because it allows us to concentrate a certain
amount of operations on a specific region of the index. For the purposes of our
experiment we use a zipf distribution whose skew will range from [0 − 2], where a
0 skew represents no contortion of transactions on a specific region, while a higher
skew (up to 2) represents operations on certain nodes to have a greater likelihood
of reoccurring. The skew allows us to study the performance of an RPP-Index on
different types of transactions. For a regular PP-Index, a high skew is unfavorable
for performance because then you always focus on the same nodes which causes
many conflicts. In an RPP-Index however, a higher skew causes the abort ratio to
decrease since more active nodes in the index become volatile which consequently

3Credits to Kevin Wellenzohn’s paper - we will follow a similar approach/setup in this experi-
ment

4https://dell.com; Dell uses AEM as CMS and Oak as HDDBS for its website. The Dell dataset
has been extracted from a dump of Oak.

4

4. EXPERIMENTS AND DISCUSSION

leads to less transaction aborts.

4 Experiments and Discussion

When assigning a lower volatility threshold, the RPP classifies more nodes as volatile.
While this increases the time it takes for every transactions to execute, it has the
favourable effect of decreasing the number of transaction aborts - this is confirmed
in our experiment. Furthermore, even though there are more nodes that need to be
traversed, throughput is still increased due to the significantly improved abort-ratio.
The lower the threshold, the slower the query however a lower number of transac-
tion aborts occur as well. Small values for t reduce the number of aborts but slow
down queries while large values for t improve query time but increase the number
of aborts that one would expect to happen.

4.1 Abort Ratio

Looking at Figure 3, we can see our experiments confirm the above intuition. For
example, we see that a higher skew (where skew is > 1) negatively affects a PP-
Index (as the threshold parameter tends towards infinity). More interestingly, we
see that for lower value thresholds (e.g. ones less than < 100), a skew higher than
0 actually decreases the abort ratio. This is because under lower threshold values,
small regions become volatile rather quickly and do not conflict with each other as
much. For lower skew values, low thresholds still benefit, but because this means
that transactions are not as concentrated in one region, aborts are more prone to
occurring. Lastly, for the PP-Index (when the threshold tends toward infinity), a
high skew is bad as transactions focus on the same nodes and you endure many
aborts since there is no threshold parameter to make a node volatile and prevent it
from constant inserting/deleting.

For thresholds 0 and 10, we can clearly observe low abort ratios that tend to 0 as the
skew increases. For an RPP-Index with a higher threshold, 100, the improvements
in abort ratio’s are more pronounced as the skew increases (since node operations
are more likely to happen in clustered volatile areas). Finally, we see that for a
threshold value that approaches infinity (essentially a PP-Index), the abort ratio’s
are worse then when compared to all the RPP-Index’s. However, we can observe
that when skew is 0, the RPP index with the highest non-infinite threshold (i.e.
threshold of 100) has similar abort ratio’s to that of the regular PP-Index where
nodes never become volatile and conclude that the improvements are less dramatic
under such conditions.

4.2 Throughput

Throughput is defined as the number of successful transaction commits per unit
time. In Figure 4, we can see that the number of successful commits for an RPP-
Index clearly outperforms the number of successful commits in a normal PP-Index

5

4. EXPERIMENTS AND DISCUSSION

for our Data-set. Furthermore, we can see that at higher threshold levels, where
nodes rarely become volatile (and is the index is then basically a PP-Index), skew
does not affect successful commits too much. On the other hand, in an RPP Index
with a low threshold, we can see that we improve throughput massively with a higher
level of skew due to the lack of transaction aborts that would occur otherwise. We
furthermore see that throughput deteriorates quite rapidly as we increase threshold
values past 100 for all levels of skew - this is again due to the fact that the index
resembles a PP-Index where the inserts and deletes are uncontrolled. Hence, for our
experiment, we see that the optimal threshold to choose should be between 0 and
100 depending on the skewness of the workload.

Figure 3: Abort Ratio

Figure 4: Throughput (Transactions per Minute)

6

5. CONCLUSION

5 Conclusion

An RPP Index’s main function is to find the correct amount of compromise between
the volatility threshold and query performance. A higher threshold theoretically im-
proves query speed, but consequently comes at the expense of a higher abort ratio
as more nodes are bound to conflict with each other. On the other hand, a lower
volatility threshold decreases the abort ratio at the expense of query speed.

There are many considerations to make when designing an RPP-Index. The main
one is to understand whether the workload is more read-intensive or write-intensive.
By nature, a workload that is write-intensive will experience most of the benefits of
a well-defined RPP-Index as it will prevent inevitably more frequent path conflicts
which cause transactions to abort. On the other hand, in a read intensive workload
where aborts would virtually never happen, a low threshold is not so important
and the RPP-Index would not see as many benefits in comparison to a regular PP-
index. Finding the correct parametrization is the key challenge for implementing a
successful RPP-Index that will reduce contention and increase throughput.

7

REFERENCES

References

K. Wellenzohn, M. H. Böhlen, Sven Helmer, Marcel Reutegger, Sherif Sakr
Workload-Aware Contention-Management in Indexes for Hierarchical Data,
(2019).

8

	Intuition and Motivation
	RPP Index
	Volatile Nodes and Sliding Windows
	Path Conflicts

	Threshold
	Computing Volatility

	Experimental Setup
	Skew

	Experiments and Discussion
	Abort Ratio
	Throughput

	Conclusion
	References

