
BSc Thesis

Scalable Exploratory Analyses
of Feed Data

Tobias Egger
Matriculation Number: 16-728-016

Email: tobias.egger@uzh.ch

February 4, 2021
supervised by Prof. Dr. Michael Böhlen

Acknowledgements

At this point I would like to express my sincere gratitude to my supervisor Prof. Dr. Michael
Böhlen. In our numerous, mainly digital meetings he provided me with valuable feedback.
The support of Prof. Dr. Michael Böhlen helped a lot in the process of writing the thesis. Ad-
ditionally, I am very grateful for the opportunity to write the thesis at the Database Technology
Group of the University of Zurich.

2

Abstract

In this thesis, an approach to measuring performance in a multi-tier application is designed and
implemented. The results of the performance measurements are used to identify the main lim-
iting factors in the Swiss Feed Database. The problematic parts in the PostgreSQL database
tier are subsequently optimized. For this, query plans are analysed in detail and different
performance-enhancing features in PostgreSQL are used. Spatial indexing is used to opti-
mize spatial joins. Just-in-time compilation enhances the overall performance of database
queries. Furthermore, temporary tables are used as a substitute for common-table expressions.
Through a reduction of output size, the performance is enhanced as well. Finally, the sub-
stitution of slow string functions helps to leverage the performance. The optimizations are
evaluated regarding the performance-gain and the scalability.

Zusammenfassung

In dieser Arbeit wird ein Ansatz zur Performanzmessung in einer Multi-Tier-Applikation
entworfen und implementiert. Die Ergebnisse der Performanzmessungen werden verwendet,
um die wichtigsten limitierenden Faktoren in der Schweizer Futtermitteldatenbank zu iden-
tifizieren. Die problematischen Teile in der PostgreSQL-Datenbank werden anschliessend
optimiert. Dazu werden die Auswertungspläne im Detail analysiert und verschiedene ge-
schwindigkeitsverbessernde Eigenschaften in PostgreSQL genutzt. Spatial Indexing wird ver-
wendet, um räumliche Joins zu optimieren. Die Just-in-Time-Kompilierung steigert die Ge-
samtperformanz von Datenbankabfragen. Im Weiteren werden temporäre Tabellen als Ersatz
für Common-Table-Expressions verwendet. Durch eine Reduzierung der Resultatgrösse wird
die Performanz ebenfalls verbessert. Schliesslich hilft die Ersetzung von langsamen String-
Funktionen, die Performance zu steigern. Die Optimierungen werden hinsichtlich des Perfor-
manzgewinns und der Skalierbarkeit bewertet.

Contents

1. Introduction 10
1.1. Performance Analysis . 10
1.2. Performance Optimization . 10
1.3. Evaluation of the Improvements . 11

2. Background 12
2.1. Architecture . 12
2.2. Performance Analysis in a Multi-Tier Application 12

2.2.1. Theory . 12
2.2.2. Designing the implementation . 14

2.3. Performance Analysis in the Swiss Feed Database 17
2.3.1. Test Preparation and Execution . 20
2.3.2. Log Formats . 20
2.3.3. Log Preprocessing . 22

2.4. Database Optimization . 25
2.4.1. Query Plans . 26
2.4.2. Finding the Bottle-Neck in a Query Plan 26
2.4.3. PostgreSQL’s Performance Enhancing Features 27
2.4.4. Spatial Indexes . 29
2.4.5. Spatial Joins . 30
2.4.6. Common Table Expression (CTE) vs. Temporary Table 31

3. Bottle-Neck Assessment 33
3.1. Timestamp Analysis . 33
3.2. Client UI Component Analysis . 34
3.3. Summary . 35
3.4. Validation of Analysis . 35

3.4.1. Validation-Run 1: Blocking Code 35
3.4.2. Validation-Run 2: Cache database results 36

4. Chart UI Component Optimization 38
4.0.1. Evaluation . 41

5. Table UI Component Optimization 42
5.1. Optimization for Detail Queries . 43

5.1.1. Evaluation . 46

5

5.2. Optimization for Summary Queries . 46
5.2.1. Part 5 . 46
5.2.2. Part 2 . 50

6. Evaluation of the optimization 52
6.1. Overall Performance . 52
6.2. Scalability . 53

7. Conclusion 55
7.1. Future Work . 56

Bibliography 57

Appendices 60

A. Glossary 60
A.1. Query Types . 60

B. Performance Analysis 62
B.1. System Component Performance Test-run 62
B.2. Statistical Analysis . 64

C. SQL Statements 65

6

List of Figures

2.1. Basic Architecture of the feedbase web application 12
2.2. Sequence diagram of a multi-tier application 13
2.3. Sequence Diagram of a query in the feedbase 19
2.4. Illustration to show the construction of a spatial index, source: [8] 29
2.5. Illustration to show a spatial join between rectangles and lines 30

3.1. Mean of the differential duration for all test-runs 33
3.2. Test-run 2: Duration of timestamp D for UI components for different queries 34
3.3. Test-Run 2: Duration of timestamp A for UI components for different queries 35
3.4. Validation-Run 1: Block Map in D . 37
3.5. Validation-Run 2: Performance Measurement with Database Caching 37

4.1. Execution Time of Chart Query Parts displayed with a logarithmic scale. . . . 38
4.2. Measurement of the duration of chart query parts before and after optimization

displayed with a logarithmic scale. 41

5.1. Duration of database queries for the table UI component. 42
5.2. Duration of database queries for the table UI component on PostgreSQL12. . 44
5.3. Measurement of the duration of the table UI component for detail queries

before and after the optimization. 46
5.4. Execution Time of Summary Query Parts 47
5.5. Measurement of the duration of the table UI component for summary queries

before and after the optimization of part 5. 49
5.6. Measurement of the duration of the table UI component for summary queries

before and after the optimization of part 2. 51

6.1. Difference between durations of system components before and after the op-
timization. 52

6.2. Mean of the duration of all timestamps before and after the optimization. . . . 53
6.3. Results of a scalability test for database queries before and after optimization. 54

B.1. Test-run 1: Performance of system components during different queries . . . 62
B.2. Test-run 2: Performance of system components during different queries . . . 62
B.3. Test-run 3: Performance of system components during different queries . . . 63

7

List of Tables

2.1. Description of all fields in a log entry from the application log. 20

3.1. Amount of times a timestamp had the longest duration in a query 33
3.2. Queries selected for the validation-runs . 36

5.1. Example for the problematic join in the SQL statement for SummaryResults . 48
5.2. Result of the optimized join in the SQL statement for SummaryResults 49

A.1. Summary Queries and their ID’s . 60
A.2. Detail Queries and their ID’s . 61

B.1. Statistical parameters for the differential duration of all three test-runs 64

8

Listings

2.1. Example for the content of an application log file. 21
2.2. Source: PostgresQL documentation [1] . 21
2.3. Example of an ordered application log file 23
2.4. Example of an unordered application log file 23
2.5. Example of a correctly formatted log array used as input for restructuring . . 24
2.6. Restructured log entries from listing 2.4 . 24
2.7. Example of a query plan with a bottle-neck created with EXPLAIN 27
2.8. Excerpt of a query plan using parallel features, created with EXPLAIN 29

4.1. Query Plan of the join leading to slow performance 39
4.2. Subquery of part 7 responsible for the long duration 39
4.3. Query Plan for the optimized Join . 41

5.1. Excerpt from the Query Plan for DetailResults in PostgreSQL 13 43
5.2. Query Plan Summary for DetailResults in PostgreSQL 13 43
5.3. Wrong Estimates in the Query Plan for DetailResults in PostgreSQL 12 . . . 44
5.4. Excerpt of a Query Plan for DetailResults in PostgreSQL 12 using temporary

tables instead of CTE’s . 45
5.5. SQL statement for SummaryResults . 47
5.6. Excerpt of a Query Plan for SummaryResults 50
5.7. Subquery of part 2 where a scan with a long duration is performed 50
5.8. Optimized creation of a list of ids from a string of ids 51

C.1. Chart query with a duration of over 20s . 65
C.2. DetailResults query with a duration of around 6s 67
C.3. SummaryResults query . 68

9

1. Introduction

The Swiss Feed Database allows users to query feed data in an online application. While
in the past a lot of work was done in extending and improving functionalities, the overall
performance of the Swiss Feed Database is not satisfying. When querying specific feed data,
users have to wait up to 30 seconds until the results are displayed. This thesis improves the
performance of the Swiss Feed Database so that the user experiences fewer interruptions and
the interaction gets more fluent.

1.1. Performance Analysis
The first topic of the bachelor thesis was the analysis of exploratory queries in the Swiss
Feed Database. The focus was on finding the main limiting parts in the system regarding the
performance of the first visualization of a query result. The assessment and evaluation were
based on a comprehensive and architecture-dependent understanding of the system. For this,
a concept applicable to multi-tier applications in general was developed. Dominique Hässig
already improved the performance of the Swiss Feed Database in the frontend. In her thesis,
she points out that further optimization needs to be done in the PostgreSQL database [2]. The
hypothesis for the performance evaluation was: The main limiting part regarding performance
is the PostgreSQL database.

The measurements done in this thesis support the hypothesis. The average duration of
different system components was used to get a rough overview of how the response time is
distributed between the system components. At around 1.4 seconds, the average duration of
the PostgreSQL database was much higher than the average duration of the other system com-
ponents, which had average durations ranging from 0.05 seconds to 0.5 seconds. Additionally,
in most of the queries, the PostgreSQL database was the component with the longest duration
of all components. In a second step, the distribution of the database durations over the dif-
ferent user interface components (map, chart and table) was evaluated. It was found, that the
chart and the table contribute the most to the long durations of the database. The map user
interface component hardly ever showed durations of over one second.

1.2. Performance Optimization
After the evaluation of the performance and the identification of the main limiting factors, the
second topic was to design and implement optimizations to enhance the performance of the
Swiss Feed Database. The target was that every component, used for the first visualization of
a query result in the Swiss Feed Database, had a duration of around one second.

10

Based on the results in the analysis the focus of the optimization was on database queries
used for the chart and the table visualization. For the optimization the execution plans of the
database were analysed in detail, searching for the limiting parts.

During the optimization, it was discovered that indexes are crucial for performant spatial
joins. In the database query for the chart visualization, a join of two tables, involving some
spatial features, was identified as the blocking part. Creating an index on the spatial features
helped the database to use a more efficient method of joining. As a result, the duration of the
database query dropped from around 24 seconds to around a second.

Furthermore, it was shown that keeping the database system up-to-date can have a big
impact on the performance of the system. It is advisable to always keep the database system
up-to-date. In the Swiss Feed Database, the table visualization was accelerated due to new
performance-enhancing features in the updated version of the database system.

In complex queries, the query is often split into parts. This can be done by using Common
Table Expressions or temporary tables. It was observed that Common Table Expressions are
not as scalable as temporary tables. The duration of certain queries was reduced from 4.2s to
2s, solely by replacing Common Table Expressions by temporary tables.

While a lot of optimization can be done using the query plans, sometimes it is needed to go
one step further. The next step is to analyse the semantics of the query in detail. Understanding
the query semantics can help to find inefficiencies on a higher, conceptual level. For example
in one query it was found, that a join produced output, that was not used. The performance
was enhanced by restricting the join condition.

Finally, it was shown that the impact of expression evaluation on the performance of queries
can be very big. The replacement of slow string functions with more efficient functions en-
hanced the performance of the queries used for the table visualization a lot.

1.3. Evaluation of the Improvements
The last topic was the evaluation of the optimizations in the context of the Swiss Feed Database.
Especially the performance-gain and the scalability of the solution were assessed.

The average duration of the PostgreSQL database dropped from around 1.4 seconds to
around 0.4 seconds. Especially the very long durations were decreased a lot. The user ex-
perience is much more fluent and the user waits at most 2-3 seconds for the results. In all
queries with long durations, bottle-necks could be identified and optimized. However, the
target of all components having durations smaller than a second was not achieved.

The optimized database queries were tested with different table sizes to get a first impression
of their scalability. The measurements showed no signs of a strong growing pattern, which is
good to know. The tests indicate that even with six times more data than now, the optimized
database queries will have durations < 4 seconds. This means that the database queries in the
Swiss Feed Database can handle an increase in data well. However, it was not assessed how
the other system components react to a growing data set.

11

2. Background

2.1. Architecture
The Swiss Feed Database, frequently called the feedbase, is a web application. The structure
of such a system is shown in Figure 2.1. The design of the feedbase can be described as a three
tier architecture. The client tier is the user interface through which the user interacts with the
system and the system displays its data. The application tier holds the whole business logic
and the algorithms to process user requests. The database tier saves and loads the data. The
tiers communicate using the request-response principle. A tier issues a request to another tier
and waits until the response is returned.

Client Application Database

Request

Response

Request

Response

Figure 2.1.: Basic Architecture of the feedbase web application

The landing page of the feedbase offers the user some predefined queries. When a user
clicks on a query the data for that specific query is visualized. The visualization can consist
of different user interface components, further often called UI components. There is a map UI
component showing a map of the area of interest, a chart UI component showing a scatter plot
of the data and a table UI component showing further information about the data points.

The queries can be categorized into two types. First, there are detail queries, which are
visualized with a table, a chart and a map UI component. Secondly, there are summary queries,
which are visualized with a table UI component only. On the landing page, the summary
queries are located in the left column and the detail queries are located in the right column. In
tables A.1 and A.2 the predefined queries are categorized by query type.

2.2. Performance Analysis in a Multi-Tier Application

2.2.1. Theory
Performance is measured for different components of the system. Such a system component
can be a single request, a part of a bigger computation or everything done in a tier. In figure 2.2
a sequence diagram of a schematic multi-tier application is shown. The application has two
tiers: Tier A and Tier B. In the process shown in the sequence diagram Tier A first executes

12

a system component. Then Tier A makes a request to Tier B, which computes something and
returns the response to Tier A.

Tier ADurations Tier B

system component

request

response

d(A2,A1)

d(B1,A3)

d(A4,B2)

d(B2,B1)

d(A4,A3)

A1

A2

A3

B1

B2

A4

Figure 2.2.: Sequence diagram of a multi-tier application

The goal is to measure how much time different system components need to do their com-
putations. Measuring time within a tier is pretty simple. An example is the system component
in figure 2.2. As soon as the system component starts to work the current time (time A1)
is measured. When the system component has finished the computations the current time is
measured again (time A2). From these two measurements the duration the system component
needed to respond to the request can be calculated: d(A2, A1). In the sequence diagram, this
duration is shown in light blue.

When the time that is spent between two tiers should be measured, e.g. how long a request
takes to get from Tier A to Tier B, a new problem emerges. The problem is illustrated in
figure 2.2. Using the approach from above the current time when the request was sent in
one tier (time A3) and the current time when the request is received in another tier (time B1)
would be measured. To calculate the duration based on two times measured on different tiers,
it must be ensured that the two tiers have the exact same current time. This is a condition,
that is very difficult to ensure, especially when the tiers run on different operating systems. In
the sequence diagram above this would mean that calculating d(B1, A3) and d(A4, B2) is not
possible unless it is known that the current time is exactly the same on Tier A and Tier B. The
synchronisation of times could be done by using a dedicated time server to gather the current
time in all tiers. The disadvantage of this approach is that it adds another tier to the system

13

and generates more overhead that could influence the measurements.
A simpler approach to this problem is to not measure the time of the request d(B1, A3)

or the response d(A4, B2) on their own, but to measure the time of request and response
together: d(B1, A3) + d(A4, B2). This is a lot easier because now a different approach is
possible. The time Tier A waited for Tier B is calculated as follows: d(A4, A3). The time
Tier B needed to respond to Tier A can be calculated as well: d(B2, B1). Now the time Tier
B needed is subtracted from the time Tier A waited. The result is the time that the request
and response needed together: d(A4, A3) − d(B2, B1). This approach has the disadvantage
that the distribution of the calculated duration between request and response is not known.
Nevertheless, this approach is less intrusive than the first approach. This led to the decision to
choose the second approach for the feedbase.

The method described above assumes, that all tiers can measure the start and end time of
the computations. Let’s assume that Tier B in figure 2.2 is not able to measure the start and
end time (e.g. because Tier B cannot be extended at all). In this scenario, it is no longer
possible to measure the times B1 and B2. The only rough estimate one can measure for Tier B
is d(A4, A3). Because this duration includes the durations of the request and the response, the
estimate gets worse the larger the durations of request and response (d(B1, A3) and d(A4, B2))
are.

2.2.2. Designing the implementation
When implementing performance measuring in a multi-tier application it is important to think
about the following aspects:

Which tiers are extendable to install code for the measurement? Are there
restrictions?

Tiers that are implemented by oneself are often easily extendable. Tiers that are based on third
party software, which is for example often the case for database systems, are not extendable
easily. The simplest approach is to find a solution where only the configuration of the third
party software has to be changed. This is straight forward, but the possibilities are restricted.

In the feedbase all tiers are extendable. This means that all tiers can be configured to
measure the time of computations, either by inserting custom code or by changing the config-
uration. In the client and the application tier, custom code can be inserted nearly everywhere.
In the database tier, there is almost no possibility to insert custom code. Therefore the exten-
sion is done by changing the configuration of the database system, e.g. to generate logs with
information about the duration of statements.

How are the times measured?

Measuring times gets easier the more automated the process of measuring is. If you for exam-
ple have to click through every UI component several times for one measurement, the method
of measurement is time-consuming and has potential for automation. The goal is to have a

14

method where one needs to start the measurement and then all the actions are executed auto-
matically. This will help to get more reliable measurements after all because the measurements
are always done the same. Furthermore, with automation it is possible to execute each action
multiple times, which helps to flatten natural fluctuations in the measurements. This can be
done by calculating some statistical properties for each execution of an action, e.g. calculating
the mean of all measurements for a particular action. When measuring the performance of ac-
tions in a system that are triggered through the user interface, the automation can be achieved
by a user-simulator. Such a simulator can be as simple as a script, that goes through specific
items in a user interface once or multiple times and clicks on them to trigger the desired action.

To efficiently assess the duration of multiple queries the feedbase is extended with a click-
simulator, which goes through a specified set of queries on the startpage and executes each
query three times. A test-run consists of preparation, execution, preprocessing and visualiza-
tion. The execution is defined as one complete run of the click-simulator through all queries
listed on the startpage of the feedbase. These queries get executed multiple times. Each ex-
ecution is called an iteration. The procedure of test preparation and execution is described in
section 2.3.1

Where and how are the measured times gathered?

Log files are a good concept to efficiently gather the measured times. In a first step, it should
be determined how many log files are generated. Depending on the multi-tier architecture it
can be reasonable to have a log file on each tier. With this solution writing to a log file is
very easy, because the log file is located in the same tier. However for the evaluation of the
measured times, the gathering of the measured times from each tier is much more complex.
The format of the logs must include some log fields that allows combining the log entries
from the different tiers. Another solution would be to have one log file for all tiers, which
makes writing to the log file more complex. Nevertheless, all the measured times are already
gathered in one place for the analysis. This simplifies the processing of the logs a lot because
the step of combining all the log files is not necessary with this solution. Log files can adhere
to a certain standard or a new log format can be created for the specific use case.

In the database tier of the feedbase there is no possibility to configure the database system
to write logs to another tier [1]. Therefore the database tier has its own log. The database log
adheres to the default convention from PostgreSQL with minor adjustments. Because sending
messages from the client tier to the application tier is fairly easy in the feedbase, the choice
was made to combine logs from those tiers in one log, located in the application tier. For that,
the measurements from the client tier are sent to a dedicated endpoint in the application tier
using AJAX. A new log format was defined for the application log, tailored to the needs of the
measurements. The log formats are described further in section 2.3.2. How the log entries are
combined and ordered is described in detail in section 2.3.3.

The combination of the database and the application logs in the feedbase is only possible
because of a common identifier both logs share. This identifier is unique for each request to
the database. It is needed to insert each database log entry into the correct position in the appli-
cation log. The identifier is constructed out of four parts: the query id , the current iteration ,
the name of the UI component and the id of the database request (only needed for table queries,

15

because there are multiple database requests for the table UI component). An example could
look like this: table/paginate - 2 528 - 0 . The identifier is placed at the beginning of each
SQL statement the application tier issues. The database was configured so that it logs the
duration and the actual SQL code of every executed SQL statement.

How are the times processed and visualized?

When evaluating measured times it is handy to have well processed and visualized data. If for
example for each tier the measured times are gathered in a separate log file, the log files first
need to be combined to have all the information in one place. Additionally, some computed
metrics are often crucial to get information out of log files. In the end, looking at a log file
is not very pleasing and correlations can easily be overseen, because of the sheer amount of
unformatted, clumped data.

In the feedbase the logs are accessible through different endpoints in the API of the applica-
tion tier. Each endpoint aggregates the logs differently, so that the requesting instance only has
to do the visualization. The preprocessing is done every time one of those endpoints is called.
It involves filtering the database logs, ordering the application and the database logs, inserting
the database logs into the application logs and some final computation and aggregation. The
details of the preprocessing are found in section 2.3.3.

REST-ful APIs

Tiers can have Application Programming Interfaces (APIs) designed in a REST-ful manner.
One idea of a REST-ful API is that the API is not aware of the state the requesting tier is
in. This can lead to problems when log entries from different tiers should be combined. If
a client tier gets its data from the application tier over a REST-ful API, it must be ensured
that the client tier adds information about its state to the request, so that the application tier
can add the current state to its log entries. This additional information breaks the concept of
a REST-ful API, but is necessary so that later the log of the application tier can be combined
with the log of the client tier.

A simplified example of a request in the feedbase illustrates the problem. The sequence of
actions leading to the problem is as follows:

1. The user clicks on the query with id 898.

2. The client tier fetches the necessary data from different endpoints. Each request has the
same information for specifying the wanted data: feed 505 with nutrients 42, 11 and 35
should be displayed. The endpoints are:

• /api/charts/hull: data for the scatterplot

• /api/map/cantons: data for the map

• /api/table/paginate: data for the table

3. The application tier processes the requests and logs the duration of the requests. Since
the application tier doesn’t know the query id, it logs:

16

• queryId: None, origin: application , description: /api/charts/hull , duration: 2.4

• queryId: None, origin: application , description: /api/map/cantons , duration: 1.2

• queryId: None, origin: application , description: /api/table/paginate , duration: 2

4. The data is returned to the client tier. After successful visualization the client tier logs:

• queryId: 898, origin: client , description: visualization , duration: 5.6

The problem arises when the client log should be combined with the application log. Be-
cause in the application log the query id is not present, it is impossible to correctly combine
the two logs. To solve this problem, the query id needs to be added to the information in the
client request, e.g. in step 2: feed 505 with nutrients 42, 11 and 35 should be displayed for the
query with id 898. Thus the application tier is aware of the query id and can add it to the logs.
As a result, the combination of the logs is as simple as matching the query ids.

In the feedbase the application tier offers a REST-ful API, which is used by the client tier.
This yields the problem, that the application tier never knows in which iteration of which
query the client tier currently is. To associate every timestamp measured in the application tier
with a query id and iteration it is thus necessary to extend the client tier by adding the current
query id and iteration to each relevant request. This is done by adding the GET-parameters
queryId and iteration to the requests to the API. With that, it is possible to access the query
id and the iteration in the application tier. This is done over the request object req like so:
req.query.queryId and req.query.iteration.

Asynchronous processes

Another problem arises when a system has asynchronous parts, e.g. a tier that issues multiple
requests asynchronously to another tier. Because the asynchronous processes run in parallel,
it is not possible to predict the order of the logs produced by these processes. It is therefore
needed, that the logs are ordered according to the correct logical order before processing them.

In the feedbase this problem occurred with multiple requests from the client tier to the appli-
cation tier. An example and the solution to this specific problem can be found in section 2.3.3.

2.3. Performance Analysis in the Swiss Feed Database
The sequence diagram in figure 2.3 illustrates the interaction of a user with the feedbase.
The diagram captures the whole process involved from clicking on the query until all the
data is visualized in the user interface. Based on the sequence diagram the measured system
components are defined. For each system component, a timestamp is measured. A timestamp
includes a start and an end time. The duration of a timestamp is defined as the difference
between the start and end time of the timestamp. Each tier and the time which is spent between
the tiers is measured. This yields the following timestamps:

17

Label Location Start End
C Client When a user selects a query When all components finished

loading and are displayed
CA Client-

Application
When the data for a compo-
nent is requested

When the data is received and a
change is triggered in Angular

A Application When a request is received
by the server

When the request is returned to
the client

AD Application-
Database

When a request is sent to the
database server

When the response is received
from the database server

D Database When a statement starts
execution on the database
server

When the statement finishes exe-
cution on the database server

In the sequence diagram, the timestamps are displayed with coloured circles at their start
and end time.

18

Client Application Database

[Table]

showTable

table data

showTable

table data

data

data

data

data

data

getChartData

data

chart data

showChart

par

[Chart]

getMapData

data

map data

showMap

[Map]

getTableData

getTableData

alt

[summary]

[detail]

par

[Nutrients]

[Results]

[Count]

par

[Results]

[Count]

getQueryInformation()

data

query informati
on

C

C

CA

CA

CA

CA

CA

CA

A

A

A

A

A

CA A

A

CA A

AD D

D

D

D

D

D

D

D

D

D

D

D

D

D

AD

AD

AD

AD

AD

AD

AD

Figure 2.3.: Sequence Diagram of a query in the feedbase

19

2.3.1. Test Preparation and Execution
To prepare a test-run the current log entries in the application as well as on the database server
are deleted. Deleting the application logs is achieved by calling the endpoint
DELETE /api/logs/files/stopwatch. Deleting the database logs is done in the shell of the database
server directly. After deletion, a restart of PostgreSQL is needed.

The click-simulator offers different options. It is possible to either run summary or detail
queries. Another option is to define a set of queries to be executed.
To only run summary queries the following URL is used:
http://130.60.24.196/?testType=summary&testOffset=0&testIteration=0

For detail queries the URL changes to:
http://130.60.24.196/?testType=detail&testOffset=0&testIteration=0

To run a set of queries the following URL is used: (QID1,QID2 are the ids of the queries to
be run, separated by commas)
http://130.60.24.196/?testType=detail&testOffset=0&testIteration=0&testSet=QID1,QID2

The URLs defined above can be entered in a browser and the click-simulator will run through
the queries, calling each query three times. For a test-run, the URL for summary queries is
called first. After the click-simulator finished execution of the summary queries, the URL for
detail queries is called.

2.3.2. Log Formats
Application Log

The application log consists of the timestamps AD, A, CA and C. Each line represents one
log entry. A log entry is a measurement of a timestamp, including start and end time. In a log
entry, the fields are separated by commas. Below a schematic log entry is shown. The detailed
description of all fields can be found in table 2.1.

id , iteration , timestamp , description , duration , start , end

Fields Description Type Example

id id of the corresponding
query

int 528

iteration iteration of the correspond-
ing query

int 0

timestamp name of the measured
timestamp

string CA

description further information string loadingMapData
duration measured duration in s float 6.51
start start time of measurement ISO 8601 [3] 2020-11-26T15:29:01.595Z
end end time of measurement ISO 8601 [3] 2020-11-26T15:29:01.595Z

Table 2.1.: Description of all fields in a log entry from the application log.

20

In listing 2.1 an exemplary log file is shown. The log file consists of logs generated by running
a detail and a summary query one after another. The first log entry for a query is always an
entry for timestamp C with description "start", in which the start time for the query is found.
For the first query, this log entry can be found on line 1. Afterwards timestamps AD, A and CA
are logged for each UI component that gets loaded for the query. For a detail query, there are
three sets of AD, A and CA, because apart from the table UI component the client also loads
the chart and the map UI component, e.g. lines 2-10 in the example. In a summary query, only
a table gets displayed. Therefore only the table UI component gets loaded and so only one set
of AD, A and CA can be found, e.g. lines 13-15 in the example. The UI component related to
a log entry can be identified over the description field, e.g. line 3: timestamp A for the chart
UI component (description = "/api/charts/hull"). For every query, the last entry in the log is
again a log entry for timestamp C. The description for the end timestamp is "end". The log
holds the end time of the query. In the example the last log entry for the first query can be
found on line 11, stating "end" in the description and the end time.

1 898 , 0 , C , start , 0 , 2020-11-26T15:29:00.761Z

2 898 , 0 , AD , charts/hull , 2.481 , 2020-11-26T15:28:59.928Z , 2020-11-26T15:29:02.409Z

3 898 , 0 , A , /api/charts/hull , 2.503 , 2020-11-26T15:28:59.920Z , 2020-11-26T15:29:02.423Z

4 898 , 0 , CA , loadingChartData , 2.543 , 2020-11-26T15:29:01.595Z , 2020-11-26T15:29:04.138Z

5 898 , 0 , AD , map/cantons , 5.696 , 2020-11-26T15:28:59.950Z , 2020-11-26T15:29:05.646Z

6 898 , 0 , A , /api/map/cantons , 6.35 , 2020-11-26T15:28:59.919Z , 2020-11-26T15:29:06.269Z

7 898 , 0 , CA , loadingMapData , 6.51 , 2020-11-26T15:29:01.595Z , 2020-11-26T15:29:08.105Z

8 898 , 0 , AD , table/paginateTD , 7.034 , 2020-11-26T15:28:59.970Z , 2020-11-26T15:29:07.004Z

9 898 , 0 , A , /api/table/paginate , 7.077 , 2020-11-26T15:28:59.930Z , 2020-11-26T15:29:07.007Z

10 898 , 0 , CA , loadingTableData , 7.17 , 2020-11-26T15:29:01.595Z , 2020-11-26T15:29:08.765Z

11 898 , 0 , C , end , 0 ,, 2020-11-26T15:29:09.741Z

12 528 , 0 , C , start , 0 , 2020-11-26T15:49:56.823Z

13 528 , 0 , AD , table/paginate , 3.943 , 2020-11-26T15:49:55.341Z , 2020-11-26T15:49:59.284Z

14 528 , 0 , A , /api/table/paginate , 4.042 , 2020-11-26T15:49:55.289Z , 2020-11-26T15:49:59.331Z

15 528 , 0 , CA , loadingTableData , 4.117 , 2020-11-26T15:49:56.983Z , 2020-11-26T15:50:01.100Z

16 528 , 0 , C , end , 0 ,, 2020-11-26T15:50:01.114Z

Listing 2.1: Example for the content of an application log file.

Database Log

In the database log, each log entry can spread over multiple lines. This is due to the fact,
that the whole SQL statement is logged. SQL statements in the feedbase often include line
breaks. This makes it a bit harder to read the logs. A schematic log entry is shown below. The
highlighted fields are the fields, which are relevant for the analysis. These fields are further
described below. The description of the other fields as well as further information can be found
in the PostgreSQL documentation.
timestamp, user ,database,process_id,connection_from,session_id,session_line_num,command_tag,

session_start_time,virtual_transaction_id,transaction_id,error_severity,sql_state_code,
message ,detail,hint,internal_query,internal_query_pos,context,query,query_pos,location,

application_name

Listing 2.2: Source: PostgresQL documentation [1]

21

An exemplary database log entry is shown below. The field user stores the name of the
database user, who is responsible for the query. This field is used to remove database logs
generated by the system or other users. The feedbase uses the database user "php_client". All
log entries issued from users other than "php_client" are ignored. The second relevant field
message stores all the information about the SQL statement that was run. The field consists of

two parts. The first part contains the duration, e.g. 3931.329 ms. The second part is the actual
SQL statement which was run. For the queries that should be measured, the SQL statement
always starts with the identifier of the database request, e.g. table/paginate-2 528-0.

1 2020-11-26 15:49:59.130 UTC, "php_client" ,"tfdb",15993,"89.217.56.236:50124",5fbfbbfe.3e79
,2,"SELECT",2020-11-26 15:49:55 UTC,4/0,0,LOG,00000,

"duration: 3931.329 ms statement: - table/paginate-2 528-0

2 WITH formulas AS (

3 SELECT

4 id_feed AS feed_key,
5 ...

6 SELECT COUNT(*)

7 FROM rows AS total;" ,,,,,,,,,""

2.3.3. Log Preprocessing
Immediately after the test-run, the database logs must be copied to the application server. This
can be done by calling the endpoint GET /api/logs/database/import. This endpoint uses sftp to
copy the database logs from the database server. The credentials used for copying are defined
in params.json by adding a key-value pair to "db". The key value-pair could look like:
"logs": {

"user": "userName",
"password": "password"

}

The defined user must have read access to the database logs. Alternatively, a private key can
be defined instead of a password. The key for defining a private key is "privateKey" and the
value is the path to the file that contains the key.

To preserve the logs and prevent overwriting the application and the database log are re-
named right after the test-run and the import. The following schema is used for the database
log: postgresql-yyyy-mm-dd-n.csv, where yyyy is the full year, mm is the full month, dd is the day
of the month and n is the number of the test-run. The active application log is renamed ac-
cording to the following schema: stopwatch-yyyy-mm-dd-n.txt. The variables are the same as
in the naming of the database log. Renaming is done in the shell of the application with the
following commands:
cd server/logs;
cp postgresql-yyyy-mm-dd.csv postgresql-yyyy-mm-dd-n.csv
cp stopwatch.txt stopwatch-yyyy-mm-dd-n.txt

Preprocessing is done every time the log data is requested. It involves several steps:

1. Filter database logs

2. Order database and application logs

22

3. Insert database log entries into application logs

4. Calculate differential duration

Filter database logs

The raw database log entries contain way too much information that is not needed. Addition-
ally, there are a lot of log entries that are not relevant. In a first step, all log entries that were
not made by the application tier are eliminated. The relevant log entries in the database log
contain information about the duration of a statement and include the full statement itself. The
comments at the beginning of the statements are used to identify all relevant database queries.
The log entries are formatted and unneeded information is eliminated. Filtering is done on the
raw database log file. The output is an array which contains all relevant log entries formatted
according to the application log format.

Order database and application logs

Because the client tier requests the data for the chart, map and table UI components asyn-
chronously it is not possible to predict the order in which the requests are logged. To visualize
the problem an exemplary application log file is showed ordered and unordered. The log file
consists of logs for two UI components (chart and map). The logical order in the applica-
tion log is as follows: AD gets logged first, followed by A and CA . This is visualized
in listing 2.3. AD and A are logged from the application tier, while CA is logged from the
client tier. Because of that it frequently happens that CA is logged with a delay, causing it
to be logged at a wrong position. This is shown in listing 2.4, where CA of the chart UI
component is logged after AD and A of the map UI component.

1 898,0,C,start,0,2020-11-26T15:29:00.761Z

2 898,0, AD , charts/hull ,2.481,2020-11-26T15:28:59.928Z,2020-11-26T15:29:02.409Z

3 898,0, A , /api/charts/hull ,2.503,2020-11-26T15:28:59.920Z,2020-11-26T15:29:02.423Z

4 898,0, CA , loadingChartData ,2.543,2020-11-26T15:29:01.595Z,2020-11-26T15:29:04.138Z

5 898,0, AD , map/cantons ,5.696,2020-11-26T15:28:59.950Z,2020-11-26T15:29:05.646Z

6 898,0, A , /api/map/cantons ,6.35,2020-11-26T15:28:59.919Z,2020-11-26T15:29:06.269Z

7 898,0, CA , loadingMapData ,6.51,2020-11-26T15:29:01.595Z,2020-11-26T15:29:08.105Z
8 898,0,C,end,0,,2020-11-26T15:29:09.741Z

Listing 2.3: Example of an ordered application log file

1 898,0,C,start,0,2020-11-26T15:29:00.761Z

2 898,0, AD , charts/hull ,2.481,2020-11-26T15:28:59.928Z,2020-11-26T15:29:02.409Z

3 898,0, A , /api/charts/hull ,2.503,2020-11-26T15:28:59.920Z,2020-11-26T15:29:02.423Z

4 898,0, AD , map/cantons ,5.696,2020-11-26T15:28:59.950Z,2020-11-26T15:29:05.646Z

5 898,0, A , /api/map/cantons ,6.35,2020-11-26T15:28:59.919Z,2020-11-26T15:29:06.269Z

6 898,0, CA , loadingChartData ,2.543,2020-11-26T15:29:01.595Z,2020-11-26T15:29:04.138Z

7 898,0, CA , loadingMapData ,6.51,2020-11-26T15:29:01.595Z,2020-11-26T15:29:08.105Z
8 898,0,C,end,0,,2020-11-26T15:29:09.741Z

Listing 2.4: Example of an unordered application log file

23

To achieve a correct ordering and for easier access when inserting the database log entries
into the application log, the log entries of the database and application log are restructured. The
input of the function responsible for restructuring is an array of log entries in the application
log format. Each log entry is split into individual fields already. An example using the logs
from above is shown in listing 2.5. Only the first four rows of the logs above are shown, the
other rows follow the same principle.

1 [
2 [898,0,"C","start",0,"2020-11-26T15:29:00.761Z"],
3 [898,0,"AD","charts/hull",2.481,"2020-11-26T15:28:59.928Z","2020-11-26T15:29:02.409Z"],
4 [898,0,"A","/api/charts/hull",2.503,"2020-11-26T15:28:59.920Z","2020-11-26T15:29:02.423Z"],
5 [898,0,"AD","map/cantons",5.696,"2020-11-26T15:28:59.950Z","2020-11-26T15:29:05.646Z"],
6 ...
7]

Listing 2.5: Example of a correctly formatted log array used as input for restructuring

The desired output is a JavaScript Object. It is a key-value list of all query iterations. The
key consists of the queryId and the iteration. The value is a JavaScript Object consisting of an
array of log entries for each UI component. Additionally, there is an array with the start and
end log entry for C because it is not possible to map C to one specific UI component. Each
logEntry is an array, containing the fields of the log entry. An exemplary output using the input
from above is visualized in listing 2.6. The log entries are shortened for better visualization.

1 {
2 "898-0": {
3 "map": [

4 [898,0," AD "," map/cantons ",5.696,...],

5 [898,0," A "," /api/map/cantons ",6.35,...],

6 [898,0," CA "," loadingMapData ",6.51,...],
7],
8 "chart": [

9 [898,0," AD "," charts/hull ",2.481,...],

10 [898,0," A "," /api/charts/hull ",2.503,...],

11 [898,0," CA "," loadingChartData ",2.543,...],
12],
13 "table": [],
14 "C": [
15 [898,0,"C","start",0,"2020-11-26T15:29:00.761Z"],
16 [898,0,"C","end",0,,"2020-11-26T15:29:09.741Z"],
17]
18 }
19 }

Listing 2.6: Restructured log entries from listing 2.4

Insert database log entries into application logs

With the ordered application and database log everything is ready to insert the database log
entries into the application log. To do that, the system goes through all query iterations. For
each UI component in a query iteration the system searches for a corresponding log entry
in the database log. If there are multiple database log entries for one UI component (table
component) the log entry having the maximal duration of all log entries for this query iteration

24

and UI component is taken. The selected database log entry gets inserted into the application
log.

Calculate differential duration

The differential duration defines the difference between the whole duration of a timestamp
and the time of the next inner timestamp, e.g. CA has a duration of 20 seconds and A has a
duration of 8 seconds. Thus the differential duration of CA is: 20s − 8s = 12s. Following
subtractions are done for the differential duration: (D, AD, ... represent the duration of the
corresponding timestamp, which is calculated by subtracting the start time from the end time)

• Ddiff = D − 0

• ADdiff = AD −Dmax

• ADdiff = A− AD

• CAdiff = CA− A

• Cdiff = C − CAmax

Visualization

The collected timestamps get visualized in Microsoft Excel. The excel-document automati-
cally gets the data from different endpoints and visualizes them. The endpoints use the pre-
processing described above and then do aggregation operations so that MS Excel only needs
to do the visualization of the data. All durations visualized in Microsoft Excel are calculated
as an arithmetic mean of three measurements taken one after another. The used endpoints are:

• GET /api/logs/{{fileName}}/plots

for visualizing the performance of system components.

• GET /api/logs/{{fileName}}/plots/{{timestamp}}

for visualizing the performance of a timestamp for different UI components.

{{fileName}} is used to set the name of the log file(s) to be analysed. The application and
database log filename can be specified individually, separated by a comma, starting with the
application log filename. {{timestamp}} is used to set the timestamp to be analysed.

2.4. Database Optimization
In general, the process of optimization in a database is done in four different steps. First, an
overall picture of the database performance is measured. This first look can give an indicator
where the performance problem lies. If specific queries show a slow performance while the
rest of the system performs fine, it is very probable that the problem lies in the specific queries.
When the whole system has slow performance, the source of the problem can be more diverse.

25

The second step involves a detailed analysis of the problematic parts. Inefficient queries are
analysed with the help of the query plans generated by the optimizer. The goal is to find
out where the problem is located exactly and to find a solution. In the third step the found
solution is implemented. After the optimization, the query gets analysed again to see if the
improvement achieved its target. If the outcome is not satisfying steps two to four can be
redone, i.e. do another analysis, optimization, and evaluation.

To locate and optimize SQL statements it is important to have a profound understanding
of performance-relevant elements in a database system. In the next sections, the focus is on
describing the elements relevant for the optimization of the SQL statements in the feedbase.
Thus the further sections are written specifically for PostgreSQL databases.

2.4.1. Query Plans
PostgreSQL, like any other database system, creates different plans on how to execute a query.
Each plan has estimated costs, which are calculated based on the database statistics. The
database system then chooses the "optimal" query plan based on the estimations [4]. If the
estimates in the query plans are very different from the reality, the database can choose a non-
optimal plan. The query plan is crucial when it comes to understanding performance problems
because it contains detailed information about the query. This helps to find out which operation
was costly and how the query could be optimized. A query plan has the structure of a tree,
where the nodes are different actions a database system can perform (sort, aggregate, scan,
join, ...) [4]. The leaf nodes of the tree (nodes at the bottom level) are scan nodes, which
return raw rows from a table [4]. In PostgreSQL, the query plan is output with the EXPLAIN

statement. In such a query plan there is one line for each node in the tree showing the type of
the node and the cost estimates the query planner made for the execution of the node [4]. The
cost estimates are in an arbitrary unit and for example, cannot be transformed into seconds.
There can be additional lines for a node with more properties of the node [4]. These additional
pieces of information are indented from the node’s first line. Child nodes start with an arrow
("->") and are indented as well.

The EXPLAIN statement returns the query plan but doesn’t actually run the query. When us-
ing EXPLAIN ANALYZE the query is actually executed and PostgreSQL provides an enriched query
plan, that contains information about the execution time and the actual amount of rows output
by a node. This is extremely helpful to find nodes that the query planner over- / underesti-
mated.

2.4.2. Finding the Bottle-Neck in a Query Plan
We strongly suggest using EXPLAIN ANALYZE, which yields an enriched query plan that is still
readable. Most of the bottle-necks can be easily spotted by going through the query plan line
by line. The easiest way to read a query plan is to start at the innermost node because this
gets executed first. Inside a node, the cost estimation is the first thing to look at. The focus is
on big increases in costs compared to the previous (more inner) node. When a big increase is
found, the next step is to look at the actual execution time of the node. Is there a big increase
as well? Do the costs of that node make up the biggest part of the total costs? If yes, this node

26

is probably the bottle-neck. The second thing to look at is the estimated and actual row count.
In practice, these counts hardly ever are exactly the same. If the actual row count is way off,
i.e. 100x / 1000x more than the estimated row count, the query planner did a bad estimation.
This can eventually influence the query planner to choose a non-optimal plan.

1 GroupAggregate (cost= 32465.41 .. 32467.77 rows=1 width=48) [7]
2 Group Key: points.id, points.an_id, points.geom_number

3 -> Sort (cost= 32465.41 .. 32465.41 rows=1 width=28) [6]
4 Sort Key: points.id, points.an_id, points.geom_number

5 -> Merge Join (cost= 1749.44 .. 32465.40 rows=1 width=28) [5]
6 Merge Cond: ((points.id = stats.id) AND (points.an_id = stats.an_id))
7 Join Filter: st_equals(points.dp, st_makepoint(stats.day_normalized, stats.

quantity_normalized))

8 -> Sort (cost= 212.98 .. 219.93 rows=2782 width=48) [4]
9 Sort Key: points.id, points.an_id

10 -> Seq Scan on geometrypoints points (cost= 0.00 .. 53.82 rows=2782 width=48 [3]

11 -> Sort (cost= 1536.46 .. 1579.96 rows=17399 width=36) [2]
12 Sort Key: stats.id, stats.an_id

13 -> Seq Scan on statsnormalized stats (cost= 0.00 .. 310.99 rows=17399 width=36) [1]

Listing 2.7: Example of a query plan with a bottle-neck created with EXPLAIN

In listing 2.7 an example of a query plan with a bottle-neck is shown. For each row that is
read, the costs are analysed. In the query plan above the startup costs of a node are highlighted
in green, while the total costs are highlighted in blue. In the start-up costs the costs of the
child nodes are included. The total costs of the query is equal to the total costs of the first
line (32467.77 in the example). For an easier understanding of how to read such a query plan,
numbers in [], highlighted in orange, are displayed. They show the order in which the query
plan is read. The first row which is read is a scan node with a total cost of 310.99. The next
line is a sort node with 1579.96 total costs. The two sort nodes ([2] and [4]) are located on
the same level and have the same parent node. This implies that the costs of the parent only
include the costs of the largest child node. Node [4] is the last child node of node [5] that gets
visited. So the next node to be analysed is node [5]. One proceeds in this fashion until a large
increase in costs is discovered. The large increase is of course always relative to the total costs
of the query (32467.77). In this query plan, a large increase can be seen in line 5, which is
read as the fifth line. The startup costs of 1749.44 include 1579.96 from the child node with
the biggest costs. The startup costs are thus very small for this node. However the total costs
(32465.40) are very large. They are almost as high as the total costs. This shows, that the
current node is the bottle-neck in this query.

2.4.3. PostgreSQL’s Performance Enhancing Features
PostgreSQL offers a lot of features that can enhance performance drastically. In this section
Just-in-Time Compilation and Parallel Queries are presented.

Just-in-Time (JIT) compilation

Just-in-Time (JIT) compilation was introduced with PostgreSQL version 11. It is the process
of turning some form of interpreted program evaluation into a native program and doing so at

27

run time [5]. For example, instead of using general-purpose code that can evaluate arbitrary
SQL expressions to evaluate a particular SQL predicate like WHERE a.col = 3, it is possible to
generate a function that is specific to that expression and can be natively executed by the CPU,
yielding a speed-up [5]. For the expression WHERE a.col = 3 the result would be a function,
written in a low-level programming language, that evaluates the expression using background
information on this specific expression, e.g. the data type stored in column a.col and the spe-
cific condition of the expression = 3. JIT compilation is like having a software engineer sitting
between the database user and the database [6]. For each query the database user issues, the
software engineer writes a specific program (in C++ / Java ...) and hands it to the database
[6]. The database then executes this specialised program, which is faster than a general so-
lution. To write such a specific program, information about the data schema, the structure of
the query, and the data types is needed [6]. In PostgreSQL expression evaluation and tuple
deforming are accelerated by using JIT compilation [5]. Expression evaluation is the process
of evaluating aggregates, projections, WHERE clauses, and target lists [5]. Tuple deforming is the
procedure of transforming a tuple from the disk to its in-memory representation [5].

JIT compilation only makes sense for complicated queries with lots of input tables and ex-
pressions, because in that case, the acceleration is larger than the additional overhead needed
to do the JIT compilation. In this thesis, many expressions profited from the JIT compila-
tion. Therefore it is not possible to narrow down the usage of JIT compilation to specific
expressions, that profit a lot.

The summary of a query plan has a section for the JIT compilation, whenever it was used
in the SQL expression that was run.

Parallel Queries

PostgreSQL version 9.6 introduced support for parallel queries. This support has been im-
proved over time, especially with version 11 adding even more functionality [7]. The idea
behind parallel queries is simple: CPU-intensive tasks are split so that multiple workers can
work on the same task in parallel. At the time this thesis was written, sequential scans, in-
dex scans (btrees only), bitmap heap scans, joins (all types of joins), btree creation (CRE-
ATE INDEX), aggregation, and append can be done in parallel [7]. By default, the database
system automatically uses parallel queries, whenever it is possible and the use of parallel
queries potentially yields a speed-up. One can only configure how many parallel workers the
database system can use at maximum. The corresponding property in the configuration is
called max_parallel_workers_per_gather. In listing 2.8 an exemplary query plan of a join using a
parallel feature (parallel scan) is shown. Parallel queries are easily identified in the query plan
by the "Gather" node, highlighted in yellow. Every parallel query has this node to collect all
the data from the workers and do a final aggregation on it. In orange additional information
about the parallel execution is shown: the use of two workers is planned. In green, the parallel
node is highlighted, in this case, a parallel sequential scan.

28

1 -> Gather (cost=1000.57..54554.18 rows=6 width=4)

2 Workers Planned: 2
3 -> Nested Loop (cost=0.57..53553.58 rows=2 width=4)

4 -> Parallel Seq Scan on fact_table fact_table_1 (cost=0.00..53521.71 rows=2 width=12)
5 Filter: ((lims_number)::text <> ’0-const’::text) AND (id_nutrient_fkey = 112)
6 -> Index Only Scan using timekey_idx on d_time d_time_1 (cost=0.29..8.30 rows=1 width=4)
7 Index Cond: (time_key = fact_table_clean_1.id_time_fkey)

Listing 2.8: Excerpt of a query plan using parallel features, created with EXPLAIN

2.4.4. Spatial Indexes
Spatial indexing is a key part of spatial databases. Without indexing, every search would need
to do a sequential scan of every record in the database. With a spatial index, a search can
be accelerated by offering a tree structure to access a particular record quickly [8]. Especially
joins can benefit a lot from spatial indexes. When joining two tables with 10’000 records each,
without indexes PostGIS would require 100’000’000 comparisons. With the right indexes, the
costs can drop as low as 20’000 comparisons [8].

Figure 2.4.: Illustration to show the construction of a spatial index, source: [8]

In figure 2.4 the construction of a spatial index is shown. The left image shows the geo-
metric features, the middle image shows the features with their bounding boxes and the right
image shows the bounding boxes only. In contrast to standard database indexes that build a
hierarchical tree based on the values of the records, spatial indexes don’t build a tree based on
the geometric features themselves, but on the bounding boxes of these features. This leads to
a new problem. In the left image of figure 2.4 only one line intersects the star: the red line.
When looking at the bounding boxes, there are two features intersecting the yellow box: the
red and the blue box. The blue box is thus a false positive. The solution is a "two pass" sys-
tem. In the figure above the first pass would look at all bounding boxes and find the ones that
intersect the yellow box: the red and the blue box. In the second pass, the goal is to eliminate
the false positives. Therefore the geometric shape of the features is compared instead of the
bounding box, resulting in finding only the red line intersecting the yellow star. What speeds
up a database system is the first pass, reducing the number of needed calculations radically by
first evaluating the approximate index [8].

In PostgreSQL (with the PostGIS extension) a spatial index is defined with the follow-
ing command: CREATE INDEX "<index_name>"ON <relation_name> USING GIST (<attribute_name>);.
<index_name> is the name of the index to be created. <attribute_name> is the name of the spatial
attribute for which the index is created in the relation defined by its name in <relation_name>.

29

2.4.5. Spatial Joins
A spatial join is a join of two spatial features according to some predicate that makes use of
the spatial attribute values [9]. Simple examples for spatial joins are:

• "Combine all mountain tops with the canton they belong to."
mountain_tops join cantons on (point inside area)

mountain_tops and cantons are spatial features, that are joined with the predicate inside

using the spatial attributes point and area.

• For each cantonal border find the mountain tops within less than 500 meters.
mountain_tops join cantonal_borders on (distance(point,route) < 500)

mountain_tops and cantonal_borders are spatial features, that are joined with the predicate
distance(attribute1, attribute2) < 500 using the spatial attributes point and route.

(The examples were inspired by Güting [9])
Because spatial joining is a crucial operation, it is important that it is supported by spatial

indexing [9]. The precondition for a spatial join to use spatial indexes is, that at least one of
the operands in the join is represented in a spatial index.

If one operand of the spatial join has a spatial index, an index join can be used [9]. An index
join is a classic technique, that usually get used with B-tree indexes [9]. This strategy can be
used with spatial index structures as well [9]. The basic strategy of an index join is the same
as in a nested loop join. It uses two loops that are nested. The outer loop goes through all
rows in one table. The inner loop goes through all rows in the other table, for each of the outer
rows [7]. When comparing the row from the outer table with the rows from the inner table, an
attribute from the outer row can be used to search in the index of the inner table. This is the
difference between an index join and a nested loop join. For a spatial join, the inner table has
a spatial index on the joined attribute.

Figure 2.5.: Illustration to show a spatial join between rectangles and lines

Let’s look at an example of an index join. In figure 2.5 rectangles (dark and light blue)
and lines (yellow, orange, red, green) are shown with their bounding boxes (faded colour of

30

the feature). The rectangles are stored in a table called rectangles, the lines are stored in a
table called lines. Each table has a spatial index (using the bounding boxes). The following
query needs to be executed: For each rectangle, find the intersecting lines. More formally:
rectangles join lines on (intersect(lines,rectangles)). Because rectangles is the smaller ta-
ble, it is chosen as the outer table. The database system loops through every rectangle and
uses its bounding box to search for intersections in the index of lines. For the dark blue
rectangle, it finds the red and the yellow line in the index. For the light blue rectangle, the
orange and the green line are found. Even though the bounding box of the red line intersects
the bounding box of the dark blue rectangle, the line and the rectangle are not intersecting in
reality. This is a false positive and is removed in a second pass (as described in section 2.4.4).
Thus in the example, for each rectangles, two exact comparisons with lines have to be done.

If there was no spatial index on the tables in the example above, the database system would
need to check every line against every rectangle. In our example for both rectangles, five exact
comparisons would need to be done. This yields a total of 10 exact comparisons without an
index and only 4 exact comparison, when an index can be used. With a growing number of
objects, this can lead to bad performance when not using an index.

2.4.6. Common Table Expression (CTE) vs. Temporary Table
Common Table Expression

Common table expressions (CTEs), also known as the WITH clause, are commonly used to
make queries more readable. They are a nice way to execute things only once in a SQL
statement while reusing the result of it multiple times throughout the query [7].

The syntax for using a CTE in a statement is: WITH <cte name> AS (<selectcommand>) <statement>.
In a basic example, the CTE cte1 is created as the join of two tables table1 and table2. Then
everything from the CTE cte1 is selected. In PostgreSQL this would look like this:
WITH cte1 AS (SELECT * from table1 JOIN table2 on (table1.id = table2.id)) SELECT * FROM cte1;

In PostgreSQL versions pre 12, CTEs come with some drawbacks. First, the optimizer is
not able to inline the query to turn it into something faster. Secondly, the result of a CTE is
always calculated, like for an independent query. These two specialties hinder the optimizer
to do smart things and therefore CTEs can become optimization fences. Since PostgreSQL 12
the shortcomings in the optimizer are not a problem anymore, because version 12 has more
options to deal with CTEs smartly [7].

Temporary Table

Another option to structure queries is the use of temporary tables. In PostgreSQL a temporary
table can be created by adding the keyword TEMPORARY to the CREATE TABLE <tablename> statement,
yielding: CREATE TEMPORARY TABLE <tablename>. Per default temporary tables are usable within
the same session and are dropped when the session ends. There is an option to drop the
table when a transaction is ended. This option can be enabled by appending ON COMMIT DROP to
the CREATE TEMPORARY TABLE <tablename> statement [10]. Temporary tables can have indexes and
dedicated statistics like a normal table. Temporary tables are not analysed or vacuumed by the

31

PostgreSQL autovacuum daemon. When issuing complex queries it is therefore advisable to
run ANALYZE on the temporary table [10].

Comparison

A CTE is only usable for the statement that created the CTE. A temporary table is usable
during a whole session or transaction. An advantage of using temporary tables is the ability to
add indexes to them. This is not possible with CTEs. Creating accurate statistics with ANALYZE

is another benefit of temporary tables over CTEs. The downside of temporary tables is the cost
of initializing them. These costs are higher than for a CTE. Finally, CTEs are more readable
because the command to create a CTE is much shorter. In this thesis, it could be observed that
CTEs generally are less performant than temporary tables for large data sets. In section 5.1
the duration of a query was decreased from 4.2s to 2s only by replacing CTEs with temporary
tables.

Replace a CTE with a Temporary Table

To replace a CTE with a temporary table the scope of a temporary table must be similar
to the scope of a CTE. Per default temporary tables are available for the full session. It
is possible to change the scope of the temporary table to only the current transaction (by
adding ON COMMIT DROP as seen above). With this change, the scope of a temporary table is
roughly the same as the scope of a CTE. PostgreSQL offers a shorthand to create a tem-
porary table and fill it with data computed by a SELECT command - all in one statement:
CREATE TABLE <tablename> AS <selectcommand> [11]. Summarizing the findings, a CTE can be
replaced by a temporary table using the following command:
CREATE TEMPORARY TABLE <tablename> ON COMMIT DROP AS <selectcommand>.

32

3. Bottle-Neck Assessment

3.1. Timestamp Analysis
In figure 3.1 the mean of the timestamps in the three test-runs is shown. D has the highest
means in all test-runs. C is larger than AD, A, and CA, while A is only slightly higher than
AD and CA. The underlying data for figure 3.1 can be found in table B.1 in the appendix. The
means suggest that the bottle-neck can be found in timestamp D.

Figure 3.1.: Mean of the differential duration for all test-runs

Test-run C CA A AD D
1 6 1 0 0 30
2 11 0 0 0 26
3 9 1 0 0 27

Table 3.1.: Amount of times a timestamp had the longest duration in a query

In Table 3.1 it is shown that D often has the longest duration. C also takes the longest in
some queries. CA rarely takes the longest. A as well as AD never take the longest.

The visualizations of all results can be found in the appendix. During testing, some obser-
vations showed that timestamp C can be affected strongly by the client device. There were
increases of around 2s in timestamp C with the same setup on the server and the database,
e.g. query 794 in test-run 1. It is assumed that these large increases are due to some kind of
tasks that the client device ran in the background. For D there are some fluctuations as well,
e.g. query 153 in test-run 1 is higher than in test-run 2. An increase of 17s in D for a single

33

iteration in a test-run was observed. This major increase could be the result of a database
downtime or some other influence, that is not controllable. Apart from the above-described
differences, the results of the three test-runs look quite similar overall. A, AD, and D are quite
stable throughout the test-runs, while C varies more. CA is low in all test-runs over all queries.

3.2. Client UI Component Analysis
In the next step, it is investigated how the different client UI components (map, chart, and
table) are compared to each other. The client tier requests the information of these three UI
components in parallel and so the client tier can only show the whole user interface when all
UI components received their information. The biggest durations for CA and AD are very low
(around 0.6 seconds for CA and 0.5 seconds for AD in test-run 2). Because of this CA and
AD are not analysed further.

Figure 3.2.: Test-run 2: Duration of timestamp D for UI components for different queries

For timestamp D the results are consistent over all three test-runs. The results from test-run
2 are shown in figure 3.2. Chart queries can take very long but do so in only a few cases. Four
chart queries (747, 821, 822, 958) take between 7 and 24 seconds to complete. Table queries
take between 1 and 3 seconds in many cases. In queries 150 and 790 the table UI component
takes up to 5-6 seconds. Map queries mostly have durations shorter than a second. Only in
few cases, the duration rises slightly over one second, e.g. queries 823 and 898.

Besides timestamp D, timestamp A showed an interesting pattern as well. In figure 3.3 the
durations of timestamp A for the different client components are visualized. The duration of
timestamp A is very low for the chart and table UI component. The map UI component has
some queries where the duration is over 1 second, e.g. queries 821 and 822.

34

Figure 3.3.: Test-Run 2: Duration of timestamp A for UI components for different queries

3.3. Summary
Based on table 3.1 especially D and in some cases C can take a long time. In figure 3.1 it is
shown that D has big means, while AD, A, and CA have significantly lower means.

The table query sometimes has long durations in D. The chart query has very long durations
in D in few cases. The map component never takes longer than 1.5 seconds in D and therefore
is not that relevant for the very bad performance of the feedbase with some queries. Neverthe-
less timestamp A and D in the map component should also be considered if the performance
of each component should drop clearly below one second.

The results of the measurements suggest investigating D for the UI components chart and
table because they have a major impact on the performance. C has slightly higher means than
AD, A, and CA in figure 3.1, which suggests to also analyse C closer. Because C depends
heavily on the hardware of the client it would be interesting to look at C on other client
devices.

The hypothesis stated in the introduction can be approved partially. Based on the mea-
surements the main limiting part is the PostgreSQL database. Additionally, the client tier is
responsible for bad performance in some cases as well.

3.4. Validation of Analysis
Two validation-runs are done to confirm the method of measurement and the findings in the
analysis above. The validation-runs are executed on six selected queries listed in table 3.2.

3.4.1. Validation-Run 1: Blocking Code
In the first validation-run blocking code is added to different parts of the system. Blocking
code describes code that delays the system by a specific amount of time. The duration of the

35

Query ID Query Type Query Name
153 summary Nährstoffprofil des Futterkatalogs
428 summary neue Fettsäureanalytik_inArbeit
791 detail Rapssaat standard, RL, RLGC, RP
799 detail Futterrübe, Faserfraktionen
821 detail regionaler NEL-Gehalt in Dürrfutter 2005-2017
823 detail Berheu > 1000 m, 2005-2017

Table 3.2.: Queries selected for the validation-runs

blocking code is set to 5 seconds delay. 5 seconds is a noticeable delay, while the duration
of a validation-run is not affected much. This is important for the representativeness of a
validation-run. It should have roughly the same duration as a normal test-run, so that natural
fluctuations, i.e. in the network, are in the same order of magnitude. The system was extended
so that each UI component (map, chart, table) could be blocked in three different timestamps
(A, AD, D). The blocking can be activated by adding a query parameter to the URL (e.g.
blocking the map in timestamp AD is achieved by appending &block=mapAD to the URL).

The results in validation-run 1 support the method of measurement. In CA fluctuations
are observable in every measurement. Since CA has very small durations, these fluctuations
are negligible. When blocking different timestamps in the chart UI component an increase
in duration only for the blocked timestamp and no significant change of other timestamps
was observed. Also, the increase in duration for the blocked timestamp is always around
5 seconds, which is the delay the blocking code added. The same could be observed for
blocking different timestamps in the table UI component. When blocking A and AD in the
map UI component the observations for chart and table UI components could be confirmed.
The results for blocking D in the map UI component are shown in figure 3.4. On the left side,
the reference measurements for AD and D are displayed. On the right side, the measurements
of AD and D having blocking code in D for the map component are shown. When comparing
the durations of the map component in D (the lower plots) one can see that blocking the map
component in D increases the duration of D for the map component as expected. Interestingly
an increase in AD for all components (the upper plots) can be observed as well.

For further analysis of the increase in AD seen while blocking D in the map UI component,
this specific blocking was run another two times. In both measurements, AD showed no
increase while D increased by 5s as expected. Because other components also showed an
increase in AD in the initial measurement it is probable that the network connection between
A and D was slow at the time the measurement was made.

3.4.2. Validation-Run 2: Cache database results
In the second validation-run the database results are cached. Caching the database results is
done not only to support the method of measurement but to also have an impression of how the
performance of a perfectly optimized database would look like (durations around 0 seconds).
The database results are cached in json files on the application tier. Mapping the request to the

36

Figure 3.4.: Validation-Run 1: Block Map in D

cached files is done over the hash of the request body.
On the right-hand side of figure 3.5 timestamp D is zero for all queries. AD is not zero

because it includes the time the application tier needs to access and read the json-file. In
the case of query 153, the json-file is very large and therefore there is a long duration in
AD. Timestamps C, CA, and A perform in the same order of magnitude. This validation-
run shows, that it can be very effective to optimize D. The timestamps in validation-run 2
rarely have durations bigger than a second which results in a good performance. Of course, D
cannot be minimized by the amount they were minimized in this validation-run. Nevertheless,
a noticeable improvement of the performance is possible.

(a) Reference Measurement (b) Measurement with Database Caching

Figure 3.5.: Validation-Run 2: Performance Measurement with Database Caching

37

4. Chart UI Component Optimization

For the optimization, the SQL statement generated by the application for the chart query in
query 821 was used because in the performance analysis this query had long durations. The
full query can be found in listing C.1. The query uses 7 CTEs. To see how the execution time
is distributed over the CTEs and the final select statement, the CTEs were substituted with
temporary tables. This allows measuring each part separately. In figure 4.1 the duration of
every part is shown. One can see that query part 7 needs optimization. It takes more than 20s.
Additionally, query parts 1 and 4 are candidates for optimization.

Figure 4.1.: Execution Time of Chart Query Parts displayed with a logarithmic scale.

The query plan for part 7 is shown in figure 4.1. In line 1 the total costs are highlighted
in green. Going through the plan node by node, the node on line 6 stands out. The costs of
this join node are highlighted in orange. The node has 1749.44 startup costs, which include
1579.97 costs of the largest child (sort node in line 14). This yields a pretty small startup cost

of 1749.44−1579.97 = 169.48 for the join only. The total costs of the join node are very high,
32465 , and only marginally smaller than the total costs of the query: 32467.77 . Therefore

the join node in line 6 could be identified as the bottle-neck. To better understand what the
costly node does, one has to look at the corresponding SQL statement. It can be identified by
the additional information of the node. Lines 7 and 8 in the query plan state the join condition
over which one can find the corresponding part in the SQL statement.

The correlated part is shown in listing 4.2. The join uses a join condition including a non-
spatial (blue) and a spatial (brown) part. In his thesis, Valentin Weiss states that PostGIS
features, originally intended to be used with geographical data, can be used for any data having
a 2D/3D extent [12]. PostGIS allows the use of powerful clustering and grouping functions
needed to process the data for the scatter plot visualization [12]. This explains why there is a

38

spatial part in the join condition. A 2D space is used to compute the clustered points of the
scatter plot. In the first step, the tables are joined on the non-spatial join conditions (line 7 in
listing 4.1). In a second step, the results of the join are filtered by the spatial join condition
(line 8 in the query plan). Around 42 million rows are removed by the spatial join condition
(highlighted in yellow). This explains the very bad performance of the query. The database
system first computes a join resulting in around 42 million rows and then throws away most
of the rows to finally output only 1544 rows. The database system chooses such a bad plan
because there is no spatial index on the spatial attributes in the join condition. As described
in section 2.4.5 a database system is only able to efficiently evaluate spatial joins when at
least one spatial attribute has a spatial index. Because there is no spatial index, the predicate
st_equals is evaluated after joining the rows on the non-spatial join condition.

1 GroupAggregate (cost=32465.41.. 32467.77 rows=1 width=48) (actual time=23925.167..23928.204
rows=788 loops=1)

2 Group Key: points.id, points.an_id, points.geom_number
3 -> Sort (cost=32465.41..32465.41 rows=1 width=28) (actual time=23925.128..23925.208 rows

=1544 loops=1)
4 Sort Key: points.id, points.an_id, points.geom_number
5 Sort Method: quicksort Memory: 169kB

6 -> Merge Join (cost=1749.44..32465.40 rows=1 width=28) (actual time=6.186..23920.335

rows= 1544 loops=1)
7 Merge Cond: ((points.id = stats.id) AND (points.an_id = stats.an_id))
8 Join Filter: st_equals(points.dp, st_makepoint(stats.day_normalized, stats.

quantity_normalized))

9 Rows Removed by Join Filter: 42250144
10 -> Sort (cost=212.98..219.93 rows=2782 width=48) (actual time=0.695..2.277 rows=2588

loops=1)
11 Sort Key: points.id, points.an_id
12 Sort Method: quicksort Memory: 328kB
13 -> Seq Scan on temp_geometrypoints points (cost=0.00..53.82 rows=2782 width=48) (

actual time=0.008..0.358 rows=2588 loops=1)

14 -> Sort (cost=1536.46.. 1579.96 rows=17399 width=36) (actual time=4.845..2697.372
rows=42249101 loops=1)

15 Sort Key: stats.id, stats.an_id
16 Sort Method: quicksort Memory: 1660kB
17 -> Seq Scan on temp_statsnormalized stats (cost=0.00..310.99 rows=17399 width=36)

(actual time=0.007..2.468 rows=16326 loops=1)
18 Planning Time: 0.219 ms
19 Execution Time: 23928.290 ms

Listing 4.1: Query Plan of the join leading to slow performance

100 SELECT geom_number,
101 points.id AS id,
102 points.an_id AS an_id,
103 ST_MakePoint(EXTRACT(EPOCH FROM day - to_timestamp(0)) * 1000, avg_quantity) AS points
104 FROM temp_geometryPoints AS points, temp_statsNormalized AS stats

105 WHERE points.id = stats.id

106 AND points.an_id = stats.an_id

107 AND ST_Equals(dp, ST_MakePoint(day_normalized, quantity_normalized)) ;

Listing 4.2: Subquery of part 7 responsible for the long duration

To improve the performance of the problematic join, spatial indexes on both spatial at-
tributes in the st_equals predicate were created. Even though theoretically only one relation
(typically the larger relation) needs a spatial index to enhance join performance, indexes were

39

created for both relations. The reason for this is that in the future the smaller table could be
bigger than the larger one. With two indexes it is possible to join efficiently even in this case.
A spatial index was added on the attribute dp in the temporary table temp_geometryPoints with
the following command:

1 CREATE INDEX "_I_points_dp" ON temp_geometryPoints USING GIST (dp);

To provide a spatial index on the attribute ST_MakePoint(day_normalized, quantity_normalized)

a new temporary table that includes this attribute was created. The index was then created on
the new temporary table. Following commands were used to create the temporary table and
its spatial index:

1 CREATE TEMP TABLE temp_statsNormalizedGeom ON COMMIT DROP AS
2 SELECT
3 id,
4 an_id,
5 avg_quantity,
6 day,
7 ST_MakePoint(day_normalized, quantity_normalized) as stat_geom
8 FROM temp_statsNormalized;
9 CREATE INDEX "_I_stats_geom" ON temp_statsNormalizedGeom USING GIST (stat_geom);

The database system needs updated statistics so that it can choose an optimal query plan
using the newly created indexes. Therefore the ANALYZE command is issued after the indexes
are created using:

1 ANALYZE temp_geometryPoints;
2 ANALYZE temp_statsNormalizedGeom;

With this optimization, the duration of part 7 drops from almost 24 seconds to nearly a sec-
ond. The query plan of the optimized query (listing 4.3) shows the reason. The performance
improves so much because the database system can use spatial indexes. The details on how
spatial indexes help speed up a spatial join are described in section 2.4.5. Highlighted in or-
ange the query planner chose to do the scan on the inner table using the new spatial index on
temp_geometryPoints. As described in section 2.4.4 the lookup in a spatial index is a two-step
process, because the spatial index can generate false positive matches. In the query plan, these
two steps can be observed. The first step is highlighted in blue: doing the lookup in the in-
dex with an index condition. The second step is highlighted in green: filtering the results by
evaluating the spatial condition exactly to eliminate possible false positives.

The total duration decreased but the total costs (yellow) are much higher than in the original
query plan. It is assumed that this unexpected increase comes from the overestimation of the
number of rows returned from the join (red). The estimated row count is much higher than the
actual row count (brown).

40

1 HashAggregate (cost=1591579.15.. 1592189.85 rows=788 width=48) (actual time
=972.072..973.930 rows=788 loops=1)

2 Group Key: points.id, points.an_id, points.geom_number

3 -> Nested Loop (cost=0.14..1228594.80 rows= 229374 width=28) (actual time

=386.692..964.072 rows= 1544 loops=1)
4 -> Seq Scan on temp_statsnormalizedgeom stats (cost=0.00..332.26 rows=16326 width

=52) (actual time=0.020..3.562 rows=16326 loops=1)

5 -> Index Scan using _I_points_dp on temp_geometrypoints points (cost=0.14..75.22
rows=1 width=50) (actual time=0.034..0.034 rows=0 loops=16326)

6 Index Cond : (dp ~= stats.stat_geom)

7 Filter : ((stats.id = id) AND (stats.an_id = an_id) AND st_equals(dp, stats.
stat_geom))

8 Planning Time: 0.566 ms
9 JIT:

10 Functions: 13
11 Options: Inlining true, Optimization true, Expressions true, Deforming true
12 Timing: Generation 2.193 ms, Inlining 28.026 ms, Optimization 254.567 ms, Emission 102.868

ms, Total 387.654 ms
13 Execution Time: 976.350 ms

Listing 4.3: Query Plan for the optimized Join

4.0.1. Evaluation
The optimized query was implemented in the feedbase and measured. In figure 4.2 the dura-
tion of part 7 before and after the optimization is shown. In the optimized query, the duration
dropped by a large amount and is at around 1s now. With this optimization, the very long
durations of the database queries for the chart UI component could be eliminated. The target
of the optimization is achieved for all chart queries, except one. Query 821 still has a duration
of around two seconds.

(a) Reference (b) Optimized Query

Figure 4.2.: Measurement of the duration of chart query parts before and after optimization
displayed with a logarithmic scale.

41

5. Table UI Component Optimization

To analyse the table UI component in-depth the specific database query/queries that have a
poor performance were identified first. There are five database queries in the table component.
Three database queries are used for the table UI component in summary queries: Summa-
ryNutrients, SummaryResults and SummaryCount. Two database queries are used in detail
queries: DetailResults and DetailCount. DetailResults and SummaryResults are queries to
retrieve actual rows of the table (in a paginated manner). DetailCount and SummaryCount are
used to fetch the total count of rows for the specific query. Finally, SummaryNutrients is used
to retrieve data about specific nutrients.

Figure 5.1.: Duration of database queries for the table UI component.

In figure 5.1 the duration of all database queries related to the table UI component is visu-
alized. The measurements are taken from test-run 3. The queries with green bars are sum-
mary queries. The queries with blue bars are detail queries. SummaryNutrients is very fast.
For summary queries, SummaryResults always takes longer than SummaryCount. For detail
queries, DetailResults and DetailCount have similar durations. The underlying SQL state-
ments of SummaryResults and SummaryCount are very similar. The first one returns the
paginated rows while the second one only returns the count of all rows. The same can be ob-
served for the detail database queries. Optimizing the summary/detail queries therefore can be
done on either SQL statement while the performance improvement will be reflected on both
of them.

42

5.1. Optimization for Detail Queries
For the analysis, a generated SQL statement for DetailResults in query 790 was used. This
query took 6s to complete. The whole SQL statement is listed in the appendix in listing C.2.
Executing the unchanged query on a PostgreSQL version 13 installation yielded a duration of
around 750ms, opposed to 6s on PostgreSQL 9.6. In the query plans of the two PostgreSQL
versions, there are some differences.

First, the newer PostgreSQL version uses parallel features, which are identified by the
"Gather" node in the query plan excerpt in listing 5.1. The older PostgreSQL version uses
no parallel features. To prove that this improves the performance, the parallel features were
disabled manually and the execution times were measured. Disabling parallel features with
SET max_parallel_workers_per_gather = 0; yielded durations twice as big as with parallel fea-
tures enabled.

1 ...
2 -> Hash Join (cost=55554.42..106147.50 rows=1 width=86)
3 Hash Cond: (fact_table_clean.id_sample_fkey = fact_table_clean_1.id_sample_fkey)

4 -> Gather (cost=1000.00..51593.06 rows=6 width=90)
5 Workers Planned: 2
6 Workers Launched: 2
7 -> Parallel Seq Scan on fact_table_clean (cost=0.00..50592.46 rows=2 width=90)
8 Filter: ((id_nutrient_fkey = 112) AND (id_nutrient_analyses_fkey = 16))
9 Rows Removed by Filter: 936024

10 -> Hash (cost=54554.35..54554.35 rows=6 width=4)
11 Buckets: 2048 (originally 1024) Batches: 1 (originally 1) Memory Usage: 64kB
12 -> Unique (cost=54554.26..54554.29 rows=6 width=4)
13 -> Sort (cost=54554.26..54554.27 rows=6 width=4)
14 Sort Key: fact_table_clean_1.id_sample_fkey
15 Sort Method: quicksort Memory: 284kB

16 -> Gather (cost=1000.57..54554.18 rows=6 width=4)
17 Workers Planned: 2
18 Workers Launched: 2
19 ...

Listing 5.1: Excerpt from the Query Plan for DetailResults in PostgreSQL 13

Secondly, the newer version used JIT compilation. This can be seen based on the additional
node "JIT" in the query plan summary that is highlighted in yellow in listing 5.2. When
disabling JIT with SET jit = off; durations twice as big as with JIT compilation enabled were
observed.

1 Planning Time: 1.597 ms

2 JIT:
3 Functions: 68
4 Options: Inlining false, Optimization false, Expressions true, Deforming true
5 Timing: Generation 52.584 ms, Inlining 0.000 ms, Optimization 29.764 ms, Emission 171.603

ms, Total 253.951 ms
6 Execution Time: 782.382 ms

Listing 5.2: Query Plan Summary for DetailResults in PostgreSQL 13

By disabling the new performance-enhancing features of PostgreSQL version 13, it was
observed that each of the features helps to halve the duration of the selected query. Based on
these findings the database was upgraded from version 9.6 to 13, being the newest available
version at the time the thesis was written.

43

To assess the performance improvement from upgrading the PostgreSQL version a new test-
run was executed with a PostgreSQL 13 installation. With the new test-run, it was assessed
which database queries need optimization on the new version of PostgreSQL. The durations
are visualized in figure 5.2. The overall picture looks pretty similar to the analysis of test-run
3 from above. The new features in PostgreSQL 13 helped to improve the performance of
DetailCount and DetailResults. Query 790, which had a duration around 6s, dropped down to
under a second on version 13. Some DetailCount and DetailResults queries still had durations
that are similar to the durations before the update. Examples are queries 747 and 958. Further
investigation therefore focused on query 747 for DetailCount and DetailResults.

Figure 5.2.: Duration of database queries for the table UI component on PostgreSQL12.

In the query plan for DetailResults of query 747 row estimates, which are miles away from
the effective row count, were found. An excerpt of the query plan is shown in listing 5.3.
The part of the query plan corresponding to the join used for the folded CTE is shown. The
listing is simplified and the relevant estimates, as well as actual row counts, are highlighted in
yellow. The query planner did underestimate the count of the rows that are hashed (line 17).
This underestimation comes from an underestimation of the rows returned by the CTE in line
20. The hashing thus needed more than 10 times the amount of buckets as originally planned
(line 18). Additionally, the query planner overestimated the result rows of the hash join (line
8). This overestimation was propagated up to the sorting in line 4. Additionally, a lot of I/O is
happening. The Hash Join needs to read 76399 + 2758 blocks from the shared cache (line 10,
highlighted in orange).

1 GroupAggregate (cost=903340.14..1013847.00 rows=1730400 width=256) (actual time
=2469.735..2470.992 rows=50 loops=1)

2 Group Key: orderedbynutrient.row_number, fact_table_clean.lims_number, ...
3 Buffers: shared hit=76399, temp read=2758 written=3084

4 -> Sort (cost=903340.14..909665.05 rows=2529962 width=167) (actual time

=2469.665..2470.280 rows=555 loops=1)
5 Sort Key: orderedbynutrient.row_number, fact_table_clean.lims_number, ...
6 Sort Method: external merge Disk: 5576kB

44

7 Buffers: shared hit=76399, temp read=2758 written=3084

8 -> Hash Left Join (cost=199588.79..219198.03 rows=2529962 width=167) (actual time

=1850.584..2358.126 rows=52208 loops=1)
9 Hash Cond: ((fact_table_clean.lims_number)::text = (orderedbynutrient.lims)::text)

10 Buffers: shared hit=76399, temp read=2375 written=2385
11 -> Finalize GroupAggregate (cost=86809.78..105321.83 rows=86524 width=263) (actual

time=1057.303..1538.151 rows=52208 loops=1)
12 Group Key: fact_table_clean.lims_number, fact_table_clean.id_nutrient_fkey,

fact_table_clean.id_nutrient_analyses_fkey
13 Buffers: shared hit=9071, temp read=2126 written=2135
14 -> Gather Merge (cost=86809.78..98124.13 rows=81296 width=159) (actual time

=1057.236..1356.435 rows=52208 loops=1)
15 Workers Planned: 2
16 Workers Launched: 2

17 -> Hash (cost=112705.91..112705.91 rows=5848 width=19) (actual time=793.260..793.410

rows=20801 loops=1)
18 Buckets: 32768 (originally 8192) Batches: 1 (originally 1) Memory Usage: 1327kB
19 Buffers: shared hit=67328, temp read=249 written=250

20 -> Subquery Scan on orderedbynutrient (cost=112545.09..112705.91 rows=5848 width

=19) (actual time=767.685..787.228 rows=20801 loops=1)
21 Buffers: shared hit=67328, temp read=249 written=250

Listing 5.3: Wrong Estimates in the Query Plan for DetailResults in PostgreSQL 12

To decrease the buffer usage and enhance the row estimations the query was rewritten to use
temporary tables instead of CTEs. The resulting query ran in half the time (2s instead of 4.2s).
An excerpt of the query plan is shown in listing 5.4. It is simplified and the relevant estimates,
as well as actual row counts, are highlighted in yellow. The excerpt is showing the same join
as above. The query plan shows significantly less buffer usage than in the query with CTEs.
The join using CTEs read 76399 + 2758 blocks from the cache (listing 5.3, line 10), while the
join using temporary tables read 133 + 640 blocks from the cache and 958 blocks from the
disk storage (listing 5.4, line 10, highlighted in orange). The drastic decline of buffer usage
is most likely responsible for the decrease of the duration. The wrong estimation is not much
better compared to the query using CTEs.

1 GroupAggregate (cost=429291.32..477934.68 rows=459800 width=303) (actual time
=312.014..387.534 rows=5000 loops=1)

2 Group Key: orderedbynutrient.row_number, filtered.lims_number, ...
3 Buffers: local hit=133 read=958 written=957, temp read=1337 written=1341
4 -> Sort (cost=429291.32..432578.60 rows=1314912 width=214) (actual time=311.952..329.564

rows=52208 loops=1)
5 Sort Key: orderedbynutrient.row_number, filtered.lims_number, ...
6 Sort Method: external merge Disk: 5576kB
7 Buffers: local hit=133 read=958 written=957, temp read=1337 written=1341

8 -> Merge Right Join (cost=6153.95..25992.30 rows=1314912 width=214) (actual time

=153.915..219.369 rows=52208 loops=1)
9 Merge Cond: ((orderedbynutrient.lims)::text = (filtered.lims_number)::text)

10 Buffers: local hit=133 read=958 written=957, temp read=640 written=642
11 -> Sort (cost=1018.39..1046.98 rows=11438 width=66) (actual time=80.057..83.177 rows

=20801 loops=1)
12 Sort Key: orderedbynutrient.lims
13 Sort Method: quicksort Memory: 2351kB
14 Buffers: local hit=133

15 -> Seq Scan on orderedbynutrient (cost=0.00..247.38 rows=11438 width=66) (actual

time=0.007..3.083 rows=20801 loops=1)
16 Buffers: local hit=133
17 -> Materialize (cost=5135.56..5250.52 rows=22992 width=206) (actual time

=49.826..82.596 rows=52208 loops=1)

45

18 Buffers: local read=958 written=957, temp read=640 written=642
19 -> Sort (cost=5135.56..5193.04 rows=22992 width=206) (actual time=49.821..69.883

rows=52208 loops=1)
20 Sort Key: filtered.lims_number
21 Sort Method: external merge Disk: 5120kB
22 Buffers: local read=958 written=957, temp read=640 written=642

23 -> Seq Scan on filtered (cost=0.00..1187.92 rows=22992 width=206) (actual time

=0.028..20.872 rows=52208 loops=1)
24 Buffers: local read=958 written=957

Listing 5.4: Excerpt of a Query Plan for DetailResults in PostgreSQL 12 using temporary
tables instead of CTE’s

5.1.1. Evaluation
In figure 5.3 the duration of the database queries of the table UI component for detail queries is
shown. Only seven queries have durations of over 1 second. Three queries even take slightly
longer than two seconds. Although the duration of the queries decreased significantly, the
target of the optimization was not achieved for the table UI component of detail queries.

(a) Reference (b) Optimized Query

Figure 5.3.: Measurement of the duration of the table UI component for detail queries before
and after the optimization.

5.2. Optimization for Summary Queries
For the optimization of summary queries, the SummaryResults SQL statement for query 153
was used. The full query can be found in listing C.3. The query uses 4 CTEs. To see how
the execution time is distributed over the CTEs and the final select statement, the CTEs were
substituted with temporary tables. In figure 5.4 the durations of all parts are shown. The focus
of the optimization was on query parts 2 and 5 because they showed high durations.

5.2.1. Part 5
A closer look at figure 5.2 reveals that SummaryResults has significantly longer durations
than SummaryCount, e.g. query 153. This difference in duration is interesting because the
underlying SQL statements are very similar. SummaryResults returns the rows to be displayed,

46

Figure 5.4.: Execution Time of Summary Query Parts

while SummaryCount returns the count of all rows. Based on figure 5.2 the SQL statements of
query 153 is used for further analysis because it has long durations. When executing the SQL
statement of SummaryResults durations of around 6 to 8 seconds occurred. When running the
same statement with EXPLAIN ANALYZE durations of around 3 to 4 seconds were encountered. The
PostgreSQL documentation states that there can be a difference between the duration of the
statement and EXPLAIN ANALYZE of the same statement. The difference can be caused by network
transmission costs and I/O conversion costs. These costs are not included in the measurements
of EXPLAIN ANALYZE, because no rows are delivered to the client [4]. Based on this, the output
produced by SummaryResults was analysed in detail.

1 SELECT feed_key, fname, json_agg(nutrient) AS nutrients
2 FROM (

3 SELECT feedkey AS feed_key, nid AS nutrient_key, coalesce(f.nutrient, r.nutrient) AS
nutrient

4 FROM formulasfolded AS f FULL OUTER JOIN rowsfolded AS r

5 ON f.feed_key = r.feedkey AND f.nutrient_key = r.nid
6) as allNutrients

7 JOIN rows r ON r.feedkey = feed_key
8 GROUP BY feed_key, fname
9 ORDER BY fname DESC

10 LIMIT 50 OFFSET 0;

Listing 5.5: SQL statement for SummaryResults

In listing 5.5 the SQL statement of SummaryResults is shown. The WITH clause is excluded
because the focus lies on the final output. The SELECT clause in line 1 shows that the output
consists of three columns: feed_key | fname | nutrients. The LIMIT clause on the last line de-
fines that a maximum of 50 rows is returned. This means that the rows need to be large to
create high network transmission costs generating a noticeable difference in duration. Look-
ing at the columns of the output rows the third column can be identified as a possible large
column (in terms of size) because it is a json-object. The first and second columns cannot be
very large, because they have a fixed upper memory limit. The data in the first column is an
integer, while the data in the second is a varchar(255) string. The function json_agg(nutrient)

creates a json array of nutrients for the feed. A closer look at the aggregated nutrients shows

47

that each nutrient is in the array multiple times. The reason for this duplicate data is found
in the FROM clause in lines 2-7. First of all the CTE formulasfolded gets joined with the CTE
rowsfolded over the feed and the nutrient key (highlighted in yellow). formulasfolded consists of
all calculated nutrients for the requested feed. rowsfolded consists of all nutrients for the feed
that are raw values. The subselect outputs all nutrients of a feed, each nutrient on a separate
row. The column nutrient either consists of the raw value of the nutrient or the formula to
calculate the nutrient. This is done by the coalesce function (highlighted in orange), which
returns the first input argument that is not null. The input arguments f.nutrient and r.nutrient

are either null or json objects. The results of the subselect get joined with rows (highlighted in
blue). To better understand what goes on in this join an example is illustrated in table 5.1.

allNutrients
feed_key nutrient_key nutrient

900 3 nutrient_object_3
900 2 nutrient_object_2
900 5 nutrient_object_5
901 2 nutrient_object_2
901 10 nutrient_object_10

rows
nid raw_value feedkey fname
3 101.3 900 Feed 900
2 null 900 Feed 900
5 22.014 900 Feed 900
2 1.2 901 Feed 901

10 null 901 Feed 901

allNutrients ./feed_key=feedkey rows
feed_key nutrient_key nutrient nid raw_value feedkey fname

900 3 nutrient_object_3 3 101.3 900 Feed 900
900 3 nutrient_object_3 2 null 900 Feed 900
900 3 nutrient_object_3 5 22.014 900 Feed 900
900 2 nutrient_object_2 3 101.3 900 Feed 900
900 2 nutrient_object_2 2 null 900 Feed 900
900 2 nutrient_object_2 5 22.014 900 Feed 900
900 5 nutrient_object_5 3 101.3 900 Feed 900
900 5 nutrient_object_5 2 null 900 Feed 900
900 5 nutrient_object_5 5 22.014 900 Feed 900
901 2 nutrient_object_2 2 1.2 901 Feed 901
901 2 nutrient_object_2 10 null 901 Feed 901
901 10 nutrient_object_10 2 1.2 901 Feed 901
901 10 nutrient_object_10 10 null 901 Feed 901

Table 5.1.: Example for the problematic join in the SQL statement for SummaryResults

nutrient_object_x is a json object with information about the nutrient with id x. allNutrients
is the result of the subquery and consists of all nutrients for a feed with further information
on the nutrient. rows consists of all nutrients for a feed with further information on the feed.
To have information about the nutrients and the feed a join of the two relations is needed.
The join is done with the join condition feed_key = feedkey. Thus the result consists of a row
for each nutrient in allNutrients combined with every nutrient of the same feed from rows.
The join result gets grouped by the columns feedkey and fname. The rows that are grouped are

48

shown with a yellow and orange background colour in the join result. All nutrient_object_x

get aggregated into a json object using json_agg(). Thus with the current join condition, each
nutrient_object_x is present in the output 3 times instead of once. For a feed with n nutrients,
the output is an array that contains n2 json objects instead of n.

For the visualization, each nutrient in allNutrients must be combined with the same nu-
trient of the same feed from rows. This would assure that there are no duplicate nutrients
for a feed in the final result. To achieve that, the join condition can be extended with:
AND r.nid = nutrient_key. The result of the new join condition is shown in table 5.2. With

the new join condition the nutrient json aggregate consists of n objects instead of n2.

allNutrients ./feed_key=feedkey∧r .nid=nutrient_key rows
feed_key nutrient_key nutrient nid raw_value feedkey fname

900 3 nutrient_object_3 3 101.3 900 Feed 900
900 2 nutrient_object_2 2 null 900 Feed 900
900 5 nutrient_object_5 5 22.014 900 Feed 900
901 2 nutrient_object_2 2 1.2 901 Feed 901
901 10 nutrient_object_10 10 null 901 Feed 901

Table 5.2.: Result of the optimized join in the SQL statement for SummaryResults

Evaluation

In figure 5.5 the measurements before and after the optimization of part 5 are shown. The
difference of the duration of SummaryResults and SummaryCount has decreased significantly
for many queries, e.g. query 153 shows a decrease of around 2s for SummaryCount. This is
due to the smaller output in part 5 of the database query. The optimization of part 5 shows how
important restrictive join conditions are. In this query, the join condition was formulated to
open, which resulted in many duplicates. These duplicates get aggregated into a json-object.
The size of the json-object showed a quadratic growth before the optimization. With the
optimization, it was ensured that the json-object has a linear growing pattern.

(a) Reference (b) Optimized Part 5

Figure 5.5.: Measurement of the duration of the table UI component for summary queries
before and after the optimization of part 5.

49

5.2.2. Part 2
In the query plan of part 2, a scan on the relation d_nutrient was identified to take 2/3 of the
total duration. In listing 5.6 the corresponding part of the query plan is shown. The estimated
costs are highlighted in yellow and are very low. Highlighted in orange the actual time is very
large.

1 -> Seq Scan on d_nutrient (cost=0.00..17.74 rows=370 width=8) (

actual time=806.132..806.368 rows=370 loops=1)
2 Filter: ((specie_id IS NOT NULL) AND (group_id IS NOT NULL))
3 Rows Removed by Filter: 4

Listing 5.6: Excerpt of a Query Plan for SummaryResults

Listing 5.7 shows the subquery in part 2 that executes the long scan. In this subquery
three relations are joined. From the query plan, it is clear, that scanning relation d_nutrient

is responsible for the long duration. In the join condition, there is one condition that checks
if d_nutrient.nutrient_key is in a list of ids. The list of ids is constructed from strings, that
contain comma-separated ids. The string function regexp_split_to_table() is used for that. In
listing 5.7 the usages of regexp_split_to_table() are highlighted. To split a string by a single
character PostgreSQL offers unnest(string_to_array()). In the query above, the result is the
same as with regexp_split_to_table(). regexp_split_to_table() comes in handy if one wants
to split a string by a sequence of specific characters. However, this additional functionality
comes with a big trade-off in performance. Splitting by a regular expression has much higher
costs than splitting by a sequence of characters. Hsu and Obe state that with increasing string-
length the performance of regexp_split_to_table() gets worse, compared to the performance of
unnest(string_to_array()) [13].

30 SELECT
31 d_nutrient.nutrient_key AS nid,
32 reference_data.raw_value AS raw_value,
33 d_feed.feed_key AS feedkey,
34 COALESCE(d_feed.name_de, d_feed.name_en) AS fname
35 FROM
36 reference_data,
37 d_nutrient,
38 d_feed
39 WHERE
40 d_nutrient.nutrient_key = reference_data.nutrient_fkey
41 AND d_feed.feed_key = reference_data.feed_fkey
42 AND d_nutrient.specie_id IS NOT NULL
43 AND d_nutrient.group_id IS NOT NULL
44 AND d_feed.source = ’agroscope classified’
45 AND d_nutrient.nutrient_key IN (
46 SELECT DISTINCT id::integer FROM (

47 SELECT regexp_split_to_table(involved_nutrients_ids, E’,’) AS id FROM formulas
48) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL
49 UNION
50 SELECT DISTINCT id::integer FROM (

51 SELECT regexp_split_to_table(’251,195,...’, E’,’) AS id FROM formulas
52) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL
53)
54 AND d_feed.feed_key IN (802,734,...)
55 AND (
56 reference_data.u_group_id = 1
57 OR reference_data.u_group_id = 0
58)

50

59 ORDER BY feedkey, group_id, nid

Listing 5.7: Subquery of part 2 where a scan with a long duration is performed

The usages of regexp_split_to_table() were rewritten to use unnest(string_to_array()). The
resulting SQL command is shown in listing 5.8. The changes are highlighted in yellow. In
query part 3 another occurrence of regexp_split_to_table() was found and replaced.

1 SELECT DISTINCT id::integer FROM (

2 SELECT unnest(string_to_array(involved_nutrients_ids, E’,’)) AS id FROM formulas
3) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL
4 UNION
5 SELECT DISTINCT id::integer FROM (

6 SELECT unnest(string_to_array(’251,195,...’, E’,’)) AS id FROM formulas
7) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL

Listing 5.8: Optimized creation of a list of ids from a string of ids

Evaluation

Figure 5.6 shows the duration of the database queries for the table UI component of summary
queries before and after the optimization of part 2. The decrease in duration is very noticeable.
Not a single query has a duration that is longer than a second. In fact, most of the queries
have durations that are smaller than 0.5 seconds. The target of the optimization was achieved
for the table UI component of summary queries. The optimization of part 2 showed how
big the impact of expression evaluation on the performance can be. It is advisable to check
computationally expensive expressions like regexp_split_to_table() for their performance with
increasing input size. Bottle-necks can be eliminated by substituting the expression with a
simpler one, that scales better (if there is a possible substitute).

(a) Reference (b) Optimized Query

Figure 5.6.: Measurement of the duration of the table UI component for summary queries
before and after the optimization of part 2.

51

6. Evaluation of the optimization

6.1. Overall Performance
Figure 6.1 shows the difference in duration of the system components for all queries before
and after the optimization. The durations of D decreased a lot. Especially queries with long
durations before the optimization, e.g. query 821 or 153, profit a lot from the optimization.
The duration of timestamp D decreased by 8s in query 821 and by around 3.5 seconds in query
153. Summary queries show a decrease in AD, e.g. query 153. Because unnecessary data was
removed from the output, the output of the database got smaller. This affects AD directly. C,
CA and A show some minor differences. These differences are likely to be caused by natural
fluctuations.

Figure 6.1.: Difference between durations of system components before and after the opti-
mization.

The durations of D decreased a lot. In all the queries with long durations before the op-
timization a bottle-neck was found and eliminated. However the target of optimization was
not achieved. The duration of seven table queries exceeds the threshold of one second. Fur-
thermore, two map and one chart query have durations greater than a second. During the
optimization, it became clear that one second is a target that is hard to achieve. Most of the
queries need to join a handful of tables, with some tables that have a lot of data, e.g. 2 million
tuples in fact_table_clean. The joining of these tables is already optimized by having indexes

52

in the right places. Here the question arises if it even is possible to optimize the large joins
further and if yes, how big the gain in performance would be.

The mean of the measurements for the different timestamps is shown in figure 6.2. The
mean of D decreased as expected. The same goes for the mean of AD. The changes in A, CA,
and C are most likely caused by natural fluctuations and not a result of the optimization. The
difference between the means of D and C after the optimization is much smaller than before
the optimization. Because they are in the same order of magnitude now, further optimization
must focus not only on D but also on C.

Figure 6.2.: Mean of the duration of all timestamps before and after the optimization.

6.2. Scalability
The scalability of the optimized database queries was assessed. The goal of this evaluation
was to see how the optimized queries handle larger input data. This is crucial because the
data in the feedbase is growing steadily. To assess the scalability, tuples in two specific tables
were duplicated. The result was a set of tables with a specific amount of tuples, e.g. tables
with 1, 2, 4, 8, ... millions of tuples. For testing the scalability of the optimized queries,
the tables reference_data and fact_table_clean were chosen. The tables were selected because
they are used as inputs in the optimized queries. The measurements include I/O and network
transmission time of the result rows. At the time of the scalability test, reference_data had
around 250’00 tuples, while fact_table_clean had around 2.8 million tuples.

In figure 6.3a the durations of SummaryResults and SummaryCount with different sizes of
the table reference_data are shown. SummaryResults grows faster than SummaryCount, which
grows very slowly. The two underlying SQL statements of SummaryResults and Summa-
ryCount are very similar, except for the returned data: SummaryResults returns the count of
all rows, while SummaryCount returns a distinct amount of rows, i.e. 50 rows in the feedbase.
The growth of SummaryResults is due to a growing result size, causing network transmission
to take a long time. Even though SummaryResults always returns 50 rows, the rows them-
selves grow (in fact a json-object in one column of the result grows, as seen in section 5.2.1).
Figure 6.3b shows the durations of DetailResults, DetailCount, and the chart database query
with growing sizes of fact_table_clean. The chart database query grows slower than the table
database queries. DetailResults and DetailCount grow similarly. Overall the scalability test
revealed that the growth of the durations shows no signs of a strong growth, which would be an

53

(a) Summary Queries (b) Detail Queries

Figure 6.3.: Results of a scalability test for database queries before and after optimization.

obvious clue for bad scalability. The test also showed that if the feedbase has 16 million tuples
in fact_table_clean the chart query has a duration of 2 seconds, while the table queries take
around 4 seconds. This means that with around six times more data the optimized database
queries are still faster than the queries before the optimization with the original dataset.

54

7. Conclusion

This thesis evaluated the performance of the feedbase using an architecture-dependent under-
standing. A method of measuring performance in a multi-tier application was designed and
implemented. The PostgreSQL database was identified as the main limiting part, approving
the hypothesis of the evaluation. Additionally, the client tier was identified to be responsible
for bad performance in rare cases. The approach to measure performance in a multi-tier ap-
plication is applicable to any multi-tier application. It can be used as a guideline to implement
performance measurements.

Using the findings of the performance evaluation the optimization focused on the Post-
greSQL database. The detailed analysis of query plans was used to increase the performance
of the database. In the process of optimization, the PostgreSQL database was updated from
version 9.6 to version 13. The new version enhanced the performance because of the new
performance-enhancing features included in the new version. The use of spatial indexes
helped to speed up the database query for the chart UI component. By substituting CTEs
with temporary tables the table UI component was optimized. Furthermore replacing some
string functions improved performance. It was shown that the impact of expression evaluation
on the performance of queries can be very big. Last but not least unnecessary output data was
identified and removed, yielding a speed-up because of less I/O conversion costs.

Overall the optimization showed that is very important to keep the performance in mind
when writing database queries. Small details can create bottle-necks, e.g. choosing CTE’s in-
stead of temporary tables or choosing regexp_split_to_table() instead of unnest(string_to_array()).
Additionally, maintaining the system and updating all the components is of high importance to
ensure that the most recent features can be used. However, it is always possible that a system
has slow performance. In that case, it is important to use a systematic approach to analyse the
system top-down to find the main limiting parts.

The performance of the database tier was enhanced a lot. In all queries with long durations,
bottle-necks were identified and optimized. Nevertheless, there are still queries that don’t
reach the target threshold of one second. It was not assessed, whether these queries can be
optimized further or if the threshold of one second is not realistic. The scalability tests showed
that the optimized queries have different growing behaviours. No query showed a very fast
growth. The results indicate that the database queries will still be performant with six times
more data than now. However, the scalability tests are limited to specific database queries.
Therefore a meaningful prediction on the scalability of the feedbase cannot be derived from
the tests done in this thesis.

55

7.1. Future Work
Further investigation can be done on the target threshold of one second. It could be assessed if
the threshold is reachable and if no, what a realistic threshold would look like. The thesis only
assessed the performance of the initial visualization of the data in the feedbase. Future Work
could explore the performance of interactions and optimize them if needed. Furthermore,
the scalability of the feedbase could be assessed in total and not just for specific database
queries, e.g. how much data the UI components can handle. The feedbase could be extended
to guarantee good scalability. Because the performance of the optimized database tier is in the
same order of magnitude as the performance of the client tier, it would be interesting to analyse
the performance of the client tier in more detail. Finally, the performance measurements
showed that the server tier has durations greater than a second for delivering the data for the
map UI component. This specific part of the server tier could profit from optimization.

56

Bibliography

[1] The PostgreSQL Global Development Group. PostgreSQL - Error Reporting and Log-
ging. Nov. 2020. URL: https : / / www . postgresql . org / docs / 9 . 6 /
runtime-config-logging.html.

[2] Dominique Christina Hässig. “Development of Adaptive Heatmaps for Interactive Feed
Explorations”. BA thesis. University of Zurich, 2020.

[3] Mozilla Developer Network. Date.prototype.toISOString() - JavaScript | MDN. Nov.
2020. URL: https://developer.mozilla.org/en- US/docs/Web/
JavaScript/Reference/Global_Objects/Date/toISOString.

[4] The PostgreSQL Global Development Group. PostgreSQL - Using EXPLAIN. Dec.
2020. URL: https://www.postgresql.org/docs/9.6/using-explain.
html.

[5] The PostgreSQL Global Development Group. PostgreSQL - What is JIT compilation?
Nov. 2020. URL: https://www.postgresql.org/docs/current/jit-
reason.html.

[6] Rajsekhar Setaluri. Why You Need Just In Time (JIT) Code Compilation. Jan. 2021.
URL: https://www.thoughtspot.com/codex/why-you-need-just-
time-jit-code-compilation.

[7] Hans-Jürgen Schönig. Mastering PostgreSQL 12. Packt Publishing, 2019. ISBN: 1-
83898-882-3.

[8] PostGIS Project. PostGIS - Spatial Indexing. Dec. 2020. URL: https://postgis.
net/workshops/postgis-intro/indexing.html.

[9] Ralf Hartmut Güting. “An introduction to spatial database systems”. In: The VLDB
Journal 3.4 (Oct. 1994), pp. 357–399. ISSN: 0949-877X. DOI: 10.1007/BF01231602.
URL: https://doi.org/10.1007/BF01231602.

[10] The PostgreSQL Global Development Group. PostgreSQL - CREATE TABLE. Dec.
2020. URL: https : / / www . postgresql . org / docs / current / sql -
createtable.html.

[11] The PostgreSQL Global Development Group. PostgreSQL - CREATE TABLE AS. Dec.
2020. URL: https://www.postgresql.org/docs/13/sql-createtableas.
html.

[12] Valentin Weiss. “Development of a Dynamic Web Application”. BA thesis. University
of Zurich, 2018.

57

[13] Leo Hsu and Regina Obe. REGEXP_SPLIT_TO_TABLE AND STRING_TO_ARRAY
UNNEST PERFORMANCE. Jan. 2021. URL: http://www.postgresonline.
com/journal/archives/370-regexp_split_to_table-and-string_
to_array-unnest-performance.html.

58

Appendices

59

A. Glossary

A.1. Query Types

Query ID Query Name
150 Energiereiche Einzelfutter für Schweine (FS)
153 Nährstoffprofil des Futterkataloges
154 Einzelfutter für Wiederkäuer
158 Grünfutter für Wiederkäuer
161 Essenzielle Aminosäuren
214 Futter reich an Omega-3 Fettsäuren
255 Weizen und Nebenprodukte
428 neue Fettsäurenanalytik_inArbeit
528 Essentielle Aminosäuren in Raufutter
735 verdauliche Aminosäuren Schwein in TS
763 Gerste und Nebenprodukte
764 Hafer und Nebenprodukte

Table A.1.: Summary Queries and their ID’s

60

Query ID Query Name
517 Luzernemehl Streuung im Rohproteingehalt
518 Luzerneheu Praxis
733 Kartoffelprotein RP-Gehalt
736 Rapskuchen: RP, RL
747 Grassilage Praxis
789 Maiskleber, RP-Gehalt
790 Proteinerbsen, RP und RF
791 Rapssaat standard, RL, RLGC, RP
793 Rapssaat HOLL, MUFA, PUFA
794 Triticale, VES-Gehalt
795 Gerste P-Gehalt rückläufig
796 Gerste Fett-Gehalt f(Methode)
797 Maiskörner Fettparameter nach Kanton
799 Futterrübe, Faserfraktionen
801 Sojakuchen, RL und RP
807 Sonnenblumenkerne HO
817 Korrelation RP und RLGC>2011 in Rapssamen standard und HOLL
821 regionaler NEL-Gehalt in Dürrfutter 2005-2017
822 Heu 1. Schnitt: Zucker regionale Verteilung und Korrelation zu ADF
823 Bergheu > 1000 m, 2005-2017
838 Rapskuchen, Korrelation RP und RL
839 DCP, Ca und P
840 Sonnenblumenschrot, Korrelation RP und RF
898 Heuernte 2018
958 Maissilage Praxis

Table A.2.: Detail Queries and their ID’s

61

B. Performance Analysis

B.1. System Component Performance Test-run

Figure B.1.: Test-run 1: Performance of system components during different queries

Figure B.2.: Test-run 2: Performance of system components during different queries

62

Figure B.3.: Test-run 3: Performance of system components during different queries

63

B.2. Statistical Analysis

Timestamp Test-run 1: mean Test-run 2: mean Test-run 3: mean
D 1.380 1.340 1.418

AD 0.040 0.043 0.045
A 0.139 0.142 0.139

CA 0.075 0.089 0.102
C 0.408 0.469 0.526

Table B.1.: Statistical parameters for the differential duration of all three test-runs

64

C. SQL Statements
1 WITH
2 nutrients AS (
3 SELECT
4 lims_number,
5 id_nutrient_fkey AS id,
6 id_nutrient_analyses_fkey AS an_id,
7 AVG(quantity) AS avg_quantity,
8 MAX(COALESCE(t_day, to_date(t_year||’-01-01’, ’YYYY-MM-DD’))) AS day,
9 MIN(season_en) season,

10 MIN(COALESCE(d_feed.name_en, d_feed.name_de)) as feedname,
11 MIN(feed_key) as feedkey
12 FROM fact_table_clean
13 JOIN d_feed ON id_feed_fkey = feed_key
14 JOIN d_nutrient ON id_nutrient_fkey = nutrient_key
15 JOIN d_origin ON id_origin_fkey = origin_key
16 JOIN d_time ON id_time_fkey = time_key
17 JOIN d_nutrient_analyses ON id_nutrient_analyses_fkey = nutrient_analyses_key
18 WHERE
19 id_sample_fkey in (SELECT * FROM (
20 SELECT distinct id_sample_fkey
21 FROM fact_table_clean
22 JOIN d_time ON id_time_fkey = time_key
23 JOIN d_origin ON id_origin_fkey = origin_key
24 WHERE
25 lims_number <> ’0-const’
26 AND (id_feed_fkey IN (3,12,2,1)) AND (id_nutrient_fkey IN (’133’)) AND

id_nutrient_analyses_fkey IN (’7’) AND d_origin.canton IN (’Aargau’,’Appenzell
Ausserrhoden’,’Appenzell Innerrhoden’,’Baselland’,’Bern’,’Fribourg’,’Glarus’,’
Graubünden’,’Jura’,’Luzern’,’Neuchâtel’,’Nidwalden’,’Obwalden’,’Schaffhausen’,’
Schwyz’,’Solothurn’,’St. Gallen’,’Thurgau’,’Ticino’,’Uri’,’Vaud’,’Wallis’,’Zug’,’
Zürich’,’n/a’) AND ((d_time.moment = 1 OR d_time.moment = 2) AND d_time.t_year IN
(’2005’,’2006’,’2007’,’2008’,’2009’,’2010’,’2011’,’2012’,’2013’,’2014’,’2015’,’
2016’,’2017’))

27) AS all_lims)
28 AND (id_feed_fkey IN (3,12,2,1)) AND (id_nutrient_fkey IN (’133’)) AND

id_nutrient_analyses_fkey IN (’7’) AND d_origin.canton IN (’Aargau’,’Appenzell
Ausserrhoden’,’Appenzell Innerrhoden’,’Baselland’,’Bern’,’Fribourg’,’Glarus’,’Graub
ünden’,’Jura’,’Luzern’,’Neuchâtel’,’Nidwalden’,’Obwalden’,’Schaffhausen’,’Schwyz’,’
Solothurn’,’St. Gallen’,’Thurgau’,’Ticino’,’Uri’,’Vaud’,’Wallis’,’Zug’,’Zürich’,’n/
a’) AND ((d_time.moment = 1 OR d_time.moment = 2) AND d_time.t_year IN (’2005’,’
2006’,’2007’,’2008’,’2009’,’2010’,’2011’,’2012’,’2013’,’2014’,’2015’,’2016’,’2017’)
)

29 GROUP BY lims_number, id_nutrient_fkey, id_nutrient_analyses_fkey
30 ORDER BY lims_number
31),
32 -- Get the avg_quantity, day, global MIN and MAX values
33 nutrientStats AS (
34 SELECT
35 id,
36 an_id,
37 avg_quantity,
38 day,
39 (SELECT MIN(day) FROM nutrients) AS min_day,
40 (SELECT MAX(day) FROM nutrients) AS max_day,
41 (SELECT MIN(avg_quantity) FROM nutrients) AS max_quantity,
42 (SELECT MAX(avg_quantity) FROM nutrients) AS min_quantity

65

43 FROM nutrients
44),
45

46 -- normalize the avg_quantity and day dimensions
47 statsNormalized AS (
48 SELECT
49 id,
50 an_id,
51 avg_quantity,
52 day,
53 (EXTRACT(EPOCH FROM day - to_timestamp(0)) - EXTRACT(EPOCH FROM min_day - to_timestamp(0)

)) / ((EXTRACT(EPOCH FROM max_day - to_timestamp(0)) - EXTRACT(EPOCH FROM min_day -
to_timestamp(0))) + ((EXTRACT(EPOCH FROM max_day - to_timestamp(0)) - EXTRACT(EPOCH
FROM min_day - to_timestamp(0)))=0)::integer) AS day_normalized,

54 (avg_quantity - min_quantity) / ((max_quantity - min_quantity) + ((max_quantity -
min_quantity)=0)::integer) AS quantity_normalized

55 FROM nutrientStats
56),
57

58 -- Create Proximity Clusters of these points and overlay them with a concave hull
59 clustered AS (
60 SELECT
61 id,
62 an_id,
63 ST_ConcaveHull(unnest(ST_ClusterWithin(ST_MakePoint(
64 day_normalized,
65 quantity_normalized
66), 0.005)), 0.90, true) AS geometry
67 FROM statsNormalized
68 GROUP BY id, an_id
69),
70

71 -- Enumerate the clusters
72 clusteredEnumerated AS (
73 SELECT ROW_NUMBER() OVER (ORDER BY geometry) as geom_number, id, an_id, geometry FROM

clustered
74),
75

76 -- Split the cluster geometries to points
77 geometryPoints AS (
78 SELECT
79 geom_number,
80 id,
81 an_id,
82 (ST_DumpPoints(geometry)).geom AS dp
83 FROM clusteredEnumerated
84),
85

86 geometriesWithCenters AS (
87 SELECT id, an_id,
88 --ST_Centroid(points) AS center,
89 -- case: linestring
90 CASE WHEN COUNT(points) = 2 THEN
91 ST_MakeLine(points)
92 WHEN COUNT(points) > 2 THEN
93 -- case: polygon
94 ST_MakePolygon(ST_AddPoint(ST_MakeLine(points), ST_GeometryN(ST_Collect(points), 1)))
95 ELSE
96 -- case: point
97 ST_Collect(points)
98 END AS geometry
99 FROM (

100 SELECT geom_number,
101 points.id AS id,
102 points.an_id AS an_id,
103 ST_MakePoint(EXTRACT(EPOCH FROM day - to_timestamp(0)) * 1000, avg_quantity) AS points

66

104 FROM geometryPoints AS points, statsNormalized AS stats
105 WHERE points.id = stats.id
106 AND points.an_id = stats.an_id
107 AND ST_Equals(dp, ST_MakePoint(day_normalized, quantity_normalized))
108) as geoms
109 GROUP BY id, an_id, geom_number
110)
111

112 -- final json formatting for the client
113 SELECT
114 id, an_id,
115 json_agg(geometry) AS geometries
116 FROM (
117 SELECT
118 id, an_id,
119 json_build_object(’geometry’, geometry, ’center’, center) AS geometry
120 FROM (
121 SELECT
122 id, an_id,
123 ST_AsGeoJson(geometry)::json AS geometry,
124 ST_AsGeoJson(ST_Centroid(geometry))::json AS center
125 FROM geometriesWithCenters
126) as withCenters
127) as json
128 GROUP BY id, an_id

Listing C.1: Chart query with a duration of over 20s

1 WITH filtered AS (
2 SELECT
3 lims_number,
4 id_nutrient_fkey AS id,
5 id_nutrient_analyses_fkey AS an_id,
6 MAX(priority) AS priority,
7 CASE WHEN AVG(quantity) > 1 THEN
8 rtrim(ROUND(AVG(quantity)::numeric, 3)::text, ’0’)::numeric
9 ELSE rtrim(ROUND(AVG(quantity)::numeric, 5)::text, ’0’)::numeric

10 END AS avg_quantity,
11 MAX(COALESCE(t_day, to_date(t_year||’-01-01’, ’YYYY-MM-DD’))) AS day,
12 MIN(postal_code) AS postal_code,
13 MIN(origin_key) AS origin_key,
14 MIN(altitude_class) AS altitude,
15 MIN(season_de) season,
16 MIN(canton) AS canton,
17 MIN(COALESCE(d_feed.name_de, d_feed.name_en)) as feedname,
18 MIN(feed_key) as feedkey,
19 MIN(latitude) as latitude,
20 MIN(longitude) as longitude
21 FROM fact_table_clean
22 JOIN d_feed ON id_feed_fkey = feed_key
23 JOIN d_nutrient ON id_nutrient_fkey = nutrient_key
24 JOIN d_origin ON id_origin_fkey = origin_key
25 JOIN d_time ON id_time_fkey = time_key
26 JOIN d_nutrient_analyses ON id_nutrient_analyses_fkey = nutrient_analyses_key
27 WHERE
28 id_sample_fkey in (SELECT * FROM (
29 SELECT distinct id_sample_fkey
30 FROM fact_table_clean
31 JOIN d_time ON id_time_fkey = time_key
32 JOIN d_origin ON id_origin_fkey = origin_key
33 WHERE
34 lims_number <> ’0-const’
35 AND (id_feed_fkey IN (834)) AND (id_nutrient_fkey IN

(112,180,144,158,163,160,159,142))
36) AS all_lims)
37 AND (id_feed_fkey IN (834)) AND (id_nutrient_fkey IN (112,180,144,158,163,160,159,142))

67

38 GROUP BY lims_number, id_nutrient_fkey, id_nutrient_analyses_fkey
39 ORDER BY lims_number
40),
41

42 orderedByNutrient AS (
43 SELECT
44 ROW_NUMBER() OVER (ORDER BY AVG(quantity) DESC),
45 lims_number AS lims
46 FROM fact_table_clean
47 JOIN d_feed ON id_feed_fkey = feed_key
48 JOIN d_nutrient ON id_nutrient_fkey = nutrient_key
49 JOIN d_origin ON id_origin_fkey = origin_key
50 JOIN d_time ON id_time_fkey = time_key
51 JOIN d_nutrient_analyses ON id_nutrient_analyses_fkey = nutrient_analyses_key
52 WHERE
53 id_sample_fkey in (SELECT * FROM (
54 SELECT distinct id_sample_fkey
55 FROM fact_table_clean
56 JOIN d_time ON id_time_fkey = time_key
57 JOIN d_origin ON id_origin_fkey = origin_key
58 WHERE
59 lims_number <> ’0-const’
60 AND id_nutrient_fkey = 112
61 AND id_nutrient_analyses_fkey = 16
62) AS all_lims)
63 AND id_nutrient_fkey = 112
64 AND id_nutrient_analyses_fkey = 16
65 GROUP BY lims_number
66),
67

68 folded AS (
69 SELECT
70 -- lims number only visible for admin users
71 regexp_replace(lims_number, ’\S+(\S$)’, ’xxx-\1’, ’g’) AS lims_number,
72 array_agg(id) AS ids,
73 array_agg(an_id) AS an_ids,
74 array_agg(avg_quantity) AS avg_quantities,
75 feedname,
76 feedkey,
77 season,
78 canton,
79 postal_code,
80 day,
81 false as highlight
82 FROM filtered
83 LEFT JOIN orderedByNutrient ON lims_number = orderedByNutrient.lims
84

85 GROUP BY lims_number, feedname, feedkey, season, canton, postal_code, day ,
row_number

86 ORDER BY row_number
87)
88 SELECT * FROM folded LIMIT 50 OFFSET 0

Listing C.2: DetailResults query with a duration of around 6s

1 WITH formulas AS (
2 SELECT
3 id_feed AS feed_key,
4 nutrient_fkey AS nutrient_key,
5 regexp_replace(expanded_formula_eval, ’coalesce\(.[^+*/()-]{1,30}’,’(’,’g’) AS

expanded_formula_eval,
6 involved_nutrients_ids,
7 correct
8 FROM
9 t_formula_feed

10 JOIN t_formula ON t_formula_feed.id_formula = t_formula.id

68

11 JOIN d_feed ON d_feed.feed_key = t_formula_feed.id_feed
12 WHERE
13 t_formula.nutrient_fkey IN

(251,195,129,120,122,40,180,127,1,117,206,136,86,5,194,132,176,178,142,160,
154,133,158,248,88,145,163,6,159,186,234,141) AND

14 d_feed.feed_key IN
(802,734,889,745,746,738,739,806,774,741,733,811,747,748,753,754,758,752,763,
789,762,769,772,778,773,749,750,759,760,780,775,807,856,801,810,768,814,791,
793,809,786,798,795,785,790,815,812,799,832,792,796,797,803,804,808,824,829,
835,842,843,846,822,847,816,826,825,841,823,800,830,831,836,837,838,839,852,
853,864,868,851,911,910,865,714,859,888,862,909,858,875,876,850,854,861,855,
884,885,886,887,894,906,900,899,848,881,891,883,902,873,901,863,867,702,712,
716,699,695,719,697,720,715,711,713,722,717,721,874,710,890,725,905,908,727,
840,784,898,897,845,687,686,691,805,1298,878,685,766,827,907,1321,893,705,
833,895,698,735,751,849,742,740,903,880,813,828,877,708,709,776,781,857,860,
782,767,736,770,783,761,821,871,696,688,684,692,707,703,706,700,701,704,726,
723,724,779,689,693,694,732,728,730,731,690,744,755,756,764,771,777,765,834,
844,879,892,896,904,817,818,819,820,729,743,737,869,870,882,718,787,788, 872,
912,757) AND

15 t_formula.abbr_generic_de IS NOT NULL AND
16 (rtrim(t_formula.abbr_generic_de) NOT LIKE ’%TS]’)
17),
18

19 rows AS (
20 SELECT
21 nid,
22 CASE WHEN raw_value > 1 THEN
23 rtrim(ROUND(raw_value::numeric, 3)::text, ’0’)::numeric
24 ELSE
25 rtrim(ROUND(raw_value::numeric, 5)::text, ’0’)::numeric
26 END AS raw_value,
27 feedkey,
28 fname
29 FROM (
30 SELECT
31 d_nutrient.nutrient_key AS nid,
32 reference_data.raw_value AS raw_value,
33 d_feed.feed_key AS feedkey,
34 COALESCE(d_feed.name_de, d_feed.name_en) AS fname
35 FROM
36 reference_data,
37 d_nutrient,
38 d_feed
39 WHERE
40 d_nutrient.nutrient_key = reference_data.nutrient_fkey
41 AND d_feed.feed_key = reference_data.feed_fkey
42 AND d_nutrient.specie_id IS NOT NULL
43 AND d_nutrient.group_id IS NOT NULL
44 AND d_feed.source = ’agroscope classified’
45 AND d_nutrient.nutrient_key IN (
46 SELECT DISTINCT id::integer FROM (
47 SELECT regexp_split_to_table(involved_nutrients_ids, E’,’) AS id FROM

formulas
48) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL
49 UNION
50 SELECT DISTINCT id::integer FROM (
51 SELECT regexp_split_to_table(’

251,195,129,120,122,40,180,127,1,117,206,136,86,5,194,132,176,178,142,160,
154,133,158,248,88,145,163,6,159,186,234,141’, E’,’) AS id FROM formulas

52) AS involved_ids WHERE id <> ’NULL’ AND id IS NOT NULL
53)
54 AND d_feed.feed_key IN

(802,734,889,745,746,738,739,806,774,741,733,811,747,748,753,754,758,752,763,
789,762,769,772,778,773,749,750,759,760,780,775,807,856,801,810,768,814,791,
793,809,786,798,795,785,790,815,812,799,832,792,796,797,803,804,808,824,829,
835,842,843,846,822,847,816,826,825,841,823,800,830,831,836,837,838,839,852,

69

853,864,868,851,911,910,865,714,859,888,862,909,858,875,876,850,854,861,855,
884,885,886,887,894,906,900,899,848,881,891,883,902,873,901,863,867,702,712,
716,699,695,719,697,720,715,711,713,722,717,721,874,710,890,725,905,908,727,
840,784,898,897,845,687,686,691,805,1298,878,685,766,827,907,1321,893,705,
833,895,698,735,751,849,742,740,903,880,813,828,877,708,709,776,781,857,860,
782,767,736,770,783,761,821,871,696,688,684,692,707,703,706,700,701,704,726,
723,724,779,689,693,694,732,728,730,731,690,744,755,756,764,771,777,765,834,
844,879,892,896,904,817,818,819,820,729,743,737,869,870,882,718,787,788,872,
912,757)

55 AND (
56 reference_data.u_group_id = 1
57 OR reference_data.u_group_id = 0
58)
59 ORDER BY feedkey, group_id, nid
60) aa
61),
62 formulasfolded AS (
63 SELECT feed_key, nutrient_key,
64 json_build_object(
65 ’id’, nutrient_key,
66 ’involved_nutrients’, json_agg(json_build_object(
67 ’nutrient_id’,involved_id,
68 ’raw_value’, raw_value
69)),
70 ’formula’, expanded_formula_eval) as nutrient
71 FROM (
72 SELECT feed_key, nutrient_key, involved_id::integer, expanded_formula_eval
73 FROM (
74 SELECT feed_key, nutrient_key,
75 regexp_split_to_table(involved_nutrients_ids, E’,’) AS involved_id,
76 expanded_formula_eval
77 FROM formulas
78) AS split
79 WHERE involved_id <> ’NULL’ AND involved_id <> ’’
80) AS mapping
81 JOIN rows ON feedkey = feed_key AND nid = involved_id
82 GROUP BY feed_key, nutrient_key, expanded_formula_eval
83

84),
85 rowsfolded AS (
86 SELECT
87 feedkey,
88 nid,
89 json_build_object(
90 ’id’, nid,
91 ’involved_nutrients’, json_agg(json_build_object(
92 ’nutrient_id’,nid,
93 ’raw_value’, raw_value
94)),
95 ’formula’, NULL) as nutrient
96 FROM rows
97 GROUP BY feedkey,nid,fname)
98

99

100

101

102 SELECT feed_key, fname, json_agg(nutrient) AS nutrients
103 FROM (
104 SELECT feedkey AS feed_key, nid AS nutrient_key, coalesce(f.nutrient, r.nutrient) AS

nutrient
105 FROM formulasfolded AS f FULL OUTER JOIN rowsfolded AS r
106 ON f.feed_key = r.feedkey AND f.nutrient_key = r.nid
107) as allNutrients
108 JOIN rows r ON r.feedkey = feed_key
109

110

70

111 GROUP BY feed_key, fname
112 ORDER BY fname DESC
113 LIMIT 50 OFFSET 0;

Listing C.3: SummaryResults query

71

