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Abstract: One of the research areas that has received more

and more interest during the last years is the development of

driver assistant systems and semi-autonomous cars. However,

densely populated environments like city centers are still a

challenge for the operation of such systems. In this paper, we

present approaches to two of the major tasks for autonomous

driving in urban environments: self-localization and ego-

motion estimation and detection of dynamic objects such as

cars and pedestrians. For each of these tasks we present a

summary of the techniques we employ and results on real

data. All modules have been implemented and tested on our

autonomous car platform SmartTer.

I. INTRODUCTION

Over the last two decades, we have assisted to a

rapid research progress in driver assistance systems.

Some of these systems have even reached the market

and have become nowadays an essential tool for driv-

ing. GPS navigation systems are probably the most

significant ones. They have revolutionized the way

of traveling and certainly facilitated research towards

fully autonomous navigation in outdoor environments.

Results of autonomous driving in a mock urban en-

vironment have been very successfully demonstrated

during the 2007 DARPA Urban Challenge [1] where

vehicles had to navigate autonomously while obeying

all traffic regulations. Additionally, they had to take

“intelligent” decisions in real-time based on the ac-

tions of other vehicles like for negotiating priorities.

However, there are still numerous challenges that have

to be solved in view of fully autonomous navigation of

cars in very cluttered environments. Especially in city

centers, where many different kinds of transportation

systems are encountered (walking, cycling, driving,

etc.), the requirements for an autonomous system are

very high. The key prerequisites for such systems are

localization and ego-motion estimation and reliable

detection and tracking of dynamic objects.

Both localization and dynamic obstacle detection

are challenging. Even when GPS is available, local-

ization accuracy can become as bad as 50 meters in

urban areas. This prevents the vehicle from accurately

recognizing where it is. Additionally, detection of

pedestrians and other vehicles is still nowadays far

from being failure-free. Compared to vehicles, pedes-

trians are obviously very vulnerable as they are not

endowed with protections. According to the annual

traffic accident statistics published by the Touring Club

Switzerland (TCS) 1, over the last 30 years there has

been a decrease in the number of dead and seriously

injured persons due to the growing availability of

driving safety systems. At the same time, however, we

have also seen an increase in the number of dead and

injured pedestrians due to the fact that it is usually

motorists and cyclists, but not pedestrians, who benefit

from such safety systems. One way to tackle this

problem is therefore to build more intelligent cars able

to avoid potential collision with pedestrians.

In this paper, we address the problem of localization

and ego-motion estimation and reliable detection and

tracking of dynamic objects. For each of these tasks we

present new approaches. They have been implemented

and tested on an autonomous robotic platform based

on a Smart car that is equipped with several sensors

(see Fig. 1, left).

This paper is organized as follows. In Sec. II we

present our approach to estimate the ego-motion of

the vehicle by just using the visual input from a

single omnidirectional camera. Sec. III describes our

algorithm to detect cars and pedestrians from camera

and 2D laser data. Finally, Sec. IV concludes the

paper.

II. MONOCULAR VISUAL MOTION ESTIMATION

A. Overview

In this section, we will show how a single omni-

directional camera can be used for accurate motion

estimation and mapping without using the information

from any other sensors.

The problem of recovering relative camera poses and

3D structure from a set of monocular images has been

1http://www.tcs.ch/main/de/home/sicherheit/infrastrukturen/
statistik unfalle.html



Fig. 1. The autonomous robot SmartTer developed at the Au-
tonomous Systems Lab at the ETH Zurich. For the ego-motion
estimation presented in this paper, we use the omnidirectional camera
mounted on the roof, while the front laser, the perspective camera,
and the rotating 3D scanner are used for detection and tracking
of pedestrians and cars. The other static lasers are for collision
avoidance, which is not covered in this paper.

largely studied for many years and is known in the

computer vision community as “Structure From Mo-

tion” (SFM) [2] or visual odometry. Successful results

with only a single camera and over long distances

(from hundreds of meters up to kilomeers) have been

obtained in the last decade using both perspective and

omnidirectional cameras (see [3], [4], [5], [6], [7], [8],

[9], [10], [11], [12]).

Closely related to structure from motion is what

is known in the robotics community as Simultaneous

Localization and Mapping (SLAM), which aims at es-

timating the motion of the robot while simultaneously

building and updating the environment map. SLAM

has been most often performed with other sensors than

regular cameras, however in the last years successful

results have been obtained using single cameras alone

(see [13], [14], [15], [16]).

The term visual odometry was coined only in 2004

by Nister [6] who presented the first visual odometry

system using a binocular camera (i.e. stereo camera).

In this section, conversely, we are concerned about

monocular camera. This problem involves extracting

point correspondences between two camera images and

using well known theory from Algebra and Geometry

to determine both camera displacement and 3D struc-

ture up to a scale. The absolute scale can be determined

by using multiple cameras or using the information

from other sensors. The minimum number of points to

estimate motion and structure is 5, as 5 is the number

of parameters which describe the unconstrained motion

up to a scale (in fact, we have 6 degrees of freedom

minus the unknown scale).

Using cameras instead of other sensors for com-

puting ego-motion allows for a simple integration of

ego-motion data into other vision based algorithms,

such as obstacle, pedestrian, and car detection, without

the need for calibration between sensors. This reduces

maintenance and cost. Furthermore, vision has been

shown to provide better motion estimates than wheel

encoders. Because of this, automobile industries are

considering to integrate visual odometry systems in

future generation cars. This will be used to replace

GPS in GPS denied environments or when the GPS

information is not reliable due to multipath or poor

satellite coverage. Other vehicle on-board sensors like

compass and IMU will be used to boost the estimation

in case of poor visibility or unfavorable conditions.

While there exist nowadays a wide availability of

algorithms for motion estimation using video input

alone, cameras are still little integrated in the motion

estimation system of a mobile robot and even less in

that of an automotive vehicle. The main reasons for

this are the following:

• several algorithms can still only work off-line or

at low frame-rate,

• others need high processing power or expensive

and dedicated processors,

• many algorithms are quite complex to use or are

designed for specific cameras,

• many algorithms assume static scenes and cannot

cope with dynamic and cluttered environments or

huge occlusions by other passing vehicles (like

what happens in typical urban environments in

real traffic with other moving cars, buses, trams

and pedestrians, sudden changes of speed, etc.),

• the data-association problem (feature matching

and outlier removal) is not completely robust and

can fail,

• the motion estimation scheme usually requires

many keypoints and can fail when only a few key-

points are available in almost absence of structure.

To recap, visual odometry is a data association

problem. As shown in the literature, the best results are

obtained with an omnidirectional camera as features

can be tracked longer and more robustly over time.

However, the biggest problem of visual odometry re-

mains and is data association. Indeed, matched points

contain many outliers that must be detected and re-

moved for the motion to be accurately estimated. In the

last few years, a very established method for removing

outliers has been the “5-point RANSAC” algorithm,

developed by Nister [17], which needs a minimum

of 5 point correspondences to estimate the model

hypotheses. Because of this, however, it can require

from several hundreds up to thousands of iterations



to find a set of points free of outliers. In the best

implementation, this algorithm runs between 10-20 Hz,

which is still too slow for automotive applications.

In our previous work [10], [11], [12], we showed

that all the above mentioned areas can be improved

by using a restrictive motion model which allows us

to parameterize the motion with only 1 feature corre-

spondence. Using a single feature correspondence for

motion estimation is the lowest model parameterization

possible and results in the most efficient algorithms for

outlier removal and motion estimation.

B. Our Approach: Exploiting Nonholonomic Con-

straints

Our approach exploits the nonholonomic constraints

of wheeled vehicles, that is, they possess an Instan-

taneous Center of Rotation (ICR). Cars are typical

examples of such vehicles. As everybody experiences

in driving, one needs to act on the steering to change

the direction of the car. What actually happens in

practice is that the two front wheels are turned of

a slight different angle to make the vehicle move

instantaneously along a circle and, thus, turn about

the ICR (Fig. 2). As the reader can perceive, the

motion of a camera installed on the vehicle can be

then locally described with circular motion; straight

motion can be represented along a circle of infinite

radius. This constraint reduces the degrees of free-

dom of the motion to two, namely the rotation angle

and the radius of curvature. The first consequence

is that only one feature correspondence suffices for

computing the epipolar geometry (in fact up-to-scale

circular motion is described only by the rotation angle).

This allows motion to be computed also from scenes

where structure is almost absent, provided that at least

one feature is available. The second consequence is

a very efficient method for removing outliers can be

implemented, which we called “1-Point RANSAC”

[11]. Using our motion estimation algorithm we were

able to process frames up 400 Hz, which is, to the best

of our knowledge, the most efficient motion estimation

algorithm.

A detailed description of our 1-Point RANSAC

algorithm as well as the mathematical derivation of the

motion parameters using the nonholonomic constraints

can be found in the our previous work [11] and its

follow-up [12]. In the latter, we show that by exploiting

the nonholonomic constraints we can even estimate the

absolute scale from a single camera without using any

user input, nor the odometry of the vehicle.

C. Results

Our motion estimation method has been successfully

tested on our autonomous car (a Smart) which is

equipped with an omnidirectional camera. A picture of

our vehicle with the omnidirectional camera is shown

in Fig. 1. Our omnidirectional camera is composed of
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Fig. 2. General Ackermann steering principle.

Fig. 3. Recovered 3D map and camera positions: top view.

a hyperbolic mirror (KAIDAN 360 One VR) and a

digital color camera (SONY XCD-SX910, image size

640× 480 pixels). For calibrating the camera we used

the toolbox described in [18] and available from [19].

The vehicle speed ranged between 0 and 45Km/h.

The dataset was taken in real traffic during the peak

time in the city center of Zurich. Therefore, many

pedestrians and passing trams, buses, and cars were

also present. The images were collected from the be-

ginning until the end of the tour, also when the vehicle

was still in the presence of stop signs, pedestrian

crossings, and red lights. The video sequence used in

the experiments as well as the final motion estimation

result can be watched on the first author’s website. The

overall length of the tour was about 3Km and is shown

in Fig. 4 overlaid on a satellite image.

Motion estimation was done by triangulating feature

points, tracking them, and estimating new poses from

them up to a scale. The absolute scale was computed

using our method [12].

We tested our structure from motion algorithm on

different feature detectors: SIFT, Harris, KLT, and

FAST corners. SIFT returned about 700 ∼ 1000
features per frame, while Harris, KLT, FAST about



Fig. 4. Comparison between visual odometry (red dashed line) and
ground truth (black solid line). The entire trajectory is 3Km long.

Fig. 5. A close-up of the recovered 3D map (yellow) overlaid on a
satellite image. Camera positions are in blue. This image represents
the street Leonhardstrasse in Zurich. The cluttered points at the
beginning of the path on the right are trees.

2500 ∼ 4000 features.

Figure 3 shows the top view of the recovered 3D

map and camera trajectory. Furthermore observe that

the points are aligned quite well along straight edges,

which correspond to the walls of the buildings. Finally,

Fig. 5 shows a closer view of the 3D map at the

beginning of the path overlaid on a satellite image.

Here it is more clear that the 3D points are well aligned

along the straight edges of the buildings.

The best results, in terms of agreement with the

ground truth, were obtained with Harris, KLT, or FAST

features, mainly because of their high density. The

comparison is shown in Fig. 4. As observed the path is

aligned quite well with the real trajectory except for the

unavoidable drift that increases with the traveled dis-

tance. This result is however very good if one considers

that the proposed approach is incremental (the motion

was estimated only between two consecutive views

without skipping frames and without correcting the

previous poses) and that the position of the triangulated

features is unchanged. Furthermore, notice that we

did not apply bundle-adustment. Bundle-adjustments

would correct both camera poses and feature positions

and the final map would appear greatly improved.

Furthermore, consider that the length of the recovered

path was considerably long, 3Km. Loop detection and

SLAM could be used to remove the motion drift.

These improvements are currently under development.

Some results on loop closing using vocabulary trees

are reported in [20].

III. PEDESTRIAN AND CAR DETECTION

A. Overview

The system we employ to detect pedestrians and

cars consists of three main components: an appearance

based detector that uses the information from camera

images, a 2D-laser based detector providing structural

information, and a tracking module that uses the com-

bined information from both sensors and estimates

the motion vector for each tracked object. The laser

based detection applies a boosted Conditional Random

Field (CRF) on geometrical and statistical features

of 2D scan points. The image based detector uses

and extended version of the Implicit Shape Model

(ISM) [21]. It operates on a region of interest obtained

from projecting the laser detection into the image to

constrain the position and scale of the objects. The

tracking module applies an Extended Kalman Filter

(EKF) with two motion models, fusing the information

from camera and laser. A detailed description of the

overall system can be found in [22], here we only give

a short summary.

B. Our Approach: Use of Machine Learning Tech-

niques

Our appearance-based people detector is based on

scale-invariant Implicit Shape Models (ISM) [21]. In

summary, an ISM consists in a set of local region

descriptors, called the codebook, and a set of dis-

placements and scale factors, usually named votes, for

each descriptor. A vote points from the position of the

descriptor to the center of the object as it was found

in the training data. The codebook with the votes is

first learned from a labeled training data set and then

used for detection. In the past, we presented several

improvements to the standard ISM approach [22], [23],

[24], where the most recent ones are sub-part detec-

tion, extraction of template masks and the defintion

of superfeatures (see Fig. 6). The main idea behind

all these extensions is to enrich and to refine the

information extracted from the training data, leading

to voters that can distinguish between object sub-parts,

in- and outside of object masks, as well as weak and

strong features.

The laser-based detector uses Conditional Random

Fields (CRFs) [25], which represent the conditional

probability p(y | x) using an undirected cyclic graph,

where each node is associated with a label yi (pedes-

trian, car, background) and a feature vector xi. The

edges model the conditional dependency of two neigh-

boring data points and have also associated feature

vectors. The node features include size, circularity,

standard deviation, etc. We apply AdaBoost [26] to

these feature vectors to account for the non-linear



Fig. 6. Top/Center: Subparts, depicted as colored areas, and
template masks, in white, both computed from the training set. Note
that despite an unsupervised computation, the subparts exhibit some
semantic interpretation. Bottom: Superfeatures are stable features in
image and descriptor space. Shown are Shape Context descriptors
at Hessian interest points (in red) for the class ’pedestrian’. The
superfeatures are depicted in green.

relation between observations and labels. For the edge

features, we compute the Euclidean distance between

the corresponding 2D data points and a value based

on the sum of distances from the decision boundary of

AdaBoost, which is only high if both points are equally

classified. The intuition here is that edges between

equally labeled points reveal a higher likelihood of

correct classification. To train the CRF we use L-BFGS

gradient descent and for the inference we use max-

product loopy belief propagation.

C. Results

Figure 7 shows some qualitative results of our de-

tection and tracking algorithm. The data was collected

from a tour of the SmartTer in the city of Zurich. It is

particularly challenging due to occlusions, clutter and

partial views. As one can see, cars and pedestrians are

detected correctly, together with a correct estimation

of their motion vectors. In a quantitative evaluation,

we obtained an Equal-Error-Rate (equal precision and

recall) of 68% for pedestrians and 75.7% for cars.

IV. CONCLUSION

In this paper, we gave an overview of the techniques

we use for the two key tasks in autonomous driving

in urban environments: ego-motion estimation and dy-

namic object detection. We showed the usefulness of

our approaches on real data, acquired with our robotic

platform SmartTer.

REFERENCES

[1] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban

Challenge: Autonomous Vehicles in City Traffic, Springer
Tracts in Advanced Robotics, ISBN: 9783642039904, 2009.

[2] R.I. Hartley and A. Zisserman, Multiple View Geometry

in Computer Vision, Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[3] M. Bosse, R. Rikoski, J. Leonard, and S. Teller, “Vanishing
points and 3d lines from omnidirectional video,” in ICIP02,
2002, pp. III: 513–516.

[4] P. I. Corke, D. Strelow, and S. Singh, “Omnidirectional visual
odometry for a planetary rover,” in IEEE Int. Conf. on Intell.

Rob. and Systems (IROS), 2004.

[5] Maxime Lhuillier, “Automatic structure and motion using a
catadioptric camera,” in IEEE Workshop on Omnidirectional

Vision, 2005.

[6] D. Nister, O. Naroditsky, and Bergen J., “Visual odometry for
ground vehicle applications,” Journal of Field Robotics, 2006.

[7] Roland Goecke, Akshay Asthana, Niklas Pettersson, and Lars
Petersson, “Visual vehicle egomotion estimation using the
fourier-mellin transform,” in IEEE Intelligent Vehicles Sym-

posium, 2007.

[8] J.P. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual
odometry in urban environments using an omnidirectional
camera,” in IEEE IROS’08, 2008.

[9] M. J. Milford and G. Wyeth, “Single camera vision-only slam
on a suburban road network,” in IEEE Int. Conf. on Robotics

and Automation, ICRA’08, 2008.

[10] D. Scaramuzza and R. Siegwart, “Appearance-guided monoc-
ular omnidirectional visual odometry for outdoor ground vehi-
cles,” IEEE Transactions on Robotics, vol. 24, no. 5, October
2008.

[11] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, “Real-time
monocular visual odometry for on-road vehicles with 1-point
ransac,” in IEEE International Conference on Robotics and

Automation (ICRA 2009), Kobe, Japan, 16 May, 2009.

[12] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart,
“Absolute scale in structure from motion from a single vehicle
mounted camera by exploiting nonholonomic constraints,” in
IEEE International Conference on Computer Vision (ICCV

2009), Kyoto, October 2009.

[13] M. C. Deans, Bearing-Only Localization and Mapping, Ph.D.
thesis, Carnegie Mellon Univ., 2002.

[14] A Davison, “Real-time simultaneous localisation and mapping
with a single camera,” in International Conference on Com-

puter Vision, 2003.

[15] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D.
Tardos, “Mapping large loops with a single hand-held camera,”
in Robotics Science and Systems, 2007.

[16] T. Lemaire and S. Lacroix, “SLAM with panoramic vision,”
Journal of Field Robotics, vol. 24, no. 1-2, pp. 91–111, 2007.

[17] D. Nistér, “An efficient solution to the five-point relative pose
problem,” in CVPR03, 2003, pp. II: 195–202.

[18] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox
for easy calibrating omnidirectional cameras,” in IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS

2006), oct 2006.

[19] D. Scaramuzza, “Ocamcalib toolbox: Omnidirectional cam-
era calibration toolbox for matlab,” 2006, Google for
”ocamcalib”.

[20] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Sieg-
wart, “Closing the loop in appearance-guided omnidirectional
visual odometry by using vocabulary trees,” Robotics and

Autonomous System Journal (Elsevier), 2009, TO APPEAR.

[21] B. Leibe, E. Seemann, and B. Schiele, “Pedestrian detection
in crowded scenes,” in IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2005.



Fig. 7. Cars and pedestrian detected and tracked under occlusion, clutter and partial views. Blue boxes indicate car detections, orange
boxes pedestrian detections. The colored circle on the upper left corner of each box is the track identifier. Tracks are shown in color in the
second row and plotted with respect to the robot reference frame.

[22] L. Spinello, R. Triebel, and R. Siegwart, “Multiclass multi-
modal detection and tracking in urban environments,” in Int.

Conference on Field and Service Robotics (FSR), 2009.
[23] L. Spinello, R. Triebel, and R. Siegwart, “Multimodal detection

and tracking of pedestrians in urban environments with explicit
ground plane extraction,” in IEEE Int. Conf. on Intell. Rob. and

Systems (IROS), 2008.
[24] L. Spinello, R. Triebel, and R. Siegwart, “Multimodal people

detection and tracking in crowded scenes,” in Proc. of the

AAAI Conf. on Artificial Intelligence, July 2008.
[25] M. Rufli and R. Siegwart, “On the application of the D* search

algorithm to time-based planning on lattice graphs,” in Proc. of

the European Conference on Mobile Robots, 2009, to appear.
[26] Y. Freund and R.E. Schapire, “A decision-theoretic generaliza-

tion of on-line learning and an application to boosting,” Journal

of Computer and System Sciences, vol. 5, 1997.


