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Abstract— Autonomous, vision-based quadrotor flight is
widely regarded as a challenging perception and control prob-
lem since the accuracy of a flight maneuver is strongly influ-
enced by the quality of the on-board state estimate. In addition,
any vision-based state estimator can fail due to the lack of
visual information in the scene or due to the loss of feature
tracking after an aggressive maneuver. When this happens, the
robot should automatically re-initialize the state estimate to
maintain its autonomy and, thus, guarantee the safety for itself
and the environment. In this paper, we present a system that
enables a monocular-vision–based quadrotor to automatically
recover from any unknown, initial attitude with significant
velocity, such as after loss of visual tracking due to an aggressive
maneuver. The recovery procedure consists of multiple stages,
in which the quadrotor, first, stabilizes its attitude and altitude,
then, re-initializes its visual state-estimation pipeline before
stabilizing fully autonomously. To experimentally demonstrate
the performance of our system, we aggressively throw the
quadrotor in the air by hand and have it recover and stabilize
all by itself. We chose this example as it simulates conditions
similar to failure recovery during aggressive flight. Our system
was able to recover successfully in several hundred throws in
both indoor and outdoor environments.

SUPPLEMENTARY MATERIAL

A video attachment to this work is available at:
http://rpg.ifi.uzh.ch/aggressive_flight.
html.

I. INTRODUCTION

A. Motivation

Autonomous Micro Aerial Vehicles (MAVs) will soon
play a major role in remote inspection and search-and-
rescue missions. In these applications, the MAVs will have to
operate in unknown indoor and outdoor environments, which
prevents them from relying on external positioning systems
(e.g. GPS or motion-capture systems). A viable solution
to maintain position tracking for lightweight MAVs is to
use on-board cameras. Unfortunately, vision algorithms are
prone to lose visual tracking during fast motions, e.g., when
executing aggressive maneuvers, or under strong illumination
changes that can occur when transitioning from dark to bright
scenes. When visual tracking is lost, the vehicle typically
has to descend and land in a partially open-loop maneuver,
or a trained pilot has to take over control. To re-initialize
the vision pipeline, manual procedures (by hand or remote
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Fig. 1: Autonomous recovery after throwing the quadrotor by hand:
(a) the quadrotor detects free fall and (b) starts to control its attitude
to be horizontal. Once it is horizontal, (c) it first controls its vertical
velocity and then, (d) its vertical position. The quadrotor uses its
horizontal motion to initialize its visual-inertial state estimation and
uses it (e) to first break its horizontal velocity and then (f) lock to
the current position.

control) are required by the operators, which renders re-
initialization during flight very difficult or even impossible.

In this paper, we describe an approach to allow a
monocular-vision–based quadrotor to recover completely au-
tonomously from difficult conditions, where it has lost visual
tracking, and automatically re-initialize its vision pipeline
during flight. This enables the quadrotor to recover in case
of a failure of the vision pipeline and continue its mission
without landing. Some snapshots of an autonomous recovery
outdoors are shown in Fig. 1. When performing aggressive
maneuvers, our system allows us to push the quadrotor to its
limits and beyond, while still being able to recover at any
time without resorting to any external pose-estimation fall-
back. Along with re-initializing in flight, our system enables
instant launches of the quadrotor by manually throwing it
in the air. This starting procedure is not only very quick,
but also enables an untrained operator to start the quadrotor
without remote control.
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B. Related Work

In the recent years, several groups have demonstrated
MAVs that can perform impressive aerobatics [1], [2], pass
through narrow gaps [3], or recover and stabilize virtually
from any initial condition [1], [3]. However, besides being
limited to a set of learned maneuvers, the platforms used
in these demonstrations relied on the accurate and high-
frequency position estimates provided by external cameras
(such as Vicon1 or custom-made motion-capture systems)
and off-board computation. Nonetheless, these systems need
pre-installation and calibration of the cameras and, therefore,
cannot be used in unknown and yet-unexplored environ-
ments.

To the best of our knowledge, aggressive maneuvers simi-
lar to the works mentioned above have not yet been achieved
with autonomous quadrotors that rely on on-board sensing
and on-board computation, since their state estimate is not
as precise and reliable as the one from external positioning
systems. To overcome the limitation of being restricted to the
volume of a motion-capture system, on-board sensors, such
as cameras and Inertial Measurement Units (IMU), are the
only viable solution for lightweight MAVs, as demonstrated
in [4], [5], [6]. However, current vision-based quadrotors still
operate in near-hover conditions, with only few attempts,
such as [7], to perform more aggressive maneuvers.

If a quadrotor’s vision pipeline fails, there is typically a
small set of options left: (i) a pilot must take over; (ii) the
quadrotor must land immediately; (iii) the quadrotor must
use simple fall backs for stabilization (e.g., based on optical
flow algorithms [4]), which do not allow the continuation of
its mission without further actions. In [5], a linear sliding
window formulation for monocular visual-inertial systems
was presented to make a vision-based quadrotor capable of
failure recovery and on-the-fly initialization. However, this
work assumed that visual features could be extracted and
correctly tracked right from the beginning of the recovery
procedure.

Along with possible failures of their state-estimation
pipeline, monocular-vision–based quadrotors present the
drawback that they typically require an initialization phase
before they can fly autonomously. This initialization is
usually performed by moving the quadrotor by hand or
through remote control. Since this is time consuming and
not easy to perform, attempts have been made to perform the
initialization automatically. For instance, in [8], the authors
presented a system that allows the user to toss a quadrotor in
the air, where it then initializes a visual-odometry pipeline.
Nevertheless, that system still required several seconds for
the state estimate to converge before the toss and several
more seconds until the visual-odometry pipeline was ini-
tialized. A closed-form solution for state estimation with a
visual-inertial system that does not require initialization was
presented in [9]. However, this approach is not suitable for
systems that rely on noisy sensor data.
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C. Contributions and Outline

We present a system that enables a monocular vision-based
quadrotor to autonomously recover from state-estimation
failures quickly, and re-initialize its visual-inertial state esti-
mation. The described system allows the quadrotor to recover
from any attitude, even with high linear velocities and body
rates. The performance of our recovery strategy is evaluated
in the scenario where a quadrotor is thrown in the air by
hand and must stabilize based only on its on-board sensors.
We present an attitude estimator based on quaternions which
fuses measurements from the gyroscopes and accelerometers
to obtain a globally-valid attitude estimate at the time when
it is launched. This allows the user to throw the quadrotor
with any initial attitude, and the controller immediately starts
to guide it to horizontal position. In contrast to [5], our
system does not require the observation of visual features
at the beginning of the recovery procedure but only once its
attitude is stabilized, which simplifies feature tracking greatly
and reduces computational complexity. In addition to [8], no
preparation time before launching the quadrotor is required
and the entire recovery is performed more quickly.

Along with a very quick and easy start by simply throwing
the quadrotor in the air, our system enables more aggressive
flight, where a vision-based quadrotor can perform a maneu-
ver with the expectation that it will lose tracking but still
regain control.

The remainder of this paper is organized as follows.
Section II describes the implemented high-level and low-
level controllers, as well as estimation algorithms used for
recovery. Section III describes the different stages of our
recovery procedure. Section IV introduces our quadrotor
platform and presents the experimental results. Finally, Sec-
tion V concludes the work.

II. CONTROL AND STATE ESTIMATION

This section describes our control and state estimation
algorithms that are used for recovery as well as for vision-
based flying with our quadrotor. The controller is split
into a high-level part and a low-level part. The high-level
controller enables the quadrotor to track desired positions and
velocities, whereas the low-level controller enables it to track
desired attitudes or body rates. The overall state estimation
and control structure with the used sensors is illustrated in
Fig. 2.

A. Nomenclature

When describing the control and state estimation, we make
use of some notation that we introduce here for clarity.
We use a hat (e.g. v̂) and a tilde (e.g. ṽ) to denote an
estimated and measured value, respectively. To describe
the multiplication of two quaternions q1 and q2 we write
q1⊗q2, and we write q�v for the rotation of a vector v by
the quaternion q. Furthermore, we express the basis vectors
of a coordinate system as e.g. eBx which denotes the x-basis
vector of the body coordinate system, as illustrated in Fig. 3.
A prescript (e.g. Bv) indicates that the vector v is expressed
in the body coordinate system. Vectors without prescripts are
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Fig. 2: Control-system overview: the PX4 and Odroid U3 communicate with each other over a UART interface. Gray boxes are sensors
and actuators; white boxes depict software modules. Green arrows indicate the communication that is required specifically during stage
1, red arrows indicate the communication that is required specifically during stages 2 and 3, and blue arrows indicate the communication
that is required during stages 4 and 5 as well as for normal vision-based flight. The dashed red arrows indicate measurements that are
used only once for initializing SVO. Black arrows indicate communication that is required in all the recovery stages as well as for normal
vision-based flight. A more detailed description of the hardware set-up is given in Section IV-A

expressed in the world coordinate system with the exception
of the body rates ω, which are always expressed in body
coordinates.

B. Dynamical Model

For state estimation and control, we make use of the
following dynamical model for our quadrotor:

ṙ = v, (1)
v̇ = g + q� c, (2)
q̇ = Λ(ω) · q, (3)

ω̇ = J−1 · (τ − ω × Jω) , (4)

where r = [x y z]T and v = [vx vy vz]
T are the position

and velocity in world coordinates, q = [qw qx qy qz]
T is the

orientation of the quadrotor’s body coordinates with respect
to the world coordinates, and ω = [p q r]T denotes the body
rates (roll, pitch and yaw, respectively) expressed in body
coordinates. The skew-symmetric matrix Λ(ω) is defined as

Λ(ω) =
1

2


0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

 . (5)

We define the gravity vector as g = [0 0 − g]T with g =
9.81 m s−2 and the second-order moment-of-inertia matrix
of the quadrotor as J = diag (Jxx, Jyy, Jzz). The mass-
normalized thrust vector is c = [0 0 c]T , with

mc = f1 + f2 + f3 + f4, (6)

f1
f2

f3
f4

eBxeBy

eBz

Body

eWx

eWy

eWz

World

g

Fig. 3: Quadrotor with coordinate system and rotor forces.

where m is the mass of the quadrotor and fi are the four
motor thrusts as illustrated in Fig. 3. The torque inputs τ are
composed of the single-rotor thrusts as

τ =


√
2
2 l(f1 − f2 − f3 + f4)√
2
2 l(−f1 − f2 + f3 + f4)
κ(f1 − f2 + f3 − f4)

 , (7)

where l is the quadrotor arm length and κ is the rotor-torque
coefficient.

Our coordinate-system conventions and rotor numbering
are illustrated in Fig 3.

C. High-Level Controller

The high-level controller takes a reference state and a state
estimate as input and computes the desired attitude or desired
body rates, which are then sent to the low-level controller.
A reference state consists of a reference position rref , a



reference velocity vref , a reference acceleration aref , and
a reference heading ψref . First, we describe the position
controller, followed by the attitude controller.

1) Position Controller: To track a reference trajectory, we
implemented a PD controller with feed-forward terms on the
reference acceleration from the trajectory and gravity:

ades = Ppos ·(rref − r̂)+Dpos ·(vref − v̂)+aref−g, (8)

with gain matrices Ppos = diag (pxy, pxy, pz) and Dpos =
diag (dxy, dxy, dz). To compute the desired normalized thrust
cdes, we project the desired acceleration onto the current
WeBz axis

cdes = ades · eBz . (9)

The output of the position controller is the desired accel-
erations ades. The desired acceleration, together with the
reference heading ψref , encodes the desired orientation as
well as a mass normalized thrust cdes.

2) Attitude Controller: Since a quadrotor can only accel-
erate in its body z direction, ades enforces two degrees of
freedom of the desired attitude. The third degree of freedom
is enforced by the reference heading ψref . Note that the
rotation around the body z axis has no influence on the
translational behaviour of the quadrotor. Therefore, we want
to align the body z axis with the desired acceleration ades
by rotating around the body x and y axes and use rotations
around the body z axis only to control the heading. Our
quadrotors have much more attitude control authority on the
x and y axes than on the z axis because there, they can
make use of thrust differences as opposed to differences
in rotor drag torques. The moment due to the maximum-
possible thrust difference is much larger than the maximum
possible difference of rotor drag torques. For this reason, we
separate the attitude control into two parts as described in
the following.

a) Desired Roll and Pitch Rates: From the current at-
titude estimate and the desired acceleration, we can compute
the current and the desired body z axes, respectively, as

êBz = q̂⊗ [0 0 1]T , eBz,des =
ades
‖ades‖

. (10)

Now, we design an error quaternion that describes the
necessary rotation to align these two vectors. To do so, we
compute the angle α between the two vectors and a normal
vector n to both of them:

α = arccos(êBz · eBz,des), (11)

n =
êBz × eBz,des∥∥∥êBz × eBz,des

∥∥∥ . (12)

Since we want to apply this rotation with respect to the
current body orientation, we have to transform the rotation
axis n into body coordinates using the current attitude
estimate q̂

Bn = q̂−1 � n. (13)

The error quaternion can then be constructed as

qe,rp =

[
cos(α2 )

Bn sin(α2 )

]
. (14)

eWxeWy

eWz = eCz

eCx

eCy

eBx,des

eBy,des

eBz,des

ades ψref

Fig. 4: Coordinate frames used in the attitude controller. We make
use of the coordinate frame C, which is obtained by rotating the
world frame (W ) by the reference heading ψref to construct, to-
gether with the desired acceleration ades, the full desired orientation
of the body frame (B).

Note that if α = 0, the rotation axis is undetermined and
we set the error quaternion qe,rp to be the identity directly.
Also note that by construction, the z component of qe,rp is
always zero, which assures that no rotation around the body
z axis is necessary to align êBz with eBz,des. From the error
quaternion qe,rp, we can then compute the desired roll and
pitch rates with the following control law:[

p
q

]
des

=

{
2 · prp · q(x,y)

e,rp if q
(w)
e,rp ≥ 0

−2 · prp · q(x,y)
e,rp if q

(w)
e,rp < 0

. (15)

It can be shown that this control law is globally asymp-
totically stable and its discrete implementation is robust to
measurement noise [10], [11].

b) Desired Yaw Rate: To compute the desired yaw rate
rdes, we look at the heading error that remains after aligning
êBz with eBz,des with the above control law. To do so, we first
compute the full desired attitude. For this, we make use of
an intermediate coordinate system C, which is the world
frame rotated around its z axis by the desired heading ψref
as illustrated in Fig. 4. The x and y axes of the coordinate
system C are defined as

eCx = [cos(ψref ) sin(ψref ) 0]T , (16)

eCy = [− sin(ψref ) cos(ψref ) 0]T . (17)

The goal of rotating around the quadrotor’s z axis is to align
the projection of its x axis onto the world x− y plane with
eCx . This forces the desired body x axis eBx,des to lie in a
plane spanned by eCx and eWz , which is fulfilled by

eBx,des =
eCy × eBz,des∥∥∥eCy × eBz,des

∥∥∥ . (18)

Note that if this cross product is zero, there are infinitely
many rotations around the desired body z axis that achieve
the desired heading. Therefore, in that case, we apply a
desired yaw rate rdes = 0.

If the desired body z axis has a negative z component
(i.e. eBz,des is pointing downwards), the projection of the
computed desired body x axis into the horizontal plane will
point in the opposite direction of eCx , therefore we use the



negation of it. From eBx,des and eBz,des, we can then compute
eBy,des as

eBy,des =
eBz,des × eBx,des∥∥∥eBz,des × eBx,des

∥∥∥ . (19)

Now, the full desired attitude qdes can be built from the three
desired body axes eBx,des, eBy,des and eBz,des. Our definition
of the heading is different than in the controller presented
in [10] and has the advantage of being meaningful for any
orientation of the quadrotor, which is not the case, for
instance, when using a definition based on Euler angles.
Now we can compute an error quaternion that describes the
necessary rotation to achieve the full desired attitude after
rotating by qe,rp as

qe,y = (q̂⊗ qe,rp)
−1 ⊗ qdes. (20)

Note that the x and y components of qe,y are always zero.
Similarly to (15), we can now compute the desired yaw rate
rdes from q

(z)
e,y with a gain pyaw. Splitting the attitude control

into these two parts allows us to have different gains for prp
and pyaw, which is desirable due to different control limits.

D. Low-Level Controller
The commands sent to the low-level controller on the

PX4 are the desired body rates ωdes and the desired mass-
normalized thrust cdes. From the desired body rates ωdes and
the measured body rates ω̃, we can compute desired torques
τ des with a feedback linearizing control scheme:

τ des = J ·Patt · (ωdes − ω̂) + ω̂ × Jω̂, (21)

where Patt = diag (ppq, ppq, pr). Then, we can substitute
τ des and cdes into (7) and (6) and solve them for the desired
rotor thrusts that must be applied.

E. IMU-Based Attitude Estimation
In recovering after a loss of visual tracking, or when

launching a quadrotor by hand, we need to have an attitude
estimate available for controlling the attitude until the vision
pipeline is initialized and running. We achieve this by
using a quaternion-based attitude state estimator that fuses
the measurements of the gyroscopes and accelerometers
at 500 Hz. The implemented attitude estimator works in a
prediction-update scheme where the prediction is performed
based on the gyroscope measurements and the update step
is performed based on the accelerometer measurements.

We predict the attitude estimate at the time of the current
IMU measurement from the previous attitude estimate by
integrating the gyroscope measurements over a time ∆t
between the previous and the current IMU measurement.
This integration is performed with a zero-th order quaternion
integration, as described in [12], assuming that the body rates
are constant over a time ∆t

q̂pred(k) =

(
I4 · cos

(
‖ω̂‖∆t

2

)
+

2

‖ω̂‖
·Λ(ω̂) · sin

(
‖ω̂‖∆t

2

))
· q̂(k − 1),

(22)

where I4 ∈ R4×4 denotes the identity matrix. We chose a
zero-th order integration since it has a performance similar
to a first order integration, but at a lower computational load.
Note that (22) can only be evaluated if ‖ω̂‖ 6= 0, otherwise
we keep the attitude estimate prediction constant q̂pred(k) =
q̂(k − 1).

As long as the quadrotor is hand held, we assume that the
accelerometers are measuring ã = −g on average, which
gives us information about the gravity direction. Therefore,
we correct the predicted attitude estimate such that the
corresponding body z direction êBz,pred rotates towards the
measured acceleration ã. To do so, we compute the angle
and axis of rotation required to align êBz,pred with ã as

β = arccos

(
B êBz,pred ·

ã

‖ã‖

)
, (23)

Bh =
B ã×B êBz,pred∥∥∥B ã×B êBz,pred

∥∥∥ . (24)

Since the measured acceleration is noisy, we weigh the angle
β by a gain kcorr < 1 and use it to design the following
correction quaternion:

qcorr =

[
cos(kcorr · β2 )

Bh sin(kcorr · β2 )

]
, (25)

which we apply to the predicted attitude estimate to get the
corrected attitude estimate at the current time

q̂(k) = q̂pred(k)⊗ qcorr. (26)

Note that the update step is only performed if the measured
body rates are small, i.e. ‖ω̃‖ < 0.5 rad s−1, and the magni-
tude of the measured acceleration is close to the magnitude
of the gravitational acceleration, i.e. |‖ã‖ − g| < 1.0 m s−2.
The first acceleration measurement that meets these criteria
is used to get an initial estimate of the gravity direction.

Since this attitude estimator is based on quaternions,
it is free of singularities, which is necessary because we
want to be able to recover from any initial attitude. It is
furthermore based on the assumption that the accelerometers
are measuring ã ≈ −g on average, which is valid when
the quadrotor is hand held but not when it is flying freely.
Still, in near-hover conditions, the attitude estimator does not
drift in the roll and pitch estimates (see Fig. 8) because of
aerodynamic effects as described in [13].

F. Height Estimation

To estimate the vertical position z and velocity ż of the
quadrotor, we use a TeraRanger One sensor and fuse its
measurements with the acceleration measurements in a fixed-
gain Kalman filter. The prediction step is performed as[

zprior
żprior

]
=

[
1 ∆t
0 1

]
·
[
ẑk
ˆ̇zk

]
+

[
1
2∆t2

∆t

]
· ˜̈zimu, (27)

and the update step is performed using a fixed gain K as[
ẑk+1

ˆ̇zk+1

]
=

[
zprior
żprior

]
+ K · (z̃ − ẑprior) . (28)



III. RECOVERY AND AUTOMATIC INITIALIZATION

In this section, we describe the procedure that our quadro-
tor executes to recover from a failure of the state estimation
pipeline or a manual throw. The recovery procedure is
divided into five sequential stages. We describe the control
algorithm for each stage and explain the conditions that must
be met before advancing to the next stage. These conditions
are chosen such that the respective controller can also satisfy
them during the following stages. Each stage makes use of
the controller described in Section II but with different gains.
The duration of each stage depends on how long it takes the
controller to meet the conditions to advance to the next stage.
The scheme of five stages allow to recover from various
conditions after a manual throw or after a failure in the state
estimation where stages 1, 2 and 4 might be skipped entirely
when the conditions for the subsequent stage are already
satisfied.

For our physical platform, we consider a quadrotor
equipped with a monocular visual-inertial system consisting
of a single camera, an IMU, and a down-looking distance
sensor as described further in Section IV-A. We demonstrate
our recovery procedure on the scenario where the quadrotor
is thrown in the air by hand, and automatically initializes
its vision pipeline such that it can control its position purely
based on a vision-based state estimate.

A. Launch Detection

As a first step to recover after tossing the quadrotor in
the air, it needs to detect the launch for which it uses its
accelerometers. Ideally, without disturbances and noise, the
accelerometers measure ã = −g when standing still (e.g.
on the ground) and ã = 0 when the quadrotor is in free
fall. When in flight, the accelerometers ideally measure just
the accelerations due to the applied rotor thrust, i.e. ã = c.
Hence, when the quadrotor is launched, we can detect a drop
in the measured accelerations to a value corresponding to the
currently applied thrust. Therefore, we start recovering when
we measure

‖ã‖mean < ‖cidle‖+ tlaunch, (29)

where ‖ã‖mean is the norm of the measured acceleration
averaged over the last 50 ms, cidle is the mass-normalized
idle thrust that prevent the rotors from standing still and
tlaunch = 2.0 m s−2 is a threshold parameter.

B. Recovery and Initialization Steps

1) Attitude Control: Immediately after a launch is de-
tected, the quadrotor starts to control its orientation to be
horizontal. To do so, we use the attitude controller described
in Section II-C together with an IMU based estimate of
the attitude as described in Section II-E. Since we have no
information on height and vertical velocity at this stage, we
apply a fixed mass-normalized thrust equal to the gravita-
tional acceleration c = g.

As soon as the distance sensor is oriented towards the
ground, i.e. the angle between the body z axis eBz and the
world z axis eWz (see Fig. 3) is smaller than 20◦ and the

Fig. 5: A closeup of our quadrotor during recovery: 1) TeraRanger
One distance sensor, 2) down-looking camera, 3) on-board electron-
ics consisting of an Odroid U3 quad-core computer and a PX4FMU
autopilot.

roll and pitch rates are small, i.e. ‖ω̂(x,y)‖ < 10 rad s−1, we
initialize the height filter and switch to the next stage.

2) Attitude and Vertical Velocity Control: Once the dis-
tance sensor is pointing towards the ground, we control the
horizontal velocity to zero using our position controller (8)
but set the proportional gain Ppos and the vertical velocity
gain dxy to zero. The vertical velocity is estimated from
the distance sensor and the IMU as described in Section II-
F. As soon as the vertical velocity is small enough, i.e.
‖ż‖ < 0.3 m s−1, we set the current height as the reference
height and switch to the next stage.

3) Attitude and Height Control: Once the height con-
troller is active, we stabilize the height relative to the ground,
together with the attitude. Again, we make use of our
position controller (8) but now only set pxy and dxy to
zero. At this stage, due to the lack of horizontal position
information, the quadrotor drifts in a horizontal plane. We
use this horizontal translation to initialize the vision-based
state-estimation pipeline with an initial scale corresponding
to the current height estimate. After it is initialized, we
switch to the next stage.

4) Velocity Control: At this point, the quadrotor can still
have large horizontal velocities, which we want to lower
before locking to the current position. In this stage, we use
the position controller (8) but set the proportional gain pxy to
zero. Once the quadrotor reaches a small horizontal velocity,
i.e. ‖v(x,y)‖ < 0.2 m s−1, we lock to the current position
and heading.

5) Position Control: In this last stage, we lock the
quadrotor to the previously specified reference position until
the quadrotor is given a new mission. For controlling the
quadrotor to its reference position, we use the full control
pipeline as described in Section II-C.

IV. EXPERIMENTS

A. Quadrotor Platform

We built our quadrotors from selected off-the-shelf com-
ponents and custom 3D printed parts (see Fig. 5). They
rely on the frame of the Parrot AR.Drone 2.0 including



their motors, motor controllers, gears, and propellers. The
platform is powered by one 1,350 mA h LiPo battery which
allows a flight time of approximately 10 min.

We completely replaced the electronic parts of the
AR.Drone by a PX4FMU autopilot and a PX4IOAR adapter
board [14]. The PX4FMU consists, among other com-
ponents, of an IMU and a micro controller to read the
sensors, run the low-level control (21), and command the
motors. In addition to the PX4 autopilot, our quadrotors
are equipped with an Odroid-U3 single-board computer. It
contains a 1.7 GHz quad-core processor (used in Samsung
smart phones) running Ubuntu 14.04 and ROS. The PX4
micro controller communicates with the Odroid board over
UART (see Fig. 2).

To stabilize the quadrotor, we make use of the gyros and
accelerometers of the IMU on the PX4FMU, a downward-
looking MatrixVision mvBlueFOX-MLC200w 752 × 480-
pixel monochrome camera as well as a downward-looking
TeraRanger One distance sensor. The TeraRanger One is an
infra-red range sensor that uses time of flight to measure
distances of up to 14 m with up to 2 cm accuracy and a
frequency of up to 1 kHz. It works in both indoor and outdoor
environments.

The images from the camera are processed on the Odroid
by means of our Semi-Direct Visual Odometry (SVO2)
pipeline [15]. The visual-odometry pipeline outputs an un-
scaled pose that is then fused with the IMU readings in
an Extended Kalman Filter framework (Multi Sensor Fusion
(MSF) [16]) to compute a metric state estimate. More details
about our quadrotor system are given in [17]

B. Indoor Experiments

To show the performance of the proposed recovery proce-
dure, we throw a quadrotor by hand in an OptiTrack motion-
capture system that we use for ground-truth comparison. For
recovery, the quadrotor only uses its on-board sensors and
performs all the necessary computations on board. Fig. 6,
7, and 8 show the on-board state estimates compared to
OptiTrack measurements. The on-board state estimates are
aligned to the OptiTrack data by a single data point each.
The vertical dashed lines indicate the start of the five
recovery stages with corresponding numbers as described in
Section III-B. The individual state estimates are plotted from
the time on where they are used for feedback control. At the
point where a state estimate becomes available, it is directly
used for feedback control.

Fig. 6 shows the height estimate from fusing TeraRanger
and IMU measurements, as well as the height estimate from
the visual pipeline consisting of SVO and MSF compared to
the ground truth height from OptiTrack. The height estimate
from fusing the TeraRanger with the IMU is used in stage 3
and 4 and the height estimate from MSF is used in stage 5
for feedback control.

Fig. 7 shows the linear velocity estimates from MSF com-
pared to velocity estimates from OptiTrack. In the vertical

2http://github.com/uzh-rpg/rpg_svo
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vision pipeline (SVO + MSF) compared to ground truth from Op-
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Fig. 7: Velocity estimates from the vision pipeline (SVO + MSF)
and from the TeraRanger / IMU fusion compared to ground truth
from OptiTrack.

direction, we also show the velocity estimate from fusing
TeraRanger and IMU measurements. This velocity estimate
is used during stages 2 and 3. During stages 4 and 5, the
velocity estimates from MSF are used for feedback control.

Fig. 8 shows the roll and pitch angles from the attitude
estimate purely based on the IMU measurements and from
the MSF compared to the orientation measurements from
OptiTrack. The IMU-based attitude estimate is used for
control during stages 1, 2, and 3. During stages 4 and 5,
the attitude estimate from MSF is used for feedback control.
In the IMU-based attitude estimator, unit quaternions are
used to represent the quadrotor’s attitude and they are only
transformed into Euler Angles for visualization. Note that
the roll and pitch estimates from the IMU-based attitude
estimator do not drift even beyond recovery.

http://github.com/uzh-rpg/rpg_svo
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Fig. 8: Roll and Pitch estimates from the IMU-based attitude
estimator (see Section II-E) and the vision pipeline (SVO + MSF)
compared to ground truth from OptiTrack.

We performed several hundred throws indoors with max-
imum linear accelerations above 25 m s−2, maximum body
rates above 650 ◦ s−1, and maximum linear velocities ex-
ceeding 3.6 m s−1 with successful recoveries. We reached a
success rate of more than 85 %, where failures occurred when
the vision pipeline could not initialize properly, e.g., when
flying close to the ground with high velocities. Examples
from indoor recoveries are given in the enclosed video.

C. Outdoor Experiments

We used the same set-up as for the indoor experiments to
throw the quadrotor outdoors and have it recover. Because
of the absence of ground truth outdoors, plots of state
estimates are not shown. In more than 30 throws with
successful recovery, the quadrotor reached maximum linear
accelerations above 40 m s−2, maximum body rates above
800 ◦ s−1, and maximum linear velocities above 6 m s−1.
Examples from outdoor recoveries are given in Fig. 1 and
in the enclosed video. We achieved a similar success rate
as for the indoor experiments where failures are additionally
caused by disturbances of the TeraRanger due to sun light.

V. CONCLUSION

We developed a system that enables a monocular-vision-
based quadrotor to recover and re-initialize its vision-based
state estimation pipeline from any attitude, even with signif-
icant initial linear velocities. The on-board system receives
the measurements from an IMU, a single camera, and a range
sensor and fuses this information to stabilize the quadrotor
by means of a cascaded control structure. We designed a
recovery procedure consisting of five sequential stages with
several controller types: purely inertial, range-inertial, and
visual-inertial. To demonstrate its capabilities, we threw the
quadrotor in the air by hand and had it recover autonomously.
In contrast to existing work, the proposed system does not
need any initialization before the quadrotor is launched.
In indoor experiments, the state estimates obtained by our
system agree well with those measured by a motion capture

system. In indoor and outdoor experiments, we demonstrated
that the quadrotor successfully decelerates and stabilizes
within approximately two to three seconds after throwing it
aggressively in the air. Our quadrotor was able to recover
successfully in several hundred throws in both unknown
indoor and outdoor environments with a success rate of more
than 85 %. Our system not only allows instant launches but
also enables mid-air re-initialization after aggressive open-
loop maneuvers or in case visual tracking is lost.
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