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9  Model-based requirements specification

Why do we model requirements? 

m Gain an overview of a set of
requirements

m Understand relationships and inter-
connections between requirements

m Focus on some aspect of a system,
abstracting from the rest

Primarily for functional
requirements

Quality requirements 
and constraints are 
mostly specified in 
natural language



9.1  Models in RE

DEFINITION. Model – an abstract representation of an existing
part of reality or a part of reality to be created.
The notion of reality includes any conceivable set of 
elements, phenomena or concepts, including other models.
With respect to a model, the modeled part of reality is called 
the original.

m Requirements models are problem-oriented models of the 
system to be built

m Architecture and design information is omitted
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Requirements models can be used for

m Specifying requirements (as a means of replacing textually 
represented requirements)

m Paraphrasing textually represented requirements to 
improve understanding of complex structures and 
dependencies

m Testing textually represented requirements to uncover 
omissions, ambiguities and inconsistencies

m Decomposing a complex reality into comprehensible parts
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Which aspects can be modeled?

m Structure and Data
l Structural properties of a system, particularly of the static data
l Structure of a system’s domain

m Function and Flow
Sequence of actions and control / data flow for
l producing a required result
l describing a (business) process

m State and Behavior
Behavior of a system or a domain component
l State-dependent reactions to events
l Dynamics of component interaction
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Which aspects can be modeled? – continued

m Context
l Structural embedding of system in its environment
l Interaction between system and actors in the context

m Goals
Understanding the goals for a system
l Goal decomposition
l Goal-agent networks
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9.2  Modeling structure and data

m Entity-relationship models

m Class and object models

m Component models

What to model

m Static system models: Information that a system needs to 
know and store persistently

m Static domain models: The (business) objects and their 
relationships in a domain of interest.
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Data modeling (entity-relationship models)

m Models the relevant part of the domain
using entity types, relationship types and 
attributes

+ Rather easy to model
+ Straightforward mapping to relational 

database systems
– Ignores functionality and behavior
– No means for system decomposition
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Object and class modeling

Idea

m Identify those entities in the domain that the system has
to store and process

m Map this information to objects/classes, attributes, 
relationships and operations

m Represent requirements in a static structural model

m Modeling individual objects does not work: too specific or 
unknown at time of specification
à Classify objects of the same kind to classes: Class models
à or select an abstract representative: Object models
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Terminology

Object – an individual entity which has an identity and does 
not depend on another entity.

Examples: Turnstile no. 00231, The Plauna chairlift

Class – Represents a set of objects of the same kind by 
describing the structure of the objects, the ways they can be 
manipulated and how they behave. 

Examples: Turnstile, Lift

Abstract Object – an abstract representation of an individual 
object or of a set of objects having the same type

Example:  A Turnstile
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Class models / diagrams

Most popular form of
structure modeling
Typically using UML class diagrams

Class diagram: a diagrammatic representation of a class model
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Turnstile
+ id: Integer
+ installed: Date
+ count: Integer
– mode: TurnstileMode
Lock ()
Unlock ()
AllowOneTurn ()

Lift
+ id: Integer
+ name: String
+ type: String
+ capacity: Integer
Start ()
Stop ()

owner
1..11..*

transport
device
1..*

accessed by

Chair Lift
+ seats: Integer

Ski Lift



Class models are sometimes inadequate

m Class models don’t work when different objects of the 
same class need to be distinguished

m Class models can’t be decomposed properly: different 
objects of the same class may belong to different 
subsystems

m Subclassing is a workaround, but no proper solution

In such situations, we need object models
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Object models: a motivating example

Example: Treating incidents in an emergency command and 
control system

Emergency command and control systems manage incoming 
emergency calls and support human dispatchers in reacting 
to incidents (e.g., by sending police, fire fighters or 
ambulances) and monitoring action progress.
When specifying such a system, we need to model

l Incoming incidents awaiting treatment
l The incident currently managed by the dispatcher
l Incidents currently under treatment
l Closed incidents 
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Class models are inadequate here

In a class model, incidents would have to be modeled as 
follows:
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Bad: essential elements 
of the problem are not 
modeled

Unnatural: all subclasses are structurally 
identical

either
Incident

or
Incident

Incoming 
Incident

Dispatched
incident

Closed
Incident

Current
incident



Object models work here

Modeling is based on a hierarchy of abstract objects
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Dispatched
Incident:
Incident

Closed
incident:
Incident

Current
Incident:
Incident

Dispatcher support... Archive...

Incoming
incident:
Incident

Object name
Object type

Singleton
object

Object set

Command&Control System...

Notation: ADORA



ADORA

m ADORA is a language and tool for object-oriented 
specification of software-intensive systems

m Basic concepts
l Modeling with abstract objects
l Hierarchic decomposition of models
l Integration of object, behavior and interaction modeling
l Model visualization in context with generated views
l Adaptable degree of formality

m Developed in the RERG research group at UZH
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Modeling with abstract objects in UML

m Not possible in the original UML (version 1.x)

m Introduced 2004 as an option in UML 2

m Abstract objects are modeled as components in UML

m The component diagram is the corresponding diagram

m Lifelines in UML 2 sequence diagrams are also frequently 
modeled as abstract objects

m In UML 2, class diagrams still dominate
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What can be modeled in class/object models?

m Objects as classes or abstract objects

m Local properties as attributes

m Relationships / non-local properties as associations

m Services offered by objects as operations on objects or 
classes (called features in UML)

m Object behavior
l Must be modeled in separate state machines in UML
l Is modeled as an integral part of an object hierarchy in ADORA

m System-context interfaces and functionality from a user’s 
perspective can’t be modeled adequately
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Object-oriented modeling: pros and cons

+ Well-suited for describing the structure of a system

+ Supports locality of data and encapsulation of properties

+ Supports structure-preserving implementation
+ System decomposition can be modeled

– Ignores functionality and behavior from a user’s perspective
– UML class models don’t support decomposition

– UML: Behavior modeling weakly integrated
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Mini-Exercise: Classes vs. abstract objects

Specify a distributed heating control system for an office 
building consisting of a central boiler control unit and a room 
control unit in every office and function room. 
m The boiler control unit shall have a control panel consisting 

of a keyboard, a LCD display and on/off buttons.
m The room control unit shall have a control panel consisting 

of a LCD display and five buttons: on, off, plus, minus, and 
enter.

Model this problem using
a. A class model
b. An abstract object model.
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9.3  Modeling function and flow

m Activity models

m Data flow / information flow models

m Process and work flow models

m Domain story models
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Activity modeling: UML activity diagram
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m Models process
activities and
control flow

m Can model data
flow

m Model can be
underpinned with 
execution
semantics

Validate card

Initialize turnstile

Poll

Read card

Unlock turnstile
for one turn

Flash green light

Count

[card sensed]

[valid]

[no card] [term-
inate]

Flash red light[invalid]

[locked 
after turn]

[locked, 
no turn]



Data and information flow

m Models system functionality with data flow diagrams

m Once a dominating approach; rarely used today

+ Easy to understand
+ Supports system decomposition
– Treatment of data outdated: no types, no encapsulation
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Process and workflow modeling

m Elements
l Process steps / work steps
l Events influencing the flow
l Control flow
l Maybe data / information access and responsibilities

m Typical languages
l UML activity diagrams
l BPMN
l Event-driven process chains
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Process modeling: BPMN

BPMN (Business Process Model and Notation)

m Rich language for describing business processes
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Process modeling: EPC

m Event-driven process chains (In German: ereignisgesteuerte 
Prozessketten, EPK)

m Adopted by SAP for modeling processes supported by 
SAP’s ERP software
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Process modeling: UML Activity Diagram
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Domain story models

m Visual stories about what stakeholders want to achieve

m Includes information about processes, system, people and 
organizations
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9.4  Modeling behavior

Goal: describe dynamic system behavior
l How the system reacts to a sequence of external events
l How independent system components coordinate their work

Means:

m Finite state machines (FSMs) – not discussed here

m Statecharts / State machines
l Easier to use than FSMs (although theoretically equivalent)
l State machines are the UML variant of statecharts

m Sequence diagrams (primarily for behavioral scenarios)

m Petri nets – not discussed here
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Statecharts

m Models the dynamic behavior:
l How the system reacts to external 

events in a given state
l Reaction depends on actual state
l States may be hierarchically

nested and/or orthogonal (parallel)

m In UML: state machine diagrams

+ Global view of system behavior

+ Precise, but still readable

– Weak for modeling functionality 
and data
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Interpretation of Statecharts

m Statecharts may have composite 
states with substates and parallel 
regions, e.g.: 
– B is a composite state, consisting of 

substates B1 and B2
– D is a composite state with two 

parallel regions

m Events trigger state transitions and can 
trigger actions or new events, e.g.:
The occurrence of c triggers the 
transition from B to D, provided the 
system currently is in state B. The 
transition triggers m, which may be an 
action or an event.
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Interpretation of Statecharts – 2

m The system is always in exactly one
combination of states and nested 
substates, e.g.:
– Statechart A initially is in state B 

and its substate B1
– After the occurrence of c, A is in 

state D and substates (R, U)
– After the occurrence of f, A still is in 

state D, but now in substates (T, U)

m Events are ignored when there is no 
transition for it in the current state:
e.g., in state B2, event f is ignored
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Interpretation of Statecharts – 3

m State transitions into a composite 
state also enter its substates

m Leaving a state implies leaving all its 
substates

m Regions can influence each other via 
events, e.g.: 
If the system is in R and U, the event 
g triggers a transition from R to S, 
producing q. Event q in turn triggers a 
transition from U to V.

m Transitions between regions are 
forbidden
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Sequence diagrams / MSCs

m Models ...
l ... lifelines of system components or objects
l ... messages that the components exchange
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Object Management Group (2011b)



m Notation/terminology:
l UML: Sequence diagram
l Otherwise: Message sequence chart (MSC)

+ Visualizes component collaboration on a timeline
– In practice confined to the description of required scenarios

– Design-oriented, can detract from modeling requirements
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9.5  Modeling context

Structural embedding

m Context diagrams, modeling
l The system
l The actors in the system’s context
l Information interfaces between actors and system
l Information interfaces among actors

Dynamic interaction between system and context

m Scenarios 

m Use cases
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à Chapter 2.4

A  context diagram
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Dynamic interaction: modeling the users’ view

Describing the functionality of a system from a user’s 
perspective: How can a user interact with the system?

Two key terms:

m Use case

m Scenario

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 195

[Carroll 1995,
Glinz 1995,
Glinz 2000a,
Jacobson et al. 1992,
Sutcliffe 1998,
Weidenhaupt et al. 1998]



Use case

DEFINITION. Use case – A set of possible interactions
between external actors and a system that provide a benefit 
for the actor(s) involved.
Use cases specify a system from a user’s (or other external 
actor’s) perspective: every use case describes some 
functionality that the system must provide for the actors 
involved in the use case. 

m Use case diagrams provide an overview
m Use case descriptions provide the details
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Scenario

DEFINITION. Scenario – 1. In general: A description of a 
potential sequence of events that lead to a desired (or 
unwanted) result. 
2. In RE: An ordered sequence of interactions between 
partners, in particular between a system and external actors. 
May be a concrete sequence (instance scenario) or a set of 
potential sequences (type scenario, use case).
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Use case / scenario descriptions

Various representation options

m Free text in natural language

m Structured text in natural language

m Statecharts / UML state machines

m UML activity diagrams

m Sequence diagrams / MSCs

Structured text is most frequently used in practice
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A use case description with structured text
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USE CASE SetTurnstiles
Actor: Service Employee
Precondition: none
Normal flow:
1 Service Employee chooses turnstile setup.

System displays controllable turnstiles: locked in red, normal in green,
open in yellow. 

2  Service Employee selects turnstiles s/he wants to modify.
System highlights selected turnstiles.

3 Service Employee selects Locked, Normal, or Open.
System changes the mode of the selected turnstiles to the selected one,
displays all turnstiles in the color of the current mode.

...
Alternative flows:
3a Mode change fails: System flashes the failed turnstile in the color of its

current mode.
... 



UML Use case diagram

+ Provides abstract overview from actors’ perspectives
– Ignores functions and data required to provide interaction
– Can’t properly model hierarchies and dependencies
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Dependencies between scenarios / use cases

m UML can only model inclusion, extension and generalization

m However, we need to model
l Control flow dependencies (sequence, alternative, iteration)
l Hierarchical decomposition

m Largely ignored in UML (Glinz 2000b)

m Options
l Pre- and postconditions
l Statecharts
l Extended Jackson diagrams (in ADORA, Glinz et al. 2002)
l Specific dependency charts (Ryser and Glinz 2001)
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Dependencies with pre- and postconditions
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m Simple dependencies 
of kind «B follows A» 
can be modeled

m Relationships buried in 
use case descriptions, 
no overview

m No hierarchical 
decomposition

m Modeling of complex 
relationships very 
complicated

Scenario AuthenticateUser
Precondition: none
Steps: ...
Postcondition: User is authenticated

Scenario ReturnBooks
Precondition: User is authenticated
Steps: ...
...

Scenario BorrowBooks
Precondition: User is authenticated
Steps: ...
...



Dependencies with Statecharts

m Model scenarios as states*

m Classic dependencies (sequence, alternative, iteration, 
parallelism) can be modeled easily

m Hierarchical decomposition is easy
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[Glinz 2000a]



Dependency charts

m Specific notation for modeling of scenario dependencies
(Ryser und Glinz 2001)

m Research result; not used in today’s practice
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For the Chairlift access control system, write the use case 
“Get Access”, describing how a skier gets access to a chairlift 
using his or her RFID ticket.
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Mini-Exercise: Writing a use case



9.6  Modeling goals

m Knowing the goals of an organization (or for a product) is 
essential when specifying a system to be used in that 
organization (or product)

m Goals can be decomposed into sub goals
m Goal decomposition can be modeled with AND/OR trees

m Considering multiple goals results in a directed goal graph
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AND/OR trees for goal modeling
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Goal-agent networks

m Explicitly models agents (stakeholders), their goals, tasks
that achieve goals, resources, and dependencies between 
these items

m Many approaches in the RE literature

m i* is the most popular approach

m Rather infrequently used in practice
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A real world i* example: Youth counseling
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[Horkoff and Yu 2010]
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9.7  UML (Unified Modeling Language)

m UML is a collection of primarily graphic languages for 
expressing requirements models, design models, and 
deployment models from various perspectives

m A UML specification typically consists of a collection of 
loosely connected diagrams of various types

m Additional restrictions can be specified with the formal 
textual language OCL (Object Constraint Language)

[Object Management Group 2017]

[Object Management Group 2014]



UML – Overview of diagram types
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9.8  Lightweight, flexible modeling

m Modeling languages – Have a predetermined syntax
l Limited expressibility and flexibility
➔Too restrictive for sketching ideas or initial requirements

m Free-form sketching – Is fully flexible
l Resulting sketches do not carry any structure or meanings
➔Too vague when sketches serve as a basis for further RE tasks

m Need for a middle-ground approach
l High flexibility; no fixed set of language constructs
l Co-evolution of models and model syntax & meanings
➔FlexiSketch
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FlexiSketch – supporting flexible modeling
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l Allow users to define their own notations & languages on the fly
l Co-evolve models and their metamodels
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D. Wüest, N. Seyff, M. Glinz (2015) FlexiSketch Team: Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering

See FlexiSketch Demo Video at http://www.flexisketch.org
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10  Formal specification languages

Requirements models with formal syntax and semantics

The vision
l Analyze the problem
l Specify requirements formally
l Implement by correctness-preserving transformations
l Maintain the specification, no longer the code

Typical languages
l “Pure” Automata / Petri nets
l Algebraic specification
l Temporal logic: LTL, CTL
l Set&predicate-based models: Z, OCL, Alloy, B
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What does “formal” mean?

m Formal calculus, i.e., a specification language with 
l formally defined syntax

and
l formally defined semantics

m Primarily for specifying functional requirements

Potential forms
l Purely descriptive, e.g.,  algebraic specification
l Purely constructive, e.g., Petri nets
l Model-based hybrid forms, e.g. Alloy, B, OCL, VDM, Z
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10.1  Algebraic specification

m Developed mid 1970ies for specifying complex data types
m Signatures of operations define the syntax
m Axioms (expressions being always true) define semantics
m Axioms describe properties 

that are invariant

+ Purely descriptive and
mathematically elegant

– Hard to read
– Over- and underspecification difficult to spot
– Has never made it from research into industrial practice
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TYPE Stack
...
push: (Stack, elem) ® Stack;
...
¬ full(s) ® empty(push(s,e)) = false
...
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10.2  Model-based formal specification

m Mathematical model of system state and state change

m Based on sets, relations and logic expressions

m Typical language elements
l Base sets
l Relationships (relations, functions)
l Invariants (predicates)
l State changes (by relations or functions)
l Assertions for states
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The formal specification language landscape

m VDM – Vienna Development Method (Björner and Jones 
1978)

m Z (Spivey 1992)

m OCL (from 1997; OMG 2014)

m Alloy (Jackson 2002)
m B (Abrial 2009)
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10.3  An overview of Z

m A typical model-based formal language

m Only basic concepts covered here

m More detail in the literature, e.g.,  Jacky (1997)
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The basic elements of Z

m Z is set-based
m Specification consists of sets, types, axioms and schemata
m Types are elementary sets:     [Name]      [Date]     IN
m Sets have a type:     Person: Name      Counter: IN 
m Axioms define global variables and their (invariant) properties

string: seq CHAR
#string ≤  64

Declaration

Invariant

IN Set of natural numbers
M Power set (set of all subsets) of M

seq Sequence of elements
#M Number of elements of set M

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz



222

The basic elements of Z – 2

m Schemata
l organize a Z-specification
l constitute a name space

Value, Limit: IN
Value ≤ Limit ≤  65535

Counter
Name

Declaration part:
Declaration of state variables

Predicate part:
• Restrictions
• Invariants
• Relationships
• State change
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Relations, functions und operations

m Relations and functions are ordered set of tuples:
Order: (Part x Supplier x Date)

Birthday: Person ® Date

State change through operations:

D Counter
Value < Limit
Value' = Value + 1
Limit' = Limit

Increment counter D S The sets defined in schema S 
will be changed

M' State of set M after executing 
the operation

Mathematical equality, no assignment!

A subset of all ordered triples
(p, s, d) with p Î Part,
s Î supplier, and d Î Date

A function assigning a date to a person, 
representing the person’s birthday
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Example: specification of a library system

The library has a stock of books and a set of persons who are 
library users.

Books in stock may be borrowed.

Stock: Book
User: Person
lent: Book ® Person

dom lent Í Stock
ran lent Í User

Library

® Partial function
dom Domain ...
ran Range...

...of a relation
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Example: specification of a library system – 2

Books in stock which currently are not lent to somebody may 
be borrowed

D Library
BookToBeBorrowed?: Book
Borrower?: Person
BookToBeBorrowed? Î Stock\ dom lent
Borrower? Î User
lent' = lent È {(BookToBeBorrowed?, Borrower?)}
Stock' = Stock
User' = User

Borrow

x? x is an input variable
a Î X a is an element of set X
\ Set difference operator
È Set union operator
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Example: specification of a library system – 3

It shall be possible to inquire whether a given book is 
available

X Library
InquiredBook?: Book
isAvailable!: {yes, no}
InquiredBook? Î Stock
isAvailable! = if InquiredBook? Ï dom lent

then yes else no

InquireAvailability

X S The sets defined in schema S can 
be referenced, but not changed

x! x is an output variable
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Mini-Exercise: Specifying in Z

Specify a system for granting and managing authorizations 
for a set of individual documents.

The following sets are given:

Specify an operation for granting an employee access to a 
document as long as access to this document is not 
prohibited. Use a Z-schema.

.

Stock Document
Employee: Person
authorized: (Document x Person)
prohibited: (Document x Date)

Authorization
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10.4  OCL (Object Constraint Language)

m What is OCL?
l A textual formal language
l Serves for making UML models more precise
l Every  OCL expression is attached to an UML model 

element, giving the context for that expression
l Originally developed by IBM as a formal language for 

expressing integrity constraints (called ICL)
l In 1997 integrated into UML 1.1
l Current standardized version is Version 2.4 of 2014
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Why OCL?

m Making UML models more precise
l Specification of Invariants (i.e., additional restrictions) on 

UML models
l Specification of the semantics of operations in UML models

m Also usable as a language to query UML models 
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HR_management

OCL expressions: invariants

m OCL expression may 
be part of a UML 
model element

m Context for OCL 
expression is given 
implicitly

m OCL expression may 
be written separately 

m Context must be 
specified explicitly

Employee

personId: Integer {personID > 0} 
name: String
firstName: String [1..3]
dateOfBirth: Date
/age: Integer
jobFunction: String
...
...

context HR_manangement::Employee inv:
self.jobFunction = “driver” implies self.age ≥ 18

...
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OCL expressions: Semantics of operations

Employee Document
...
clearanceLevel:

Integer
noOfDocs:

Integer
...

docID: Integer
securityLevel:

Integer
...

authorize (doc: 
Document)

context Employee::authorize (doc: Document)
pre: self.clearanceLevel ≥ doc.securityLevel
post: noOfDocs = noOfDocs@pre + 1

and
self.has->exists (a: Authorization | a.concerns = doc)

has
0..*

concerns
1Authorization

grantedOn: Date
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Application of a function to 
a set of objects

Navigation from current object to a 
set of associated objects

Navigation, statements about sets in OCL

m Persons having Clearance level 0 can’t be authorized for 
any document:
context Employee inv: self.clearanceLevel = 0 implies

self.has->isEmpty()
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Navigation, statements about sets in OCL – 2

More examples:

m The number of documents listed for an employee must be 
equal to the number of associated authorizations:
context Employee inv: self.has->size() = self.noOfDocs

m The documents authorized for an employee are different 
from each other
context Employee inv: self.has->forAll (a1, a2: Authorization | 

a1 <> a2 implies a1.concerns.docID <> a2.concerns.docID)

m There are no more than 1000 documents:
context Document inv: Document.allInstances()->size() ≤ 1000
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Summary of important OCL constructs

m Kind and context: context, inv, pre, post
m Boolean logic expressions: and, or, not, implies
m Predicates: exists, forAll
m Alternative: if then else
m Set operations: size(), isEmpty(), notEmpty(), sum(), ...
m Model reflection, e.g., self.oclIsTypeOf (Employee) is true in 

the context of Employee
m Statements about all instances of a class: allInstances()
m Navigation: dot notation self.has.date = ...
m Operations on sets: arrow notation self.has->size()
m State change: @pre notation noOfDocs = 

noOfDocs@pre + 1 
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10.5  Proving properties

With formal specifications, we can prove if a model has some 
required properties (e.g., safety-critical invariants)
m Classic proofs (usually supported by theorem proving 

software) establish that a property can be inferred from a 
set of given logical statements

m Model checking explores the full state space of a model, 
demonstrating that a property holds in every possible state

– Classic proofs are still hard and labor-intensive
+ Model checking is fully automatic and produces counter-

examples in case of failure
– Exploring the full state state space is frequently infeasible
+ Exploring feasible subsets is a systematic, automated test
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Example: Proving a safety property

A (strongly simplified) elevator control system has been 
modeled with a Petri net as follows:

The property that an elevator never moves with doors open 
shall be proved

Door 
open

Door 
closed

Elevator stopped

Elevator 
moving

Ready to move
Floor button 
pressed
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door
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door

Move

Stop
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Example: Proving a safety property – 2

The property to be proven can be restated as:
(P) The places Door open and Elevator moving never hold 

tokens at the same time
Due to the definition of elementary Petri Nets we have
l The transition Move can only fire if Ready to move has a

token (1)
l There is at most one token in the cycle Ready to move –

Elevator moving – Elevator stopped – Door open (2)
l (2) Þ If Ready to move or Elevator moving have a token,

Door open hasn’t one (3)
l If Door open has no token, Door closed must have one (4) 
l (1) & (3) & (4) Þ (P)
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Mini-Exercise: A circular metro line

A circular metro line with 10 track segments has been modeled 
in UML and OCL as follows:

In a circle, every track segment must be reachable from every 
other track segment (including itself). So we must have:
context TrackSegment inv (1)

TrackSegment.allInstances->forAll (x, y | x.reachable (y) )

a) Falsify this invariant by finding a counter-example
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Context TrackSegment::
reachable (a: TrackSegment): Boolean
post:
result = (self.to = a) or (self.to.reachable (a))

context TrackSegment inv:
TrackSegment.allInstances->size = 10

TrackSegment

Occupied: Boolean

reachable (a:TrackSegment)

from
1

to   1
connected
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Mini-Exercise: A circular metro line – 2

Only the following trivial invariant can be proved:

context TrackSegment inv:
TrackSegment.allInstances->forAll (x | x.reachable (x) )

b) Prove this invariant using the definition of reachable

Obviously, this model of a circular metro line is wrong. The 
property of being circular is not mapped correctly to the model.

c) How can you modify the model such that the original 
invariant (1) holds?
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10.6  Benefits and limitations, practical use

Benefits
l Unambiguous by definition
l Fully verifiable
l Important properties can be

• proven
• or tested automatically (model checking)

Limitations / problems
l Cost vs. value
l Stakeholders can’t read the specification: how to validate?
l Primarily for functional requirements
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Role of formal specifications in practice

m Marginally used in practice
l Despite its advantages
l Despite intensive research (research on algebraic 

specifications dates back to 1977)

m Actual situation today
l Punctual use possible and reasonable
l In particular for safety-critical components
l However, broad usage

• not possible (due to validation problems)
• not reasonable (cost exceeds benefit)

m Another option: semi-formal models where critical parts are 
fully formalized
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11  Validating requirements

Every requirement needs to be validated
(see Principle 6 in Chapter 2)

m Content:
l Stakeholders’ desires and needs adequately covered?
l Requirements agreed?

m Work products: Requirements documented well?

m Context: Assumptions reasonable?
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Important validation aspects

m Involvement of the right stakeholders

m Separating the identification and the correction of defects

m Validation from different views

m Repeated / continuous validation

m Use appropriate techniques
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Validation of content

Identify requirements that are
l Inadequate or wrong
l Incomprehensible
l Incomplete or missing
l Ambiguous

Also look for requirements with these quality defects:
l Not verifiable
l Unnecessary
l Infeasible
l Premature design decisions
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Validation of content: Agreement

m Requirements elicitation involves achieving consensus
among stakeholders having divergent needs

m When validating requirements, we have to check whether 
agreement has actually been achieved
l All known conflicts resolved?
l For all requirements: have all relevant stakeholders for a 

requirement agreed to this requirement in its documented 
form?

l For every changed requirement, have all relevant 
stakeholders agreed to this change?

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 245



Validation of requirements work products

Scope: checking the requirements work products (e.g., a 
systems requirements specification or a collection of user 
stories) for formal problems

Identify requirements that are 
l Inconsistent with each other
l Missing
l Non-conforming to documentation rules, structure or format
l Redundant
l Badly structured
l Hard to modify
l Not traceable
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Context validation

m Context assumptions reasonable?

m Mappings from context phenomena to system inputs / 
outputs adequate?

m Can we reasonably argue that the domain requirements 
will be met when the system will be built and deployed as 
specifiend in the requirements?
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Requirements validation techniques

Review
l Main means for requirements validation
l Walkthrough: author guides experts through the specification
l Inspection: Experts check the specification
l Author-reviewer-cycle: Requirements engineer continuously 

feeds back requirements to stakeholder(s) for review and 
receives feedback

Construction of other work products
l Acceptance criteria / test cases help disambiguate / clarify 

requirements
l Writing user manuals or creating models for textual 

requirements may help identify missing or wrong requirements
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Requirements validation techniques – 2

Prototyping
l Lets stakeholders judge the practical usefulness of the 

specified system in its real application context
l Prototype constitutes a sample model for the system-to-be
l Most powerful, but also most expensive means of 

requirements validation

Simulation/Animation
l Means for investigating dynamic system behavior
l Simulator executes specification and may visualize it by 

animated models
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Requirements validation techniques – 3

Testing (when evolving an existing system)
l A/B testing
l Classic alpha and beta testing of source code

Requirements Engineering tools
l Help find gaps and contradictions

Formal Verification / Model Checking / Model Analysis
l Formal proof of critical properties
l Automated, systematic and comprehensive test of critical 

properties (when proofs are not tractable)
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Reviewing practices

m Paraphrasing
l Explaining the requirements in the reviewer’s own words

m Perspective-based reading
l Analyzing requirements from different perspectives, 

e.g., end-user, tester, architect, maintainer,...

m Playing and executing
l Playing scenarios
l Mentally executing acceptance test cases

m Checklists
l Using checklists for guiding and structuring the review 

process
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Requirements negotiation

m Requirements negotiation implies
l Identification of conflicts
l Conflict analysis
l Conflict resolution
l Documentation of resolution

m Requirements negotiation can happen
l While eliciting requirements
l When validating requirements
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Conflict analysis

Identifying the underlying reasons of a conflict helps select 
appropriate resolution techniques
Typical underlying reasons are

l Subject matter conflict (divergent factual needs)
l Data conflict (different interpretation of data, inconsistent data)
l Interest conflict (divergent interests, e.g., cost vs. function)
l Value conflict (divergent values and preferences)
l Relationship conflict (emotional problems in personal 

relationships between stakeholders)
l Organizational conflict (between stakeholders on different 

hierarchy and decision power levels in an organization)
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Conflict resolution

m Various strategies / techniques

m Conflicting stakeholders must be involved in resolution

m Win-win techniques
l Agreement
l Compromise
l Build variants

m Win-lose techniques
l Overruling
l Voting
l Prioritizing stakeholders (important stakeholders override 

less important ones)
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Conflict resolution – 2

m Decision support techniques
l PMI (Plus-Minus-Interesting) categorization of potential 

conflict resolution decisions
l Decision matrix (Matrix with a row per interesting criterion 

and a column per potential resolution alternative. The cells 
contain relative weights which can be summarized per 
column and then compared)
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Acceptance testing

DEFINITION.  Acceptance – The process of assessing whether 
a system satisfies all its requirements.
DEFINITION. Acceptance test – A test that assesses whether a 
system satisfies its requirements.
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Requirements and acceptance testing

Requirements engineering and acceptance testing are 
naturally intertwined

m For every requirement, there should be at least one 
acceptance test case

m Requirements should be written such that acceptance tests 
can be written to verify them (à verifiability)

m Acceptance test cases can serve
l for disambiguating requirements
l as detailed specifications by example à acceptance criteria 

for user stories
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Choosing acceptance test cases

Potential coverage criteria:

m Requirements coverage: At least one case per requirement

m Function coverage: At least one case per function

m Scenario coverage: For every type scenario / use case
l All actions covered
l All branches covered

m Consider the usage profile: not all functions/scenarios are 
equally frequent / important
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12  Innovative requirements

Satisfying stakeholders is not enough
(see Principle 8 in Chapter 2)
m Kano’s model helps identify...

l what is implicitly expected
(dissatisfiers)

l what is explicitly required
(satisfiers)

l what the stakeholders
don’t know, but would
delight them if they get it:
innovative requirements

m Over time, delighters degrade toward plain expectations

[Kano et al. 1984] 
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How to create innovative requirements?

Encourage out-of-the-box thinking

m Stimulate the stakeholders’ creativity
l Imagine/ make up scenarios for possible futures
l Imagine a world without constraints and regulators
l Find and explore metaphors
l Study other domains

m Involve solution experts and explore what’s possible with 
available and future technology

m Involve smart people without domain knowledge
[Maiden, Gitzikis and Robertson 2004]
[Maiden and Robertson 2005]



Where to innovate

m Functionality – new exciting features

m Performance – not just a bit more, but significantly more 
powerful than previous or competing systems

m Usability – making usage an exciting experience
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13  Requirements management

m Organize
l Store and retrieve
l Record metadata (author, status,...)

m Prioritize
m Keep track: dependencies, traceability

m Manage change
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13.1  Organizing requirements

Every requirement needs

m a unique identifier as a reference in acceptance tests, 
review findings, change requests, traces to other artifacts, 
etc.

m some metadata, e.g.
l Author
l Date created
l Date last modified
l Source (stakeholder(s), document, minutes, observation...)
l Status (created, ready, released, rejected, postponed...)
l Necessity (critical, major, minor)
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Storing, retrieving and querying

Storage
l Paper and folders
l Files and electronic folders
l A requirements management tool

Retrieving support
l Keywords
l Cross referencing
l Search machine technology

Querying
l Selective views (all requirements matching the query)
l Condensed views (for example, statistics)
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13.2  Prioritizing requirements

m Requirements may be prioritized with respect to various 
criteria, for example
l Necessity
l Cost of implementation
l Time to implement
l Risk
l Volatility

m Prioritization is done by the stakeholders
m Only a subset of all requirements may be prioritized

m Requirements to be prioritized should be on the same level 
of abstraction
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Simple prioritization (by necessity)

Ranks all requirements in three categories with respect to 
necessity, i.e., their importance for the success of the system

m Critical (also called essential, or mandatory)
The system will not be accepted if such a requirement is not met

m Major (also called conditional, desirable, important, or 
optional)
The system should meet these requirements, but not meeting 
them is no showstopper

m Minor (also called nice-to-have, or optional)
Implementing these requirements is nice, but not needed
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Selected prioritization techniques

Single criterion prioritization

m Simple ranking
Stakeholders rank a set of requirements according to a given 
criterion

m Assigning points
Stakeholders receive a total of n points that they distribute 
among m requirements

m Prioritization by multiple stakeholders may be consolidated
using weighted averages. The weight of a stakeholder 
depends on his/her importance
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Selected prioritization techniques – 2

Multiple criterion prioritization

m Wiegers’ matrix [Wiegers 1999]
l Estimates relative benefit, detriment, cost, and risk for each 

requirement
l Uses these values to calculate a weighted priority
l Ranks according to calculated priority values

m AHP (Analytic Hierarchy Process) [Saaty 1980]
l An algorithmic multi-criterion decision making process
l Applicable for prioritization by a group of stakeholders
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13.3  Traceability

DEFINITION. Traceability – The ability to trace a requirement
(1) back to its origins,
(2) forward to its implementation in design and code,
(3) to requirements it depends on (and vice-versa).
Origins may be stakeholders, documents, rationale, etc.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 269

[Gotel and Finkelstein 1994]

Stakeholders

Documents

Sources
Requirements
specification

Solution
Modules

Requirements

...

Pre-
traceability

Post-
traceability

Rationale

Test cases
...



Establishing and maintaining traces

m Manually
l Requirements engineers explicitly create traces when 

creating artifacts to be traced
l Tool support required for maintaining and exploring traces
l Every requirements change requires updating the traces
l High manual effort; cost and benefit need to be balanced

m Automatic
l Automatically create candidate trace links between two 

artifacts (for example, a requirements specification and a set 
of acceptance test cases)

l Uses information retrieval technology
l Requires manual post processing of candidate links 
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13.4  Requirements evolution

The problem (see Principle 7 in Chapter 2):
Keeping requirements stable...
... while permitting requirements to change

Potential solutions
l Agile / iterative development with short development cycles 

(1-6 weeks)
l Explicit requirements change management

Every solution to this problem further needs requirements 
configuration management
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 271



Requirements configuration management

Keeping track of changed requirements

m Versioning of requirements

m Ability to create requirements configurations, baselines and 
releases

m Tracing the reasons for a change,
for example
l Stakeholder demand
l Bug reports / improvement suggestions
l Market demand
l Changed regulations
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Classic requirements change management

Adhering to a strict change process
(1) Submit change request
(2) Triage. Result: [OK | NO | Later (add to backlog)]
(3) If OK: Perform impact analysis
(4) Submit result and recommendation to Change Control Board
(5) Decision by Change Control Board 
(6) If positive: make the change, create new baseline/release,

(maybe) adapt the contract between client and supplier

Change control board – A committee of customer and supplier
representatives that decides on change requests.
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Requirements change in agile development

In agile and iterative development processes, a requirements 
change request ...

l ... never affects the current sprint / iteration, thus ensuring 
stability

l ... is added to the product backlog

Decisions about change requests are made when prioritizing 
and selecting the requirements for the subsequent sprints / 
iterations
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14  Requirements and design

A traditional belief:

m Requirements are about what a system ought to do

m Design deals with the problem of how to realize what has 
been stated in the requirements

m Requirements Engineering and System Design should be 
kept separate, with requirements preceding design

m Sounds good and is popular, but does not work
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Design has two facets

m Technical Design: Creating the architectural structure of a 
system and designing its components in detail

m Product Design: Shaping a product (or a system) with 
respect to its capabilities, behavior, outer form, and usage

Traditional RE: Product Design comes after RE

Modern RE: Product design shapes the essence of a product 
à crucial for meeting the stakeholders’ desires and needs
à Product Design and RE are strongly intertwined

Product design for digital products is also called “Digital Design”
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Why care about both RE and product design?

277

à We need RE 
competencies

à and product 
design
competencies
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Complementary contributions

m RE contributes competencies about
l Stakeholder identification
l Elicitation of wishes and needs
l Documentation of non-touchable things
l Requirements negotiation, prioritization, and validation

m Product Design contributes competencies about
l Usability
l User experience design
l Materials for physical & cyber-physical products,

“digital materials” for digital products
l Empirical product validation
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Meeting requirements may not suffice
to satisfy stakeholders

279

The participant entry form shall have 
fields for the participant data name, 
first name, sex, and person ID and a 
submit button.

can be ruined by 
bad product design

Sex

Name
First name

Person Id

GO!

A requirement
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