
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 160

9 Model-based requirements specification

Why do we model requirements?

m Gain an overview of a set of
requirements

m Understand relationships and inter-
connections between requirements

m Focus on some aspect of a system,
abstracting from the rest

Primarily for functional
requirements

Quality requirements
and constraints are
mostly specified in
natural language

9.1 Models in RE

DEFINITION. Model – an abstract representation of an existing
part of reality or a part of reality to be created.
The notion of reality includes any conceivable set of
elements, phenomena or concepts, including other models.
With respect to a model, the modeled part of reality is called
the original.

m Requirements models are problem-oriented models of the
system to be built

m Architecture and design information is omitted

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 161

Requirements models can be used for

m Specifying requirements (as a means of replacing textually
represented requirements)

m Paraphrasing textually represented requirements to
improve understanding of complex structures and
dependencies

m Testing textually represented requirements to uncover
omissions, ambiguities and inconsistencies

m Decomposing a complex reality into comprehensible parts

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 162

Which aspects can be modeled?

m Structure and Data
l Structural properties of a system, particularly of the static data
l Structure of a system’s domain

m Function and Flow
Sequence of actions and control / data flow for
l producing a required result
l describing a (business) process

m State and Behavior
Behavior of a system or a domain component
l State-dependent reactions to events
l Dynamics of component interaction

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 163

Which aspects can be modeled? – continued

m Context
l Structural embedding of system in its environment
l Interaction between system and actors in the context

m Goals
Understanding the goals for a system
l Goal decomposition
l Goal-agent networks

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 164

9.2 Modeling structure and data

m Entity-relationship models

m Class and object models

m Component models

What to model

m Static system models: Information that a system needs to
know and store persistently

m Static domain models: The (business) objects and their
relationships in a domain of interest.

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 165

Data modeling (entity-relationship models)

m Models the relevant part of the domain
using entity types, relationship types and
attributes

+ Rather easy to model
+ Straightforward mapping to relational

database systems
– Ignores functionality and behavior
– No means for system decomposition

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 166

Turnstile

Scanner

Lift

has

belongs part of

[Chen 1976]

Object and class modeling

Idea

m Identify those entities in the domain that the system has
to store and process

m Map this information to objects/classes, attributes,
relationships and operations

m Represent requirements in a static structural model

m Modeling individual objects does not work: too specific or
unknown at time of specification
à Classify objects of the same kind to classes: Class models
à or select an abstract representative: Object models

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 167

[Booch 1986, Booch 1994, Glinz et al. 2002]

Terminology

Object – an individual entity which has an identity and does
not depend on another entity.

Examples: Turnstile no. 00231, The Plauna chairlift

Class – Represents a set of objects of the same kind by
describing the structure of the objects, the ways they can be
manipulated and how they behave.

Examples: Turnstile, Lift

Abstract Object – an abstract representation of an individual
object or of a set of objects having the same type

Example: A Turnstile

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 168

Class models / diagrams

Most popular form of
structure modeling
Typically using UML class diagrams

Class diagram: a diagrammatic representation of a class model

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 169

Turnstile
+ id: Integer
+ installed: Date
+ count: Integer
– mode: TurnstileMode
Lock ()
Unlock ()
AllowOneTurn ()

Lift
+ id: Integer
+ name: String
+ type: String
+ capacity: Integer
Start ()
Stop ()

owner
1..11..*

transport
device
1..*

accessed by

Chair Lift
+ seats: Integer

Ski Lift

Class models are sometimes inadequate

m Class models don’t work when different objects of the
same class need to be distinguished

m Class models can’t be decomposed properly: different
objects of the same class may belong to different
subsystems

m Subclassing is a workaround, but no proper solution

In such situations, we need object models

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 170

Object models: a motivating example

Example: Treating incidents in an emergency command and
control system

Emergency command and control systems manage incoming
emergency calls and support human dispatchers in reacting
to incidents (e.g., by sending police, fire fighters or
ambulances) and monitoring action progress.
When specifying such a system, we need to model

l Incoming incidents awaiting treatment
l The incident currently managed by the dispatcher
l Incidents currently under treatment
l Closed incidents

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 171

Class models are inadequate here

In a class model, incidents would have to be modeled as
follows:

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 172

Bad: essential elements
of the problem are not
modeled

Unnatural: all subclasses are structurally
identical

either
Incident

or
Incident

Incoming
Incident

Dispatched
incident

Closed
Incident

Current
incident

Object models work here

Modeling is based on a hierarchy of abstract objects

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 173

Dispatched
Incident:
Incident

Closed
incident:
Incident

Current
Incident:
Incident

Dispatcher support... Archive...

Incoming
incident:
Incident

Object name
Object type

Singleton
object

Object set

Command&Control System...

Notation: ADORA

ADORA

m ADORA is a language and tool for object-oriented
specification of software-intensive systems

m Basic concepts
l Modeling with abstract objects
l Hierarchic decomposition of models
l Integration of object, behavior and interaction modeling
l Model visualization in context with generated views
l Adaptable degree of formality

m Developed in the RERG research group at UZH

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 174

[Glinz et al. 2002]

Modeling with abstract objects in UML

m Not possible in the original UML (version 1.x)

m Introduced 2004 as an option in UML 2

m Abstract objects are modeled as components in UML

m The component diagram is the corresponding diagram

m Lifelines in UML 2 sequence diagrams are also frequently
modeled as abstract objects

m In UML 2, class diagrams still dominate

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 175

What can be modeled in class/object models?

m Objects as classes or abstract objects

m Local properties as attributes

m Relationships / non-local properties as associations

m Services offered by objects as operations on objects or
classes (called features in UML)

m Object behavior
l Must be modeled in separate state machines in UML
l Is modeled as an integral part of an object hierarchy in ADORA

m System-context interfaces and functionality from a user’s
perspective can’t be modeled adequately

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 176

Object-oriented modeling: pros and cons

+ Well-suited for describing the structure of a system

+ Supports locality of data and encapsulation of properties

+ Supports structure-preserving implementation
+ System decomposition can be modeled

– Ignores functionality and behavior from a user’s perspective
– UML class models don’t support decomposition

– UML: Behavior modeling weakly integrated

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 177

178

Mini-Exercise: Classes vs. abstract objects

Specify a distributed heating control system for an office
building consisting of a central boiler control unit and a room
control unit in every office and function room.
m The boiler control unit shall have a control panel consisting

of a keyboard, a LCD display and on/off buttons.
m The room control unit shall have a control panel consisting

of a LCD display and five buttons: on, off, plus, minus, and
enter.

Model this problem using
a. A class model
b. An abstract object model.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

9.3 Modeling function and flow

m Activity models

m Data flow / information flow models

m Process and work flow models

m Domain story models

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 179

Activity modeling: UML activity diagram

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 180

m Models process
activities and
control flow

m Can model data
flow

m Model can be
underpinned with
execution
semantics

Validate card

Initialize turnstile

Poll

Read card

Unlock turnstile
for one turn

Flash green light

Count

[card sensed]

[valid]

[no card] [term-
inate]

Flash red light[invalid]

[locked
after turn]

[locked,
no turn]

Data and information flow

m Models system functionality with data flow diagrams

m Once a dominating approach; rarely used today

+ Easy to understand
+ Supports system decomposition
– Treatment of data outdated: no types, no encapsulation
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 181

Convert
sensor
data

Check
for

alarms

Display
chairlift
statusSensor

raw values
Chairlift status
measurements

Tagged status
measurements Chairlift

status
display

Alarm boundary
parameters

Chairlift schema
imagesProblem log

[DeMarco 1978]

Process and workflow modeling

m Elements
l Process steps / work steps
l Events influencing the flow
l Control flow
l Maybe data / information access and responsibilities

m Typical languages
l UML activity diagrams
l BPMN
l Event-driven process chains

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 182

Process modeling: BPMN

BPMN (Business Process Model and Notation)

m Rich language for describing business processes

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 183

[Object Management
Group 2013]

Check refund
request

Submit
refund
request

proof valid

proof
missing

Request proof Wait for valid
proof

received

2 weeks

Proof
valid?

yes

no
Notify
rejection

Process
refund

+

Ti
ck

et
 O

ffi
ce

Sk
ie

r

proof
invalid

Refund unused days for valid ticket

Skier may request a refund for unused days,
e.g., due to an accident or family emergency

Process modeling: EPC

m Event-driven process chains (In German: ereignisgesteuerte
Prozessketten, EPK)

m Adopted by SAP for modeling processes supported by
SAP’s ERP software

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 184

Event Event

Function

Start event

Org unitInformation
object

Information
object

Connector
(AND, OR,
XOR)

Control flow

Process modeling: UML Activity Diagram

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 185

Receive
item

Initial node

Process
item

Catalog
item

Store Item

[not new]

[new]

Action

Fork node (fork into parallel flows)
Decision node (with decision
conditions)

Merge node

Join node (join&synchronize flows)

Final node

Clerk Warehouse System

Activity partitions
(“swimlanes”) model
who is responsible
for what

Domain story models

m Visual stories about what stakeholders want to achieve

m Includes information about processes, system, people and
organizations

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 186

[Hofer&Schwendtner 2020]

Skier
Clerk

Needs a ticket
Has an RFID Card

Kind of ticket &
validity date(s)

Asks for

Hands
over

RFID card

to

Ticketing
System

Initiates
purchase

Tells

Price to pay

CHF

Confirms
purchase

Loads
ticketPlaces

card on
programm-
ing device

to

Pays

Hands outto

01 02

03

04

05

06

07 08

09

to

RFID card

RFID card

9.4 Modeling behavior

Goal: describe dynamic system behavior
l How the system reacts to a sequence of external events
l How independent system components coordinate their work

Means:

m Finite state machines (FSMs) – not discussed here

m Statecharts / State machines
l Easier to use than FSMs (although theoretically equivalent)
l State machines are the UML variant of statecharts

m Sequence diagrams (primarily for behavioral scenarios)

m Petri nets – not discussed here
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 187

Statecharts

m Models the dynamic behavior:
l How the system reacts to external

events in a given state
l Reaction depends on actual state
l States may be hierarchically

nested and/or orthogonal (parallel)

m In UML: state machine diagrams

+ Global view of system behavior

+ Precise, but still readable

– Weak for modeling functionality
and data

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 188

closed

open

validating

card sensed
validate card

card valid
allow one turn;
count’ = count +1;
flash green light

card invalid
flash red light

count = 0

one turn done

normal mode

Inactive mode

switch to
normal mode

[Harel 1988]

Interpretation of Statecharts

m Statecharts may have composite
states with substates and parallel
regions, e.g.:
– B is a composite state, consisting of

substates B1 and B2
– D is a composite state with two

parallel regions

m Events trigger state transitions and can
trigger actions or new events, e.g.:
The occurrence of c triggers the
transition from B to D, provided the
system currently is in state B. The
transition triggers m, which may be an
action or an event.

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 189

B1

B2

R

S

T

U

V

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

Interpretation of Statecharts – 2

m The system is always in exactly one
combination of states and nested
substates, e.g.:
– Statechart A initially is in state B

and its substate B1
– After the occurrence of c, A is in

state D and substates (R, U)
– After the occurrence of f, A still is in

state D, but now in substates (T, U)

m Events are ignored when there is no
transition for it in the current state:
e.g., in state B2, event f is ignored

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 190

B1

B2

R

S

T

U

V

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

Interpretation of Statecharts – 3

m State transitions into a composite
state also enter its substates

m Leaving a state implies leaving all its
substates

m Regions can influence each other via
events, e.g.:
If the system is in R and U, the event
g triggers a transition from R to S,
producing q. Event q in turn triggers a
transition from U to V.

m Transitions between regions are
forbidden

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 191

B1

B2

R

S

T

U

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

t/h V

Sequence diagrams / MSCs

m Models ...
l ... lifelines of system components or objects
l ... messages that the components exchange

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 192

:RFID
card

:Turnstile:Scanner :Access
controller

:Turnstile
device

Scan()
Validate(CardInfo)

AllowOneTurn()

FlashRedLight()

CardInfo

ValidCard

[Valid]

[else]

alt

OneTurnDoneCount()

InvalidCard

sd NormalMode

Object Management Group (2011b)

m Notation/terminology:
l UML: Sequence diagram
l Otherwise: Message sequence chart (MSC)

+ Visualizes component collaboration on a timeline
– In practice confined to the description of required scenarios

– Design-oriented, can detract from modeling requirements

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 193

9.5 Modeling context

Structural embedding

m Context diagrams, modeling
l The system
l The actors in the system’s context
l Information interfaces between actors and system
l Information interfaces among actors

Dynamic interaction between system and context

m Scenarios

m Use cases
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 194

à Chapter 2.4

A context diagram

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 32

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Skier

Maintainer

Manager

Service 
employee

Chairlift access
control

call

set mode

query

statistics

setup

card

pass/block

Dynamic interaction: modeling the users’ view

Describing the functionality of a system from a user’s
perspective: How can a user interact with the system?

Two key terms:

m Use case

m Scenario

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 195

[Carroll 1995,
Glinz 1995,
Glinz 2000a,
Jacobson et al. 1992,
Sutcliffe 1998,
Weidenhaupt et al. 1998]

Use case

DEFINITION. Use case – A set of possible interactions
between external actors and a system that provide a benefit
for the actor(s) involved.
Use cases specify a system from a user’s (or other external
actor’s) perspective: every use case describes some
functionality that the system must provide for the actors
involved in the use case.

m Use case diagrams provide an overview
m Use case descriptions provide the details

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 196

[Jacobson et al. 1992
Glinz 2013]

Scenario

DEFINITION. Scenario – 1. In general: A description of a
potential sequence of events that lead to a desired (or
unwanted) result.
2. In RE: An ordered sequence of interactions between
partners, in particular between a system and external actors.
May be a concrete sequence (instance scenario) or a set of
potential sequences (type scenario, use case).

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 197

[Carroll 1995
Sutcliffe 1998
Glinz 1995]

Use case / scenario descriptions

Various representation options

m Free text in natural language

m Structured text in natural language

m Statecharts / UML state machines

m UML activity diagrams

m Sequence diagrams / MSCs

Structured text is most frequently used in practice

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 198

A use case description with structured text

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 199

USE CASE SetTurnstiles
Actor: Service Employee
Precondition: none
Normal flow:
1 Service Employee chooses turnstile setup.

System displays controllable turnstiles: locked in red, normal in green,
open in yellow.

2 Service Employee selects turnstiles s/he wants to modify.
System highlights selected turnstiles.

3 Service Employee selects Locked, Normal, or Open.
System changes the mode of the selected turnstiles to the selected one,
displays all turnstiles in the color of the current mode.

...
Alternative flows:
3a Mode change fails: System flashes the failed turnstile in the color of its

current mode.
...

UML Use case diagram

+ Provides abstract overview from actors’ perspectives
– Ignores functions and data required to provide interaction
– Can’t properly model hierarchies and dependencies
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 200

Skier

Set TurnstileGet Access

Buy Ticket

Load Ticket
on Device

Program
Device

Card Watch

Sell Ticket

Change Ticket Ticket
Office

Employee

Service
Employee

Chairlift Access Control System

«include»

«include»

«include»

«extend» «extend»

...

Dependencies between scenarios / use cases

m UML can only model inclusion, extension and generalization

m However, we need to model
l Control flow dependencies (sequence, alternative, iteration)
l Hierarchical decomposition

m Largely ignored in UML (Glinz 2000b)

m Options
l Pre- and postconditions
l Statecharts
l Extended Jackson diagrams (in ADORA, Glinz et al. 2002)
l Specific dependency charts (Ryser and Glinz 2001)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 201

Dependencies with pre- and postconditions

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 202

m Simple dependencies
of kind «B follows A»
can be modeled

m Relationships buried in
use case descriptions,
no overview

m No hierarchical
decomposition

m Modeling of complex
relationships very
complicated

Scenario AuthenticateUser
Precondition: none
Steps: ...
Postcondition: User is authenticated

Scenario ReturnBooks
Precondition: User is authenticated
Steps: ...
...

Scenario BorrowBooks
Precondition: User is authenticated
Steps: ...
...

Dependencies with Statecharts

m Model scenarios as states*

m Classic dependencies (sequence, alternative, iteration,
parallelism) can be modeled easily

m Hierarchical decomposition is easy

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 203

Borrow books Return books Reserve on-loan

books

Authenticate

user

User selects

borrow

User selects

reserve

User selects

return

card is invalid

Perform book transaction

* With one main entry
and exit point each;
symbolized by top and
bottom bars in the
diagram

Research result,
not used in
today’s practice

[Glinz 2000a]

Dependency charts

m Specific notation for modeling of scenario dependencies
(Ryser und Glinz 2001)

m Research result; not used in today’s practice

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 204

Normal path
Alternative path

For the Chairlift access control system, write the use case
“Get Access”, describing how a skier gets access to a chairlift
using his or her RFID ticket.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 205

Mini-Exercise: Writing a use case

9.6 Modeling goals

m Knowing the goals of an organization (or for a product) is
essential when specifying a system to be used in that
organization (or product)

m Goals can be decomposed into sub goals
m Goal decomposition can be modeled with AND/OR trees

m Considering multiple goals results in a directed goal graph

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 206

[van Lamsweerde 2001, 2004
Mylopoulos 2006
Yu 1997]

AND/OR trees for goal modeling

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 207

Use RFID
access cards

Use machine
readable tickets

Use single
point access

OR-Decomposition

Install RFID
enabled turnstiles

Install RFID en-
abled sales points

AND-Decomposition

Reduce access
control costgoal

sub goals

Reduce lift
personnel

Simplify
access control

Goal-agent networks

m Explicitly models agents (stakeholders), their goals, tasks
that achieve goals, resources, and dependencies between
these items

m Many approaches in the RE literature

m i* is the most popular approach

m Rather infrequently used in practice

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 208

A real world i* example: Youth counseling

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 209

[Horkoff and Yu 2010]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 210

9.7 UML (Unified Modeling Language)

m UML is a collection of primarily graphic languages for
expressing requirements models, design models, and
deployment models from various perspectives

m A UML specification typically consists of a collection of
loosely connected diagrams of various types

m Additional restrictions can be specified with the formal
textual language OCL (Object Constraint Language)

[Object Management Group 2017]

[Object Management Group 2014]

UML – Overview of diagram types

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 211

UML Diagram

Structure
Diagram

Behavior
Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Composite
Structure Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

Interaction Over-
view Diagram

Communication
Diagram

Timing
Diagram

Normal font: UML 2 Diagram type
Italic font: Abstract concepts

Profile
Diagram

Typically used in
requirements
specifications

9.8 Lightweight, flexible modeling

m Modeling languages – Have a predetermined syntax
l Limited expressibility and flexibility
➔Too restrictive for sketching ideas or initial requirements

m Free-form sketching – Is fully flexible
l Resulting sketches do not carry any structure or meanings
➔Too vague when sketches serve as a basis for further RE tasks

m Need for a middle-ground approach
l High flexibility; no fixed set of language constructs
l Co-evolution of models and model syntax & meanings
➔FlexiSketch

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 212

[Wüest, Seyff, Glinz 2019]
www.flexisketch.org

FlexiSketch – supporting flexible modeling

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 213

Modeling

Meta-
Modeling

Sketch
Recognition

Freeform sketching

Assign meanings
through annotations

Identify similar symbols
beautification

Automatic inference

Mobile
Collaborative

Multi-Platform

l Allow users to define their own notations & languages on the fly
l Co-evolve models and their metamodels

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 214

D. Wüest, N. Seyff, M. Glinz (2015) FlexiSketch Team: Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering

See FlexiSketch Demo Video at http://www.flexisketch.org

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 215

10 Formal specification languages

Requirements models with formal syntax and semantics

The vision
l Analyze the problem
l Specify requirements formally
l Implement by correctness-preserving transformations
l Maintain the specification, no longer the code

Typical languages
l “Pure” Automata / Petri nets
l Algebraic specification
l Temporal logic: LTL, CTL
l Set&predicate-based models: Z, OCL, Alloy, B

216

What does “formal” mean?

m Formal calculus, i.e., a specification language with
l formally defined syntax

and
l formally defined semantics

m Primarily for specifying functional requirements

Potential forms
l Purely descriptive, e.g., algebraic specification
l Purely constructive, e.g., Petri nets
l Model-based hybrid forms, e.g. Alloy, B, OCL, VDM, Z

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

217

10.1 Algebraic specification

m Developed mid 1970ies for specifying complex data types
m Signatures of operations define the syntax
m Axioms (expressions being always true) define semantics
m Axioms describe properties

that are invariant

+ Purely descriptive and
mathematically elegant

– Hard to read
– Over- and underspecification difficult to spot
– Has never made it from research into industrial practice
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz

TYPE Stack
...
push: (Stack, elem) ® Stack;
...
¬ full(s) ® empty(push(s,e)) = false
...

218

10.2 Model-based formal specification

m Mathematical model of system state and state change

m Based on sets, relations and logic expressions

m Typical language elements
l Base sets
l Relationships (relations, functions)
l Invariants (predicates)
l State changes (by relations or functions)
l Assertions for states

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

The formal specification language landscape

m VDM – Vienna Development Method (Björner and Jones
1978)

m Z (Spivey 1992)

m OCL (from 1997; OMG 2014)

m Alloy (Jackson 2002)
m B (Abrial 2009)

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 219

220

10.3 An overview of Z

m A typical model-based formal language

m Only basic concepts covered here

m More detail in the literature, e.g., Jacky (1997)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

221

The basic elements of Z

m Z is set-based
m Specification consists of sets, types, axioms and schemata
m Types are elementary sets: [Name] [Date] IN
m Sets have a type: Person: Name Counter: IN
m Axioms define global variables and their (invariant) properties

string: seq CHAR
#string ≤ 64

Declaration

Invariant

IN Set of natural numbers
M Power set (set of all subsets) of M

seq Sequence of elements
#M Number of elements of set M

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

222

The basic elements of Z – 2

m Schemata
l organize a Z-specification
l constitute a name space

Value, Limit: IN
Value ≤ Limit ≤ 65535

Counter
Name

Declaration part:
Declaration of state variables

Predicate part:
• Restrictions
• Invariants
• Relationships
• State change

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

223

Relations, functions und operations

m Relations and functions are ordered set of tuples:
Order: (Part x Supplier x Date)

Birthday: Person ® Date

State change through operations:

D Counter
Value < Limit
Value' = Value + 1
Limit' = Limit

Increment counter D S The sets defined in schema S
will be changed

M' State of set M after executing
the operation

Mathematical equality, no assignment!

A subset of all ordered triples
(p, s, d) with p Î Part,
s Î supplier, and d Î Date

A function assigning a date to a person,
representing the person’s birthday

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

224

Example: specification of a library system

The library has a stock of books and a set of persons who are
library users.

Books in stock may be borrowed.

Stock: Book
User: Person
lent: Book ® Person

dom lent Í Stock
ran lent Í User

Library

® Partial function
dom Domain ...
ran Range...

...of a relation

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

225

Example: specification of a library system – 2

Books in stock which currently are not lent to somebody may
be borrowed

D Library
BookToBeBorrowed?: Book
Borrower?: Person
BookToBeBorrowed? Î Stock\ dom lent
Borrower? Î User
lent' = lent È {(BookToBeBorrowed?, Borrower?)}
Stock' = Stock
User' = User

Borrow

x? x is an input variable
a Î X a is an element of set X
\ Set difference operator
È Set union operator

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

226

Example: specification of a library system – 3

It shall be possible to inquire whether a given book is
available

X Library
InquiredBook?: Book
isAvailable!: {yes, no}
InquiredBook? Î Stock
isAvailable! = if InquiredBook? Ï dom lent

then yes else no

InquireAvailability

X S The sets defined in schema S can
be referenced, but not changed

x! x is an output variable

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Mini-Exercise: Specifying in Z

Specify a system for granting and managing authorizations
for a set of individual documents.

The following sets are given:

Specify an operation for granting an employee access to a
document as long as access to this document is not
prohibited. Use a Z-schema.

.

Stock Document
Employee: Person
authorized: (Document x Person)
prohibited: (Document x Date)

Authorization

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 227

228

10.4 OCL (Object Constraint Language)

m What is OCL?
l A textual formal language
l Serves for making UML models more precise
l Every OCL expression is attached to an UML model

element, giving the context for that expression
l Originally developed by IBM as a formal language for

expressing integrity constraints (called ICL)
l In 1997 integrated into UML 1.1
l Current standardized version is Version 2.4 of 2014

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz

229

Why OCL?

m Making UML models more precise
l Specification of Invariants (i.e., additional restrictions) on

UML models
l Specification of the semantics of operations in UML models

m Also usable as a language to query UML models

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

230

HR_management

OCL expressions: invariants

m OCL expression may
be part of a UML
model element

m Context for OCL
expression is given
implicitly

m OCL expression may
be written separately

m Context must be
specified explicitly

Employee

personId: Integer {personID > 0}
name: String
firstName: String [1..3]
dateOfBirth: Date
/age: Integer
jobFunction: String
...
...

context HR_manangement::Employee inv:
self.jobFunction = “driver” implies self.age ≥ 18

...

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

231

OCL expressions: Semantics of operations

Employee Document
...
clearanceLevel:

Integer
noOfDocs:

Integer
...

docID: Integer
securityLevel:

Integer
...

authorize (doc:
Document)

context Employee::authorize (doc: Document)
pre: self.clearanceLevel ≥ doc.securityLevel
post: noOfDocs = noOfDocs@pre + 1

and
self.has->exists (a: Authorization | a.concerns = doc)

has
0..*

concerns
1Authorization

grantedOn: Date

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

232

Application of a function to
a set of objects

Navigation from current object to a
set of associated objects

Navigation, statements about sets in OCL

m Persons having Clearance level 0 can’t be authorized for
any document:
context Employee inv: self.clearanceLevel = 0 implies

self.has->isEmpty()

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

233

Navigation, statements about sets in OCL – 2

More examples:

m The number of documents listed for an employee must be
equal to the number of associated authorizations:
context Employee inv: self.has->size() = self.noOfDocs

m The documents authorized for an employee are different
from each other
context Employee inv: self.has->forAll (a1, a2: Authorization |

a1 <> a2 implies a1.concerns.docID <> a2.concerns.docID)

m There are no more than 1000 documents:
context Document inv: Document.allInstances()->size() ≤ 1000

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

234

Summary of important OCL constructs

m Kind and context: context, inv, pre, post
m Boolean logic expressions: and, or, not, implies
m Predicates: exists, forAll
m Alternative: if then else
m Set operations: size(), isEmpty(), notEmpty(), sum(), ...
m Model reflection, e.g., self.oclIsTypeOf (Employee) is true in

the context of Employee
m Statements about all instances of a class: allInstances()
m Navigation: dot notation self.has.date = ...
m Operations on sets: arrow notation self.has->size()
m State change: @pre notation noOfDocs =

noOfDocs@pre + 1
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

235

10.5 Proving properties

With formal specifications, we can prove if a model has some
required properties (e.g., safety-critical invariants)
m Classic proofs (usually supported by theorem proving

software) establish that a property can be inferred from a
set of given logical statements

m Model checking explores the full state space of a model,
demonstrating that a property holds in every possible state

– Classic proofs are still hard and labor-intensive
+ Model checking is fully automatic and produces counter-

examples in case of failure
– Exploring the full state state space is frequently infeasible
+ Exploring feasible subsets is a systematic, automated test
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

236

Example: Proving a safety property

A (strongly simplified) elevator control system has been
modeled with a Petri net as follows:

The property that an elevator never moves with doors open
shall be proved

Door
open

Door
closed

Elevator stopped

Elevator
moving

Ready to move
Floor button
pressed

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Open
door

Close
door

Move

Stop

237

Example: Proving a safety property – 2

The property to be proven can be restated as:
(P) The places Door open and Elevator moving never hold

tokens at the same time
Due to the definition of elementary Petri Nets we have
l The transition Move can only fire if Ready to move has a

token (1)
l There is at most one token in the cycle Ready to move –

Elevator moving – Elevator stopped – Door open (2)
l (2) Þ If Ready to move or Elevator moving have a token,

Door open hasn’t one (3)
l If Door open has no token, Door closed must have one (4)
l (1) & (3) & (4) Þ (P)

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz

238

Mini-Exercise: A circular metro line

A circular metro line with 10 track segments has been modeled
in UML and OCL as follows:

In a circle, every track segment must be reachable from every
other track segment (including itself). So we must have:
context TrackSegment inv (1)

TrackSegment.allInstances->forAll (x, y | x.reachable (y))

a) Falsify this invariant by finding a counter-example
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Context TrackSegment::
reachable (a: TrackSegment): Boolean
post:
result = (self.to = a) or (self.to.reachable (a))

context TrackSegment inv:
TrackSegment.allInstances->size = 10

TrackSegment

Occupied: Boolean

reachable (a:TrackSegment)

from
1

to 1
connected

239

Mini-Exercise: A circular metro line – 2

Only the following trivial invariant can be proved:

context TrackSegment inv:
TrackSegment.allInstances->forAll (x | x.reachable (x))

b) Prove this invariant using the definition of reachable

Obviously, this model of a circular metro line is wrong. The
property of being circular is not mapped correctly to the model.

c) How can you modify the model such that the original
invariant (1) holds?

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 240

10.6 Benefits and limitations, practical use

Benefits
l Unambiguous by definition
l Fully verifiable
l Important properties can be

• proven
• or tested automatically (model checking)

Limitations / problems
l Cost vs. value
l Stakeholders can’t read the specification: how to validate?
l Primarily for functional requirements

241

Role of formal specifications in practice

m Marginally used in practice
l Despite its advantages
l Despite intensive research (research on algebraic

specifications dates back to 1977)

m Actual situation today
l Punctual use possible and reasonable
l In particular for safety-critical components
l However, broad usage

• not possible (due to validation problems)
• not reasonable (cost exceeds benefit)

m Another option: semi-formal models where critical parts are
fully formalized

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

11 Validating requirements

Every requirement needs to be validated
(see Principle 6 in Chapter 2)

m Content:
l Stakeholders’ desires and needs adequately covered?
l Requirements agreed?

m Work products: Requirements documented well?

m Context: Assumptions reasonable?

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 242

Important validation aspects

m Involvement of the right stakeholders

m Separating the identification and the correction of defects

m Validation from different views

m Repeated / continuous validation

m Use appropriate techniques

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 243

Validation of content

Identify requirements that are
l Inadequate or wrong
l Incomprehensible
l Incomplete or missing
l Ambiguous

Also look for requirements with these quality defects:
l Not verifiable
l Unnecessary
l Infeasible
l Premature design decisions

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 244

Validation of content: Agreement

m Requirements elicitation involves achieving consensus
among stakeholders having divergent needs

m When validating requirements, we have to check whether
agreement has actually been achieved
l All known conflicts resolved?
l For all requirements: have all relevant stakeholders for a

requirement agreed to this requirement in its documented
form?

l For every changed requirement, have all relevant
stakeholders agreed to this change?

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 245

Validation of requirements work products

Scope: checking the requirements work products (e.g., a
systems requirements specification or a collection of user
stories) for formal problems

Identify requirements that are
l Inconsistent with each other
l Missing
l Non-conforming to documentation rules, structure or format
l Redundant
l Badly structured
l Hard to modify
l Not traceable

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 246

Context validation

m Context assumptions reasonable?

m Mappings from context phenomena to system inputs /
outputs adequate?

m Can we reasonably argue that the domain requirements
will be met when the system will be built and deployed as
specifiend in the requirements?

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 247

Requirements validation techniques

Review
l Main means for requirements validation
l Walkthrough: author guides experts through the specification
l Inspection: Experts check the specification
l Author-reviewer-cycle: Requirements engineer continuously

feeds back requirements to stakeholder(s) for review and
receives feedback

Construction of other work products
l Acceptance criteria / test cases help disambiguate / clarify

requirements
l Writing user manuals or creating models for textual

requirements may help identify missing or wrong requirements
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 248

Requirements validation techniques – 2

Prototyping
l Lets stakeholders judge the practical usefulness of the

specified system in its real application context
l Prototype constitutes a sample model for the system-to-be
l Most powerful, but also most expensive means of

requirements validation

Simulation/Animation
l Means for investigating dynamic system behavior
l Simulator executes specification and may visualize it by

animated models

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 249

Requirements validation techniques – 3

Testing (when evolving an existing system)
l A/B testing
l Classic alpha and beta testing of source code

Requirements Engineering tools
l Help find gaps and contradictions

Formal Verification / Model Checking / Model Analysis
l Formal proof of critical properties
l Automated, systematic and comprehensive test of critical

properties (when proofs are not tractable)

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 250

Reviewing practices

m Paraphrasing
l Explaining the requirements in the reviewer’s own words

m Perspective-based reading
l Analyzing requirements from different perspectives,

e.g., end-user, tester, architect, maintainer,...

m Playing and executing
l Playing scenarios
l Mentally executing acceptance test cases

m Checklists
l Using checklists for guiding and structuring the review

process
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 251

Requirements negotiation

m Requirements negotiation implies
l Identification of conflicts
l Conflict analysis
l Conflict resolution
l Documentation of resolution

m Requirements negotiation can happen
l While eliciting requirements
l When validating requirements

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 252

x! u!!??

Conflict analysis

Identifying the underlying reasons of a conflict helps select
appropriate resolution techniques
Typical underlying reasons are

l Subject matter conflict (divergent factual needs)
l Data conflict (different interpretation of data, inconsistent data)
l Interest conflict (divergent interests, e.g., cost vs. function)
l Value conflict (divergent values and preferences)
l Relationship conflict (emotional problems in personal

relationships between stakeholders)
l Organizational conflict (between stakeholders on different

hierarchy and decision power levels in an organization)

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 253

Conflict resolution

m Various strategies / techniques

m Conflicting stakeholders must be involved in resolution

m Win-win techniques
l Agreement
l Compromise
l Build variants

m Win-lose techniques
l Overruling
l Voting
l Prioritizing stakeholders (important stakeholders override

less important ones)
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 254

Conflict resolution – 2

m Decision support techniques
l PMI (Plus-Minus-Interesting) categorization of potential

conflict resolution decisions
l Decision matrix (Matrix with a row per interesting criterion

and a column per potential resolution alternative. The cells
contain relative weights which can be summarized per
column and then compared)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 255

Acceptance testing

DEFINITION. Acceptance – The process of assessing whether
a system satisfies all its requirements.
DEFINITION. Acceptance test – A test that assesses whether a
system satisfies its requirements.

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 256

Requirements and acceptance testing

Requirements engineering and acceptance testing are
naturally intertwined

m For every requirement, there should be at least one
acceptance test case

m Requirements should be written such that acceptance tests
can be written to verify them (à verifiability)

m Acceptance test cases can serve
l for disambiguating requirements
l as detailed specifications by example à acceptance criteria

for user stories

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 257

Choosing acceptance test cases

Potential coverage criteria:

m Requirements coverage: At least one case per requirement

m Function coverage: At least one case per function

m Scenario coverage: For every type scenario / use case
l All actions covered
l All branches covered

m Consider the usage profile: not all functions/scenarios are
equally frequent / important

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 258

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 259

12 Innovative requirements

Satisfying stakeholders is not enough
(see Principle 8 in Chapter 2)
m Kano’s model helps identify...

l what is implicitly expected
(dissatisfiers)

l what is explicitly required
(satisfiers)

l what the stakeholders
don’t know, but would
delight them if they get it:
innovative requirements

m Over time, delighters degrade toward plain expectations

[Kano et al. 1984]

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 260

How to create innovative requirements?

Encourage out-of-the-box thinking

m Stimulate the stakeholders’ creativity
l Imagine/ make up scenarios for possible futures
l Imagine a world without constraints and regulators
l Find and explore metaphors
l Study other domains

m Involve solution experts and explore what’s possible with
available and future technology

m Involve smart people without domain knowledge
[Maiden, Gitzikis and Robertson 2004]
[Maiden and Robertson 2005]

Where to innovate

m Functionality – new exciting features

m Performance – not just a bit more, but significantly more
powerful than previous or competing systems

m Usability – making usage an exciting experience

Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz 261

13 Requirements management

m Organize
l Store and retrieve
l Record metadata (author, status,...)

m Prioritize
m Keep track: dependencies, traceability

m Manage change

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 262

13.1 Organizing requirements

Every requirement needs

m a unique identifier as a reference in acceptance tests,
review findings, change requests, traces to other artifacts,
etc.

m some metadata, e.g.
l Author
l Date created
l Date last modified
l Source (stakeholder(s), document, minutes, observation...)
l Status (created, ready, released, rejected, postponed...)
l Necessity (critical, major, minor)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 263

Storing, retrieving and querying

Storage
l Paper and folders
l Files and electronic folders
l A requirements management tool

Retrieving support
l Keywords
l Cross referencing
l Search machine technology

Querying
l Selective views (all requirements matching the query)
l Condensed views (for example, statistics)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 264

13.2 Prioritizing requirements

m Requirements may be prioritized with respect to various
criteria, for example
l Necessity
l Cost of implementation
l Time to implement
l Risk
l Volatility

m Prioritization is done by the stakeholders
m Only a subset of all requirements may be prioritized

m Requirements to be prioritized should be on the same level
of abstraction

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 265

Simple prioritization (by necessity)

Ranks all requirements in three categories with respect to
necessity, i.e., their importance for the success of the system

m Critical (also called essential, or mandatory)
The system will not be accepted if such a requirement is not met

m Major (also called conditional, desirable, important, or
optional)
The system should meet these requirements, but not meeting
them is no showstopper

m Minor (also called nice-to-have, or optional)
Implementing these requirements is nice, but not needed

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 266

Selected prioritization techniques

Single criterion prioritization

m Simple ranking
Stakeholders rank a set of requirements according to a given
criterion

m Assigning points
Stakeholders receive a total of n points that they distribute
among m requirements

m Prioritization by multiple stakeholders may be consolidated
using weighted averages. The weight of a stakeholder
depends on his/her importance

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 267

Selected prioritization techniques – 2

Multiple criterion prioritization

m Wiegers’ matrix [Wiegers 1999]
l Estimates relative benefit, detriment, cost, and risk for each

requirement
l Uses these values to calculate a weighted priority
l Ranks according to calculated priority values

m AHP (Analytic Hierarchy Process) [Saaty 1980]
l An algorithmic multi-criterion decision making process
l Applicable for prioritization by a group of stakeholders

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 268

13.3 Traceability

DEFINITION. Traceability – The ability to trace a requirement
(1) back to its origins,
(2) forward to its implementation in design and code,
(3) to requirements it depends on (and vice-versa).
Origins may be stakeholders, documents, rationale, etc.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 269

[Gotel and Finkelstein 1994]

Stakeholders

Documents

Sources
Requirements
specification

Solution
Modules

Requirements

...

Pre-
traceability

Post-
traceability

Rationale

Test cases
...

Establishing and maintaining traces

m Manually
l Requirements engineers explicitly create traces when

creating artifacts to be traced
l Tool support required for maintaining and exploring traces
l Every requirements change requires updating the traces
l High manual effort; cost and benefit need to be balanced

m Automatic
l Automatically create candidate trace links between two

artifacts (for example, a requirements specification and a set
of acceptance test cases)

l Uses information retrieval technology
l Requires manual post processing of candidate links

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 270

13.4 Requirements evolution

The problem (see Principle 7 in Chapter 2):
Keeping requirements stable...
... while permitting requirements to change

Potential solutions
l Agile / iterative development with short development cycles

(1-6 weeks)
l Explicit requirements change management

Every solution to this problem further needs requirements
configuration management
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 271

Requirements configuration management

Keeping track of changed requirements

m Versioning of requirements

m Ability to create requirements configurations, baselines and
releases

m Tracing the reasons for a change,
for example
l Stakeholder demand
l Bug reports / improvement suggestions
l Market demand
l Changed regulations

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 272

Classic requirements change management

Adhering to a strict change process
(1) Submit change request
(2) Triage. Result: [OK | NO | Later (add to backlog)]
(3) If OK: Perform impact analysis
(4) Submit result and recommendation to Change Control Board
(5) Decision by Change Control Board
(6) If positive: make the change, create new baseline/release,

(maybe) adapt the contract between client and supplier

Change control board – A committee of customer and supplier
representatives that decides on change requests.

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 273

Requirements change in agile development

In agile and iterative development processes, a requirements
change request ...

l ... never affects the current sprint / iteration, thus ensuring
stability

l ... is added to the product backlog

Decisions about change requests are made when prioritizing
and selecting the requirements for the subsequent sprints /
iterations

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 274

14 Requirements and design

A traditional belief:

m Requirements are about what a system ought to do

m Design deals with the problem of how to realize what has
been stated in the requirements

m Requirements Engineering and System Design should be
kept separate, with requirements preceding design

m Sounds good and is popular, but does not work

Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz 275

Design has two facets

m Technical Design: Creating the architectural structure of a
system and designing its components in detail

m Product Design: Shaping a product (or a system) with
respect to its capabilities, behavior, outer form, and usage

Traditional RE: Product Design comes after RE

Modern RE: Product design shapes the essence of a product
à crucial for meeting the stakeholders’ desires and needs
à Product Design and RE are strongly intertwined

Product design for digital products is also called “Digital Design”

276Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz

Why care about both RE and product design?

277

à We need RE
competencies

à and product
design
competencies

Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz

Complementary contributions

m RE contributes competencies about
l Stakeholder identification
l Elicitation of wishes and needs
l Documentation of non-touchable things
l Requirements negotiation, prioritization, and validation

m Product Design contributes competencies about
l Usability
l User experience design
l Materials for physical & cyber-physical products,

“digital materials” for digital products
l Empirical product validation

278Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz

Meeting requirements may not suffice
to satisfy stakeholders

279

The participant entry form shall have
fields for the participant data name,
first name, sex, and person ID and a
submit button.

can be ruined by
bad product design

Sex

Name
First name

Person Id

GO!

A requirement

Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz

