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1 Introduction

In 1969, the economist Thomas Schelling devised an agent-based model in order
to understand the game theoretic aspects of racial segregation in large cities.
Schelling observed that despite agents being tolerant in having neighbors of
another race, over time they would still segregate themselves from agents of
another race. Racial segregation can be observed for example in major cities,
as depicted in Figure 1.

Figure 1: Racial segregation in New York city. Caucasians in blue, African
Americans in green, Latinos in yellow, and Asians in green. Source: The Racial
Dot Map

In their paper An Analysis of One-Dimensional Schelling Segregation, the
four authors Christina Brandt, Nicole Immorlica, Gautam Kamath and Robert
Kleinberg analyze the Schelling model of segregation in a 1-dimensional setting,
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Figure 2: A ring network with n=12 nodes of two different types. With w=3.
In the left figure, the nodes encircled define the neighborhood of the red node
with black border. The red node is happy, since the majority of the nodes in its
neighborhood are red. On the right side, the encircled nodes form a firewall.

where n individuals live in a ring network. There are two different types, and
each individual is assigned a type uniformly at random. An individual is happy
if the majority of the individuals in his neighborhood are of his type. If an
individual is not happy, he “moves out”, i.e., he switches positions with another
unhappy individual of the opposite type. One question is whether the segrega-
tion process will terminate. The authors prove that for all but a tiny fraction of
initial configurations the process reaches a configuration where no further swaps
are possible. Another question that then arises is how long the average length
of a sequence with individuals of the same type is in such a final configuration
where no further swaps are possible. The authors prove in their main theorem
that the length is not dependent on the ring size n, but is rather dependent on
the parameter w that determines the neighborhood. To be more precise, they
prove an upper bound of O(w2) for the average length of a sequence with nodes
of the same type in a final configuration.

2 The Model

We consider a ring network of n nodes. Each node is inhabited by one individual
whose type is chosen uniformly at random from {x, o}. The neighborhood of a
node is determined by the window size w : it is defined as the set of the 2w + 1
nearest neighbors, including the node itself. We generally assume that w � n.
An individual is called happy, if at least a fraction τ of individuals in his neigh-
borhood have the same type. τ is called the tolerance parameter and in this
model we have τ = 1

2 . Simply put, an individual is happy if at least w other
individuals in his neighborhood have the same label.
As already mentioned, unhappy individuals may “move out”. In this model, at
each timestep two individuals are chosen uniformly at random as candidates for
a swap. These two individuals swap their nodes if they are both unhappy and
are oppositely labeled. After a swap, both involved individuals are happy. This
is a crucial insight and it will be used in the proofs. The case where no further
swaps are possible is called a frozen configuration.
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A block is a sequence of neighboring nodes. A run is defined as a block where
all nodes have the same label. A run of length at least w + 1 has a special
property: each individual in this block is happy, because there are w other in-
dividuals in his neighborhood with the same label. These individuals remain
happy during the whole process, i.e., no such individual will ever swap nodes.
We call such a block a firewall, and if the type is mentioned we refer to an
x-firewall or o-firewall, respectively.
Figure 2 shows an example where some of the above terms are explained picto-
rially.

3 Reaching a Frozen Configuration

In the first proposition we see that the probability to reach a frozen configuration
converges to 1, as n→∞.

Proposition 1. Consider the segregation process with window size w on a ring
network of size n. For any fixed w, as n → ∞, the probability that the process
eventually reaches a frozen configuration converges to 1.

Proof. We define a potential function S0(t) that denotes the set of individuals
belonging to a firewall at time t. Furthermore, let S1(t) be the complement of
S0(t), i.e., the set of individuals that do not belong to a firewall at time t. Given
that both S0(t) and S1(t) are nonempty, there exists an individual a ∈ S1(t)
neighboring an individual b ∈ S0(t). W.l.o.g. let b be to the right of a. These
two individuals must have different labels, otherwise a would be part of the
same firewall as b and belong to S0(t), which is a contradiction. Next we will
see that a must be unhappy. Assume that a was happy. Its w neighbors on the
right side, including b, are all of the opposite label. Then, in order for a to be
happy, the w neighbors on the left side must all have the same label as a. But
then, a is part of a run of length at least w + 1, which is a firewall by definition.
This contradicts the fact that a ∈ S1(t).
If there are unhappy individuals of the opposite label, there is a positive prob-
ability that a will eventually swap with such an individual. After the swap, the
new individual will extend b’s firewall, increasing the potential function S0(t).
In the other case where there are no unhappy individuals of the opposite label,
the configuration is already frozen.
We have defined a potential function that takes integer values between 0 and n.
There are three different cases for the initial configuration. In the case where
both S0(t) and S1(t) are nonempty, the potential function S0(t) has a positive
probability to increase. If S1(t) is empty, all individuals already live in a firewall
and the configuration is frozen. In the last case where S0(t) is empty, the initial
configuration contained no firewalls. The probability for this case is small. By
partitioning the ring into n

w+1 blocks, each block has the probability 1
2w of be-

ing a firewall in the initial configuration. The probability that none of the n
w+1

blocks is a firewall is (1− 1
2w )

n
w+1 , which is o(1) as n→∞.

In the first two cases we eventually reach a frozen configuration. The probability
that the initial configuration is one of these two cases converges to 1 as n→∞,
which concludes to proof.
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4 Bounding the Average Run Length

Theorem 1 is the main theorem of the paper. The proof makes use of several
lemmas and propositions, which we need to understand first.

Theorem 1. Consider the segregation process with window size w on a ring
network of size n, starting from a uniformly random initial configuration. There
exists a constant c < 1 and a function n0 : N → N such that for all w and all
n ≥ n0(w), with probability 1 - o(1), the process reaches a configuration after
finitely many steps in which no further swaps are possible. The average run
length in this final configuration is O(w2). In fact, the distribution of runlengths
in the final configuration is such that for all λ > 0, the probability of a randomly
selected node belonging to a run of length greater than λw2 is bounded above by
cλ.

In order to bound the average run length, the authors define a construct
called a firewall incubator. They first show that such firewall incubators occur
with a reasonable probability in the initial configuration, i.e., in a uniformly
random {x,o}-labeling of the nodes. Then, they analyze the behavior of a firewall
incubator. They show that if a firewall incubator satisfies a specific condition,
it eventually becomes a firewall. A lower bound on the probability for this
condition to occur is proved by analyzing node swaps and the application of a
theorem from the field of combinatorics. The propositions and lemmas are then
used in the proof of the main theorem of the paper.

The x-bias βt(i) of a node i is the number of x -labeled individuals minus
the number of o-labeled individuals in the neighborhood of i at time t. If the
time follows from the context, we can write β(i). We can express this as a
sum of signs, where an x -labeled individual corresponds to +1 and an o-labeled
individual to -1, respectively. An x -labeled individual is happy if and only if
β(i) > 0 and an o-labeled individual is happy if and only if β(i) < 0.

Definition 1. A firewall incubator is a block F made up of three consecutive
blocks DL, I, DR (called left defender, internal, right defender, respectively),
such that:

1. DL and DR have exactly w + 1 nodes;

2. β0(i) >
√
w for all i ∈ F ;

3. The minimum x-bias in DL occurs at its left endpoint, and the minimum
x-bias in DR occurs at its right endpoint.

The blocks of length w immediately to the left and right of F are denoted by AL,
AR and are called the left and right attackers.

For the subsequent notation, signs as for the x -bias are used again. The sum
of the j leftmost signs of a block B in {x, o}k can be written as χj(B), where
0 ≤ j ≤ k. In the case where j = k we can write χ(B) instead of χk(B). If we
want to refer to the sum of the j rightmost signs in a block B, we write χ−j(B),
which is equal to χ(B)− χk−j(B).

Definition 2. A sequence B ∈ {x, o}w is x-promoting if χ(B) ≥ 5
√
w and for

all j = 1, . . . , w, χj(B) > −2
√
w and χ−j(B) > −2

√
w.
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Figure 3: A firewall incubator consisting of the five blocks AL, DL, I, DR, AR.
The height corresponds to the x-bias of each individual. The long horizontal
line has height

√
w.

Lemma 1. The probability that a uniformly random sequence B ∈ {x, o}w is
x-promoting is Ω(1).

Proof. First, two events are defined. For k > 0, let

ξLk = {∃j : χj(B) ≤ −k}
ξRk = {∃j : χ−j(B) ≤ −k}.

The reflection principle applied to our case says: if B is a uniformly random
element of {x, o}w, then for all k > 0

Pr(ξLk ) = Pr(χ(B) ≤ −k) + Pr(χ(B) < −k)

= Pr(χ(B) ≤ −k) + Pr(χ(B) > k).
(1)

The second equality follows by symmetry. Since χ(B) is a sum of w independent
random variables that are +1 or -1,

E[(χ(B))2] = w. (2)

By using the above equalities, we get the following inequality

Pr(ξLk ) ≤ Pr((χ(B))2 ≥ k2)

≤ E[(χ(B))2]

k2

=
w

k2
,

for k > 0. The first inequality follows from equation (1), since Pr((χ(B))2 ≥ k2)
= Pr(χ(B) ≥ k) + Pr(χ(B) ≤ −k). Markov’s inequality is applied in the next
inequality, as (χ(B))2 is nonnegative and k2 > 0. In the last step (2) is used.
Whenever a < b are two numbers such that the events χ(B) = a and χ(B) = b
have positive probability, the inequality

Pr(ξLk |χ(B) = a) ≥ Pr(ξLk |χ(B) = b) (3)
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holds. From inequality (3) it follows that for any b such that the events χ(B) < b
and χ(B) ≥ b have positive probability,

Pr(ξLk |χ(B) < b) ≥ Pr(ξLk |χ(B) ≥ b)

holds. Since the unconditional probability of ξLk is a weighted average of the left
and right side, i.e., Pr(ξLk ) = Pr(ξLk |χ(B) ≥ b) · Pr(χ(B) ≥ b) + Pr(ξLk |χ(B) <
b) · Pr(χ(B) < b), we get

Pr(ξLk |χ(B) ≥ b) ≤ Pr(ξLk ) ≤ w

k2
, (4)

for all b, for k > 0. By symmetry, this also holds for ξRk ,

Pr(ξRk |χ(B) ≥ b) = Pr(ξLk |χ(B) ≥ b).

By the Central Limit Theorem,

lim
w→∞

Pr(χ(B) ≥ 5
√
w) =

1√
2π

∫ ∞
5

e−
x2

2 dx.

Hence, there is a constant c0 such that Pr(χ(B) ≥ 5
√
w) > 2c0 for all w ≥ 25.

Note that we require w ≥ 25, such that w ≥ 5
√
w.

The event that B is x-promoting can be expressed in terms of the sum of signs
and the events ξLk , ξ

R
k . By setting b = 5

√
w, k = 2

√
w we find a constant lower

bound for the probability that B is x-promoting:

Pr(B is x-promoting) = Pr(χ(B) ≥ b ∧ ¬ξLk ∧ ¬ξRk )

= Pr(χ(B) ≥ b) · Pr(¬ξLk ∧ ¬ξRk |χ(B) ≥ b)
≥ Pr(χ(B) ≥ b) · (1− 2Pr(ξLk |χ(B) ≥ b))

> 2c0(1− 2
w

k2
)

= c0.

The first inequality follows from

Pr(¬ξLk ∧ ¬ξRk |χ(B) ≥ b) = 1− Pr(ξLk ∨ ξRk |χ(B) ≥ b)
≥ 1− Pr(ξLk |χ(B) ≥ b)− Pr(ξRk |χ(B) ≥ b)
= 1− 2Pr(ξLk |χ(B) ≥ b).

In the second inequality we use the constant lower bound 2c0 for Pr(χ(B) ≥ b)
and make use of inequality (4). Since k = 2

√
w, (1 − 2 w

k2 ) is equal to 1
2 in the

last step.

Proposition 2. Let r be an integer such that 6 ≤ r < n
w − 2. For any sequence

of rw consecutive nodes, the probability that a uniformly random {x,o}-labeling
of the nodes contains an x-firewall incubator that starts among the leftmost w
nodes and ends among the rightmost w nodes is at least cr, where c > 0 is a
constant independent of r, w, n.
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Proof. Given a sequence of rw consecutive nodes, partition it into r blocks
B1, B2, . . . , Br, each of length w. Further, let B0 denote the block preceding B1

and Br+1 denote the block following Br, each containing w nodes. Next, nota-
tion is introduced to refer to a modified labeling of the blocks B0, B1, . . . , Br+1.
λ00 refers to the original labeling, λ01 refers to the labeling where the ordering
of the last 4w labels is reversed, λ10 refers to the labeling where the ordering of
the first 4w labels are reversed and λ11 refers to the labeling where the ordering
of both the first 4w and last 4w labels are reversed. By applying Lemma 1,
the probability that the r + 2 blocks of λ00 are x-promoting is c0

r+2. The
reverse of an x-promoting sequence is also x-promoting. Therefore if λ00 is x-
promoting, so are λ01, λ10, and λ11. Given that all r + 2 blocks B0, B1, . . . , Br+1

are x-promoting, by symmetry, the labelings in the set {λ00, λ01, λ10, λ11} are
equiprobable. If we can show that at least one of these four labelings has an
x-firewall incubator that starts in block B1 and ends in block Br, then the prob-
ability that such an incubator exists is 1

4c0
r+2.

A node i at position j in the middle block B′ of three consecutive x-promoting
blocks B,B′, B′′ has an x-bias β0(i) >

√
w, since

β0(i) = χ−(w−j+1)(B) + χ(B′) + χj(B
′′)

> −2
√
w + 5

√
w − 2

√
w

=
√
w

The 5
√
w and −2

√
w terms follow from the definition of an x-promoting se-

quence.
Given that all labelings in the set {λ00, λ01, λ10, λ11} are x-promoting, every
node in B1, . . . , Br has an x-bias greater than

√
w in all four labelings λ00, λ01,

λ10, λ11.
In a firewall incubator it is required that the leftmost individual in the DL block
has minimal x-bias among all individuals of DL. The same requirement holds
for the rightmost individual in the DR block. We can find such two individuals
in at least one of the four labelings in the set {λ00, λ01, λ10, λ11}. Depending on
where the minimum x-bias of B1 ∪B2 in the original labeling lies, we can take
the corresponding labeling such that the minimum lies in B1 of the new labeling.
The important thing is that in the new labeling, the x-bias of the w - 1 nodes
to the right of the node with minimal x-bias is greater or equal. The same can
be done analogously for the right side. These two individuals define the start
and end of a firewall incubator. As already seen, all the individuals in between
have an x-bias greater than

√
w, which is a requirement for the elements in a

firewall incubator.

Definition 3. The satisfaction time of a node i, denoted by t?i , is defined to
be the first time when i is selected to participate in a proposed swap with an
unhappy, oppositely labeled individual. (If no such time exists, then t?i = ∞.)
A node i is called impatient at time t if it is unhappy and t ≤ t?i .

Definition 4. For a firewall incubator F = DL ∪ I ∪ DR with corresponding
attackers AL, AR, a left attacking x is an individual of type x who belongs to AL
in the initial configuration, and a left defending o is an individual of type o who
belongs to DL in the initial configuration. A left combatant is an individual
that is either a left attacking x or a left defending o. The equivalent terms
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2 8 5 9 1 13 4

AL DL

Figure 4: 7 nodes with corresponding satisfaction times. The nodes are part of
a red-firewall incubator, hence, the first, third and fourth nodes are combatants.
Blue labeled individuals correspond to +1 and the red ones to -1. Then, the
left-transcript is [+1, -1, -1].

with “right” in place of “left” are defined similarly; henceforth when referring
to combatants we will omit “left” and “right” when they can be inferred from
context. The number of left attacking x’s and left defending o’s are denoted by
aL, dL, and for the right combatants we define aR, dL similarly.

Definition 5. The left-transcript (resp. right-transcript) is the sign sequence
obtained by listing all of the left (resp. right) combatants in reverse order of
satisfaction time, and translating each attacking x in this list to +1 and each
defending o to -1.
If there exists a time t0 at which no individuals in F are impatient, any sign
sequence obtained from the left-transcript (resp. right-transcript) by permuting
the signs associated to individuals whose satisfaction time is after t0, while fixing
all other signs in the transcript, is called a left-pseudo-transcript (resp. right-
pseudo-transcript).

Figure 4 shows a setting of nodes and the corresponding transcript.

Proposition 3. Suppose that F is a firewall incubator and there exist left- and
right-pseudo-transcripts such that all partial sums of both pseudo-transcripts are
non-negative. Then F becomes an x-firewall.

Proof. The proof is by contradiction. Let t0 denote the earliest time at which no
individual in F is impatient, i.e., each individual is either happy or has already
reached his satisfaction time. This time t0 exists, since the assumption is that
left- and right-pseudo-transcripts exist. If F is not an x-firewall at time t0,
then some node j ∈ F contains an individual labeled o. Next we see by case
distinction that there exists a time t1, t1 ≤ t0, at which node j is occupied by
a happy individual of label o. We already know that j is not impatient at time
t0, so either it is happy or its satisfaction time is smaller than t0, t?j < t0. If it
is happy, we simply set t1 = t0 and are done. In the case where the o-labeled
individual has never moved, we set t1 = t∗j . The individual must have been
happy at this time, otherwise it would have moved. In the last case where the
o-labeled individual in node j has moved in at some time, we set t1 to the time
immediately after it moved to j. It must have been happy at this time, otherwise
it would not have swapped nodes.
Let t denote the first time at which a node in F has a negative x -bias. It must
hold that t ≤ t1, since at time t1, the o-labeled individual at node j is happy,
i.e., it has a negative x-bias. Up until time t, all nodes in F have a positive
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x-bias. This means that up until time t, individuals moving out of F have label
o, since all x -labeled individuals are happy.
The first node i to develop a negative x-bias is not in the internal I, but rather
must be in DL or DR. This is because the x-bias of a node in the internal I is
determined only by the labels of individuals in DL, I, DR and up until time t,
the only individuals moving out are labeled o. W.l.o.g., let i ∈ DL. At time
0, the x-bias of i was bounded below by the x-bias of the leftmost node in DL,
following from the definition of a firewall incubator. The neighborhood of the
leftmost node in DL is AL∪DL. We can express the x-bias of this node in terms
of the number of attacking x ’s and defending o’s:

aL︸︷︷︸
x’s in AL

− (w − aL)︸ ︷︷ ︸
o’s in AL

+ (w + 1− dL)︸ ︷︷ ︸
x’s in DL

− dL︸︷︷︸
o’s in DL

= 2(aL − dL) + 1.

Since node i ’s x-bias is greater or equal than the x-bias of the leftmost node in
DL, we get β0(i) ≥ 2(aL − dL) + 1.
Up until time t, whenever the satisfaction time of an o-labeled individual in
DL is reached, it moves out because it is unhappy. Node i ’s x -bias increases
therefore by 2 for each such swap, since an x -labeled individual moves in. When
an x -labeled individual swaps out of the AL block, it decreases the x-bias of
i either by 2 or 0. In the case where the x -labeled individual is not in i ’s
neighborhood, the x -bias remains unchanged. In the cases where the attacking
x (i.e., an x -labeled individual that hasn’t moved yet) moves out, either at or
after its satisfaction time (but before t), the contribution to i ’s x -bias is -2. In
the last case, where an x -individual swaps into AL, becomes unhappy, and later
swaps out, the total contribution is 0. Let atL denote the number of attacking
x ’s in AL whose satisfaction time is before t and dtL the number of defending o’s
in the DL block whose satisfaction time is before t. i ’s decrement of the x -bias
is at most 2atL until time t, and the increment is 2dtL. We obtain the following
inequality:

βt(i) ≥ β0(i) + 2dtL − 2atL

≥ 2(aL − dL) + 1 + 2dtL − 2atL

> 2((aL − atL)− (dL − dtL)).

(aL−atL) is the number of attacking x ’s whose satisfaction time is greater than t
and (dL−dtL) is the number of defending o’s whose attacking time is greater than
t. The above lower bound is twice the k-th partial sum of the left-transcript,
where k = (aL − atL) + (dL − dtL) denotes the number of individuals whose
satisfaction time is after t.
Since t ≤ t0, any left-pseudo-transcript differs from the left-transcript only by
permuting a subset of the first k signs, and therefore has the same k-th partial
sum. The assumption that the x -bias of i becomes negative at time t contradicts
the hypothesis that there exists a left-pseudo-transcript whose partial sums are
all non-negative, which concludes the proof.

Lemma 2. (Ballot Theorem). Consider a multiset consisting of a many copies
of +1 and b many copies of -1, and let x1, x2, . . . , xa+b be a uniformly random
ordering of the elements of this multiset. The probability that all partial sums
x1 + · · ·+ xj (1 ≤ j ≤ a+ b) are strictly positive is equal to max(0, a−ba+b ).
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Proposition 4. If B is a random block of length 6w, then with probability Ω( 1
w ),

B contains a firewall incubator having left- and right-pseudo-transcripts whose
partial sums are all non-negative.

Here is the intuition behind the proof. We already know from Proposi-
tion 2 that B contains a firewall incubator with constant probability. If the
left-transcript of B would be a uniformly random permutation of the aL +1’s
and dL -1’s, we could apply the Ballot Theorem. Then, the probability that the
partial sums are all non-negative is aL−dL

aL+dL
. We have seen in the proof of Propo-

sition 3 that at time 0 the x -bias of the leftmost node in DL is 2(aL − dL) + 1
and by definition of an x -firewall incubator must be greater than

√
w. It follows

that (aL− dL) ≥
√
w
2 . We also know that (aL + dL) ≤ 2w+ 1, since the number

of nodes in the AL and DL blocks is w and w + 1, respectively. Combining
these two inequalities, we see that aL−dL

aL+dL
= Ω( 1√

w
).

Unfortunately, the transcript is not a uniformly random permutation. A bias
arises, since the number of unhappy elements of each label is not precisely equal.
If for example at some point there are more unhappy o’s than unhappy x ’s, the
satisfaction time of an attacking x is more likely to happen earlier. In the pa-
per, the authors show that the number of unhappy individuals is approximately
balanced for a sufficiently long time; until some time t0 these imbalances can be
considered “small”. These small imbalances are artificially corrected by intro-
ducing the concept of censored individuals and censored swaps. Suppose there
are m extra unhappy individuals of one type, say x. Then choose m unhappy
x -labeled individuals at random and call them censored. A swap is called cen-
sored if it involves a censored individual. Additionally, a swap involving two
combatants of F is also considered censored. As long as the imbalance m is
small, the probability that a swap is censored is also small. By conditioning on
having no censored swaps, the transcript is indeed a uniformly random permu-
tation. The authors then show that with probability 1− o(1), no individual in
F is impatient at time t0. A pseudo-transcript can be obtained by randomly
permuting the combatants whose satisfaction times are after t0, and given that
no censored swaps occurred before t0, the pseudo-transcript is a uniformly ran-
dom permutation. Then, Proposition 4 follows from Lemma 2.

We can now move on to the proof of Theorem 1, as we have seen all lemmas
and propositions that will be made us of.

Proof. (of Theorem 1) In Proposition 1 we have seen that the process reaches
a frozen configuration with high probability. We select a randomly sampled
node a. We partition the ring in clockwise direction into blocks of length 6w.
By Proposition 4, each of these blocks has the probability Ω( 1√

w
) of containing

an x -firewall incubator having left- and right-pseudo-transcripts whose partial
sums are all non-negative. Thus, for a suitable constant c < 1, the probability
that none of the first λw

6 blocks encountered on a clockwise scan of blocks with
length 6w starting at node a contains an x -firewall in the frozen configuration
is bounded above by cλ. By symmetry, we can make analogous arguments for
o instead of x and for the counterclockwise order. Node a cannot belong to a
run of length greater than λw2 assuming that it has individuals of both labels
within this radius on both sides of itself, which completes the proof.
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5 Conclusion

The authors have analyzed 1-dimensional Schelling segregation in a ring network
where the neighborhood of a node is determined by a window size parameter
w. They have shown that with high probability the process results in a frozen
configuration where most nodes belong to a run whose size has lower and upper
limits Ω(w) and O(w2). The run size is only dependent on parameter w and is
not dependent on the ring size n.
In the meantime, the authors Nicole Immorlica, Gautam Kamath and Robert
Kleinberg have found an improved upper bound ofO(w), which makes the bound
on the average run length tight, i.e., Θ(w).
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