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Abstract—In this paper we describe an efficient software 
architecture for object-tracking, based on a stereoscopic vision 
system, that has been applied to a mobile robot controlled 
by a PC. After analyzing the epipolar rectification required 
to correct the original stereo-images, it is described a new 
valid and efficient algorithm for ball recognition (indeed 
circle detection) which is able to work in different lighting 
conditions and in a manner faster than some modified versions 
of Circle Hough Transform. Then, we show that stereo vision, 
besides giving an optimum estimation of the 3D position of 
the object, is useful to remove lots of the false identifications 
of the ball, thanks to the advantages of epipolar constraint. 

Finally, we describe a new strategy for ball following, by a 
mobile robot, which is able to ”look for” the object whenever 
it comes out of the cameras view, by taking advantage of a 
”block matching” method similar to that of MPEG Video. 

Index Terms—ball detection, ball tracking, following, pre­
dictive, stereoscopic vision 

I. INTRODUCTION 

Stereoscopic vision is a technique for inferring the 3D 
position of objects from two (or more) simultaneous views 
of the scene. Its advantages are that it offers a cheap 
solution for 3D reconstruction of an environment, it is a 
passive sensor and thus it does not introduce interferences 
with other sensor devices; finally, it can be integrated 
with other vision routines (such as object recognition and 
tracking) that we will describe. 

In view of this application, we have realized a software 
architecture for recognizing a ball moving in front of 
two cameras and inferring its 3D position with respect to 
the cameras reference system. By using the information 
provided by the binocular vision, the algorithms have been 
applied to a mobile robot endowed with the above stereo rig 
and have allowed it to follow a ball rolling on the floor and 
to look for the object whenever it falls out of the cameras 
view. 

A new technique for ball detection and an experimented 
strategy for looking for the ball are the objectives of this 
research. 

The hardware is composed of a Pentium IV, 1,7 GHz, 
that manages the video acquisition of stereo pair, the 
processing of the two digital images and the digital signals 
to control the robot. Because of the computational burden 
required to process and rectify the original images via PC, 
the stereo images are captured at a frame rate of 6 Hz. 
So it has been developed a new and efficient algorithm 
for ball recognition that considers only those points of the 
edge maps of the images which are effectively candidate to 

belong to an arc and therefore to the contour of a possible 
ball. 

This paper is organized as follows: first the software 
architecture for inferring the 3D position of the ball will be 
introduced, then we will describe how the new circle detec­
tion algorithm works. Finally, we will show the strategies 
for the ball following and the ball searching tasks. 

II. 3D RECONSTRUCTION ARCHITECTURE 

In general the reconstruction of the world seen through 
a stereo camera can be divided in two stages: 

1) Correspondence problem: for every point in one 
image find out the correspondent point, on the other 
image, that is the projection of the same 3D point. 

2) Stereo-Triangulation: derived the intrinsic and extrin­
sic parameters of the cameras and given the corre­
sponding points, compute the (X, Y, Z) coordinates 
of the 3D point they refer to. 

Both of the above tasks are easier to realize when cam­
eras are in a standard setting, that is with parallel optical 
axes and coplanar image planes. In this setting epipolar 
lines correspond to the same horizontal rows in the two 
images and point correspondences are searched over these 
rows. Obviously the standard setting cannot be obtained 
with real cameras but, if we know the cameras calibration 
parameters (e.g. the focal distance of the two cameras, 
the entity of lens distortion and the relative position and 
orientation of the cameras) this problem may be overcome 
through the so called Epipolar Rectification. 

Rectification determines a transformation of each image 
plane so that pairs of conjugate epipolar lines become 
collinear and parallel to one of the image axes (usually 
the horizontal one) [7]. 

Figures 1(a),1(b) show two epipolar lines before and 
after the images have been rectified. The rectification 
task precedes 3D reconstruction and may be divided into 
three main stages: perspective correction (which considers 
the relative position and orientation of the cameras), lens 
distortion compensation and bilinear interpolation (needed 
to map the two final images with respect to the original 
ones, whose indexes of the texture map are stored in a 
Look-Up-Table). 

The second stage in view of 3D reconstruction is to find 
the correspondent points relative to the object we want to 
localize. This is possible by applying the circle detection 



(a) 

(b) 

Fig. 1. a) A stereo pair before being rectified. b) A stereo pair after 
rectification. 

algorithm to each single image. When the algorithm stops, 
the locations of the circle centers in the images are ob­
tained. 

At this point it is to be noted that, if a ball is really 
present in front of the cameras, the centers coordinates 
must belong to the same horizontal line in order to satisfy 
the epipolar constraint, that is they must have the same 
y coordinate. So any violation of this law may be used 
to infer that the ball is absent. In practice, as the centers 
coordinates are real, due to interpolation, we have set 
the algorithm to reject those locations whose difference 
between the two ordinates is greater than 2 pixels. In this 
case the average value of the ordinates is assumed as a new 
y coordinate. 

Derived the intrinsic and extrinsic parameters of the cam­
eras and the correspondent points, it is possible, through 
triangulation, to compute the 3D position of the object 
in the real world. Thanks to an excellent calibration of 
the cameras we have obtained an accuracy lying between 
1/1000 and 2%, respectively for 1 and 2 meter distances. 

III. CIRCLE DETECTION 

A. Overview of existing versions 

The detection of the circles in digital images is one of the 
most important problems in visual industrial applications 
as circular objects frequently occur in many natural and 
manmade scenes. So far many circle-extraction methods 
have been developed [2],[3]. The Circle Hough Transform 
(CHT) [4] is one of the best known algorithms which aims 
at finding circular shapes with a given radius r within 
an image. Usually edge map of the image is calculated, 
then each edge point contributes a circle of radius r to an 
output accumulator space. For unknown circle radiuses, the 
algorithm should be run for all possible radiuses to form 
a 3-dimensional parameter space, where two dimensions 
represent the position of the center and the third one 
represents the radius. The output accumulator space has a 

peak where these contributed circles overlap at the center 
of the original circle. 

In spite of its popularity, the large amount of storage 
and computing power required by the CHT and the inac­
curacy in case of excessively noisy images are the major 
disadvantages of using it in real-time applications. So a 
number of modifications have been widely implemented in 
the last decade in order to reduce the computational burden 
and the number of false positives typical of the CHT. Use 
of the edge direction was first suggested by Kimme et al. 
[5], who noted that the edge direction, on the boundary 
of a circle, points towards or away from the circle center. 
This modification reduced the computational requirements 
as only an arc needed to be plotted perpendicular to 
the edge orientation at a distance r from the edge point. 
Subsequently, Minor and Sklansky [6], and recently Faez 
et al. [1], extended the use of edge orientation, by plotting 
a line in the edge direction. This has the added advantage 
of using a two rather than a three-dimensional parameter 
space. In this case the output accumulator space has a peak 
where these contributed lines overlap at the center of the 
original circle. 

B. Limits of the last version 

The limits of this last version are that: 

1) Each edge point contributes a line to the parameter 
space independently of its neighbours. This results in 
an useful increase of computational burden (see fig. 
3). 

2) Edge orientation is taken equal to gradient direction 
that is calculated by applying a spatial differentiation 
operator to the original image. But this is true only 
for one color circles. Consequently gradient direction 
rarely coincides with the arc direction as depends on 
lighting conditions, color changes and shadows (see 
fig. 4). 

Figure 2 shows the original color image used to test the 
algorithm and its relative edge map. As an accumulator 
space we have defined a 2D-matrix the size of the edge 
map. Drawing a line in the accumulator matrix means to 
increase by one the current value of each interested cell. 

Fig. 2. a) Edge map of test image , b) Original test image. 

The result of this process, iterated for every edge point, 
is shown in fig. 3, where hot colors correspond to greater 
values and vice-versa. 



Fig. 3. Accumulator or parameter space. 

The darker point in fig. 3 corresponds to the center 
location. However, as the line direction coincides with the 
gradient direction, these lines do not intersect all around 
an average point but a wider region (see fig. 4 where only 
some of radial lines are superimposed on the edge map). 

Fig. 4. Some lines plotted on the edge map. 

C. The new algorithm 

We have developed an innovative and efficient algorithm 
that computes the edge direction related to each edge point 
taking into account spatial distribution of its neighbours. 
Thanks to the major precision in estimating the edge 
direction, if a circle is present lines intersect in a smaller 
region and the peak in the accumulator space has a higher 
value. In addition, our algorithm also considers only those 
points in the edge map which are effectively candidate to 
belong to an arc and therefore to the contour of a possible 
circle. In particular the algorithm is able to (see fig. 5): 
reject angular points (1 in the figure), ignore isolated points 
(2 and 3), reject straight segments (4 and 5), plot lines in 
the direction of arc concavity. 

D. ”Pixel-to-Pixel” algorithm 

Our algorithm, called ”Pixel-to-Pixel”, acts directly on 
the binary edge map, where each pixel values 1 if it is 
an edge point, or 0 otherwise. In order to identify line 
direction we explore the distribution of the pixels located 
in a window of dimensions (2k + 1) · (2k + 1) centred on 
each edge point (see fig. 6 for the axes direction). 

Fig. 5. The regions rejected by the new algorithm. 

Fig. 6. A squared window centred on an edge point. a) axes origin at 
the central point b) chord and radial line of the arc. 

Suppose the set of ”1” in fig. 6a) to belong to a circular 
arc. Then the best estimation of radial line coincides with 
the perpendicular one to the chord AB passing for the mid 
point C of coordinates: 

C = ((xA + xB )/2; (yA + yB )/2) (1) 

To determine the two chord extremes A,B, the algorithm 
examines all edge points in the current window and chooses 
those verify both: 

1) Each of two must have the greatest Euclidean dis­
tance from axes origin. 

2) One at least of the homologue coordinates must have 
opposite sign. This is needed to reject some spurious 
points or angular points. 

In order to reduce the computational burden required 
to compute quadratic Euclidean distance with respect to 
origin x2 + y2, we have defined a new distance with the 
same results: d(x, y) = |x| + |y|. So only absolute values 
need to be calculated. After A,B have been determined, 
and so the equation of perpendicular line, we have used 
the location of mid point C to infer the arc concavity. In 
this way lines in the parameter space may be plotted only in 
the direction of concavity and consequently computational 
burden decreases. 

To detect (and so reject) straight segments, the algorithm 
must verify that points A,B and O are aligned, that is when 
chord AB exactly intercepts x, y axes at origin O (see fig. 
7). 

It may be easily shown that this implies: 

|yB (xB − xA) − xB (yB − yA)| = 0 (2) 



Fig. 7. Edge points distribution of a stright segment. 

In practice, being parameter space discreet, x, y inter­
cepts may lie in the range [−1, +1] and the above condition 
becomes: 

|yB (xB −xA)−xB (yB −yA)| ≤ min(|xB −xA|, |yB −yA|) 
(3) 

Up to now we have only taken into account the three 
points A,B,O to get information about edge direction or 
to see if edge belongs to a straight segment. This occurs 
because we have supposed only a chain of connected pixels 
being present in the current window. However it may 
happen that some isolated edge points also appear in the 
window giving wrong results. Of course we could look 
for those points belonging to the same connected arc and 
discard the others, but this search process would increase 
computational time. 

To overcome this limit we have exploited the fact that 
any edge in the squared window is 1 pixel thick at most 
because of use of an edge thinning process after edge 
detection. So if one only arc is present, then it must be 
2k + 1 pixels long. 

To conclude, ”Pixel to Pixel” algorithm counts the edge 
points in the current window. If this count equals 2k + 1 
then a potential arc may be present; then the algorithm 
looks for A,B and goes on as previously mentioned. 

Figures 8 a),b) show some edge points which are dis­
carded because they are less or more than 2k + 1. Note 
also that c) may represent the end of an arc but it is 
rejected too. In fact it would not probably contribute to 
correctly determine edge orientation. On the contrary d) 
might be correct but this is not the only case. Nevertheless 
the condition n = 2k + 1 significantly reduces the number 
of cases which need to be examined. 

E. Algorithm steps 

Here we resume how ”Pixel to Pixel” algorithm works: 

1) Obtain the binary edge map of the raw image. 
2) Create an accumulator space the dimension of the 

edge map and set zero each value. 
3) Find next edge point (say O) and consider those 

points within a (2k + 1) · (2k + 1) window centred 
on O. 

Fig. 8. a) b) c) are rejected because counts are different from 2k + 1 

d) is correct. 

4) Count edge points within the window. If this count 
equals 2k + 1 then go on, else repeat from step 3. 

5) Find extremes A,B in the window. 
6) Verify that A,B and O are not aligned. If it is not so 

then repeat from step 3, else compute the equation 
of line perpendicular to AB and passing for the mid 
point C. 

7) Compute the direction of concavity and plot the 
above line in the accumulator space only towards this 
direction. 

8) Come back to step 3. 
9) When all edge points are examined, apply a smooth­

ing filter to the parameter space and find the global 
maximum, whose coordinates give the potential cir­
cle location. 

In order to improve the capability to identify the correct 
maximum, we have introduced a smoothing filter (e.g. an 
average filter) as a last step. In fact it is to be noted that 
all radial lines of a circle do not intersect in one single 
point due to the discreet nature of parameter space. The 
purpose of the average filter as a smoother (a squared 
convolution mask whose elements are all 1) is to emphasize 
these intersections. 

F. Results 

Here we present the circle detection results obtained by 
using different values of k. As an accumulator space we 
have used a 2D-matrix of size 352x288 pixels. 

Figure 9 shows all radial lines computed by applying 
”Pixel to Pixel” algorithm to the test image of figure 2; 
lines are superimposed on the edge map for major clarity. 
Comparing it with figure 4 it is evident the better precision 
of this algorithm to detect circle center. Note also that the 
number of lines is smaller than the one in figure 3. In 
fact, straight segments, angular points and isolated points 



Fig. 9. a) Radial lines on parameter space. b) The same lines superim­
posed on the edge map. 

are now discarded, so a less number of lines needs to be 
plotted. In the example above we have used k=5. To explain 
the effect of k we have used a second test image, where 
four circles of different radiuses are shown (see fig. 10). 

following we have set k=5 because this guarantees the best 
results for different distances from the ball. 

IV. BALL SEARCHING 

The circle detection algorithm described in section III 
works very well when a ball is present in front of the 
cameras. But when the ball comes out of the cameras 
view it always returns a false detection because there 
is always a peak in the parameter space. When ball is 
absent, distribution of centers locations is random due to 
the presence of noise and so robot motion is chaotic. As 
mentioned in section II we have used epipolar constraint in 
order to avoid these false positives but a little percentage 
of mistakes occurs anyway. 

Here we describe a new algorithm that removes up 
to 90% of false detections and guarantees to look for 
the ball when it is out of the robot view. To do this 
we have taken advantage of temporal correlation between 
consecutive frames, used in MPEG Block Based Motion 
Estimation[8]. If a ball is present in the current frame it 
will appear with similar color intensity in the next frame. 

One way to express the concept of similarity between 
two blocks of pixels of RGB images is the so called SSD 
(Sum of Squared Differences) [8]; let I1, I2 be two color 
image blocks of size (2k + 1) · (2k + 1) pixels, so: 

SSD = 

k2 +1 � 

j=1 

k2 +1 � 

i=1 

[I1R(i, j) − I2R(i, j)]2+ (4) 

Fig. 10. Second test image. 

Choosing k = 3, k = 5, k = 8, k = 15 each single circle 
(from smallest to biggest) may be isolated (see fig. 11). 

Fig. 11. a) k=3 b) k=5 c) k=8 d) k=15. 

By increasing k, the number of votes of the bigger circles 
rises, while votes of the smaller ones reduce; vice-versa 
when k decreases. In the experimented strategy of ball 

+[I1G(i, j) − I2G(i, j)]2 + [I1B (i, j) − I2B(i, j)]2 

SSD values zero only if I1, I2 are equal, but in case 
of a good matching between blocks its value is anyway 
small. In practice we have chosen k = 10 and fixed the 
SSD threshold to 200,000. So when SSD < 200, 000 two 
Blocks of size 21x21 may be considered to be similar. 

Our strategy adopts both circle detection and SSD to 
remove any false detection. Suppose a ball is moving within 
cameras view. At first it uses circle detection algorithm 
to identify center location in the current frame. Once this 
is determined, a block of pixels centred on this point is 
compared via SSD with a block already stored in memory 
at previous frames (see fig. 12). If matching is suitable then 
the stored block is replaced by the present one, otherwise it 
is compared with blocks of next frames until this condition 
is satisfied. The Block we have considered is relative to the 
left camera. 

Fig. 12. a) The block considered in a previous frame. b) The new block 
in the current frame which needs to be matched to the previous one. 



This Block updating runs continuously as long as the 
object is visible. But when ball falls out of cameras view, 
even if circle detection may return something, SSD gives 
a too large value so that the ball searching task starts. This 
means that the mobile robot begins to turn around until 
ball is visible again. In order to speed up the search, the 
robot chooses sense of rotation in the direction where the 
ball has been seen the last time. 

Now it is to be noted that when the object appears again, 
lighting conditions or ball size may be different, so block 
matching may give a negative result. On the contrary circle 
detection algorithm returns a valid location. 

In order to avoid conflicts between the two algorithms, 
we have implemented a statistical approach which consists 
in storing in a shift register the last five 3D locations 
returned by ball detection and in computing mean and 
variance of distribution. 

In fact, when there is no relative motion between ball 
and robot variance is theoretically null; in practice a dense 
distribution of the position values is always present due 
to image noise. On the other hand, when a relative motion 
exists consecutive 3D positions of the ball may be generally 
thought as lying on a straight line corrupted by noise (see 
fig. 13). In this case the new ball location will be considered 
if close to the line that best fits the last acquired points. 

Fig. 13. a) Random distribution when the ball is absent. b) Estimated 
positions when the ball is moving. 

Therefore, to overcome the mentioned conflicts, the 
algorithm works as follows: 

1) Store in a shift register the last five potential 3D 
positions returned by ball detection. 

2) Compute mean and variance of the five-point distri­
bution. 

3) Apply ball detection to the current stereo-frame (sixth 
acquisition). 

4) If ball location is less than the square root of variance 
or is close to the best fitting line, then accept it as 
correct. Whatever is the result, shift the register and 
store this position as last. 

Observe that statistical verification continuously occurs, 
together with ball detection and ”block matching”, either 
when ball is present or absent. 

Now we summarize how the predictive algorithm for ball 
following and searching works. At the beginning, when 
program starts, robot is still and ”block matching” task 
does not run yet. However statistical distribution of first 
five location returned by ball detection is examined. If the 

current ball position (the sixth one) is considered valid then 
robot starts to follow it and current Block is stored as a 
reference. 

Subsequently, ball detection, block matching and statis­
tical verification always run together. While ball is rolling 
within cameras view, statistical analysis has no influence 
because is block matching that verifies whether a value is 
suitable. On the contrary when object is out of robot sight 
this is performed by statistical approach. 

V. CONCLUSIONS 

In this paper we have presented a software architecture 
for ball detection and following based on a stereoscopic 
vision system. In particular we have described a different 
approach for circle detection and a predictive method to 
look for the object whenever it comes out of cameras view. 

Our circle detection algorithm is able to identify po­
tential arcs in the edge image due to a different way to 
infer edge orientation, which takes into account spatial 
distribution of near edge points. The presented algorithm 
may also discard straight segments, isolated points, angular 
points and may distinguish the direction of an arc, resulting 
in a low computational burden. In order to reject any false 
detection of the ball we have used epipolar constraint that 
forces two correspondent circle locations to belong to the 
same row. 

Finally we have described a predictive algorithm to look 
for the object, based on a block matching method among 
frames and on a statistical analysis of 3D positions of the 
ball in consecutive frames. 
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