
1

Requirements Engineering I

Chapter 7

Model-Based Requirements 
Specification

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2023 Martin Glinz



Chapter roadmap

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2023 Martin Glinz 2

Models in RE

Modeling structure and data

Modeling function and flow

Modeling state and behavior

Modeling context and boundary
The what and the why

7.1

7.2

7.3

7.4

7.5

Modeling goals
Reflecting about rationale

7.6

UML
The most widely used 
modeling language

7.7

Lightweight, flexible
modeling
The lightweight alternative

7.8

Context & context–system interaction

The static stuff

Activities, flows, and processes

System dynamics



3

Motivation

Why do we model requirements? 

m Gain an overview of a set of
requirements

m Understand relationships and inter-
connections between requirements

m Focus on some aspect of a system,
abstracting from the rest

Primarily for functional
requirements

Quality requirements 
and constraints are 
mostly specified in 
natural language
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7.1  Models in RE

DEFINITION. Model – an abstract representation of an existing 
part of reality or a part of reality to be created.

The notion of reality includes any conceivable set of 
elements, phenomena or concepts, including other models.

With respect to a model, the modeled part of reality is called 
the original.

m Requirements models are problem-oriented models of the 
system to be built

m Architecture and design information is omitted
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Requirements models can be used for

m Specifying requirements (as a means of replacing textually 
represented requirements)

m Paraphrasing textually represented requirements to 
improve understanding of complex structures and 
dependencies

m Testing textually represented requirements to uncover 
omissions, ambiguities and inconsistencies

m Decomposing a complex reality into comprehensible parts
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Which aspects can be modeled?

m Structure and Data
l Structural properties of a system, particularly of the static data
l Structure of a system’s domain

m Function and Flow
Sequence of actions and control / data flow for
l producing a required result
l describing a (business) process

m State and Behavior
Behavior of a system or a domain component
l State-dependent reactions to events
l Dynamics of component interaction
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Which aspects can be modeled? – 2

m Context and boundary
l Structural embedding of system in its environment
l Interaction between system and actors in the context

m Goals
Understanding the goals for a system
l Goal decomposition
l Goal-agent networks
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7.2  Modeling structure and data

m Entity-relationship models

m Class and object models

m Component models

What to model

m Static system models: Information that a system needs to 
know and store persistently

m Static domain models: The (business) objects and their 
relationships in a domain of interest
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Data modeling (entity-relationship models)

m Models the relevant part of the domain 
using entity types, relationship types and 
attributes

+ Rather easy to model
+ Straightforward mapping to relational 

database systems
– Ignores functionality and behavior
– No means for system decomposition
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Object and class modeling

Idea

m Identify those entities in the domain that the system has
to store and process

m Map this information to objects/classes, attributes, 
relationships and operations

m Represent requirements in a static structural model

m Modeling individual objects does not work: too specific or 
unknown at time of specification
à Classify objects of the same kind to classes: Class models
à or select an abstract representative: Object models
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Terminology

Object – an individual entity which has an identity and does 
not depend on another entity.

Examples: Turnstile no. 00231, The Plauna chairlift

Class – Represents a set of objects of the same kind by 
describing the structure of the objects, the ways they can be 
manipulated and how they behave. 

Examples: Turnstile, Lift

Abstract Object – an abstract representation of an individual 
object or of a set of objects having the same type

Example:  A Turnstile
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Class models / diagrams

Most popular form of
structure modeling

Typically using UML class diagrams

Class diagram: a diagrammatic representation of a class model
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Turnstile
+ id: Integer
+ installed: Date
+ count: Integer
– mode: TurnstileMode
Lock ()
Unlock ()
AllowOneTurn ()

Lift
+ id: Integer
+ name: String
+ type: String
+ capacity: Integer
Start ()
Stop ()

owner
1..11..*

transport
device
1..*

accessed by

Chair Lift
+ seats: Integer

Ski Lift
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Assume that in our chairlift access control case study there is 
a requirement to keep an event log for every lift. Extend the 
class model from the previous slide such that the following 
information can be logged: A time stamp, the event name and 
event type (mode change, warning or failure), and (optionally) 
an action taken.
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Mini-Exercise: Class modeling



Class models are sometimes inadequate

m Class models don’t work when different objects of the 
same class need to be distinguished

m Class models can’t be decomposed properly: different 
objects of the same class may belong to different 
subsystems

m Subclassing is a workaround, but no proper solution

In such situations, we need object models
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Object models: a motivating example

Example: Treating incidents in an emergency command and 
    control system

Emergency command and control systems manage incoming 
emergency calls and support human dispatchers in reacting 
to incidents (e.g., by sending police, fire fighters or 
ambulances) and monitoring action progress.

When specifying such a system, we need to model
l Incoming incidents awaiting treatment
l The incident currently managed by the dispatcher
l Incidents currently under treatment
l Closed incidents 
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Class models are inadequate here

In a class model, incidents would have to be modeled as 
follows:
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Bad: essential elements 
of the problem are not 
modeled

Unnatural: all subclasses are structurally 
identical

either
Incident

or
Incident

Incoming 
Incident

Dispatched
incident

Closed
Incident

Current
incident



Object models work here

Modeling is based on a hierarchy of abstract objects
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Dispatched
Incident:
Incident

Closed
incident:
Incident

Current
Incident:
Incident

Dispatcher support... Archive...

Incoming
incident:
Incident

Object name
Object type

Singleton
object

Object set

Command&Control System...

Notation: ADORA



ADORA

m ADORA is a language and tool for object-oriented 
specification of software-intensive systems

m Basic concepts
l Modeling with abstract objects
l Hierarchic decomposition of models
l Integration of object, behavior and interaction modeling
l Model visualization in context with generated views
l Adaptable degree of formality

m Developed in the RERG research group at UZH
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Modeling with abstract objects in UML

m Not possible in the original UML (version 1.x)

m Introduced 2004 as an option in UML 2

m Abstract objects are modeled as components in UML

m The component diagram is the corresponding diagram

m Lifelines in UML 2 sequence diagrams are also frequently 
modeled as abstract objects

m In UML 2, class diagrams still dominate
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What can be modeled in class/object models?

m Objects as classes or abstract objects

m Local properties as attributes

m Relationships / non-local properties as associations

m Services offered by objects as operations on objects or 
classes (called features in UML)

m Object behavior
l Must be modeled in separate state machines in UML
l Is modeled as an integral part of an object hierarchy in ADORA

m System-context interfaces and functionality from a user’s 
perspective can’t be modeled adequately
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Object-oriented modeling: pros and cons

+ Well-suited for describing the structure of a system

+ Supports locality of data and encapsulation of properties

+ Supports structure-preserving implementation

+ System decomposition can be modeled

– Ignores functionality and behavior from a user’s perspective

– UML class models don’t support decomposition

– UML: Behavior modeling weakly integrated
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Mini-Exercise: Classes vs. abstract objects

Specify a distributed heating control system for an office 
building consisting of a central boiler control unit and a room 
control unit in every office and function room. 
m The boiler control unit shall have a control panel consisting 

of a keyboard, a LCD display and on/off buttons.
m The room control unit shall have a control panel consisting 

of a LCD display and five buttons: on, off, plus, minus, and 
enter.

Model this problem using
a. A class model
b. An abstract object model.
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7.3  Modeling function and flow

m Activity models

m Data flow / information flow models

m Process and work flow models

m Domain story models
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Activity modeling: UML activity diagram
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m Models process
activities and
control flow

m Can model data
flow

m Model can be
underpinned with 
execution
semantics

Validate card

Initialize turnstile

Poll

Read card

Unlock turnstile
for one turn

Flash green light

Count

[card sensed]

[valid]

[no card] [term-
inate]

Flash red light[invalid]

[locked 
after turn]

[locked, 
no turn]



Data and information flow

m Models system functionality with data flow diagrams

m Once a dominating approach; rarely used today

+ Easy to understand
+ Supports system decomposition
– Treatment of data outdated: no types, no encapsulation
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Convert 
sensor 
data

Check 
for 

alarms

Display 
chairlift 
statusSensor 

raw values
Chairlift status 
measurements

Tagged status 
measurements Chairlift 

status 
display

Alarm boundary 
parameters

Chairlift schema 
images

Problem log

[DeMarco 1978]



Process and workflow modeling

m Elements
l Process steps / work steps
l Events influencing the flow
l Control flow
l Maybe data / information access and responsibilities

m Typical languages
l UML activity diagrams
l BPMN
l Event-driven process chains
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Process modeling: BPMN

BPMN (Business Process Model and Notation)

m Rich language for describing business processes
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[Object Management
Group 2013]
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Process modeling: EPC

m Event-driven process chains (In German: ereignisgesteuerte 
Prozessketten, EPK)

m Adopted by SAP for modeling processes supported by 
SAP’s ERP software
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Process modeling: UML Activity Diagram
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Receive
item

Initial node

Process
item

Catalog
item

Store Item

[not new]

[new]

Action
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Final node
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Mini-Exercise: Process modeling with UML

Model the ticket issuing process in the chairlift access control 
case study with skier, ticket clerk and ticketing system as 
actors/organizational units.
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Domain story models

m Visual stories about what stakeholders want to achieve

m Includes information about processes, system, people and 
organizations
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[Hofer&Schwendtner 2021]
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to
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01 02
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05

06

07 08
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to

RFID card

RFID card
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7.4  Modeling state and behavior

Goal: describe dynamic system behavior
l How the system reacts to a sequence of external events
l How independent system components coordinate their work

Means:

m Finite state machines (FSMs) – not discussed here

m Statecharts / State machines
l Easier to use than FSMs (although theoretically equivalent)
l State machines are the UML variant of statecharts

m Sequence diagrams (primarily for behavioral scenarios)

m Petri nets – not discussed in this course
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Statecharts

m Models the dynamic behavior:
l How the system reacts to external 

events in a given state
l Reaction depends on actual state
l States may be hierarchically 

nested and/or orthogonal (parallel)

m In UML: state machine diagrams

+ Global view of system behavior

+ Precise, but still readable

– Weak for modeling functionality 
and data
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closed

open

validating

card sensed
validate card

card valid
allow one turn;
count’ = count +1;
flash green light

card invalid
flash red light

count = 0

one turn done

normal mode

Inactive mode

switch to
normal mode

[Harel 1988]



Interpretation of Statecharts

m Statecharts may have composite 
states with substates and parallel 
regions, for example: 
– B is a composite state, consisting of 

substates B1 and B2
– D is a composite state with two 

parallel regions

m Events trigger state transitions and can 
trigger actions or new events, for 
example:
The occurrence of event c triggers the 
transition from state B to D, provided 
the system currently is in state B. The 
transition triggers m, which may be an 
action or an event.
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Interpretation of Statecharts – 2

m The system is always in exactly one 
combination of states and nested 
substates, for example:
– Statechart A initially is in state B 

and its substate B1
– After the occurrence of event c, A is 

in state D and substates (R, U)
– After the occurrence of event f, A still 

is in state D, but now in substates 
(T, U)

m Events are ignored when there is no 
transition for it in the current state:
e.g., in state B2, event f is ignored
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Interpretation of Statecharts – 3

m State transitions into a composite 
state also enter its substates

m Leaving a state implies leaving all its 
substates

m Regions can influence each other via 
events, for example: 
If the system is in R and U, the event 
g triggers a transition from R to S, 
producing q. Event q in turn triggers a 
transition from U to V.

m Transitions between regions are 
forbidden
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Sequence diagrams / MSCs

m Models ...
l ... lifelines of system components or objects
l ... messages that the components exchange
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:RFID
card

:Turnstile:Scanner :Access
controller

:Turnstile
device

Scan()
Validate(CardInfo)

AllowOneTurn()

FlashRedLight()

CardInfo

ValidCard

[Valid]

[else]

alt

OneTurnDoneCount()

InvalidCard

sd  NormalMode

Object Management Group (2011b)



m Notation/terminology:
l UML: Sequence diagram
l Otherwise: Message sequence chart (MSC)

+ Visualizes component collaboration on a timeline

– In practice confined to the description of required scenarios

– Design-oriented, can detract from modeling requirements
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7.5  Modeling context and boundary

Structural embedding

m Context diagrams, modeling
l The system
l The actors in the system’s context
l Information interfaces between actors and system
l Information interfaces among actors

Dynamic interaction between system and context

m Scenarios 

m Use cases
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à Chapter 2.4

A  context diagram
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Dynamic interaction: modeling the users’ view

Describing the functionality of a system from a user’s 
perspective: How can a user interact with the system?

Two key terms:

m Use case

m Scenario
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Use case

DEFINITION. Use case – A set of possible interactions 
between external actors and a system that provide a benefit 
for the actor(s) involved.
Use cases specify a system from a user’s (or other external 
actor’s) perspective: every use case describes some 
functionality that the system must provide for the actors 
involved in the use case. 

m Use case diagrams provide an overview

m Use case descriptions provide the details
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Scenario

DEFINITION. Scenario – 1. In general: A description of a 
potential sequence of events that lead to a desired (or 
unwanted) result. 
2. In RE: An ordered sequence of interactions between 
partners, in particular between a system and external actors. 
May be a concrete sequence (instance scenario) or a set of 
potential sequences (type scenario, use case).
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[Carroll 1995
  Sutcliffe 1998
  Glinz 1995]



Use case / scenario descriptions

Various representation options

m Free text in natural language

m Structured text in natural language

m Statecharts / UML state machines

m UML activity diagrams

m Sequence diagrams / MSCs

Structured text is most frequently used in practice
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A use case description with structured text
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USE CASE SetTurnstiles
Actor: Service Employee
Precondition: none
Normal flow:
1 Service Employee chooses turnstile setup.
 System displays controllable turnstiles: locked in red, normal in green,

open in yellow. 
2  Service Employee selects turnstiles s/he wants to modify.
 System highlights selected turnstiles.
3 Service Employee selects Locked, Normal, or Open.
 System changes the mode of the selected turnstiles to the selected one,
 displays all turnstiles in the color of the current mode.
...
Alternative flows:
3a Mode change fails: System flashes the failed turnstile in the color of its

current mode.
... 



UML Use case diagram

+ Provides abstract overview from actors’ perspectives
– Ignores functions and data required to provide interaction
– Can’t properly model hierarchies and dependencies
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Dependencies between scenarios / use cases

m UML can only model inclusion, extension and generalization

m However, we need to model
l Control flow dependencies (sequence, alternative, iteration)
l Hierarchical decomposition

m Largely ignored in UML (Glinz 2000b)

m Options
l Pre- and postconditions
l Statecharts
l Extended Jackson diagrams (in ADORA, Glinz et al. 2002)
l Specific dependency charts (Ryser and Glinz 2001)
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Dependencies with pre- and postconditions
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m Simple dependencies 
of kind «B follows A» 
can be modeled

m Relationships buried in 
use case descriptions, 
no overview

m No hierarchical 
decomposition

m Modeling of complex 
relationships very 
complicated

Scenario AuthenticateUser
Precondition: none
Steps: ...
Postcondition: User is authenticated

Scenario ReturnBooks
Precondition: User is authenticated
Steps: ...
...

Scenario BorrowBooks
Precondition: User is authenticated
Steps: ...
...



Dependency charts

m Specific notation for modeling of scenario dependencies
(Ryser und Glinz 2001)

m Research result; not used in today’s practice
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Normal path
Alternative path



For the Chairlift access control system, write the use case 
“Get Access”, describing how a skier gets access to a chairlift 
using his or her RFID ticket.
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Mini-Exercise: Writing a use case



7.6  Modeling goals

m Knowing the goals of an organization (or for a product) is 
essential when specifying a system to be used in that 
organization (or product)

m Goals can be decomposed into sub goals

m Goal decomposition can be modeled with AND/OR trees

m Considering multiple goals results in a directed goal graph
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[van Lamsweerde 2001, 2004
 Mylopoulos 2006
 Yu 1997]



AND/OR trees for goal modeling
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Goal-agent networks

m Explicitly models agents (stakeholders), their goals, tasks 
that achieve goals, resources, and dependencies between 
these items

m Many approaches in the RE literature

m i* is the most popular approach

m Rather infrequently used in practice
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A real world i* example: Youth counseling

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 53

[Horkoff and Yu 2010]
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7.7  UML (Unified Modeling Language)

m UML is a collection of primarily graphic languages for 
expressing requirements models, design models, and 
deployment models from various perspectives

m A UML specification typically consists of a collection of 
loosely connected diagrams of various types

m Additional restrictions can be specified with the formal 
textual language OCL (Object Constraint Language)

[Object Management Group 2017]

[Object Management Group 2014]



UML – Overview of diagram types
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UML Diagram

Structure
Diagram

Behavior
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Class
Diagram

Component
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Object
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Deployment
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Package
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Use Case
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Interaction
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Sequence
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Interaction Over-
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Communication
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Timing
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Normal font: UML 2 Diagram type
Italic font: Abstract concepts

Profile
Diagram

Typically used in
requirements
specifications



7.8  Lightweight, flexible modeling

m Modeling languages – Have a predetermined syntax
l Limited expressibility and flexibility
➔Too restrictive for sketching ideas or initial requirements

m Free-form sketching – Is fully flexible
l Resulting sketches do not carry any structure or meanings
➔Too vague when sketches serve as a basis for further RE tasks

m  Need for a middle-ground approach
l High flexibility; no fixed set of language constructs
l Co-evolution of models and model syntax & meanings
➔FlexiSketch
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[Wüest, Seyff, Glinz 2019]
www.flexisketch.org



FlexiSketch – supporting flexible modeling

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 57

Modeling

Meta-
Modeling

Sketch
Recognition

Freeform sketching

Assign meanings 
through annotations

Identify similar symbols
beautification

Automatic inference

Mobile
Collaborative

Multi-Platform

l Allow users to define their own notations & languages on the fly
l Co-evolve models and their metamodels



FlexiSketch Demo
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D. Wüest, N. Seyff, M. Glinz (2015). FlexiSketch Team: 
Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering.

Dustin Wüest, Norbert Seyff, Martin Glinz (2015). FlexiSketch Team: Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering (ICSE 2015). 685-688.

Watch the FlexiSketch TEAM Demo Video at http://www.flexisketch.org

http://www.flexisketch.org/

