
1

Requirements Engineering I

Chapter 7

Model-Based Requirements
Specification

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2023 Martin Glinz

Chapter roadmap

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2023 Martin Glinz 2

Models in RE

Modeling structure and data

Modeling function and flow

Modeling state and behavior

Modeling context and boundary
The what and the why

7.1

7.2

7.3

7.4

7.5

Modeling goals
Reflecting about rationale

7.6

UML
The most widely used
modeling language

7.7

Lightweight, flexible
modeling
The lightweight alternative

7.8

Context & context–system interaction

The static stuff

Activities, flows, and processes

System dynamics

3

Motivation

Why do we model requirements?

m Gain an overview of a set of
requirements

m Understand relationships and inter-
connections between requirements

m Focus on some aspect of a system,
abstracting from the rest

Primarily for functional
requirements

Quality requirements
and constraints are
mostly specified in
natural language

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz

7.1 Models in RE

DEFINITION. Model – an abstract representation of an existing
part of reality or a part of reality to be created.

The notion of reality includes any conceivable set of
elements, phenomena or concepts, including other models.

With respect to a model, the modeled part of reality is called
the original.

m Requirements models are problem-oriented models of the
system to be built

m Architecture and design information is omitted

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 4

Requirements models can be used for

m Specifying requirements (as a means of replacing textually
represented requirements)

m Paraphrasing textually represented requirements to
improve understanding of complex structures and
dependencies

m Testing textually represented requirements to uncover
omissions, ambiguities and inconsistencies

m Decomposing a complex reality into comprehensible parts

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2019 Martin Glinz 5

Which aspects can be modeled?

m Structure and Data
l Structural properties of a system, particularly of the static data
l Structure of a system’s domain

m Function and Flow
Sequence of actions and control / data flow for
l producing a required result
l describing a (business) process

m State and Behavior
Behavior of a system or a domain component
l State-dependent reactions to events
l Dynamics of component interaction

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2019 Martin Glinz 6

Which aspects can be modeled? – 2

m Context and boundary
l Structural embedding of system in its environment
l Interaction between system and actors in the context

m Goals
Understanding the goals for a system
l Goal decomposition
l Goal-agent networks

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 7

7.2 Modeling structure and data

m Entity-relationship models

m Class and object models

m Component models

What to model

m Static system models: Information that a system needs to
know and store persistently

m Static domain models: The (business) objects and their
relationships in a domain of interest

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 8

Data modeling (entity-relationship models)

m Models the relevant part of the domain
using entity types, relationship types and
attributes

+ Rather easy to model
+ Straightforward mapping to relational

database systems
– Ignores functionality and behavior
– No means for system decomposition

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 9

Turnstile

Scanner

Lift

has

belongs part of

[Chen 1976]

Object and class modeling

Idea

m Identify those entities in the domain that the system has
to store and process

m Map this information to objects/classes, attributes,
relationships and operations

m Represent requirements in a static structural model

m Modeling individual objects does not work: too specific or
unknown at time of specification
à Classify objects of the same kind to classes: Class models
à or select an abstract representative: Object models

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 10

[Booch 1986, Booch 1994, Glinz et al. 2002]

Terminology

Object – an individual entity which has an identity and does
not depend on another entity.

Examples: Turnstile no. 00231, The Plauna chairlift

Class – Represents a set of objects of the same kind by
describing the structure of the objects, the ways they can be
manipulated and how they behave.

Examples: Turnstile, Lift

Abstract Object – an abstract representation of an individual
object or of a set of objects having the same type

Example: A Turnstile

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 11

Class models / diagrams

Most popular form of
structure modeling

Typically using UML class diagrams

Class diagram: a diagrammatic representation of a class model

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 12

Turnstile
+ id: Integer
+ installed: Date
+ count: Integer
– mode: TurnstileMode
Lock ()
Unlock ()
AllowOneTurn ()

Lift
+ id: Integer
+ name: String
+ type: String
+ capacity: Integer
Start ()
Stop ()

owner
1..11..*

transport
device
1..*

accessed by

Chair Lift
+ seats: Integer

Ski Lift

13

Assume that in our chairlift access control case study there is
a requirement to keep an event log for every lift. Extend the
class model from the previous slide such that the following
information can be logged: A time stamp, the event name and
event type (mode change, warning or failure), and (optionally)
an action taken.

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz

Mini-Exercise: Class modeling

Class models are sometimes inadequate

m Class models don’t work when different objects of the
same class need to be distinguished

m Class models can’t be decomposed properly: different
objects of the same class may belong to different
subsystems

m Subclassing is a workaround, but no proper solution

In such situations, we need object models

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017Martin Glinz 14

Object models: a motivating example

Example: Treating incidents in an emergency command and
 control system

Emergency command and control systems manage incoming
emergency calls and support human dispatchers in reacting
to incidents (e.g., by sending police, fire fighters or
ambulances) and monitoring action progress.

When specifying such a system, we need to model
l Incoming incidents awaiting treatment
l The incident currently managed by the dispatcher
l Incidents currently under treatment
l Closed incidents

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 15

Class models are inadequate here

In a class model, incidents would have to be modeled as
follows:

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 16

Bad: essential elements
of the problem are not
modeled

Unnatural: all subclasses are structurally
identical

either
Incident

or
Incident

Incoming
Incident

Dispatched
incident

Closed
Incident

Current
incident

Object models work here

Modeling is based on a hierarchy of abstract objects

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 17

Dispatched
Incident:
Incident

Closed
incident:
Incident

Current
Incident:
Incident

Dispatcher support... Archive...

Incoming
incident:
Incident

Object name
Object type

Singleton
object

Object set

Command&Control System...

Notation: ADORA

ADORA

m ADORA is a language and tool for object-oriented
specification of software-intensive systems

m Basic concepts
l Modeling with abstract objects
l Hierarchic decomposition of models
l Integration of object, behavior and interaction modeling
l Model visualization in context with generated views
l Adaptable degree of formality

m Developed in the RERG research group at UZH

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 18

[Glinz et al. 2002]

Modeling with abstract objects in UML

m Not possible in the original UML (version 1.x)

m Introduced 2004 as an option in UML 2

m Abstract objects are modeled as components in UML

m The component diagram is the corresponding diagram

m Lifelines in UML 2 sequence diagrams are also frequently
modeled as abstract objects

m In UML 2, class diagrams still dominate

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 19

What can be modeled in class/object models?

m Objects as classes or abstract objects

m Local properties as attributes

m Relationships / non-local properties as associations

m Services offered by objects as operations on objects or
classes (called features in UML)

m Object behavior
l Must be modeled in separate state machines in UML
l Is modeled as an integral part of an object hierarchy in ADORA

m System-context interfaces and functionality from a user’s
perspective can’t be modeled adequately

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 20

Object-oriented modeling: pros and cons

+ Well-suited for describing the structure of a system

+ Supports locality of data and encapsulation of properties

+ Supports structure-preserving implementation

+ System decomposition can be modeled

– Ignores functionality and behavior from a user’s perspective

– UML class models don’t support decomposition

– UML: Behavior modeling weakly integrated

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 21

22

Mini-Exercise: Classes vs. abstract objects

Specify a distributed heating control system for an office
building consisting of a central boiler control unit and a room
control unit in every office and function room.
m The boiler control unit shall have a control panel consisting

of a keyboard, a LCD display and on/off buttons.
m The room control unit shall have a control panel consisting

of a LCD display and five buttons: on, off, plus, minus, and
enter.

Model this problem using
a. A class model
b. An abstract object model.

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2023 Martin Glinz

7.3 Modeling function and flow

m Activity models

m Data flow / information flow models

m Process and work flow models

m Domain story models

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 23

Activity modeling: UML activity diagram

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 24

m Models process
activities and
control flow

m Can model data
flow

m Model can be
underpinned with
execution
semantics

Validate card

Initialize turnstile

Poll

Read card

Unlock turnstile
for one turn

Flash green light

Count

[card sensed]

[valid]

[no card] [term-
inate]

Flash red light[invalid]

[locked
after turn]

[locked,
no turn]

Data and information flow

m Models system functionality with data flow diagrams

m Once a dominating approach; rarely used today

+ Easy to understand
+ Supports system decomposition
– Treatment of data outdated: no types, no encapsulation
Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 25

Convert
sensor
data

Check
for

alarms

Display
chairlift
statusSensor

raw values
Chairlift status
measurements

Tagged status
measurements Chairlift

status
display

Alarm boundary
parameters

Chairlift schema
images

Problem log

[DeMarco 1978]

Process and workflow modeling

m Elements
l Process steps / work steps
l Events influencing the flow
l Control flow
l Maybe data / information access and responsibilities

m Typical languages
l UML activity diagrams
l BPMN
l Event-driven process chains

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 26

Process modeling: BPMN

BPMN (Business Process Model and Notation)

m Rich language for describing business processes

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2019 Martin Glinz 27

[Object Management
Group 2013]

Check refund
request

Submit
refund
request

proof valid

proof
missing

Request proof Wait for valid
proof

received

2 weeks

Proof
valid?

yes

no
Notify
rejection

Process
refund

+

Ti
ck

et
 O

ffi
ce

Sk
ie

r

proof
invalid

Refund unused days for valid ticket

Skier may request a refund for unused days,
e.g., due to an accident or family emergency

Process modeling: EPC

m Event-driven process chains (In German: ereignisgesteuerte
Prozessketten, EPK)

m Adopted by SAP for modeling processes supported by
SAP’s ERP software

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 28

Event Event

Function

Start event

Org unitInformation
object

Information
object

Connector
(AND, OR,
XOR)

Control flow

Process modeling: UML Activity Diagram

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2020 Martin Glinz 29

Receive
item

Initial node

Process
item

Catalog
item

Store Item

[not new]

[new]

Action

Fork node (fork into parallel flows)
Decision node (with decision
conditions)

Merge node

Join node (join&synchronize flows)

Final node

Clerk Warehouse System

Activity partitions
(“swimlanes”) model
who is responsible
for what

Mini-Exercise: Process modeling with UML

Model the ticket issuing process in the chairlift access control
case study with skier, ticket clerk and ticketing system as
actors/organizational units.

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 30

Domain story models

m Visual stories about what stakeholders want to achieve

m Includes information about processes, system, people and
organizations

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 31

[Hofer&Schwendtner 2021]

Skier
Clerk

Needs a ticket
Has an RFID Card

Kind of ticket &
validity date(s)

Asks for

Hands
over

RFID card

to

Ticketing
System

Initiates
purchase

Tells

Price to pay

CHF

Confirms
purchase

Loads
ticketPlaces

card on
programm-
ing device

to

Pays

Hands outto

01 02

03

04

05

06

07 08

09

to

RFID card

RFID card

The circled numbers
indicate the order of
steps in the story

7.4 Modeling state and behavior

Goal: describe dynamic system behavior
l How the system reacts to a sequence of external events
l How independent system components coordinate their work

Means:

m Finite state machines (FSMs) – not discussed here

m Statecharts / State machines
l Easier to use than FSMs (although theoretically equivalent)
l State machines are the UML variant of statecharts

m Sequence diagrams (primarily for behavioral scenarios)

m Petri nets – not discussed in this course
Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 32

Statecharts

m Models the dynamic behavior:
l How the system reacts to external

events in a given state
l Reaction depends on actual state
l States may be hierarchically

nested and/or orthogonal (parallel)

m In UML: state machine diagrams

+ Global view of system behavior

+ Precise, but still readable

– Weak for modeling functionality
and data

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 33

closed

open

validating

card sensed
validate card

card valid
allow one turn;
count’ = count +1;
flash green light

card invalid
flash red light

count = 0

one turn done

normal mode

Inactive mode

switch to
normal mode

[Harel 1988]

Interpretation of Statecharts

m Statecharts may have composite
states with substates and parallel
regions, for example:
– B is a composite state, consisting of

substates B1 and B2
– D is a composite state with two

parallel regions

m Events trigger state transitions and can
trigger actions or new events, for
example:
The occurrence of event c triggers the
transition from state B to D, provided
the system currently is in state B. The
transition triggers m, which may be an
action or an event.

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 34

B1

B2

R

S

T

U

V

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

Interpretation of Statecharts – 2

m The system is always in exactly one
combination of states and nested
substates, for example:
– Statechart A initially is in state B

and its substate B1
– After the occurrence of event c, A is

in state D and substates (R, U)
– After the occurrence of event f, A still

is in state D, but now in substates
(T, U)

m Events are ignored when there is no
transition for it in the current state:
e.g., in state B2, event f is ignored

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 35

B1

B2

R

S

T

U

V

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

Interpretation of Statecharts – 3

m State transitions into a composite
state also enter its substates

m Leaving a state implies leaving all its
substates

m Regions can influence each other via
events, for example:
If the system is in R and U, the event
g triggers a transition from R to S,
producing q. Event q in turn triggers a
transition from U to V.

m Transitions between regions are
forbidden

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022Martin Glinz 36

B1

B2

R

S

T

U

b/la/k

B
A

f/p

g/q
h/r

q/fr/s

C

D c/m
d/n

e

t/h V

Sequence diagrams / MSCs

m Models ...
l ... lifelines of system components or objects
l ... messages that the components exchange

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 37

:RFID
card

:Turnstile:Scanner :Access
controller

:Turnstile
device

Scan()
Validate(CardInfo)

AllowOneTurn()

FlashRedLight()

CardInfo

ValidCard

[Valid]

[else]

alt

OneTurnDoneCount()

InvalidCard

sd NormalMode

Object Management Group (2011b)

m Notation/terminology:
l UML: Sequence diagram
l Otherwise: Message sequence chart (MSC)

+ Visualizes component collaboration on a timeline

– In practice confined to the description of required scenarios

– Design-oriented, can detract from modeling requirements

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 38

7.5 Modeling context and boundary

Structural embedding

m Context diagrams, modeling
l The system
l The actors in the system’s context
l Information interfaces between actors and system
l Information interfaces among actors

Dynamic interaction between system and context

m Scenarios

m Use cases
Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 39

à Chapter 2.4

A context diagram

Requirements Engineering I – Part I: Fundamentals © 2013 Martin Glinz 32

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Ausleihen

Zurückgeben

...

...
Schleuse

BibliothekarIn
BenutzerIn

Alarm
schlagen

Buch
katalogisieren

Skier

Maintainer

Manager

Service  
employee

Chairlift access
control

call

set mode

query

statistics

setup

card

pass/block

Dynamic interaction: modeling the users’ view

Describing the functionality of a system from a user’s
perspective: How can a user interact with the system?

Two key terms:

m Use case

m Scenario

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2019 Martin Glinz 40

[Carroll 1995,
 Glinz 1995,
 Glinz 2000a,
 Jacobson et al. 1992,
 Sutcliffe 1998,
 Weidenhaupt et al. 1998]

Use case

DEFINITION. Use case – A set of possible interactions
between external actors and a system that provide a benefit
for the actor(s) involved.
Use cases specify a system from a user’s (or other external
actor’s) perspective: every use case describes some
functionality that the system must provide for the actors
involved in the use case.

m Use case diagrams provide an overview

m Use case descriptions provide the details

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2020 Martin Glinz 41

[Jacobson et al. 1992
 Glinz 2013]

Scenario

DEFINITION. Scenario – 1. In general: A description of a
potential sequence of events that lead to a desired (or
unwanted) result.
2. In RE: An ordered sequence of interactions between
partners, in particular between a system and external actors.
May be a concrete sequence (instance scenario) or a set of
potential sequences (type scenario, use case).

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2020 Martin Glinz 42

[Carroll 1995
 Sutcliffe 1998
 Glinz 1995]

Use case / scenario descriptions

Various representation options

m Free text in natural language

m Structured text in natural language

m Statecharts / UML state machines

m UML activity diagrams

m Sequence diagrams / MSCs

Structured text is most frequently used in practice

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 43

A use case description with structured text

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 44

USE CASE SetTurnstiles
Actor: Service Employee
Precondition: none
Normal flow:
1 Service Employee chooses turnstile setup.
 System displays controllable turnstiles: locked in red, normal in green,

open in yellow.
2 Service Employee selects turnstiles s/he wants to modify.
 System highlights selected turnstiles.
3 Service Employee selects Locked, Normal, or Open.
 System changes the mode of the selected turnstiles to the selected one,
 displays all turnstiles in the color of the current mode.
...
Alternative flows:
3a Mode change fails: System flashes the failed turnstile in the color of its

current mode.
...

UML Use case diagram

+ Provides abstract overview from actors’ perspectives
– Ignores functions and data required to provide interaction
– Can’t properly model hierarchies and dependencies
Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 45

Skier

Set TurnstileGet Access

Buy Ticket

Load Ticket
on Device

Program
Device

Card Watch

Sell Ticket

Change Ticket Ticket
Office

Employee

Service
Employee

Chairlift Access Control System

«include»

«include»

«include»

«extend» «extend»

...

Dependencies between scenarios / use cases

m UML can only model inclusion, extension and generalization

m However, we need to model
l Control flow dependencies (sequence, alternative, iteration)
l Hierarchical decomposition

m Largely ignored in UML (Glinz 2000b)

m Options
l Pre- and postconditions
l Statecharts
l Extended Jackson diagrams (in ADORA, Glinz et al. 2002)
l Specific dependency charts (Ryser and Glinz 2001)

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 46

Dependencies with pre- and postconditions

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 47

m Simple dependencies
of kind «B follows A»
can be modeled

m Relationships buried in
use case descriptions,
no overview

m No hierarchical
decomposition

m Modeling of complex
relationships very
complicated

Scenario AuthenticateUser
Precondition: none
Steps: ...
Postcondition: User is authenticated

Scenario ReturnBooks
Precondition: User is authenticated
Steps: ...
...

Scenario BorrowBooks
Precondition: User is authenticated
Steps: ...
...

Dependency charts

m Specific notation for modeling of scenario dependencies
(Ryser und Glinz 2001)

m Research result; not used in today’s practice

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 48

Normal path
Alternative path

For the Chairlift access control system, write the use case
“Get Access”, describing how a skier gets access to a chairlift
using his or her RFID ticket.

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 49

Mini-Exercise: Writing a use case

7.6 Modeling goals

m Knowing the goals of an organization (or for a product) is
essential when specifying a system to be used in that
organization (or product)

m Goals can be decomposed into sub goals

m Goal decomposition can be modeled with AND/OR trees

m Considering multiple goals results in a directed goal graph

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 50

[van Lamsweerde 2001, 2004
 Mylopoulos 2006
 Yu 1997]

AND/OR trees for goal modeling

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 51

Use RFID
access cards

Use machine
readable tickets

Use single
point access

OR-Decomposition

Install RFID
enabled turnstiles

Install RFID en-
abled sales points

AND-Decomposition

Reduce access
control costgoal

sub goals

Reduce lift
personnel

Simplify
access control

Goal-agent networks

m Explicitly models agents (stakeholders), their goals, tasks
that achieve goals, resources, and dependencies between
these items

m Many approaches in the RE literature

m i* is the most popular approach

m Rather infrequently used in practice

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 52

A real world i* example: Youth counseling

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2017 Martin Glinz 53

[Horkoff and Yu 2010]

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 54

7.7 UML (Unified Modeling Language)

m UML is a collection of primarily graphic languages for
expressing requirements models, design models, and
deployment models from various perspectives

m A UML specification typically consists of a collection of
loosely connected diagrams of various types

m Additional restrictions can be specified with the formal
textual language OCL (Object Constraint Language)

[Object Management Group 2017]

[Object Management Group 2014]

UML – Overview of diagram types

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2019 Martin Glinz 55

UML Diagram

Structure
Diagram

Behavior
Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Composite
Structure Diagram

Deployment
Diagram

Package
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

Interaction Over-
view Diagram

Communication
Diagram

Timing
Diagram

Normal font: UML 2 Diagram type
Italic font: Abstract concepts

Profile
Diagram

Typically used in
requirements
specifications

7.8 Lightweight, flexible modeling

m Modeling languages – Have a predetermined syntax
l Limited expressibility and flexibility
➔Too restrictive for sketching ideas or initial requirements

m Free-form sketching – Is fully flexible
l Resulting sketches do not carry any structure or meanings
➔Too vague when sketches serve as a basis for further RE tasks

m Need for a middle-ground approach
l High flexibility; no fixed set of language constructs
l Co-evolution of models and model syntax & meanings
➔FlexiSketch

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2021 Martin Glinz 56

[Wüest, Seyff, Glinz 2019]
www.flexisketch.org

FlexiSketch – supporting flexible modeling

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 57

Modeling

Meta-
Modeling

Sketch
Recognition

Freeform sketching

Assign meanings
through annotations

Identify similar symbols
beautification

Automatic inference

Mobile
Collaborative

Multi-Platform

l Allow users to define their own notations & languages on the fly
l Co-evolve models and their metamodels

FlexiSketch Demo

Requirements Engineering I – Chapter 7: Model-Based Rrequirements Specification © 2022 Martin Glinz 58

D. Wüest, N. Seyff, M. Glinz (2015). FlexiSketch Team:
Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering.

Dustin Wüest, Norbert Seyff, Martin Glinz (2015). FlexiSketch Team: Collaborative Sketching and Notation Creation on the Fly.
37th International Conference on Software Engineering (ICSE 2015). 685-688.

Watch the FlexiSketch TEAM Demo Video at http://www.flexisketch.org

http://www.flexisketch.org/

