Efficient Algorithms for Frequently Asked Questions
10. Dynamic Evaluation of Functional Aggregate Queries

Prof. Dan Olteanu

Data•(Systems+Theory)

May 23, 2022

Static and Dynamic Query Evaluation

Static Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

query \begin{tabular}{c}
data

base

preprocessing

preprocessing

time

data

structure

enumeration

enumeration

delay

\quad

query

result
\end{tabular}

Dynamic Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

query \begin{tabular}{c}
data

base

preprocessing

time

preprocessing

structure

data

enumeration

enumeration

delay

\quad

query

result
\end{tabular}

Dynamic Query Evaluation

single-tuple
update

Static and Dynamic Query Evaluation

Static Query Evaluation

query data $\xrightarrow[\text { base }]{\text { preprocessing }}$\begin{tabular}{c}
preprocessing

time

data

structure

enumeration

enumeration

delay

\quad

query

result
\end{tabular}

Dynamic Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

query data $\underset{\text { base }}{\text { preprocessing }}$\begin{tabular}{c}
preprocessing

time

data

structure

enumeration

enumeration

delay

\quad

query

result
\end{tabular}

Dynamic Query Evaluation

Static and Dynamic Query Evaluation

Static Query Evaluation

Dynamic Query Evaluation

We are interested in the trade-off between: preprocessing time - enumeration delay - update time

Computation from Scratch vs Delta Computation

Representation of Updates

Traditional and Uniform Update Representation

- Traditional representation: Insertions and deletions are represented as separate tables:

employee	age
Elise	35
Elise	35
Steve	40
Joe	30
Joe	30
relation	

- Uniform representation: Insertions and deletions are represented as a single factor over a ring. Here, we use the ring $(\mathbb{Z},+, *, 0,1)$:

employee	age	\rightarrow	$\#$
Elise	35	\rightarrow	2
Steve	40	\rightarrow	1
Joe	30	\rightarrow	2

factor

employee	age	\rightarrow	$\#$
Steve	40	\rightarrow	-1
Steve	38	\rightarrow	1
Joe	30	\rightarrow	-2
Mary	33	\rightarrow	2

update

employee	age	\rightarrow	$\#$
Elise	35	\rightarrow	2
Steve	38	\rightarrow	1
Mary	33	\rightarrow	2

updated factor

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$

R		s		T	
A B	\#	B C	\#	C A	\|\#
$a_{1} b_{1}$	2	$b_{1} c_{1}$	2	$c_{1} a_{1}$	1
$a_{2} b_{1}$	3	$b_{1} c_{2}$	1	$c_{2} a_{1}$	3
				$c_{2} a_{2}$	3

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$

$R \cdot S \cdot T$		
A	B	C
$\#$		
a_{1}	b_{1}	c_{1}

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$

$R \cdot S \cdot T$	
$A B C$	\#
$a_{1} b_{1} c_{1}$	$2 \cdot 2 \cdot 1=4$
$a_{1} b_{1} c_{2}$	$2 \cdot 1 \cdot 3=6$
$a_{2} b_{1} c_{2}$	$3 \cdot 1 \cdot 3=9$

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$

R.S.T	
$A B C$	\#
$a_{1} b_{1} c_{1}$	2 $2 \cdot 2 \cdot 1=4$
$a_{1} b_{1} c_{2}$	$2 \cdot 1 \cdot 3=6$
$a_{2} b_{1} c_{2}$	$3 \cdot 1 \cdot 3=9$

$Q()$	
$\emptyset \|$$\#$ () $\mid 4+6+9=19$	

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R		S		T	
A B	\#	$B C$	\#	C A	\#
$a_{1} b_{1}$	2	$b_{1} c_{1}$	2	$c_{1} a_{1}$	1
$a_{2} b_{1}$	3	$b_{1} c_{2}$	1	$c_{2} a_{1}$	3
				$C_{2} a_{2}$	3

$R \cdot S \cdot T$	
$A B C$	\#
$a_{1} b_{1} c_{1}$	$2 \cdot 2 \cdot 1=4$
$a_{1} b_{1} c_{2}$	$2 \cdot 1 \cdot 3=6$
$a_{2} b_{1} c_{2}$	$3 \cdot 1 \cdot 3=9$

$\delta R=\left\{\left(a_{2}, b_{1}\right) \mapsto-2\right\}$	
A B	\#
$a_{2} b_{1}$	-2

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R		S		T	
A B	\#	$B C$	\#	C A	\#
$a_{1} b_{1}$	2	$b_{1} c_{1}$	2	$c_{1} a_{1}$	1
$a_{2} b_{1}$	3	$b_{1} c_{2}$	1	$c_{2} a_{1}$	3
				$C_{2} a_{2}$	3

$R \cdot S \cdot T$	
$A B C$	\#
$a_{1} b_{1} c_{1}$	$2 \cdot 2 \cdot 1=4$
$a_{1} b_{1} c_{2}$	$2 \cdot 1 \cdot 3=6$
$a_{2} b_{1} c_{2}$	$3 \cdot 1 \cdot 3=9$

$\delta R=\left\{\left(a_{2}, b_{1}\right) \mapsto-2\right\}$	
A B	\#
$a_{2} b_{1}$	-2

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R		S		T	
$A B$	\#	$B C$	\#	$C A$	\#
$a_{1} b_{1}$	2	$b_{1} c_{1}$	2	$c_{1} a_{1}$	1
$a_{2} b_{1}$	3	$b_{1} c_{2}$	1	$c_{2} a_{1}$	3
$a_{2} b_{1}$	1			$C_{2} a_{2}$	3

$R \cdot S \cdot T$			
A	B	C	
$\#$			
a_{1}	b_{1}	c_{1}	
a_{1}	b_{1}	c_{2}	
a_{2}	$2 \cdot 2 \cdot 1 \cdot 1=4=6$		
a_{1}	b_{2}	c_{2}	

$\delta R=\left\{\left(a_{2}, b_{1}\right) \mapsto-2\right\}$	
$A B$	$\#$
$a_{2} b_{1}$	-2

$Q()$	
$\emptyset \|$$\#$ () $\mid 4+6+9=19$	

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R		S		T	
A B	\#	$B C$	\#	C A	\#
$a_{1} b_{1}$	2	$b_{1} c_{1}$	2	$c_{1} a_{1}$	1
$a_{2} b_{1}$	3	$b_{1} c_{2}$	1	$c_{2} a_{1}$	3
$a_{2} b_{1}$	1			$c_{2} a_{2}$	3

$R \cdot S \cdot T$			
A	B	C	
$\#$			
a_{1}	b_{1}	c_{1}	
a_{1}	b_{1}	c_{2}	
a_{2}	b_{1}	c_{2}	

$\delta R=\left\{\left(a_{2}, b_{1}\right) \mapsto-2\right\}$	
$A B$	$\#$
$a_{2} b_{1}$	-2

$Q()$	
$\emptyset \|$$\#$ () $\mid 4+6+9=19$	

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

R	S	T		$R \cdot S \cdot T$	
$A B$	$B C$	$C A$	\#	$A B C$	\#
$\begin{array}{ll} a_{1} & b_{1} \\ a_{2} & b_{1} \\ a_{2} & b_{1} \end{array}$	b_{1} c_{1} b_{1} c_{2}	$\begin{array}{ll} c_{1} & a_{1} \\ c_{2} & a_{1} \\ c_{2} & a_{2} \end{array}$	1 3 3	$\begin{array}{ccc} a_{1} & b_{1} & c_{1} \\ a_{1} & b_{1} & c_{2} \\ a_{2} & b_{1} & c_{2} \\ a_{2} & b_{1} & c_{2} \end{array}$	$\begin{aligned} & 2 \cdot 2 \cdot 1=4 \\ & 2 \cdot 1 \cdot 3=6 \\ & 3 \cdot 1 \cdot 3=9 \\ & 1 \cdot 1 \cdot 3=3 \end{aligned}$
\uparrow					\downarrow
$\delta R=\left\{\left(a_{2}, b_{1}\right) \mapsto-2\right\}$				$Q()$	
$A B$	\#			\emptyset	\#
$a_{2} b_{1}$	-2			() $4+6+9=19$	

Example: Single-Tuple Updates to the Triangle Query

- $Q()=\sum_{a, b, c} R(a, b) \cdot S(b, c) \cdot T(c, a)$
- A single-tuple update is a factor mapping a tuple to a non-zero value (positive for insertions, negative for deletions)

Delta Queries

Delta Queries: Example

Consider the following FAQ query and an update δR to the factor R

$$
Q(a, c)=\sum_{b} R(a, b) \cdot S(b, c)
$$

We derive the updated FAQ $Q_{\text {new }}$

Delta Queries: Example

Consider the following FAQ query and an update δR to the factor R

$$
Q(a, c)=\sum_{b} R(a, b) \cdot S(b, c)
$$

We derive the updated FAQ $Q_{\text {new }}$

$$
Q_{\mathrm{new}}(a, c)=\sum_{b}(R(a, b)+\delta R(a, b)) \cdot S(b, c)
$$

Delta Queries: Example

Consider the following FAQ query and an update δR to the factor R

$$
Q(a, c)=\sum_{b} R(a, b) \cdot S(b, c)
$$

We derive the updated FAQ $Q_{\text {new }}$

$$
\begin{aligned}
Q_{\mathrm{new}}(a, c) & =\sum_{b}(R(a, b)+\delta R(a, b)) \cdot S(b, c) \\
& =\sum_{b}(R(a, b) \cdot S(b, c))+(\delta R(a, b) \cdot S(b, c))
\end{aligned}
$$

Delta Queries: Example

Consider the following FAQ query and an update δR to the factor R

$$
Q(a, c)=\sum_{b} R(a, b) \cdot S(b, c)
$$

We derive the updated FAQ $Q_{\text {new }}$

$$
\begin{aligned}
Q_{\mathrm{new}}(a, c) & =\sum_{b}(R(a, b)+\delta R(a, b)) \cdot S(b, c) \\
& =\sum_{b}(R(a, b) \cdot S(b, c))+(\delta R(a, b) \cdot S(b, c)) \\
& =\underbrace{\sum_{b}(R(a, b) \cdot S(b, c))}_{Q(a, c)}+\underbrace{\sum_{b}(\delta R(a, b) \cdot S(b, c))}_{\delta Q(a, c)}
\end{aligned}
$$

δQ defines the change in the query result after applying δR to the database

Delta Queries: Example

Consider the following FAQ query and an update δR to the factor R

$$
Q(a, c)=\sum_{b} R(a, b) \cdot S(b, c)
$$

We derive the updated FAQ $Q_{\text {new }}$

$$
\begin{aligned}
Q_{\text {new }}(a, c) & =\sum_{b}(R(a, b)+\delta R(a, b)) \cdot S(b, c) \\
& =\sum_{b}^{\sum_{b}(R(a, b) \cdot S(b, c))}+(\delta R(a, b) \cdot S(b, c)) \\
& =\underbrace{\sum_{b}(R(a, b) \cdot S(b, c))}_{Q(a, c)}+\underbrace{\sum_{b}(\delta R(a, b) \cdot S(b, c))}_{\delta Q(a, c)}
\end{aligned}
$$

δQ defines the change in the query result after applying δR to the database

Next, we give rules to derive delta queries for general FAQs

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\varphi_{\text {new }}(\mathbf{x})=\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)
$$

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\mathrm{new}}(\mathbf{x}) & =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
& =\underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\varphi(\mathbf{x})} \oplus
\end{aligned}
$$

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\mathrm{new}}(\mathbf{x})= & \left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
= & \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\varphi(\mathbf{x})} \oplus \\
& \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x})= & \left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
= & \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus}_{\varphi(\mathbf{x})} \\
& \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

If ψ only occurs in φ_{1}, then $\delta \varphi_{2}$ becomes $\mathbf{0}$ and the formula gets simpler:

$$
\varphi_{\text {new }}(\mathbf{x})=\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)
$$

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x})= & \left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
= & \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus}_{\varphi(\mathbf{x})} \\
& \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

If ψ only occurs in φ_{1}, then $\delta \varphi_{2}$ becomes $\mathbf{0}$ and the formula gets simpler:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x}) & =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
& =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \mathbf{0}\right)
\end{aligned}
$$

Delta Queries: Product Case

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x})= & \left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
= & \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\varphi(\mathbf{x})} \oplus \\
& \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

If ψ only occurs in φ_{1}, then $\delta \varphi_{2}$ becomes $\mathbf{0}$ and the formula gets simpler:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x}) & =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
& =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \mathbf{0}\right) \\
& =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Consider an FAQ query $\varphi=\varphi_{1} \otimes \varphi_{2}$ and an update $\delta \psi$ to a factor ψ in φ
We derive the updated FAQ $\varphi_{\text {new }}$:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x})= & \left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
= & \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus}_{\varphi(\mathbf{x})} \oplus \\
& \underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right)\right) \oplus\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

If ψ only occurs in φ_{1}, then $\delta \varphi_{2}$ becomes $\mathbf{0}$ and the formula gets simpler:

$$
\begin{aligned}
\varphi_{\text {new }}(\mathbf{x}) & =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{2}\left(\mathbf{x}_{2}\right)\right) \\
& =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes\left(\varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \mathbf{0}\right) \\
& =\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right)\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right) \\
& =\underbrace{\left(\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right)}_{\varphi(\mathbf{x})} \oplus \underbrace{\left(\left(\delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)\right)\right.}_{\delta \varphi(\mathbf{x})}
\end{aligned}
$$

Delta Queries: Rules

The following rules rules follow from the associativity, commutativity, and distributivity of ring operations

Query $\varphi(\mathbf{x})$	Delta query $\delta \varphi(\mathbf{x})$
$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)$	$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)$

Delta Queries: Rules

The following rules rules follow from the associativity, commutativity, and distributivity of ring operations

Query $\varphi(\mathbf{x})$	Delta query $\delta \varphi(\mathbf{x})$
$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)$	$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)$
$\bigoplus_{x} \varphi_{1}\left(\mathbf{x}_{1}\right)$	$\bigoplus_{x} \delta \varphi_{1}\left(\mathbf{x}_{1}\right)$

Delta Queries: Rules

The following rules rules follow from the associativity, commutativity, and distributivity of ring operations

$$
\begin{array}{ll}
\text { Query } \varphi(\mathbf{x}) & \text { Delta query } \delta \varphi(\mathbf{x}) \\
\hline \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right) & \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right) \\
\oplus_{x} \varphi_{1}\left(\mathbf{x}_{1}\right) & \bigoplus_{x} \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \\
\varphi_{1}(\mathbf{x}) \oplus \varphi_{2}(\mathbf{x}) & \delta \varphi_{1}(\mathbf{x}) \oplus \delta \varphi_{2}(\mathbf{x})
\end{array}
$$

Delta Queries: Rules

The following rules rules follow from the associativity, commutativity, and distributivity of ring operations

Query $\varphi(\mathbf{x})$	Delta query $\delta \varphi(\mathbf{x})$
$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{2}\right)$	$\varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \varphi_{2}\left(\mathbf{x}_{1}\right) \oplus \delta \varphi_{1}\left(\mathbf{x}_{1}\right) \otimes \delta \varphi_{2}\left(\mathbf{x}_{2}\right)$
$\bigoplus_{x} \varphi_{1}\left(\mathbf{x}_{1}\right)$	$\bigoplus_{x} \delta \varphi_{1}\left(\mathbf{x}_{1}\right)$
$\varphi_{1}(\mathbf{x}) \oplus \varphi_{2}(\mathbf{x})$	$\delta \varphi_{1}(\mathbf{x}) \oplus \delta \varphi_{2}(\mathbf{x})$
$\psi^{\prime}(\mathbf{x})$	$\delta \psi(\mathbf{x})$ when $\psi=\psi^{\prime}$ and $\mathbf{0}$ otherwise

View Trees for

Dynamic Query Evaluation

Example: Simple Sum Aggregate 1/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

How can we compute Q?

Example: Simple Sum Aggregate 2/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Naïve Approach: Compute the join and then take the sum

$$
\begin{gathered}
Q()=\sum_{a, b, c, d, e} V_{R S T}(a, b, c, d, e) \\
V_{R S T}(a, b, c, d, e)=R(a, b) \cdot V_{S T}(a, c, d, e) \\
R(a, b) \quad V_{S T}(a, c, d, e)=T(c, d) \cdot S(a, c, e)
\end{gathered}
$$

Example: Simple Sum Aggregate 2/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Naïve Approach: Compute the join and then take the sum

$$
\begin{gathered}
Q()=\sum_{a, \mathrm{~b}, \mathrm{c}, \mathrm{c}, \mathrm{e}} V_{\mathrm{RST}}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}) \\
V_{\mathrm{RST}}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e})=\mathrm{R}(\mathrm{a}, \mathrm{~b}) \cdot \mathrm{V}_{\mathrm{ST}}(\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}) \\
\mathrm{R}(\mathrm{a}, \mathrm{~b})
\end{gathered}
$$

Let all relations be of size N

Computation time: $\mathcal{O}\left(N^{3}\right)$

Example: Simple Sum Aggregate 2/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Naïve Approach: Compute the join and then take the sum

$$
\begin{gathered}
Q()=\sum_{a, b, c, d, e} V_{R S T}(a, b, c, d, e) \\
V_{R S T}(a, b, c, d, e)=R(a, b) \cdot V_{S T}(a, c, d, e) \\
V_{T(a, b)}(a, c, d, e)=T(c, d) \cdot S(a, c, e)
\end{gathered}
$$

Let all relations be of size N

Computation time: $\mathcal{O}\left(N^{3}\right)$
Can we do better?

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on
Use distributivity of product over sum

$$
V_{R}(\mathrm{a})=\sum_{b} R(a, b)=\sum_{a} V_{R}(a) \cdot V_{S T}(a)
$$

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on

Use distributivity of product over sum Join on \& eliminate one variable at a time

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on

Use distributivity of product over sum Join on \& eliminate one variable at a time

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on
Use distributivity of product over sum Join on \& eliminate one variable at a time

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on
Use distributivity of product over sum Join on \& eliminate one variable at a time

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on
Use distributivity of product over sum Join on \& eliminate one variable at a time

Example: Simple Sum Aggregate 3/3

$$
Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)
$$

Push sum past product to marginalize variables early on
Use distributivity of product over sum Join on \& eliminate one variable at a time Computation time: $\mathcal{O}(N)$

Query Evaluation Plans using Variable Orders

Variable order for $Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)$

Query Evaluation Plans using Variable Orders

Variable order for $Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)$

Query Evaluation Plans using Variable Orders

Variable order for $Q()=\sum_{a, b, c, d, e} R(a, b) \cdot S(a, c, e) \cdot T(c, d)$

View Trees

Create a view at each var X with schema depends(X)

View Trees

Create a view at each var X with schema depends(X)

View at variable X :
joins its child views
aggregates away X (if X is not a free var)

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta view tree

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta view tree

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta view tree

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Delta Propagation

Consider our running example
Maintain the query result under updates to T

Updates to Multiple Relations

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Delta view tree for \mathbf{R}
$\delta V^{@ A}(a)$

Delta view tree for T

Updates to Multiple Relations

Maintain the query result for updates to R and T

- Two delta propagation paths
- Both paths need to maintain auxiliary views

Delta view tree for \mathbf{R}
$\delta V^{@ A}(a)$

Delta view tree for T

Landscape of

Dynamic Query Evaluation

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Landscape of Dynamic Query Evaluation (Partial)

Preprocessing time/Update time/Enumeration delay

static width $w=$ fhtw
dynamic width $\delta=\underset{\text { delta queries }}{\max }$ static width [PODS'20]

Hierarchical Queries

Hierarchical Queries

A query is hierarchical if for any two variables X, Y :

$$
\partial(X) \subseteq \partial(Y) \text { or } \partial(X) \supseteq \partial(Y) \text { or } \partial(X) \cap \partial(Y)=\emptyset
$$

$(\partial(X)=$ the hyperedges containing $X)$
hierarchical

$$
\begin{gathered}
Q(\mathcal{F})=\sum_{\mathcal{V} \backslash \mathcal{F}} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
\mathcal{V}=\{a, b, c, d, e, f, g\}, \mathcal{F} \subseteq \mathcal{V}
\end{gathered}
$$

Hierarchical Queries

A query is hierarchical if for any two variables X, Y :

$$
\partial(X) \subseteq \partial(Y) \text { or } \partial(X) \supseteq \partial(Y) \text { or } \partial(X) \cap \partial(Y)=\emptyset
$$

$(\partial(X)=$ the hyperedges containing $X)$

$$
\begin{aligned}
& \text { hierarchical } \\
& Q(\mathcal{F})=\sum_{\mathcal{V} \backslash \mathcal{F}} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \mathcal{V}=\{a, b, c, d, e, f, g\}, \mathcal{F} \subseteq \mathcal{V} \\
& \text { not hierarchical } \\
& Q(\mathcal{F})=\sum_{\mathcal{V} \backslash \mathcal{F}} R(a) \cdot S(a, b) \cdot T(b) \\
& \mathcal{V}=\{a, b\}, \mathcal{F} \subseteq \mathcal{V}
\end{aligned}
$$

δ_{0}-Hierarchical Queries

A hierarchical query is δ_{0}-hierarchical if all free variables dominate the bound variables

$$
Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g)
$$

δ_{0}-Hierarchical Queries

A hierarchical query is δ_{0}-hierarchical if all free variables dominate the bound variables

$$
Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g)
$$

$$
\begin{gathered}
\text { hierarchical but not } \\
\delta_{0} \text {-hierarchical } \\
Q(a)=\sum_{b} S(a, b) \cdot T(b)
\end{gathered}
$$

δ_{1}-Hierarchical Queries

- For any bound variable X and any hyperedge $S_{1} \in \partial(X)$, there is at most one other hyperedge S_{2} so that all free variables dominated by X are in $S_{1} \cup S_{2}$.
- The query is not δ_{0}-hierarchical

$$
\begin{gathered}
\delta_{1} \text {-hierarchical } \\
Q(a, d, e, g)=\sum_{b, c, f} R(a, b, d) \cdot S(a, b, e) . \\
T(a, c, f) \cdot U(a, c, g)
\end{gathered}
$$

δ_{1}-Hierarchical Queries

- For any bound variable X and any hyperedge $S_{1} \in \partial(X)$, there is at most one other hyperedge S_{2} so that all free variables dominated by X are in $S_{1} \cup S_{2}$.
- The query is not δ_{0}-hierarchical

$$
\begin{gathered}
\delta_{1} \text {-hierarchical } \\
Q(a, d, e, g)=\sum_{b, c, f} R(a, b, d) \cdot S(a, b, e) . \\
T(a, c, f) \cdot U(a, c, g)
\end{gathered}
$$

hierarchical but not δ_{1}-hierarchical

$$
\begin{array}{r}
Q(d, g)=\sum_{a, b, c, e, f} R(a, b, d) \cdot S(a, b, e) . \\
T(a, c, f) \cdot U(a, c, g)
\end{array}
$$

Trade-Offs for Hierarchical Queries [PODS'20]

__ preprocessing time $\mathcal{O}\left(N^{1+(w-1) \varepsilon}\right)$
$\ldots \ldots$ update time $\mathcal{O}\left(N^{\delta \varepsilon}\right)$

- - - enumeration delay $\mathcal{O}\left(N^{1-\varepsilon}\right)$

Trade-Offs for Hierarchical Queries [PODS’20]

__ preprocessing time $\mathcal{O}\left(N^{1+(w-1) \varepsilon}\right)$
$\cdots \cdots$ update time $\mathcal{O}\left(N^{\delta \varepsilon}\right)$
--- enumeration delay $\mathcal{O}\left(N^{1-\varepsilon}\right)$

Trade-Offs for Hierarchical Queries [PODS’20]

Sublinear Update Time and Delay [PODS'20]

Hierarchical queries admit sublinear update time and enumeration delay

Dynamic Evaluation of δ_{0}-Hierarchical Queries

Dynamic Evaluation of δ_{0}-Hierarchical Queries [PODS'17]

Any δ_{0}-hierarchical query can be maintained under single-tuple updates with $\begin{array}{ccc}\text { preprocessing time } & \text { update time } & \text { enumeration delay } \\ \mathcal{O}(N) & \mathcal{O}(1) & \mathcal{O}(1)\end{array}$

Dichotomy by δ_{0}-Hierarchical Queries $1 / 2$

Using the Online Matrix-Vector Multiplication (OMv) Conjecture we can show:
The δ_{0}-hierarchical queries are precisely the queries that admit constant update time and constant enumeration delay

OMv Problem

We are given an $n \times n$ Boolean matrix \mathbf{M} and receive n column vectors of size n, denoted by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, one by one; after seeing each vector \mathbf{v}_{i}, we output the product $\mathbf{M} \mathbf{v}_{i}$ before we see the next vector \mathbf{v}_{i+1}.

Dichotomy by δ_{0}-Hierarchical Queries 1/2

Using the Online Matrix-Vector Multiplication (OMv) Conjecture we can show:
The δ_{0}-hierarchical queries are precisely the queries that admit constant update time and constant enumeration delay

OMv Problem

We are given an $n \times n$ Boolean matrix \mathbf{M} and receive n column vectors of size n, denoted by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, one by one; after seeing each vector \mathbf{v}_{i}, we output the product $\mathbf{M v}_{i}$ before we see the next vector \mathbf{v}_{i+1}.

OMv Conjecture [STOC'15]
For any $\gamma>0$, there is no algorithm that solves OMv in time $\mathcal{O}\left(n^{3-\gamma}\right)$.

Dichotomy by δ_{0}-Hierarchical Queries $\mathbf{2 / 2}$

- For any query that is not δ_{0}-hierarchical, there is no algorithm that maintains the query under single-tuple updates with preprocessing time update time enumeration delay arbitrary $\quad \mathcal{O}\left(N^{0.5-\gamma}\right) \quad \mathcal{O}\left(N^{0.5-\gamma}\right)$
for any $\gamma>0$, unless the OMv Conjecture fails

Dichotomy by δ_{0}-Hierarchical Queries 2/2

- For any query that is not δ_{0}-hierarchical, there is no algorithm that maintains the query under single-tuple updates with
preprocessing time update time enumeration delay
arbitrary $\quad \mathcal{O}\left(N^{0.5-\gamma}\right) \quad \mathcal{O}\left(N^{0.5-\gamma}\right)$
for any $\gamma>0$, unless the OMv Conjecture fails
- Any δ_{0}-hierarchical query can be maintained under single-tuple updates with preprocessing time update time enumeration delay
$\mathcal{O}(N) \quad \mathcal{O}(1)$
$\mathcal{O}(1)$

Example: Dynamic Evaluation of a Simple δ_{0}-Hierarchical Query

Consider the following δ_{0}-hierarchical query

$$
Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g)
$$

Example: Dynamic Evaluation of a Simple δ_{0}-Hierarchical Query

Consider the following δ_{0}-hierarchical query

$$
Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g)
$$

We construct in linear time a view tree that

- allows for constant-delay enumeration of the result of Q, and
- can be maintained in constant time under updates to all input factors.

Example: Dynamic Evaluation of a Simple δ_{0}-Hierarchical Query

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& V_{R S T U}(a)=V_{R S}^{\prime}(a) \cdot V_{T U}^{\prime}(a) \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& V_{T U}^{\prime}(a)=\sum_{c} V_{T U}(a, c) \\
& \text { I } \\
& V_{R S}(a, b)=V_{R}(a, b) \cdot S(a, b) \\
& V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& V_{R}(a, b)=\sum_{d} R(a, b, d) \quad S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& R(a, b, d) \\
& \begin{array}{c}
\text { । } \\
T(a, c, f)
\end{array} \\
& \text { I } \\
& U(a, c, g)
\end{aligned}
$$

Example: Preprocessing

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& V_{R S T U}(a)=V_{R S}^{\prime}(a) \cdot V_{T U}^{\prime}(a) \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& \text { I } \\
& V_{R S}(a, b)=V_{R}(a, b) \cdot S(a, b)
\end{aligned}
$$

$$
\begin{aligned}
& R(a, b, d) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

- Each view is the result of marginalizing a variable in a child view or joining two child views over the same schema
\Rightarrow Each view can be computed in time $\mathcal{O}(N)$

Example: Enumeration

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \mathbf{V}_{\mathrm{RSTU}}(\mathbf{a})=V_{R S}^{\prime}(a) \cdot V_{T U}^{\prime}(a) \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& \text { I } \\
& \mathrm{V}_{\mathrm{RS}}(\mathbf{a}, \mathbf{b})=V_{R}(a, b) \cdot S(a, b) \\
& V_{R}(a, b)=\underset{d}{\sum_{d}} R(a, b, d) \quad S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& R(a, b, d) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

The result of Q can be enumerated with constant delay:

- Iterate over the A-values in $V_{R S T U}$;
- For each such A-value a, iterate over the B-values paired with a in $V_{R S}$;
- For each such B-value b, iterate over the C-values c paired with b in $V_{T U}$;
- Output (a, b, c).

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \text { I } \\
& V_{R S}(a, b)=V_{R}(a, b) \cdot S(a, b) \\
& V_{R}(a, b)=\sum_{d} R(a, b, d) \quad S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& R(a, b, d) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& V_{R S T U}(a)=V_{R S}^{\prime}(a) \cdot V_{T U}^{\prime}(a) \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& \text { I } \\
& V_{R S}(a, b)=V_{R}(a, b) \cdot S(a, b) \\
& V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& V_{R}(a, b)=\sum_{d} R(a, b, d) \quad S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& \delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \text { I } \\
& V_{R S}(a, b)=V_{R}(a, b) \cdot S(a, b) \\
& \delta V_{R}\left(a^{\prime}, b^{\prime}\right)=\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) S(a, b) \\
& \begin{array}{c}
{ }^{\prime} \\
\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right)
\end{array} \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& \text { I } \\
& V_{T U}^{\prime}(a)=\sum_{c} V_{T U}(a, c) \\
& V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& V_{R S T U}(a)=V_{R S}^{\prime}(a) \cdot V_{T U}^{\prime}(a) \\
& V_{R S}^{\prime}(a)=\sum_{b} V_{R S}(a, b) \\
& \text { I } \\
& V_{T U}^{\prime}(a)=\sum_{c} V_{T U}(a, c) \\
& \delta V_{R S}\left(a^{\prime}, b^{\prime}\right)=\delta V_{R}\left(a^{\prime}, b^{\prime}\right) \cdot S\left(a^{\prime}, b^{\prime}\right) \\
& V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& \delta V_{R}\left(a^{\prime}, b^{\prime}\right)=\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& \begin{array}{c}
{ }^{\prime} \\
\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right)
\end{array} \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \delta V_{R S}\left(a^{\prime}, b^{\prime}\right)=\delta V_{R}\left(a^{\prime}, b^{\prime}\right) \cdot S\left(a^{\prime}, b^{\prime}\right) \\
& V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& \delta V_{R}\left(a^{\prime}, b^{\prime}\right)=\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& \delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) \\
& T(a, c, f) \\
& U(a, c, g)
\end{aligned}
$$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \delta V_{R S}\left(a^{\prime}, b^{\prime}\right)=\delta V_{R}\left(a^{\prime}, b^{\prime}\right) \cdot S\left(a^{\prime}, b^{\prime}\right) \quad V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& \delta V_{R}\left(a^{\prime}, b^{\prime}\right)=\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& \begin{array}{ccc}
\text { ' } & \text { ' } & \text { ' } \\
\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) & T(a, c, f) & U(a, c, g)
\end{array}
\end{aligned}
$$

- Updates to R : Computation of each delta view requires at most one lookup \Rightarrow Update time: $\mathcal{O}(1)$

Example: Updates

$$
\begin{aligned}
& Q(a, b, c)=\sum_{d, e, f, g} R(a, b, d) \cdot S(a, b) \cdot T(a, c, f) \cdot U(a, c, g) \\
& \text { View tree } \\
& \delta V_{R S}\left(a^{\prime}, b^{\prime}\right)=\delta V_{R}\left(a^{\prime}, b^{\prime}\right) \cdot S\left(a^{\prime}, b^{\prime}\right) \quad V_{T U}(a, c)=V_{T}(a, c) \cdot V_{U}(a, c) \\
& \delta V_{R}\left(a^{\prime}, b^{\prime}\right)=\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) S(a, b) \quad V_{T}(a, c)=\sum_{f} T(a, c, f) \quad V_{U}(a, c)=\sum_{g} U(a, c, g) \\
& \begin{array}{ccc}
\text { ' } & \text { ' } & \text { ' } \\
\delta R\left(a^{\prime}, b^{\prime}, d^{\prime}\right) & T(a, c, f) & U(a, c, g)
\end{array}
\end{aligned}
$$

- Updates to R : Computation of each delta view requires at most one lookup \Rightarrow Update time: $\mathcal{O}(1)$
- Updates to the other factors: analogous

Dynamic Evaluation of

 δ_{1}-Hierarchical Queries
Dynamic Evaluation of δ_{1}-Hierarchical Queries [PODS'20]

Any δ_{1}-hierarchical query can be maintained under single-tuple updates with preprocessing time update time enumeration delay

$$
\mathcal{O}\left(N^{1+\varepsilon}\right) \quad \mathcal{O}\left(N^{\varepsilon}\right) \quad \mathcal{O}\left(N^{1-\varepsilon}\right)
$$

Optimality for δ_{1}-Hierarchical Queries

- For any δ_{1}-hierarchical query, there is no algorithm that maintains the query under single-tuple updates with
preprocessing time update time enumeration delay
arbitrary $\quad \mathcal{O}\left(N^{0.5-\gamma}\right) \quad \mathcal{O}\left(N^{0.5-\gamma}\right)$
for any $\gamma>0$, unless the OMv Conjecture fails

Optimality for δ_{1}-Hierarchical Queries

- For any δ_{1}-hierarchical query, there is no algorithm that maintains the query under single-tuple updates with preprocessing time
update time
$\mathcal{O}\left(N^{0.5-\gamma}\right)$
enumeration delay
arbitrary $\mathcal{O}\left(N^{0.5-\gamma}\right)$
for any $\gamma>0$, unless the OMv Conjecture fails
- Any δ_{1}-hierarchical query can be maintained under single-tuple updates with preprocessing time update time enumeration delay

$$
\mathcal{O}\left(N^{1+\varepsilon}\right)
$$

$$
\mathcal{O}\left(N^{\varepsilon}\right)
$$

$$
\mathcal{O}\left(N^{1-\varepsilon}\right)
$$

Optimality for δ_{1}-Hierarchical Queries

- For any δ_{1}-hierarchical query, there is no algorithm that maintains the query under single-tuple updates with

preprocessing time	update time	enumeration delay
arbitrary	$\mathcal{O}\left(N^{0.5-\gamma}\right)$	$\mathcal{O}\left(N^{0.5-\gamma}\right)$

for any $\gamma>0$, unless the OMv Conjecture fails

- Any δ_{1}-hierarchical query can be maintained under single-tuple updates with preprocessing time update time enumeration delay
$\mathcal{O}\left(N^{1+\varepsilon}\right) \quad \mathcal{O}\left(N^{\varepsilon}\right) \quad \mathcal{O}\left(N^{1-\varepsilon}\right)$
\Longrightarrow For $\varepsilon=0.5$, this is weakly Pareto optimal, unless OMv Conjecture fails

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

\square

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Lower bound
For this query, there is no algorithm that admits
preprocessing time update time enumeration delay arbitrary $\quad \mathcal{O}\left(N^{0.5-\gamma}\right) \quad \mathcal{O}\left(N^{0.5-\gamma}\right)$
for any $\gamma>0$, unless the OMv Conjecture fails

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Known approach: Eager update, quick enumeration

- Preprocessing: Materialize the result.
- Upon update: Maintain the materialized result.
- Enumeration: Enumerate from materialized result.

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Known approach: Lazy update, heavy enumeration

- Preprocessing: Eliminate dangling tuples
- Upon update: Update only input factors
- Enumeration: Eliminate dangling tuples and enumerate from R

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Question
Is there an algorithm that admits
sub-linear update time and sub-linear enumeration delay?

Example: Dynamic Evaluation of a Simple δ_{1}-Hierarchical Query

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

(*): Weak Pareto optimality by OMv Conjecture

The query Q can be maintained with
preprocessing time
$\mathcal{O}(N)$
update time enumeration delay
$\mathcal{O}\left(N^{\varepsilon}\right)$

Factor Partitioning

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Factor Partitioning

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Partition R based on the B -values into a light part R_{L} and a heavy part R_{H} :
$R_{L}(a, b)=\left\{\begin{array}{ll}R(a, b) & \text { if degree }(b)<N^{\varepsilon} \\ 0 & \text { otherwise }\end{array} \quad R_{H}(a, b)= \begin{cases}R(a, b) & \text { if degree }(b) \geq N^{\varepsilon} \\ 0 & \text { otherwise }\end{cases}\right.$ degree (b) : number A-values a^{\prime} such that $R\left(a^{\prime}, b\right) \neq 0$

Factor Partitioning

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Partition R based on the B -values into a light part R_{L} and a heavy part R_{H} :
$R_{L}(a, b)=\left\{\begin{array}{ll}R(a, b) & \text { if degree }(b)<N^{\varepsilon} \\ 0 & \text { otherwise }\end{array} \quad R_{H}(a, b)= \begin{cases}R(a, b) & \text { if degree }(b) \geq N^{\varepsilon} \\ 0 & \text { otherwise }\end{cases}\right.$ degree (b) : number A-values a^{\prime} such that $R\left(a^{\prime}, b\right) \neq 0$

$$
\begin{aligned}
& Q(a)= Q_{L}(a)+Q_{H}(a) \\
& \text { where } \\
& Q_{L}(a)= \sum_{b} R_{L}(a, b) \cdot S(b) \\
& Q_{H}(a)= \sum_{b} R_{H}(a, b) \cdot S(b)
\end{aligned}
$$

Light Case

Light Case

$$
\begin{gathered}
Q_{L}(a)=\sum_{b} R_{L}(a, b) \cdot S(b) \\
\text { Materialize the result }
\end{gathered}
$$

Light Case

$$
Q_{L}(a)=\sum_{b} R_{L}(a, b) \cdot S(b)
$$

Materialize the result

$$
Q_{L}(a)=\sum_{b} R_{L}(a, b) \cdot S(b)
$$

Preprocessing in the Light Case

- Q_{L} can be computed in time $\mathcal{O}(N)$

Enumeration in the Light Case

- Q_{L} allows constant-time lookups and constant-delay enumeration

Updates in the Light Case

- Updates to $R_{L}: \mathcal{O}(1)$

Updates in the Light Case

- Updates to $R_{L}: \mathcal{O}(1)$

Updates in the Light Case

- Updates to $R_{L}: \mathcal{O}(1)$

Updates in the Light Case

- Updates to $R_{L}: \mathcal{O}(1)$

Updates in the Light Case

- Updates to $R_{L}: \mathcal{O}(1)$
- Updates to $S: \mathcal{O}\left(N^{\varepsilon}\right)$

Heavy Case

Heavy Case

$$
Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)
$$

Materialize the projection of the join result onto B

Heavy Case

$$
Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)
$$

Materialize the projection of the join result onto B

Preprocessing in the Heavy Case

$$
Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)
$$

- $V_{R S}$ can be computed in time $\mathcal{O}\left(N^{1-\varepsilon}\right)$, contains at most $N^{1-\varepsilon} B$-values

Enumeration in the Heavy Case

- $V_{R S}$ contains at most $N^{1-\varepsilon} B$-values
- For each B-value b in $V_{R S}$, the A-values in R_{H} paired with b admit constant enumeration delay

Enumeration in the Heavy Case

- $V_{R S}$ contains at most $N^{1-\varepsilon} B$-values
- For each B-value b in $V_{R S}$, the A-values in R_{H} paired with b admit constant enumeration delay
Next: How can the distinct A-values in Q_{H} be enumerated with $\mathcal{O}\left(N^{1-\varepsilon}\right)$ delay

Enumeration of Distinct A-Values

- Properties of the data structure for $Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)$:
- $V_{R S}(b)=V_{R}(b) \cdot(b)$ contains at most $N^{1-\varepsilon} B$-values
- For each B-value b in $V_{R S}$, the A-values in R_{H} paired with b admit constant enumeration delay

Enumeration of Distinct A-Values

- Properties of the data structure for $Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)$:
- $V_{R S}(b)=V_{R}(b) \cdot(b)$ contains at most $N^{1-\varepsilon} B$-values
- For each B-value b in $V_{R S}$, the A-values in R_{H} paired with b admit constant enumeration delay
- Attention: For two distinct b_{1} and b_{2}, the A-values in R_{H} paired with b_{1} and those paired with b_{2} might not be disjoint
\Longrightarrow Enumerating first the A-values paired with b_{1} and then those paired with b_{2} (or vice-versa) can lead to duplicates in the output

Enumeration of Distinct A-Values

- Properties of the data structure for $Q_{H}(a)=\sum_{b} R_{H}(a, b) \cdot S(b)$:
- $V_{R S}(b)=V_{R}(b) \cdot(b)$ contains at most $N^{1-\varepsilon} B$-values
- For each B-value b in $V_{R S}$, the A-values in R_{H} paired with b admit constant enumeration delay
- Attention: For two distinct b_{1} and b_{2}, the A-values in R_{H} paired with b_{1} and those paired with b_{2} might not be disjoint
\Longrightarrow Enumerating first the A-values paired with b_{1} and then those paired with b_{2} (or vice-versa) can lead to duplicates in the output
- Using the union algorithm [CSL'11], we can enumerate the distinct A-values with $\mathcal{O}\left(N^{1-\varepsilon}\right)$ delay.

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

$S_{1} \cup S_{2}$

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

a_{3} is not included in S_{2}, so output from S_{1} and move first pointer

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

a_{4} is included in S_{2}, so output from S_{2} and move both pointers

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

a_{1} is not included in S_{2}, so output from S_{1} and move first pointer

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

a_{2} is included in S_{2}, so output from S_{2} and move both pointers

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

S_{1} is exhausted, so enumerate from S_{2}

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

S_{1} is exhausted, so enumerate from S_{2}

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

Union Algorithm

Enumeration of the Union of Two Sets

Assume, both sets allow lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the two sets can be enumerated with $\mathcal{O}(\ell+d)$ delay.

Generalization: Enumeration of the Union of $n>2$ Sets
Assume, each set allows lookup time ℓ and enumeration delay d.
\Rightarrow The distinct elements in the union of the sets can be enumerated with
$\mathcal{O}(n(\ell+d))$ delay.

Updates in the Heavy Case

- Updates to $R_{H}: \mathcal{O}(1)$

Updates in the Heavy Case

- Updates to $R_{H}: \mathcal{O}(1)$

Updates in the Heavy Case

- Updates to $R_{H}: \mathcal{O}(1)$

Updates in the Heavy Case

- Updates to $R_{H}: \mathcal{O}(1)$

Updates in the Heavy Case

- Updates to $R_{H}: \mathcal{O}(1)$
- Updates to $S: \mathcal{O}(1)$

Example: Summing Up

Summing Up

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Preprocessing Time

$$
\begin{array}{ccc}
\text { light case } & \text { heavy case } & \text { overall } \\
\mathcal{O}(N) & \mathcal{O}\left(N^{1-\varepsilon}\right) & \mathcal{O}(N)
\end{array}
$$

Summing Up

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Preprocessing Time

$$
\begin{array}{ccc}
\text { light case } & \text { heavy case } & \text { overall } \\
\mathcal{O}(N) & \mathcal{O}\left(N^{1-\varepsilon}\right) & \mathcal{O}(N)
\end{array}
$$

Enumeration Delay
light case heavy case overall

$$
\mathcal{O}(1) \quad \mathcal{O}\left(N^{1-\varepsilon}\right) \quad \mathcal{O}\left(N^{1-\varepsilon}\right)
$$

Summing Up

$$
Q(a)=\sum_{b} R(a, b) \cdot S(b)
$$

Preprocessing Time

$$
\begin{array}{ccc}
\text { light case } & \text { heavy case } & \text { overall } \\
\mathcal{O}(N) & \mathcal{O}\left(N^{1-\varepsilon}\right) & \mathcal{O}(N)
\end{array}
$$

Enumeration Delay
light case heavy case overall

$$
\mathcal{O}(1) \quad \mathcal{O}\left(N^{1-\varepsilon}\right) \quad \mathcal{O}\left(N^{1-\varepsilon}\right)
$$

Update Time

$$
\begin{array}{ccc}
\text { light case } & \text { heavy case } & \text { overall } \\
\mathcal{O}\left(N^{\varepsilon}\right) & \mathcal{O}(1) & \mathcal{O}\left(N^{\varepsilon}\right)
\end{array}
$$

Rebalancing Partitions

Rebalancing Partitions

Updates can change the frequencies of values in the factor parts!

Minor Rebalancing

- Transfer $\mathcal{O}\left(N^{\varepsilon}\right)$ tuples from one to the other part of the same factor!
- Time complexity: $\mathcal{O}\left(N^{2 \varepsilon}\right)$

Rebalancing Partitions

Updates can change the heavy-light threshold!

Major Rebalancing

- Recompute partitions and views from scratch!
- Time complexity: $\mathcal{O}(N)$

Amortization of Rebalancing Times

- Major rebalancing can require linear and minor rebalancing super-linear time

Amortization of Rebalancing Times

- Major rebalancing can require linear and minor rebalancing super-linear time
- The rebalancing times amortize over sequences of updates.
- Amortized minor rebalancing time: $\mathcal{O}\left(N^{\varepsilon}\right)$
- Amortized major rebalancing time: $\mathcal{O}(1)$
- Overall amortized rebalancing time: $\mathcal{O}\left(N^{\varepsilon}\right)$

$$
\begin{gathered}
\mathcal{O}\left(N^{2 \varepsilon}\right) \\
\mathcal{O}\left(N^{\varepsilon}\right) \\
\mathcal{O}\left(N^{2 \varepsilon}\right) \\
\\
\mathcal{O}(N)
\end{gathered}
$$

Amortization of Rebalancing Times

- Major rebalancing can require linear and minor rebalancing super-linear time
- The rebalancing times amortize over sequences of updates.
- Amortized minor rebalancing time: $\mathcal{O}\left(N^{\varepsilon}\right)$
- Amortized major rebalancing time: $\mathcal{O}(1)$
- Overall amortized rebalancing time: $\mathcal{O}\left(N^{\varepsilon}\right)$
- Rebalancing time can be de-amortized using standard techniques

$$
\begin{gathered}
\mathcal{O}\left(N^{2 \varepsilon}\right) \\
\mathcal{O}\left(N^{\varepsilon}\right) \\
\mathcal{O}\left(N^{2 \varepsilon}\right) \\
\mathcal{O}(N)
\end{gathered}
$$

$$
\text { ... update major } \underbrace{\text { update } \ldots \text { update }}_{\Omega(N)} \text { major update ... }
$$

