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External vs. internal software product quality"

❍  External quality is the quality of a (software) product as 
perceived by its stakeholders"

❍  Internal quality is the quality of the software, particularly of 
the source code that eventually delivers external quality"

❍  Note that the standard ISO/IEC 25010:2011 uses a 
different notion of external and internal quality (see below)"
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About internal software product quality"

❍  Measuring"
●  Measuring internal quality characteristics"
●  Predicting external quality from internal quality data"

❍  Mining"
●  Mining internal quality characteristics"
●  Predicting quality-relevant phenomena from mined data"
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Measuring internal software product quality"

❍  Classic measurment of static source code properties"
●  Size"
●  Complexity"
●  Cohesion and couping"
●  Depth of inheritance trees"
●  Method fan-in/fan-out"
●  ..."

❍  In combination with process measurements:"
●  Error and defect rates"
●  Defect density per module"
●  ..."
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Measurement-based analysis"

❍  Simple measurement"
●  For example, measure the size of of methods (in terms of 

LoC) and identify outliers (very short and too long methods)"

❍  Static/Dynamic program analysis"
Can, for example, identify"
●  non-initialized variables"
●  dead code"
●  data flow anomalies"

❍  Architectural analysis"
●  For example, identify cycles in in the method call hierarchy"
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Predicting external quality"

❍  Using internal quality measurements for predicting external 
quality characteristics, for example"
●  Predicting system reliability by measuring error occurrence 

rates during statistical (random) testing or by measuring defect 
density"

●  Predicting portability by measuring source code characteristics 
such as percentage of platform-dependent code"

❍  Proving internal quality properties, in particular safety and 
liveness properties for predicting safety and security 
characteristics of a system"

❍  Inspecting internal quality properties for predicting external 
quality characteristics such as maintainability"
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Mining internal product quality"

Basic idea:"
From big repositories of data about software, ..."

using suitable procedures, ..."
elicit information, which..."

●  tells us about the current internal quality of the software"
●  allows predictions about quality relevant phenomena"
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Data repositories"

❍  Version history of software artifacts (particularly source code)"
❍  Change history"

❍  Problem report database"
❍  Test suites and test summaries"
❍  Review reports"
❍  Process measurement databases (effort, duration, 

productivity, error cost,...)"

❍  Developers’ e-mail and chat threads"
❍  ..."
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What and how to mine"

❍  Identify certain patterns and anomalies"
●  For example, an analysis of test summaries reveals a pattern 

of erroneous usage of some library"

❍  Learning certain patterns (using machine learning 
algorithms)"
●  For example, we might be able to learn from the change 

history of a system that in most cases, changes in module X 
imply changes in modules X1, A, and F"

""
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Predicting quality-relevant phenomena"

❍  Example: With machine learning technology, we might find 
a statistically significant correlation between some 
measurable properties of a module in the system’s version 
archive and the error-proneness of a module  
à   From such data, we can derive a predictor for error-
proneness"

à  Another example: if we have learned change correlations 
between modules (see previous slide) we can derive a 
predictor for modules that also need to be changed if some 
given module is modified. "

❍  Significant correlation under stable conditions is sufficient 
for constructing predictors – no causality analysis needed"
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Reading assignment"

Read the following papers about mining quality-relevant data 
from software repositories:"

❍  Zimmermann et al. (2005): Mining Version Histories to 
Guide Software Changes"

❍  Nagappan, Ball, Zeller (2006): Mining Metrics to Predict 
Component Failures"

❍  Bird et al. (2009): Does Distributed Development Affect 
Software Quality?: An Empirical Case Study of Windows 
Vista"
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Classifying external product quality"

As there are many facets of external product quality, 
numerous approaches for creating taxonomies and 
frameworks have been made, for example"

❍  Boehm et al. (1976)"
❍  McCall and Matsumoto (1980)"
❍  ISO/IEC 9126 (first published in 1991, revised in 2001, 

superseded by ISO/IEC 25010 in 2011)"
❍  Quamoco (2011)"
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Boehm’s quality model"

The first attempt to classify 
software quality from an 
external viewpoint"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 16"

[Boehm, Brown and Lipov 1976]"



The quality model by McCall and Matsumoto"

Three-level model:"
❍  Factors, representing a management-oriented view of 

software quality"
❍  Criteria for every factor, representing software-oriented 

attributes that provide software quality"
❍  Metrics, i.e., quantitative measures of those attributes"
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Mc Call and Matsumoto: Factors and criteria"

Correctness"

Reliability"

Efficiency"

Integrity"

Usability"

Maintainability"

Flexibility"

Testability"

Portability"

Reusability"

Interoperability"

Traceability"
Completeness"
Error tolerance"
Consistency"
Accuracy"
Storage efficiency"
Execution efficiency"
Access control"
Access audit"
Operability"
Training"
Communicativeness"
Expandability"
Generality"
Modularity"
Simplicity"
Instrumentation"
Self-Descriptiveness"
Machine independence"
Software system independence"
Communication commonality"
Data commonality"
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The ISO/IEC 25010 quality model"

❍  Differentiates between"
●  Product quality model"
●  Quality in use model"

❍  External and internal quality have a specific meaning in the 
ISO/IEC 25010 framework:"
●  External quality assesses the characteristics of the product 

quality model by black-box measurement"
●  Internal quality assesses the characteristics of the product 

quality model by glass-box measurement, i.e. measuring 
system properties based on knowledge about the internal 
structure of the software"
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The ISO/IEC 25010 product quality model"
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The ISO/IEC 25010 quality in use model"
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Problems with ISO/IEC 25010"

❍  Basing the distinction of external and internal quality on the 
type of measurements is counter-intuitive: the very same 
characteristic can denote external quality or internal quality 
or both, depending on the metrics used to measure it"

❍  No convincing rationale for classifying characteristics 
 as product quality or quality in use characteristics, 
 for example:"
●  Security is a product quality characteristic, while safety is a 

quality in use characteristic"
●  Learnability and Ease of use are product quality sub-

characteristics, although they pertain to using the product"
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Quality models are in the eye of the beholder"

❍  Availability is missing from the McCall-Matsumoto model"
❍  Storage efficiency may be highly relevant in some context 

and irrelevant in another context"
❍  Assessing performance might include transmission rate 

behavior, while this is not included in the ISO/IEC 25010 
model"
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Factors of a modern product quality model"

Usage-oriented factors"
❍  Functionality"

❍  Usability"
❍  Efficiency"
❍  Reliability"
❍  Security"
❍  Safety"

❍  Dependability"

Product-oriented factors"
❍  Maintainability"

❍  Portability"
❍  Compliance"
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The factors explained"

Functionality –  The capability of a software system to provide 
functions which meet stated and implied needs when the 
software is used under specified conditions"

Usability –  The capability of a software system to be 
understood, learned, used and attractive to the user, when 
used under specified conditions"

Efficiency – The capability of a software system to provide 
appropriate performance, relative to the amount of resources 
used, under stated conditions"

Reliability – The capability of a software system to maintain a 
specified level of performance when used under specified 
conditions"
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The factors explained – 2"

Security – The capability of a software system to protect 
information so that unauthorized agents cannot access them 
and authorized agents are not denied access to them"

Safety – The capability of a software system to achieve 
acceptable levels of risk of harm to people or any other entities 
in a specified context of use"

Dependability – The trustworthiness of a software system such 
that reliance can justifiably be placed on the service it delivers"
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The factors explained – 3"

❍  Maintainability –  The capability of a software system to be 
changed and to evolve by correcting, adapting and 
improving the software"

❍  Portability – The capability of a software system to be 
transferred from one environment to another or be adapted 
to some changed or new environment"

❍  Compliance – The capability of a software system to 
comply to given standards, procedures, legal regulations or 
other constraints"
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Assessing external quality"

❍  Measurement"
●  No direct measures available in most cases"
●  Typically predicting quality from measuring measurable quality 

indicators"

❍  Testing"
●  For example, for assessing functionality, efficiency or reliability"

❍  Inspection"
●  Manual assessment by a group of experts"

❍  Monitoring and feedback"
●  Monitoring relevant indicators during system operations"
●  Encourage and systematically evaluate user feedback"
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30"

Definition"

Dependability – The trustworthiness of a computer system 
such that reliance can justifiably be placed on the service it 
delivers."

❍  Can pertain to both functionality and system properties"
❍  Dependability is different from"

●  Reliability"
●  Availability"
●  Security"
●  Safety"
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Threats"

Loss of dependability by"
❍  System failures"

●  Requirements correctly interpreted, but implementation is faulty"
●  Requirements are faulty or wrongly interpreted"

❍  Hidden unwanted system properties"
❍  Problems in the environment of a system"
Loss may happen"

●  Accidentally"
●  Negligently"
●  Deliberately (typically with criminal intent)"
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Problems in the system environment (context)"

❍  Errors in the system environment"
●  Errors caused by failing devices or neighboring systems"
●  Operating errors"
●  Unexpected external events"

❍  Violation of assumptions"
●  Unexpected input data or events"
●  Unexpected reactions to system outputs"
●  Manipulation by non-authorized persons"
●  Abuse by authorized persons"
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Measures for assuring dependability"

❍  Prevent errors"
❍  Identify and correct errors"

❍  Tolerate errors"
❍  Demonstrate and assure absence of errors"

❍  Trade-off cost vs. benefit"
❍  Maybe establish dependability for critical components only"
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Means"

❍  Achieve dependability of software in use by"
●  Frequent Use"
●  Self-monitoring systems"

❍  Achieve dependability prior to deployment"
●  Analytically, in particular thorough testing and static analysis"
●  Constructively by"

•  Verification"
•  Model Checking"
•  Assurance (dependability cases)"

●  Rigorous processes"

❍  Simplification by modularization"
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Testing"

❍  System test: not sufficient for establishing dependability"
❍  Preferred means: Random testing based on usage profile"

●  Allows statistically sound predictions"
●  Problem: Determining the usage profile(s)"
●  Requires a large number of test cases (only feasible when 

test is automated)"

❍  Make sure that the system environment is included in the 
test (end-to-end testing)"
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Verification and Model Checking"

❍  Verification"
●  In most cases impossible for entire systems à only critical 

components can be verified"
●  Covers the system only, not its environment"
●  Verification involves humans who design the proofs à errors 

in proofs can happen"
"

❍  Model Checking"
●  Full state space of full system is typically too large"

•  State space abstractions required"
•  actually no verification, but systematic automated test"

●  Covers the system only, not its environment"
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Assuring dependability"

❍  Determine the required dependability properties"
●  The less, the easier and cheaper"

❍  Build dependability cases"
●  Constructing end-to-end arguments for the required 

properties"
●  using any available techniques (test, verification, etc.)"
●  Identify assumptions required for a dependability case to hold"
●  Document these assumptions (for example, in a user 

manual)"

❍  Build dependability cases prior to development"
❍  Orient development towards satisfying dependability cases"

37"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "



Dependability needs a dependable foundation"

❍  Suitable programming languages"
●  for example, languages featuring strong type checking"

❍  Dependable hardware"
❍  Dependable operating system"
❍  Dependable communications infrastructure"

❍  Build upon existing dependable systems"
●  However: dependability cases need to be re-validated!"

❍  Otherwise the effort for demonstrating / proving the validity 
for a dependability case can grow infinitely"

38"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "



Dependable software is crucial"

❍  Safety-critical and security-critical systems are becoming 
pervasive"

❍  Software systems control non-software technical systems 
we need to rely on (e.g. in transportation, communication, 
or power generation and distribution)"

❍  Due to networking interdependencies, seemingly uncritical 
systems are becoming critical"

➥ We crucially need dependable software systems"
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Reading assignment"

Read the following article:"
B. Nuseibeh, C. B. Haley, and C. Foster (2009). Securing the 
Skies: In Requirements We Trust"
It is about making end-to-end arguments for the security of a 
system, which ultimately contributes to its dependability."
"
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