
Department of Informatics!

Martin Glinz 
  

Software Quality 
  
Chapter 6  
  

Software Product Quality 
"

© 2014 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material for
any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties."

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 2"

6.1 "External vs. Internal Product Quality"

6.2 "Internal Software Product Quality"

6.3 "External Software Product Quality"

6.4 "Dependability"

"

External vs. internal software product quality"

❍  External quality is the quality of a (software) product as
perceived by its stakeholders"

❍  Internal quality is the quality of the software, particularly of
the source code that eventually delivers external quality"

❍  Note that the standard ISO/IEC 25010:2011 uses a
different notion of external and internal quality (see below)"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 3"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 4"

6.1 "External vs. Internal Product Quality"

6.2 "Internal Software Product Quality"

6.3 "External Software Product Quality"

6.4 "Dependability"

"

About internal software product quality"

❍  Measuring"
●  Measuring internal quality characteristics"
●  Predicting external quality from internal quality data"

❍  Mining"
●  Mining internal quality characteristics"
●  Predicting quality-relevant phenomena from mined data"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 5"

Measuring internal software product quality"

❍  Classic measurment of static source code properties"
●  Size"
●  Complexity"
●  Cohesion and couping"
●  Depth of inheritance trees"
●  Method fan-in/fan-out"
●  ..."

❍  In combination with process measurements:"
●  Error and defect rates"
●  Defect density per module"
●  ..."

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 6"

Measurement-based analysis"

❍  Simple measurement"
●  For example, measure the size of of methods (in terms of

LoC) and identify outliers (very short and too long methods)"

❍  Static/Dynamic program analysis"
Can, for example, identify"
●  non-initialized variables"
●  dead code"
●  data flow anomalies"

❍  Architectural analysis"
●  For example, identify cycles in in the method call hierarchy"

7"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Predicting external quality"

❍  Using internal quality measurements for predicting external
quality characteristics, for example"
●  Predicting system reliability by measuring error occurrence

rates during statistical (random) testing or by measuring defect
density"

●  Predicting portability by measuring source code characteristics
such as percentage of platform-dependent code"

❍  Proving internal quality properties, in particular safety and
liveness properties for predicting safety and security
characteristics of a system"

❍  Inspecting internal quality properties for predicting external
quality characteristics such as maintainability"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 8"

Mining internal product quality"

Basic idea:"
From big repositories of data about software, ..."

using suitable procedures, ..."
elicit information, which..."

●  tells us about the current internal quality of the software"
●  allows predictions about quality relevant phenomena"

9"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Data repositories"

❍  Version history of software artifacts (particularly source code)"
❍  Change history"

❍  Problem report database"
❍  Test suites and test summaries"
❍  Review reports"
❍  Process measurement databases (effort, duration,

productivity, error cost,...)"

❍  Developers’ e-mail and chat threads"
❍  ..."

10"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

What and how to mine"

❍  Identify certain patterns and anomalies"
●  For example, an analysis of test summaries reveals a pattern

of erroneous usage of some library"

❍  Learning certain patterns (using machine learning
algorithms)"
●  For example, we might be able to learn from the change

history of a system that in most cases, changes in module X
imply changes in modules X1, A, and F"

""

11"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Predicting quality-relevant phenomena"

❍  Example: With machine learning technology, we might find
a statistically significant correlation between some
measurable properties of a module in the system’s version
archive and the error-proneness of a module  
à From such data, we can derive a predictor for error-
proneness"

à  Another example: if we have learned change correlations
between modules (see previous slide) we can derive a
predictor for modules that also need to be changed if some
given module is modified. "

❍  Significant correlation under stable conditions is sufficient
for constructing predictors – no causality analysis needed"

12"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Reading assignment"

Read the following papers about mining quality-relevant data
from software repositories:"

❍  Zimmermann et al. (2005): Mining Version Histories to
Guide Software Changes"

❍  Nagappan, Ball, Zeller (2006): Mining Metrics to Predict
Component Failures"

❍  Bird et al. (2009): Does Distributed Development Affect
Software Quality?: An Empirical Case Study of Windows
Vista"

13"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 14"

6.1 "External vs. Internal Product Quality"

6.2 "Internal Software Product Quality"

6.3 "External Software Product Quality"

6.4 "Dependability"

"

Classifying external product quality"

As there are many facets of external product quality,
numerous approaches for creating taxonomies and
frameworks have been made, for example"

❍  Boehm et al. (1976)"
❍  McCall and Matsumoto (1980)"
❍  ISO/IEC 9126 (first published in 1991, revised in 2001,

superseded by ISO/IEC 25010 in 2011)"
❍  Quamoco (2011)"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 15"

Boehm’s quality model"

The first attempt to classify
software quality from an
external viewpoint"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 16"

[Boehm, Brown and Lipov 1976]"

The quality model by McCall and Matsumoto"

Three-level model:"
❍  Factors, representing a management-oriented view of

software quality"
❍  Criteria for every factor, representing software-oriented

attributes that provide software quality"
❍  Metrics, i.e., quantitative measures of those attributes"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 17"

[McCall and Matsumoto 1980]"

Mc Call and Matsumoto: Factors and criteria"

Correctness"

Reliability"

Efficiency"

Integrity"

Usability"

Maintainability"

Flexibility"

Testability"

Portability"

Reusability"

Interoperability"

Traceability"
Completeness"
Error tolerance"
Consistency"
Accuracy"
Storage efficiency"
Execution efficiency"
Access control"
Access audit"
Operability"
Training"
Communicativeness"
Expandability"
Generality"
Modularity"
Simplicity"
Instrumentation"
Self-Descriptiveness"
Machine independence"
Software system independence"
Communication commonality"
Data commonality"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 18"

Software"
product"
quality"

The ISO/IEC 25010 quality model"

❍  Differentiates between"
●  Product quality model"
●  Quality in use model"

❍  External and internal quality have a specific meaning in the
ISO/IEC 25010 framework:"
●  External quality assesses the characteristics of the product

quality model by black-box measurement"
●  Internal quality assesses the characteristics of the product

quality model by glass-box measurement, i.e. measuring
system properties based on knowledge about the internal
structure of the software"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 19"

The ISO/IEC 25010 product quality model"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 20"

The ISO/IEC 25010 quality in use model"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 21"

Problems with ISO/IEC 25010"

❍  Basing the distinction of external and internal quality on the
type of measurements is counter-intuitive: the very same
characteristic can denote external quality or internal quality
or both, depending on the metrics used to measure it"

❍  No convincing rationale for classifying characteristics 
 as product quality or quality in use characteristics, 
 for example:"
●  Security is a product quality characteristic, while safety is a

quality in use characteristic"
●  Learnability and Ease of use are product quality sub-

characteristics, although they pertain to using the product"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 22"

Quality models are in the eye of the beholder"

❍  Availability is missing from the McCall-Matsumoto model"
❍  Storage efficiency may be highly relevant in some context

and irrelevant in another context"
❍  Assessing performance might include transmission rate

behavior, while this is not included in the ISO/IEC 25010
model"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 23"

Factors of a modern product quality model"

Usage-oriented factors"
❍  Functionality"

❍  Usability"
❍  Efficiency"
❍  Reliability"
❍  Security"
❍  Safety"

❍  Dependability"

Product-oriented factors"
❍  Maintainability"

❍  Portability"
❍  Compliance"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 24"

The factors explained"

Functionality – The capability of a software system to provide
functions which meet stated and implied needs when the
software is used under specified conditions"

Usability – The capability of a software system to be
understood, learned, used and attractive to the user, when
used under specified conditions"

Efficiency – The capability of a software system to provide
appropriate performance, relative to the amount of resources
used, under stated conditions"

Reliability – The capability of a software system to maintain a
specified level of performance when used under specified
conditions"
Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 25"

[partially adapted from ISO/IEC 9126]"

The factors explained – 2"

Security – The capability of a software system to protect
information so that unauthorized agents cannot access them
and authorized agents are not denied access to them"

Safety – The capability of a software system to achieve
acceptable levels of risk of harm to people or any other entities
in a specified context of use"

Dependability – The trustworthiness of a software system such
that reliance can justifiably be placed on the service it delivers"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 26"

The factors explained – 3"

❍  Maintainability – The capability of a software system to be
changed and to evolve by correcting, adapting and
improving the software"

❍  Portability – The capability of a software system to be
transferred from one environment to another or be adapted
to some changed or new environment"

❍  Compliance – The capability of a software system to
comply to given standards, procedures, legal regulations or
other constraints"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 27"

Assessing external quality"

❍  Measurement"
●  No direct measures available in most cases"
●  Typically predicting quality from measuring measurable quality

indicators"

❍  Testing"
●  For example, for assessing functionality, efficiency or reliability"

❍  Inspection"
●  Manual assessment by a group of experts"

❍  Monitoring and feedback"
●  Monitoring relevant indicators during system operations"
●  Encourage and systematically evaluate user feedback"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 28"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 29"

6.1 "External vs. Internal Product Quality"

6.2 "Internal Software Product Quality"

6.3 "External Software Product Quality"

6.4 "Dependability"

"

30"

Definition"

Dependability – The trustworthiness of a computer system
such that reliance can justifiably be placed on the service it
delivers."

❍  Can pertain to both functionality and system properties"
❍  Dependability is different from"

●  Reliability"
●  Availability"
●  Security"
●  Safety"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Threats"

Loss of dependability by"
❍  System failures"

●  Requirements correctly interpreted, but implementation is faulty"
●  Requirements are faulty or wrongly interpreted"

❍  Hidden unwanted system properties"
❍  Problems in the environment of a system"
Loss may happen"

●  Accidentally"
●  Negligently"
●  Deliberately (typically with criminal intent)"

31"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Problems in the system environment (context)"

❍  Errors in the system environment"
●  Errors caused by failing devices or neighboring systems"
●  Operating errors"
●  Unexpected external events"

❍  Violation of assumptions"
●  Unexpected input data or events"
●  Unexpected reactions to system outputs"
●  Manipulation by non-authorized persons"
●  Abuse by authorized persons"

32"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Measures for assuring dependability"

❍  Prevent errors"
❍  Identify and correct errors"

❍  Tolerate errors"
❍  Demonstrate and assure absence of errors"

❍  Trade-off cost vs. benefit"
❍  Maybe establish dependability for critical components only"

33"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Means"

❍  Achieve dependability of software in use by"
●  Frequent Use"
●  Self-monitoring systems"

❍  Achieve dependability prior to deployment"
●  Analytically, in particular thorough testing and static analysis"
●  Constructively by"

•  Verification"
•  Model Checking"
•  Assurance (dependability cases)"

●  Rigorous processes"

❍  Simplification by modularization"

34"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Testing"

❍  System test: not sufficient for establishing dependability"
❍  Preferred means: Random testing based on usage profile"

●  Allows statistically sound predictions"
●  Problem: Determining the usage profile(s)"
●  Requires a large number of test cases (only feasible when

test is automated)"

❍  Make sure that the system environment is included in the
test (end-to-end testing)"

35"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Verification and Model Checking"

❍  Verification"
●  In most cases impossible for entire systems à only critical

components can be verified"
●  Covers the system only, not its environment"
●  Verification involves humans who design the proofs à errors

in proofs can happen"
"

❍  Model Checking"
●  Full state space of full system is typically too large"

•  State space abstractions required"
•  actually no verification, but systematic automated test"

●  Covers the system only, not its environment"
36"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Assuring dependability"

❍  Determine the required dependability properties"
●  The less, the easier and cheaper"

❍  Build dependability cases"
●  Constructing end-to-end arguments for the required

properties"
●  using any available techniques (test, verification, etc.)"
●  Identify assumptions required for a dependability case to hold"
●  Document these assumptions (for example, in a user

manual)"

❍  Build dependability cases prior to development"
❍  Orient development towards satisfying dependability cases"

37"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Dependability needs a dependable foundation"

❍  Suitable programming languages"
●  for example, languages featuring strong type checking"

❍  Dependable hardware"
❍  Dependable operating system"
❍  Dependable communications infrastructure"

❍  Build upon existing dependable systems"
●  However: dependability cases need to be re-validated!"

❍  Otherwise the effort for demonstrating / proving the validity
for a dependability case can grow infinitely"

38"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Dependable software is crucial"

❍  Safety-critical and security-critical systems are becoming
pervasive"

❍  Software systems control non-software technical systems
we need to rely on (e.g. in transportation, communication,
or power generation and distribution)"

❍  Due to networking interdependencies, seemingly uncritical
systems are becoming critical"

➥ We crucially need dependable software systems"

39"Software Quality "6. Software Product Quality "© 2014 Martin Glinz "

Reading assignment"

Read the following article:"
B. Nuseibeh, C. B. Haley, and C. Foster (2009). Securing the
Skies: In Requirements We Trust"
It is about making end-to-end arguments for the security of a
system, which ultimately contributes to its dependability."
"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 40"

References"

C. Bird, N. Nagappan, P. Devanbu, H. Gall, B. Murphy (2009). Does Distributed Development Affect
Software Quality?: An Empirical Case Study of Windows Vista. Communications of the ACM 52(8):85–93."
B. Boehm, J.R. Brown, and M. Lipow (1976). Quantitative Evaluation of Software Quality. Proceedings of
the 2nd International Conference on Software Engineering, San Francisco. 592–605."
ISO/IEC (2001). Software Engineering – Product Quality – Part 1: Quality Model. International Standard
ISO/IEC 9126-1:2001."
ISO/IEC (2011). Systems and software engineering – Systems and software Quality Requirements and
Evaluation (SQuaRE) – System and software quality models. International Standard ISO/IEC 25010:2011"
D. Jackson (2009). A Direct Path to Dependable Software. Communications of the ACM 52(4):78–88."
J.C. Laprie (1985). Dependable Computing and Fault Tolerance: Concepts and terminology. Proc. 15th
IEEE International Symposium on Fault-Tolerant Computing. 2–11."
J.A. McCall, M.T. Matsumoto (1980). Software Quality Measurement Manual, Vol. II. Rome Air
Development Center, RADC-TR-80-109-Vol-2."
N. Nagappan, T. Ball, A. Zeller (2006). Mining Metrics to Predict Component Failures. Proceedings of the
28th international conference on Software engineering (ICSE 2006). 452–461."
B. Nuseibeh, C. B. Haley, and C. Foster (2009). Securing the Skies: In Requirements We Trust. IEEE
Computer 42(9):64–72."
J. H. Saltzer, D. P. Reed, D. D. Clark (1984). End-to-End Arguments in System Design. ACM
Transactions on Computer Systems 2(4). 277–288."

"
"

"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 41"

References – 2"

J. Sliwerski, T. Zimmermann, A. Zeller (2005).When do Changes Induce Fixes? On Fridays. Proc.
International Workshop on Mining Software Repositories (MSR), St. Louis, Missouri, USA, May 2005."
S. Wagner et al. (2012). The Quamoco Product Quality Modelling and Assessment Approach. Proc. 34th
International Conference on Software Engineering (ICSE 2012), Zurich, Switzerland. 1133–1142."
C. Weinstock, J. Goodenough, and J. Hudak (2004). Dependability Cases. Technical Note CMU/
SEI-2004-TN-016). Pittsburgh, PA: Software Engineering Institute. 
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6919"
T. Zimmermann, P. Weißgerber, S. Diehl, A. Zeller. Mining Version Histories to Guide Software Changes
(2005). IEEE Transactions on Software Engineering 31(6):429–445."

"
"

"

Software Quality "6. Software Product Quality "© 2014 Martin Glinz " 42"

