
Data-Oriented Programming – HS18
Extra Exercise: Basic Data Processing

Submission Details
• Submission Format: ZIP file which includes all Python code scripts for this exercise and

two .csv files for trian and test data sets; and, 2) a .txt file with your first name, last name
and student identification number (Matrikelnummer)

• Submission Deadline: 23:59 11.11.2017.
• The name of the zip file should have the following format: olatusername_dop_exercise.zip,

e.g. example_dop_exercise.zip.
• Please divide your code into properly identifiable files which can be assigned to each ques-

tion.
• Please submit the assignment by email to: ashena@ifi.uzh.ch and put "DOP submis-

sion" in the subject

1

ashena@ifi.uzh.ch


1 Task: Data Exploration (4.5 Points)

1.1 Assignment

As future data scientists, when you get your hands on a new data set, your first job is to explore it
and make yourself familiar with its structure and content: Can you picture the data set as a table?
If so, what are the entities (rows) and attributes (columns)? What is the data type of each attribute
(numerical, nominal, or ordinal)? What are the range and distribution of each attribute? The first
part of the exercise focuses on answering these questions.

The Data Set The data set for this exercise contains real data from Titanic. If this is your first time
hearing about Titanic, it was the largest passenger liner of its time, 1912. But, unfortunately, it
sank due to the collision with an iceberg and a tragedy happened by the death of its 1502 out of
2224 passengers and crew. It is highly recommended that you watch the movie with the same
title, Titanic directed by James Cameron.

The data is provided in comma separated values (CSV) format, titanic.csv file. It contains data
for 887 of the real Titanic passengers. Each row represents one person. The columns describe
different attributes about the person that are described in the table below.

Attribute Description
Survived Whether the passenger survived or not
Pclass The passenger’s class
Name The name recorded for the passenger
Sex The gender of the passenger
Age The age of the passenger
Fare The fair that the passenger paid

a) Read and Display Data from the CSV File (1.5 Point)

First, we want to see the records in the CSV file. In this example the data set is small and can be
explored in a text editor. But in real use-cases such files are often much larger and can contain
many gigabytes of data. Therefore, it makes sense to be able to investigate the data programmat-
ically.

Your task: Extend the implementation of the function read_csv. It should read the file
titanic.csv line-by-line and return the first (or the last) n lines as a python list. Write the func-
tion in such a way that it stops processing as soon as n lines have been collected. Add an extra
feature to the function, so it also returns the starting line in the file (typially the header). This
feature becomes handy in coming sections.

Below you find a skeleton implementation of this function that you can extend:

• file_name specifies the path including the file name to the CSV file.
• n specifies the maximum number of lines which will be returned. If n is bigger than the

number of existing rows in the file, function should return all content of the file.
• mode indicates whether the n lines should be retrieved from the head (mode=0) or the tail

(mode=1) of the file. mode=2 means only the header should be returned.
• lines is a python list which contains the up to n strings; the strings represent the lines

contained in file_name excluding the header.

2



1 import os

2
3
4 def read_csv(file_name, n, mode):

5 lines = list()

6 # your implementation here

7 #if mode == 0:

8 #read from head

9
10 #if mode == 1:

11 # read from tail

12
13 #if mode == 2:

14 # read headings

15
16 return lines

17
18
19 if __name__ == '__main__':

20 # this code is only run when the script is executed, e.g. via: python

task_xx_x.py

21 data_file_name = os.path.join("..", "data", "titanic.csv")

22 # print heading

23 print("".join(read_csv(data_file_name, 0, 2)))

24 # print 5 lines from head

25 print("".join(read_csv(data_file_name, 5, 1)))

26 # print 5 lines from tail

27 print("".join(read_csv(data_file_name, 5, 2)))

Listing 1: task_01_1.py

Hints

• You may find reveresed() built-in function from Python very useful for this task https:
//docs.python.org/3/library/functions.html#reversed.

Below shows the sample outputs when running the function three times with mode=2,
0, and 1, and n=5:

1 Survived,Pclass,Name,Sex,Age,Fare

2 No,3,Mrs. William (Margaret Norton) Rice,female,39,29.125

3 No,2,Rev. Juozas Montvila,male,,13

4 Yes,1,Miss. Margaret Edith Graham,female,500,30

5 No,3,Miss. Catherine Helen Johnston,female,7,23.45

6 Yes,1,Mr. Karl Howell Behr,male,26,30

7 No,3,Mr. Patrick Dooley,male,32,7.75

8 Survived,Pclass,Name,Sex,Age,Fare

3

https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/functions.html#reversed


b) Statistics for Numerical Data (1.5 Points)

The result of the previous task shows what the data records look like and perhaps you
can already spot some missing or invalid values for Age attribute. But in order to assess the
quality of the data it is better you further investigate. You may have realized some attributes
contain numbers like Age, Pclass, and Fair and others contain text like Survived, Name,
and Sex. In this section, you are going to investigate the numeric attributes by computing:

1. the range of numeric attributes by finding their minimum and maximum values
2. the average of the numeric attributes

Your task: Write the function attribute_stat which has two inputs, data and index.
data is a list of all rows in titanic.csv basically the output of csv_read function from
the previous task. index, starting from zero, is the index of the column of corresponding at-
tribute (0:Survived, 1:Pclass, 2:Name, 3:Sex, 4:Age, 5:Fare). The function returns
the minimum, maximum, and average of the given attribute. Your function should check
the type of the attribute value and returns None if the type is not numeric.
Extend the function attribute_stat in the following python script:

1 import os

2
3
4 def read_csv(file_name, n, mode):

5 lines = list()

6 # your implementation from task_01_1

7 return lines

8
9

10 def isfloat(str):

11 try:

12 float(str)

13 return True

14 except ValueError:

15 return False

16
17
18 def attribute_stat(index, data):

19
20 # if attribute is numerical:

21 # return min_value, max_value, mean_value

22 # else:

23 # return None

24
25
26 if __name__ == '__main__':

27 # this code is only run when the script is executed, e.g. via:

python task_xx_x.py

28 data_file_name = os.path.join("..", "data", "titanic.csv")

29 # headings

30 headings = [heading.strip('\r\n') for heading in "".join(read_csv(

data_file_name, 0, 2)).split(",")]

4



31 # data

32 data = read_csv(data_file_name, 1000, 0) # n =1000 is bigger than

the number of rows in the file, so all the lines

33 # will be returned!

34
35 # if you were not able to write read_csv, then uncomment the

following lines:

36 # data = list()

37 # with open(data_file_name) as file_handle:

38 # for line in file_handle:

39 # data.append(line)

40 # headings = [heading.strip('\r\n') for heading in "".join(data.

pop(0)).split(",")]

41 column_index = 0

42 for heading in headings:

43 attributeStat = attribute_stat(column_index, data)

44 if attributeStat is None:

45 print("{} => It doesn't look like that values of this column

are numeric.".format(

46 headings[column_index]))

47 else:

48 print("{} => min={}, max={}, mean={}".format(

49 headings[column_index], attributeStat[0], attributeStat

[1], attributeStat[2]))

50 column_index += 1

Listing 2: task_01_2.py

Note:
– If you could not solve the previous assignment, you can find guidance as comment in

the provided python script, task_01_2.
– Function isfloat is provided that you can utilize it in your code.
– If you remember from the output of assignment 1.1.a, there are missing values for

column age. Typically, they are empty strings like "" in python. Fortunately, function
isfloat returns false for an empty string.

The script should produce the following:

1 Survived => It doesn't look like that values of this column are

numeric.

2 Pclass => min=1.0, max=3.0, mean=2.30552423901

3 Name => It doesn't look like that values of this column are numeric.

4 Sex => It doesn't look like that values of this column are numeric.

5 Age => min=0.42, max=500.0, mean=32.2221599045

6 Fare => min=0.0, max=512.3292, mean=32.3054201804

This output is very interesting! You see age ranges from 0.42 to 500. The lower bound
makes sense as there might be infants in the ship. But, the upper bound indicates that there
are some invalid data for the age. Another interesting point is that attribute_stat has

5



returned valid output for Pclass. But, in reality the average of the passenger class doesn’t
mean anything. Although Pclass has numerical value, it is a categorical data. More than
average, frequency of each category can be useful.

Hints
– You can use the sum, max, and min built-in functions in python to get the sum of a

list and the maximum and minimum values of a list. These functions require the list
elements to be a numeric type in order to work as expected.

– None is a special value in python. Here, we can use it to indicate that computation was
not possible on a given attribute. Comparisons with None will always return False and
mathematical operations involving None will fail.

6



c) Learn About Nominal Attribute (1.5 Points)

From the result of the previous task, we couldn’t obtain useful information about the nom-
inal attributes, Survived, Pclass, and Sex. In this section, you are going to investigate
the distribution of these attributes. Basically, you are going to find the answers of these
questions: What are the values of a given nominal attribute and how many times a value
occurs in the data?

Your task: Extend the script below by implementing a body for function attribute_count
which has two inputs, data and index. data is a list containing all rows in titanic.csv,
the output of csv_read function from the first task. index, starting from zero, is the
index of the column of corresponding attribute (for this task we are only interested in
0:Survived, 1:Pclass, and 3:Sex). The function returns a python dictionary where
the keys are the distinct attribute values and the associated values are the number of times
that value occurs in the data set.

You should implement this function using the Counter type from the python collections
module. This type is a specialised dictionary for counting. You can work with it like with
normal dictionaries but it offers some additional functionality too. Learn about how to
use this type in the official documentation (https://docs.python.org/3/library/
collections.html#collections.Counter).

Extend the function attribute_counts in the following python script:

1 import os

2 from collections import Counter

3
4
5 def read_csv(file_name, n, mode):

6
7 lines = list()

8 # your implementation from task_01_1

9 return lines

10
11
12
13 def attribute_counts(index, data):

14 counter = Counter()

15 # your implementation here

16 return counter

17
18
19 if __name__ == '__main__':

20 # this code is only run when the script is executed, e.g. via:

python task_xx_x.py

21 data_file_name = os.path.join("..", "data", "titanic.csv")

22 # headings

23 headings = [heading.strip('\r\n') for heading in "".join(read_csv(

data_file_name, 0, 2)).split(",")]

24 # data

7

https://docs.python.org/3/library/collections.html# collections.Counter
https://docs.python.org/3/library/collections.html# collections.Counter


25 data = read_csv(data_file_name, 1000, 0) # n =1000 is bigger than

the number of rows in the file, so all the lines

26 # will be returned!

27
28 # if you were not able to write read_csv, then uncomment the

following lines:

29 # data = list()

30 # with open(data_file_name) as file_handle:

31 # for line in file_handle:

32 # data.append(line)

33 # headings = [heading.strip('\r\n') for heading in "".join(data.

pop(0)).split(",")]

34
35 print("Survived", attribute_counts(0, data))

36 print("Pclass",attribute_counts(1, data))

37 print("Sex",attribute_counts(3, data))

Listing 3: task_01_3.py

Note:
– If you could not solve the first assignment, you can find guidance as comment in the

provided python script, task_01_3.

The script should produce the following:

1 ('Survived', Counter({'No': 545, 'Yes': 342}))

2 ('Pclass', Counter({'3': 487, '1': 216, '2': 184}))

3 ('Sex', Counter({'male': 573, 'female': 314}))

1.2 Remarks

1. https://docs.python.org/3/library/functions.html#reversed
2. https://docs.python.org/3/library/collections.html#collections.Counter

8

https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/collections.html#collections.Counter


2 Task: Data Cleaning (5.5 Points)

2.1 Assignment

We have seen that the age attribute has some missing and invalid values. For example, have
look at two following rows from the data set:

1 Survived,Pclass,Name,Sex,Age,Fare

2 No,2,Rev. Juozas Montvila,male,,13

3 Yes,1,Miss. Margaret Edith Graham,female,500,30

Rev. Montivla’s age is missing (there is no value provided for it.), and Miss Graham’s age is
reported as 500!
You are going to learn how to handle invalid entries and missing values in assignments 2.1.a
and 2.1.b respectively.

a) Discard Records with Invalid Age (1 Points)

Let’s consider the acceptable range for human age is 0 to 99. Below you will find a program,
very similar to assignment 1.1.a, that reads the data set line by line and decides whether the
current line should be discarded or appended to the final list.
Your task: Your task is to extend the following script by writing a body for function
is_age_valid which gets a record as string (one row of a data set) and returns false if the
age is less than 0 or bigger than 99. Pass the cleaned data set to your attribute_stat to
see whether invalid ages are removed correctly.

Note:
– None or empty values for age are not invalid but missing. Therefore, keep them while

cleaning the data.
– In some cases, data analyst may decide to change invalid values to None instead of

discarding. This decision depends on the application and the means of data collection.
Here, we assume that if ,in a record, an attribute is invalid other attributes may also
have imprecise values.

Extend the following script by writing a body for function is_age_valid:

1 import os

2
3
4 AGE_INDEX = 4

5
6
7 def is_float(value):

8 try:

9 float(value)

10 return True

11 except ValueError:

12 return False

13
14
15

9



16 def attribute_stat(index, data):

17 # if attribute is numerical:

18 # return min_value, max_value, mean_value

19 # else:

20 # return None

21
22
23 def is_age_valid(record):

24
25 # your implementation here

26 return True

27
28 def clean_data(file_name):

29 cleaned_records = list()

30 with open(file_name) as file_handle:

31 for row in file_handle:

32 if is_age_valid(row):

33 cleaned_records.append(row)

34
35 return cleaned_records

36
37
38 if __name__ == '__main__':

39 # this code is only run when the script is executed, e.g. via:

python task_xx_x.py

40 data_file_name = os.path.join("..", "data", "titanic.csv")

41 cleaned_data = clean_data(data_file_name)

42 print(attribute_stat(4, cleaned_data))

Listing 4: task_01_2.py

The script should produce the following:

1 (0.42, 99.0, 29.55924096385542)

b) Missing Data Imputation (2.5 Points)

One way to handle missing values is to find a substitute for them. For example, you can
fill missing values with the mean (or median in case of discrete values) for that attribute
in the data set. It is very important that by this replacement you don’t change the overall
distribution of the data. Therefore, it is a good practice to look at the distribution of data
before and after replacement. Usually, when data distribution is normal or close to normal,
filling missing values with the mean is one of the common approaches.

Your task: Extend the provided script by writing a body for functions: histogram_age
and replace_missing_data.
histogram_age is a function that gets your cleaned data from the previous step as input,
and returns a python dictionary. Each key in the dictionary indicates a range of 10 for age
attribute. For each range (key), this function counts the number of passengers whose age

10



lies in that range. In other words, the value of each key shows the frequency of that age
range. The output of the function on cleaned data should be like this:

1 {'20-29': 274, '70-79': 6, '50-59': 47, '90-99': 1, '40-49': 107,

'60-69': 24, '10-19': 120, '80-89': 1, '0-9': 68, '30-39': 182}

Note:
– Function text_histogram_age gets the dictionary returned by histogram_age

and plots the distribution of age data.
– Please, don’t change the provided dictionary initialization. Otherwise, you can’t use
text_histogram_age to visualize the distribution of the data.

replace_missing_data function gets your cleaned data from the previous step and a
value as inputs, and returns a new data set in which the missing values are replaced with
the given value.

Note:
– The statistics of age data and an alternative code for cleaned data is given, so students

that couldn’t solve the previous assignments don’t face problems.

Run the script and observe how the distribution of attribute changes when missing values
are replaced with the mean, maximum, or minimum.

1 import os

2
3 AGE_INDEX = 4

4 AGE_AVERAGE = 29.55

5 AGE_MINIMUM = 0.42

6 AGE_MAXIMUM = 99

7
8
9 def replace_missing_data(substitute, data):

10 replaced_data = list()

11 # Your implementation here

12
13 return replaced_data

14
15
16 def text_histogram_age(hist):

17 keys = ["0-9", "10-19", "20-29", "30-39", "40-49", "50-59", "60-69

", "70-79", "80-89", "90-99"]

18 for key in keys:

19 if len(key) < 5:

20 row_hist = " " + key + " : "

21 else:

22 row_hist = key + ": "

23 for x in range(0, hist[key] / 4):

24 row_hist += "#"

25 row_hist += str(hist[key])

26 print(row_hist)

11



27
28
29 def histogram_age(data):

30 histogram = {"0-9": 0, "10-19": 0, "20-29": 0, "30-39": 0, "40-49"

: 0,

31 "50-59": 0, "60-69": 0, "70-79": 0, "80-89": 0, "90-99":

0}

32 # Your implementation here

33 return histogram

34
35
36 if __name__ == '__main__':

37 # this code is only run when the script is executed, e.g. via:

python task_xx_x.py

38 data_file_name = os.path.join("..", "data", "titanic.csv")

39 cleaned_data = clean_data(data_file_name)

40
41 # if you were not able to write clean_data, then uncomment the

following lines:

42 # cleaned_data = list()

43 # with open("..\data\cleaned_titanic.csv") as file_handle:

44 # for line in file_handle:

45 # cleaned_data.append(line)

46 print("Distribution of cleaned data without replacing missing

values:")

47 print(histogram_age(cleaned_data))

48 text_histogram_age(histogram_age(cleaned_data))

49 print("Distribution of cleaned data after replacing missing values

with mean:")

50 replaced_cleaned_data = replace_missing_data(AGE_AVERAGE,

cleaned_data)

51 print(histogram_age(replaced_cleaned_data))

52 text_histogram_age(histogram_age(replaced_cleaned_data))

53 #run again by replacing missing values with minimum and maximum as

well.

Listing 5: task_02_2.py

Hints
– See https://docs.python.org/3/library/stdtypes.html#string-methods

for the documentation of string manipulation methods.

c) Write Cleaned Data with No Missing Value to File (2 Point)

After preprocessing and cleaning te data, data scientists often divide the data in two sets
known as train and test. They investigate the train set thoroughly and obtain statistical
model based on the data. Then, they evaluate their model on test data.

12

https://docs.python.org/3/library/stdtypes.html#string-methods


Your task: Consult the documentation for the csv module and complete the following
script. Your code selects randomly 20% of the records in the final data set (cleaned and
with no missing value) and write them in a file named titanic_test.csv. The remaining
records that are not selected should be written in a separate file named titanic_train.csv.

Note:
– The cleaned and with no missing value data is provided, so students that couldn’t

complete previous assignments don’t face problems.

1 import os

2
3 AGE_AVERAGE = 29.55

4
5 def is_float(value):

6 try:

7 float(value)

8 return True

9 except ValueError:

10 return False

11
12
13 def is_age_valid(record):

14 # your implementation here

15 return True

16
17
18 def clean_data(file_name):

19 cleaned_records = list()

20 with open(file_name) as file_handle:

21 for row in file_handle:

22 if is_age_valid(row):

23 cleaned_records.append(row)

24
25 return cleaned_records

26
27
28 def replace_missing_data(substitute, data):

29 replaced_data = list()

30 # Your implementation here

31
32 return replaced_data

33
34 if __name__ == '__main__':

35 # this code is only run when the script is executed, e.g. via:

python task_xx_x.py

36 data_file_name = os.path.join("..", "data", "titanic.csv")

37 cleaned_data = clean_data(data_file_name)

38 replaced_cleaned_data = replace_missing_data(AGE_AVERAGE,

cleaned_data)

13



39
40 # # if you were not able to write replace_missing_data, then

uncomment the following lines:

41 # replaced_cleaned_data = list()

42 # with open("..\data\\replaced_cleaned_titanic.csv") as

file_handle:

43 # for line in file_handle:

44 # cleaned_data.append(line)

Listing 6: task_02_2.py

Hints
– See https://docs.python.org/3/library/random.html for the documenta-

tion of python random generator.

2.2 Remarks

1. https://docs.python.org/3/library/stdtypes.html#string-methods
2. https://docs.python.org/3/library/random.html

14

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/random.html

	Task: Data Exploration (4 Points)
	Assignment
	Read and Display Data from the CSV File (1 Point)
	Statistics for Numerical Data (1.5 Points)
	Learn About Nominal Attribute (1.5 Points)

	Remarks

	Task: Data Cleaning (6 Points)
	Assignment
	Discard Records with Invalid Age (2.5 Points)
	Missing Data Imputation (2.5 Points)
	Write Cleaned Data with No Missing Value to File (1 Point)

	Remarks


