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Visual Odometry for Outdoor Ground Vehicles 

Davide Scaramuzza, Member, IEEE, and Roland Siegwart, Fellow, IEEE 

Abstract—In this paper, we describe a real-time algorithm for 
computing the ego-motion of a vehicle relative to the road. The 
algorithm uses as input only those images provided by a single om­
nidirectional camera mounted on the roof of the vehicle. The front 
ends of the system are two different trackers. The first one is a 
homography-based tracker that detects and matches robust scale-
invariant features that most likely belong to the ground plane. The 
second one uses an appearance-based approach and gives high-
resolution estimates of the rotation of the vehicle. This planar pose 
estimation method has been successfully applied to videos from 
an automotive platform. We give an example of camera trajectory 
estimated purely from omnidirectional images over a distance of 
400 m. For performance evaluation, the estimated path is super­
imposed onto a satellite image. In the end, we use image mosaicing 
to obtain a textured 2-D reconstruction of the estimated path. 

Index Terms—Appearance, homography, omnidirectional 
camera, scale-invariant feature transform (SIFT) features, 
vehicle ego-motion estimation, visual odometry. 

I. INTRODUCTION 

ACCURATE estimation of the ego-motion of a vehicle rel­
ative to the road is a key component for autonomous driv­

ing and computer-vision-based driving assistance. Using cam­
eras instead of other sensors for computing ego-motion allows 
for a simple integration of ego-motion data into other vision-
based algorithms, such as obstacle, pedestrian, and lane de­
tection, without the need for calibration between sensors. This 
reduces maintenance and cost. In the robotics community as 
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well, effective use of video sensors for obstacle detection and 
outdoor navigation has been a goal for many years. 

Most of the work in estimating robot motion has been pro­
duced using stereo cameras, and can be traced back to Moravec’s 
work [1]. Similar work has been reported elsewhere also (see 
[2]–[4]). Furthermore, stereo visual odometry has also been 
successfully used on Mars by the National Aeronautics and 
Space Administration (NASA) rovers since early 2004 [5]. 
Nevertheless, visual odometry methods for outdoor applica­
tions have also been produced, which use a single camera 
alone. 

The problem of recovering relative camera poses and 3-D 
structure from a set of 2-D camera images has been largely 
studied for many years and is known in the computer vision com­
munity as “structure from motion” [6]. Very successful results 
have been obtained over long distances using either perspective 
or omnidirectional cameras (see [4] and [7]). The authors in [4] 
deal with the case of a stereo camera, and they also provide 
a monocular solution implementing a fully structure from mo­
tion algorithm that takes advantage of the five-point algorithm 
and random sample consensus (RANSAC) robust estimation. 
The authors in [7] provide two approaches for monocular visual 
odometry based on omnidirectional imagery. In the first ap­
proach, they use optical flow computation, while in the second 
one, full structure from motion. 

Closely related to structure from motion is what is known 
in the robotics community as simultaneous localization and 
mapping (SLAM), which aims at estimating the motion of the 
robot while simultaneously building and updating the environ­
ment map. SLAM has most often been performed with other 
sensors than regular cameras; however, in the past years suc­
cessful results have been obtained using single cameras alone 
(see [8]–[11]). Recently, the authors in [10] presented a method 
for mapping large loops with a single hand-held camera. There, 
the authors extend Davison’s work on visual 3-D-SLAM [9] 
and build outdoor, closed-loop maps much larger than previ­
ously achieved with visual input alone. 

In this paper, we do not deal with visual SLAM, rather we con­
centrate on the development of a vision-based real-time method 
to estimate the motion of outdoor ground vehicles over long 
distances. In our approach, we used a single calibrated omni­
directional camera mounted on the roof of the car. We assume 
that the vehicle undergoes a purely 2-D motion over a predom­
inant flat ground. Furthermore, because we wanted to perform 
visual odometry in city streets, flat terrains, as well as in motor­
ways where buildings or 3-D structure are not always present, 
we chose to estimate the motion of the vehicle by tracking the 
ground plane. 
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Ground plane tracking has already been exploited by the 
robotics community for indoor visual navigation and most 
works have been produced using standard perspective cameras 
([12]–[15]). In these works, the motion of the vehicle is 
estimated by using the property that the projection of the 
ground plane into two different camera views is related by a 
homography. 

In this paper, we propose a similar approach for central omni­
directional cameras, but our goal is to estimate the ego-motion 
of the vehicle in outdoor environments and over long distances. 
Due to the large field of view (FOV) of the panoramic cam­
era, interesting points from all around the car are extracted and 
matched from pairs of consecutive frames. Our key points are 
scale-invariant feature transform (SIFT) features [16], as they 
proved to work well with omnidirectional pictures also. 

Furthermore, we want to extract those key points that belong 
to the ground plane only. To retain only these points and discard 
all the rest, we use a RANSAC-based outlier removal, which 
uses the constraint that coplanar points seen from different views 
are related by a homographic transformation. The remaining 
inliers are then used to compute the rotation and translation 
matrices. To update the motion, we use only the magnitude 
of the translation because the rotation estimated from features 
alone gives rise to large drift errors after several hundreds of 
meters. Conversely, to estimate the rotation angle of the vehicle, 
we use an appearance-based tracker. We show that by using 
this second tracker, the drift error stays very low over several 
hundreds of meters. 

The performance of our approach has been evaluated on a 
real platform. We will show an example of a camera trajectory 
estimated purely from omnidirectional images over a distance 
of 400 m. For performance evaluation, the estimated path is su­
perimposed onto a satellite image of the same test environment. 
Furthermore, we use image mosaicing to obtain a textured 2-D 
reconstruction of the estimated path. 

This paper is organized as follows. Section II describes our 
homography-based ground plane navigation. Section III eval­
uates the performance of two different algorithms for tracking 
the ground plane. Section IV describes the appearance-based 
tracker. Section V summarizes the steps of the whole visual 
odometry algorithm. Finally, Section VI presents our experi­
mental results. 

II. HOMOGRAPHY-BASED GROUND PLANE NAVIGATION 

The motion information that can be extracted by tracking 2-D 
features is central to our vehicle navigation system. Therefore, 
we briefly review a method that uses planar constraints and point 
tracking to compute the motion parameters. 

A. Homography and Planar Motion Parameters 

Early work on exploiting coplanar relations has been pre­
sented by Tsai and Huang [17], Longuet-Higgins [18], and 
Faugeras and Lustman [19]. The coplanar relation between two 
different views of the same plane can be summarized as follows. 
Consider two camera-centered coordinate systems, frame 1 and 

frame 2, which are related by a rigid body transformation: 

X2 = RX1 + T (1) 

where X1 ,X2 ∈ R3 are the coordinates of a scene point relative 
to camera frames 1 and 2, respectively, and R ∈ SO(3), T ∈
R

3 are the rotation and the translation matrices encoding the 
relative position of the two coordinate systems. Now, assume 
that X1 lies on the plane defined by 

nTX1 = h (2) 

where n ∈ R3 is the plane normal and h ∈ R is the distance to 
the plane. Then, substituting (2) into (1) gives 

( TnT ) 
X2 = R + X1 . (3)

h 
We call the matrix 

H = R + 
TnT 

∈ R3×3 (4)
h 

the (planar) homography matrix since it denotes a linear trans­
formation from X1 to X2 as 

X2 = H X1 . (5)· 
Note that the matrix H depends on the motion parameters 
{R,T} as well as the structure parameters {n, h} of the plane. 

Now, let x1 , x2 ∈ R3 be the normalized image coordinates of 
X1 ,X2 on the unit sphere, i.e. 

λ1x1 = X1 λ2x2 = X2 (6) 

where λ1 , λ2 are the depth factors. 
Then, from (5), we have 

λ2x2 = H λ1x1 (7)· 
and then, we can write 

x2 ∼ H x1 (8)· 
where ∼ indicates the equality up to a scale factor. 

Since (8) is defined up to a scale factor, H has only 8 DOF. 
This implies that four corresponding feature pairs (no three 
collinear) are required to linearly determine H. If more than four 
points are available, then a least-square solution can be searched. 
The algorithm we used in our implementation to recover H from 
a set of consistent point correspondences uses the normalized 
direct linear transformation (DLT) [6]. 

Observe that because the homography is defined up to a scale, 
we are able to recover H of the form 

HL = λH = λ R + 
TnT 

∈ R3×3 (9)
h 

for some (unknown) scale factor λ. However, as shown in [28], 
the scale factor can be computed as 

|λ| = σ2(HL ) (10) 

where σ2(HL ) ∈ R is the second largest singular value of HL . 
Once λ is computed, the estimated homography can be normal­
ized, i.e., H = HL /λ. 

Finally, observe that (8) also suggests a method to check 
whether a given set of points are coplanar. Namely, if we can 
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Fig. 1. Vehicle used in our experiments equipped with the omnidirectional 
camera (in the circle). The vertical FOV is indicated by the lines. 

select four coplanar corresponding point pairs that are in a suf­
ficiently general configuration, then H can be computed and 
used to check whether the other points in the scene lie in the 
same plane. This is actually the principle of our RANSAC-based 
outlier removal and will be detailed in Section II-F. 

B. Omnidirectional Camera Model and Calibration 

The model we used in our work is the generalized omni­
directional model proposed in [22]. This model describes the 
imaging function that maps world points into camera image 
points by means of an approximated Taylor series expansion 
whose coefficients are the calibration parameters. We used this 
model because the calibration is straightforward due to the avail­
ability of a Matlab toolbox available on the author’s Web page 
and because it is also suitable to any central omnidirectional 
camera, both dioptric and catadioptric. However, it is important 
to remark that any other calibration method could have been 
adopted without restriction provided that the camera is central, 
i.e., it possesses a single effective view point (SVP) [27]. When 
the SVP property is verified, any calibrated camera, both omni­
directional and perspective, can be represented as a set of optical 
rays emanating from the SVP to the viewing directions [see (6)]. 
The length of these optical rays can be chosen up to the user. 
Depending on the application, the rays can be projected onto the 
unit sphere [as we mentioned earlier before (6)] or onto a plane 
(perspective projection). The coordinates of these reprojected 
rays are usually referred to as normalized image coordinates. 
When the image coordinates are normalized, (8) is valid for 
both perspective and omnidirectional cameras. 

C. Homography or Euclidean Transformation? 

In our experiments, we mounted the omnidirectional camera 
on the roof of the car (Fig. 1) with the z-axis of the mirror per­
pendicular to the ground plane (Fig. 2). By fixing the origin of 
our coordinate system in the center of projection of the omni­
directional camera (Fig. 2), we have that n = [0, 0, −1]T . The  

Fig. 2. Omnidirectional camera model. The axis origin coincides with the 
single view point of the camera–mirror system. The camera axis is considered 
to be perpendicular to the ground plane. 

distance h of the origin to the ground plane can be measured 
manually. 

According to the last considerations, the homography H has 
the form 

TnT 

H = R + 
h      

cos θ − sin θ 0 1 t1 0 
T 

 +  t2    

0 0 1 h 0 
·

−1 
=  sin θ cos θ 0 0 

  
cos θ − sin θ −t1 /h 

=  sin θ cos θ −t2 /h  (11) 
0 0 1 

where θ is the rotation angle of the camera about the z-axis, and 
t1 and t2 are the elements of T. 

Equation (11) describes a Euclidean transformation on the 
image plane, which is a particular case of homography. The 
Euclidean transformation has only 3 DOF and allows us a more 
stable estimation of the motion with respect to the homography 
(i.e., 8 DOF) when the motion is constrained to be on the ground 
plane. However, because of the unavoidable vibrations the cam­
era is subjected to during the motion of the vehicle as well as the 
nonperfect verticality of the camera, the form of H may appear 
slightly different from (11). Therefore, an 8-DOF homography 
is more appropriate than a Euclidean transformation to describe 
the relation between the two views. 

In the next section, we will see two methods to decompose the 
homography to extract R and T: the “Triggs algorithm” and the 
“Euclidean method.” We will assume that the image coordinates 
x1 and x2 are matched correctly and satisfy the homography 
constraint (i.e., coplanarity). In Section II-F, we will explain 
how to extract these points. 

In Section III, we will evaluate the performance of the two 
approaches when the planar motion constraint and the verticality 
of the camera are not perfectly satisfied. 
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Fig. 3. (a) Uniform distribution of features. (b) Nonuniform distribution. 

D. Decomposing H 

If a camera is internally calibrated, it is possible to recover 
R, T, and n from H up to at most a twofold ambiguity. A 
linear method for decomposing H was originally developed 
by Wunderlich [25] and later reformulated by Triggs [26]. The 
algorithm of Triggs is based on the singular value decomposition 
of H. The description of this method as well as its Matlab 
implementation can be found in [26]. This algorithm outputs 
two possible solutions for R, T, and n that are all internally 
self-consistent. In the general case, some false solutions can 
be eliminated by sign (visibility) tests or geometric constraints, 
while in our case, we can disambiguate the solutions by choosing 
the one for which the computed plane normal n is closer to 
[0, 0, −1]T . 

Once the two solutions are disambiguated, the rotation angle 
θ and the translation components t1 , t2 along the ground plane 
can be computed in the following manner. Indeed, because the 
Triggs algorithm also returns the normal n to the plane, and we 
are only interested in computing the motion along the plane, we 
can actually project the estimated R and T onto the plane using 
n. From these projections, the rotation angle θ and the translation 
components t1 , t2 along the ground plane are obtained. 

In the remainder of this paper, we will refer to this method as 
the “Triggs algorithm.” 

In our implementation, we used the Triggs algorithm but we 
sometimes interchanged it with another method also that we are 
now going to describe. Indeed, the Triggs algorithm works in 
general very well if the image points are spatially uniformly dis­
tributed on the camera image [see Fig. 3(a)]. If the image points 
are too close to a degenerate configuration or they are spatially 
distributed within one side of the whole omnidirectional image 
[Fig. 3(b)], then it is better to use the Euclidean approximation 
given in (11). The quantitative justification of this statement can 
be found in Section III where we evaluate the performance of 
the two methods. 

Here, we describe how to use the Euclidean approximation to 
derive the rotation and translation parameters. By using x1 = 
[x1 , y1 , 1] and x2 = [x2 , y2 , 1], from (11), we have 

x2 = cx1 − sy1 − a 
y2 = sx1 + cy1 − b 

(12) 

with c = cos  θ, s = sin  θ, a = t1 /h, and b = t2 /h. Each point 
pair gives two equations, and hence given two point pairs we can 

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008 

linearly recover c, s, a, and b. When more point correspondences 
are given (say n corresponding pairs) a linear least-squares so­
lution can be found with the pseudoinverse matrix method. To 
this end, observe that (12) can be rewritten as     

c	 c 
x1 −y1 −1 0  s   s 
= A   = B  = 

x2 �
y1 x1 0 −1 

·	
a y2 

· 
a


b b

(13) 

where A ∈ R2n×4 and B ∈ R2n×1 . The linear least-squares 
T = A+ B,solution of (13) is [c, s, a, b] where A+ = 

(ATA)−1AT is the pseudoinverse of A. 
Observe that before solving (13), it is a good practice to nor­

malize the data through the Hartley’s normalization [6] (known 
as preconditioning in the numerical literature). This makes the 
linear solution more robust to image noise. 

Finally, observe that the matrix Q = [c, −s; s, c] may not be 
orthonormal because of the method used to compute its coeffi­
cients s and c. However, we can compute an orthonormal matrix 
that better approximates Q. 

The best rotation matrix R2D to approximate Q in the Frobe­
nius sense is R2D = UVT , where [U, S, V] = SVD(Q) and 
SVD(Q) is the singular value decomposition of Q. 

Here, “best” is in the sense of the smallest Frobenius norm of 
the difference R2D − Q, which solves the problem 

R2D  

‖R2D − Q‖2min F subject to R2D R2D
T = I. (14)· 

Finally, from R2D , the rotation angle θ can be computed 
easily. At the same time, t1 , t2 can be directly computed from a 
and b knowing h. 

In the remainder of this paper, we will refer to this last method 
as the “Euclidean method.” 

In the final implementation of our algorithm, we implemented 
both the Triggs algorithm and the Euclidean method. The trigger 
condition to use the one or the other is given by the spatial 
distributions of the image points. If the image points occupy 
both the left and the right half of the omnidirectional image 
[like in Fig. 3(a)], then the Triggs algorithm is used. If the 
image points are only in one half (i.e., either the left or the right 
one) of the image [like in Fig. 3(b)], then the Euclidean method 
is used. 

E. Maximum Likelihood Estimation 

In Section II-D, we have described two different approaches 
to recover the translation parameters and the rotation angle of 
the vehicle, given a set of image correspondences that are as­
sumed to lie on a plane. However, the solution given by both 
approaches is obtained by a linear method that minimizes an al­
gebraic distance that is not meaningful physically. We can refine 
it through maximum likelihood inference. The maximum like­
lihood estimate can be obtained by minimizing the following 
functional: 

n 
i i	 i imin ‖x1 − ˆ	 x2 (θ, t1 , t2)‖2x1 (θ, t1 , t2)‖2 + ‖x2 − ˆ

θ,t1 ,t2 
i=1  

(15) 
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with ˆ x2 = Hx1 . If the Triggs algorithm is used, 
H is defined as in [26], otherwise it is defined as in (11). 

To minimize (15), we used the Levenberg–Marquadt algo­
rithm. This algorithm requires an initial guess for θ, t1 , and t2 . 
As an initial guess, we used the linear solutions provided by 

x1 = H−1x2 , ˆ

(13) and (14). 

F. Coplanarity Check 

The equations given in the previous sections assume that the 
corresponding image pairs x1 and x2 are correctly matched and 
that the points lie on the ground plane. Even though in omnidi­
rectional images taken from the roof of the car, the ground plane 
is predominant, there are also many feature points that come 
from other objects than just the road, like cars, buildings, trees, 
guardrails, etc. Furthermore, there are also many unavoidable 
false matches that are more numerous than those usually output 
by the SIFT on standard perspective images (about 20%–30% 
according to [16]) because of the large distortion introduced 
by the mirror. To discard the outliers, we used the RANSAC 
paradigm [20]. The RANSAC steps in our case are formally the 
following. 

1) Let A be the set of all image pairs output by SIFT from 
two consecutive frames. At each iteration, four putative 
corresponding pairs are randomly selected from A and a 
homography H is instantiated from these points (four is 
the minimum number of point pairs required to compute 
an 8-DOF homography). 

2) The instantiated H is used to determine the subset S1 of 
point pairs in A that are within some error tolerance d. 
This subset S1 is called consensus set. 

3) If the number of members in S1 is greater than some 
threshold t, which is a function of the expected number of 
outliers in A, then S1 is used to compute a new H∗. 

4) Otherwise, if the number of members in S1 is less than t, 
then a new subset S2 is randomly selected and the previous 
process is repeated. 

If, after some predetermined number of trials, no consensus 
set with t or more members is found, then the homography H∗ 

with the largest consensus set is used. How to the estimate t as 
a function of the number of outliers can be found in [20]. 

As an error measure to determine the subset S1 of pairs that 
are within the error tolerance d, we used the symmetric transfer 
error 

i i i 2erri = ‖x2 − Hxi 
1 ‖2 + ‖x1 − H−1x . (16)2 ‖

We reject every pair for which erri > d, where d is com­
puted statistically according to the Huber-type skipped means 
rule [21], i.e., d = 5.2MAD. MAD stands for median absolute 
deviation and is defined as 

MAD(err) = mediani{|erri − medianj (errj )|}. (17) 

Observe that if a prior estimate of the rotation angle is avail­
able (consider, for example, that coming from the visual com­
pass of Section IV), then this can be used as a prestage in the first 
step of RANSAC to constrain the selection of putative matches. 
This has the effect of speeding up the search of inliers and re­

ducing the percentage of outliers. In our implementation, we do 
this in the following manner: we assume a 3-DOF motion, then 
the rotation angle can be computed from at least two putative 
point pairs. If this rotation estimate is consistent (within a cer­
tain threshold) with that given by the visual compass, then the 
two point pairs are retained. 

III. TRIGGS VERSUS EUCLID: A PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the Triggs 
and the Euclidean methods under the influence of image noise, 
point distribution, nonperfectly planar motion, and nonperfectly 
vertical camera. The analysis is done on simulated data. 

In the simulated environment, we used the same omnidirec­
tional camera model of our experiments. Also, the image size 
was assigned as in the real experiments, namely, 640 × 480 
pixels. The self-occlusion of the camera was simulated by re­
moving a circular region of radius Rmin  from the center of the 
omnidirectional image (like in Fig. 11). The length of the camera 
displacement was chosen equal to the maximum displacement 
of our real vehicle between two consecutive frames, namely 
0.6 m. Also, the camera distance h to the ground plane was 
assigned as in the real experiments, namely 2 m. 

In each simulation trial, we used ten feature points randomly 
selected from the ground plane. To randomly select these points, 
we used a uniform probability distribution over the interval 
[−5, 5] m along both the x- and y-directions. This point interval 
is consistent to that observed during the experiments. Once the 
features were selected, we projected them onto the image plane 
and considered only their pixel coordinates. 

Our goal is to characterize the performance of the outputs 
of the Triggs and Euclidean methods when the planar motion 
constraint and the verticality of the camera are not perfectly 
satisfied. The outputs we are interested in are the motion pa­
rameters along the ground plane, i.e., the rotation angle θ (here 
called yaw angle) and the translation length along the ground 

2 2plane T| = t1 + t2 , where t1 , t2 are computed as given in |
Section II-D. For each simulation experiment, we will give the 
plots of the absolute errors of θ and T|, respectively. |

As a first study, we characterize the performance of the two 
algorithms with respect to Gaussian image noise. In the first 
stage, we consider the ideal case where the camera undergoes 
pure planar motion and the camera is perfectly vertical. In this 
experiment, the coordinates of all image points were corrupted 
by Gaussian noise with mean zero and variance σ. We varied  σ 
from 0 to 2 pixels, and for each value, we ran 1000 independent 
trials where we computed the motion parameters θ and |T .|
The results shown in Fig. 4 are the average of the absolute 
error. As observed, the error increases linearly with the noise 
variance. Furthermore, the error given by the Euclidean method 
is smaller than that given by the Triggs approach. This result 
was expected because the Euclidean method provides 3-DOF 
motion estimates that are more robust to image noise when the 
motion is purely planar and the camera perfectly vertical. 

Conversely, when this assumption does not hold, the behavior 
of the two algorithms can be much different. As an example, 
consider Fig. 5 to see what happens if the camera does not appear 
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Fig. 4. Motion estimates versus noise variance [σ (in pixels)]. (a) Yaw angle 
(in degrees). (b) Translation length (in meters). The case of pure planar motion 
and camera perfectly vertical is considered. 

Fig. 5. Motion estimates versus noise variance [σ (in pixels)]. (a) Yaw angle 
(in degrees). (b) Translation length (in meters). Camera nonperfectly vertical: 
pitch = roll = 1.0◦. 

perfectly vertical. To generate this plot, we kept the direction of 
motion still parallel to the ground plane but we slightly changed 
the orientation (roll and pitch angles) of the camera axis in the 
second position; in particular, we set roll = pitch = 1.0◦. As  
observed, for small noise values, the Triggs algorithm performs 
better than the Euclidean one. Indeed, in the noise-free case, it 
can compute the exact orientation of the camera, while the Eu­
clidean method cannot. Thus, for small noise values, it performs 
better than the Euclidean approach. Conversely, when the noise 
increases, the error on the six motion parameters becomes more 
relevant, while the error of the Euclidean method stays constant. 
In the next simulations, we will consider a noise variance of 
0.3 pixels. 

In Section II-D, we mentioned that we switch between the 
Triggs and the Euclidean method according to the distribution 
of the image points (see Fig. 3). The justification of this choice 
will now be given. First of all, consider that if the scene points 
are collinear, the homography cannot be computed because the 
points are in a degenerate configuration. In practice, however, 
the image points are always corrupted by noise or the scene 
points are nearly collinear. Thus, in both cases, the homography 
can be instantiated but, because the data are badly conditioned, 
the result of the homography decomposition by Triggs would 
diverge from the correct result. Conversely, the Euclidean trans­
formation is not affected by the collinearity of the scene points. 
This brought us to the conclusion that if the scene points are 
nearly collinear (and so the image points lie nearly on a conic), 
the Euclidean transformation should be used; in all the other 

Fig. 6. Motion estimates versus point distribution (Σ (in meters)). Point dis­
tribution is computed as point variance along the y-axis. (a) Yaw angle (in 
degrees). (b) Translation length (in meters). The case of pure planar motion and 
camera perfectly vertical is considered. 

Fig. 7. Motion estimates versus point distribution (Σ (in meters)). Point 
distribution is computed as point variance along the y-axis. (a) Yaw angle 
(in degrees). (b) Translation length (in meters). Camera nonperfectly vertical: 
pitch = roll = 1.0◦ 

cases, the Triggs algorithm should be adopted. By performing 
several simulations, we actually found that it is better to use 
the Euclidean algorithm when the image points lie only on one 
half of the omnidirectional image (i.e., scene points potentially 
collinear). 

To demonstrate this, we generated our random features along 
a line parallel to the x-axis and distant 1 m from the camera 
origin. Then, we perturbed the y-coordinate of the features with 
Σ meters Gaussian noise. Finally, we projected the features onto 
the image plane and added 0.3 pixel Gaussian noise. We varied 
Σ from 0 to 2 m and ran 1000 independent trials. The average 
values of the absolute error of the motion estimates are shown 
in Fig. 6. As observed, the Euclidean method performs better 
than the Triggs for every Σ. However, this experiment was done 
by again considering pure planar motion and camera perfectly 
vertical; hence, the Euclidean method has to provide the best 
result. 

Conversely, the effect of a nonperfectly vertical camera 
(namely, roll = pitch = 1◦) can be seen in Fig. 7 As ob­
served in these plots, the Euclidean method provides more 
accurate motion estimates than the Triggs method only when 
Σ < 0.2 m. This means that when Σ = 0.2, most features lie 
within 3Σ = 0.6 m distance from the line. By increasing further 
on the inclination of the camera (roll, pitch >1 ◦), we found 
that this threshold also increases. In practice, the inclination of 
the camera changes over the time due to jittery motion. This 
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Fig. 8. Sensitivity of motion estimates to nonplanar motion. The sensitivity 
is computed as a function of the roll angle of the camera in the second view 
(pitch = 0, Tz = 0.1 m). (a) Yaw angle (in degrees). (b) Translation length (in 
meters). 

Fig. 9. Sensitivity of motion estimates to the camera axis orientation with 
respect to the vertical. The sensitivity is computed as a function of the angle 
between the camera axis and plane normal. (a) Yaw angle (in degrees). (b) 
Translation length (in meters). 

phenomenon motivated our decision of switching the two meth­
ods according to the distribution of the image points. Finally, ob­
serve that when Σ approaches 0 (i.e., scene points are collinear), 
the motion estimates by Triggs diverges as expected. 

Fig. 8 shows the sensitivity of the motion estimates to non-
perfectly planar motion. We added a translation component 
Tz = 0.1 m along the z-axis and also varied the relative ori­
entation of the camera in the second position. The sensitivity 
of the motion parameters is computed as a function of the roll 
angle of the camera in the second position. The roll was varied 
from 0◦ to 5◦, and for each value, 1000 trials were run. For 
each run, 0.3 pixel noise was added to corrupt the image points. 
As observed, the Triggs algorithm always performs better than 
the Euclidean method, showing to be able to detect violations 
from the planar motion assumption. We also performed the same 
experiment by varying the pitch angle and we obtained similar 
plots. 

Finally, Fig. 9 shows the influence of a nonperfectly vertical 
camera axis on the motion estimates. The motion is still assumed 
to be parallel to the ground plane. The plot is shown as a function 
of the angle between the plane normal and the camera axis. This 
angle was varied from 0◦ to 5◦ and for each value, 1000 trials 
were run. For each run, 0.3 pixel noise was added to corrupt 
the image points. As observed, the Triggs algorithm is able to 
detect deviations of the camera from the verticality. 

Fig. 10. Two unwrapped omnidirectional images. For reasons of space, here 
only one half of the whole 360◦ is shown unwrapped. The central part of the 
image corresponds to the front view of the vehicle (see Fig. 11). The two frames 
were taken at different times while the car was translating and turning right. The 
upper image is taken at time t − 1, the lower image at time t. The red (gray) line 
is the horizon line. The white box is the search window used in our experiments. 

IV. VISUAL COMPASS 

In Section II, we described how to use point features to com­
pute the rotation and translation matrices. Unfortunately, when 
using features to estimate the motion, the resulting rotation is 
extremely sensitive to systematic errors due to the intrinsic 
calibration of the camera or the extrinsic calibration between 
the camera and the ground plane (the last case was studied in 
Section III). This effect is even more accentuated with omni­
directional cameras due to the large distortion introduced by 
the mirror. In addition to this, integrating rotational information 
over time has the major drawback of generally becoming less 
and less accurate as integration introduces additive errors at each 
step. An example of camera trajectory recovered only using the 
feature-based approach described in Section II is depicted in 
Fig. 13. 

To improve the accuracy of the rotation estimation, we used 
an appearance-based approach. This approach was inspired by 
a recent work on the use of omnidirectional cameras as visual 
compass [23]. Directly using the appearance of the world as 
opposed to extracting features or structure of the world is attrac­
tive because methods can be devised that do not need precise 
calibration steps. Here, we describe how we implemented our 
visual compass. 

For ease of processing, every omnidirectional image is un­
wrapped into cylindrical panoramas (see Fig. 10). The unwrap­
ping considers only the white region of the omnidirectional 
image that is depicted in Fig 11. We call these unwrapped ver­
sions “appearances.” If the camera is perfectly vertical to the 
ground, then a pure rotation about its vertical axis will result 
in a simple column-wise shift of the appearance in the opposite 
direction. The exact rotation angle could then be retrieved by 
simply finding the best match between a reference image (before 
rotation) and a column-wise shift of the successive image (after 
rotation). The best shift is directly related to the rotation angle 
undertaken by the camera. In the general motion, translational 
information is also present. This general case will be discussed 
later. 

The input to our rotation estimation scheme is thus made of 
appearances that need to be compared. To compare them, we 
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Fig. 11. Cylindrical panorama is obtained by unwrapping the white region. 
The front view is the view pointing to the heading direction of the vehicle. The 
reduced FOV around the front and back of the camera is demarcated by the two 
lines. 

used different similarity measures. In particular, we have tried 
cross-correlation, zero-mean normalized cross-correlation, L1­
norm (Manhattan distance), and an L2-norm (Euclidean dis­
tance). The best results were obtained by using the Euclidean 
distance. A performance comparison with the other metrics is 
not given in this paper. 

The Euclidean distance between two appearances Ii and Ij , 
with Ij being column-wise shifted (with column wrapping) by 
α pixels, is 

√ h w c 

d(Ii, Ij , α) =  √ Ii (k, h, l) − Ij (k, h − α, l)|2|
k =1  h=1  l=1  

(18) 

where h × w is the image size and c is the number of color 
components. In our experiments, we used the red, green, and 
blue (RGB) color space, thus having three color components 
per pixel. 

Defining αm the best shift that minimizes the distance 
d(Ii, Ij , αm ) ≤ d(Ii, Ij , α) ∀α ∈ R, then the rotation angle ∆ϑ 
(in degrees) between Ii and Ij is 

360
∆ϑ = αm . (19) 

w 

The width w of the appearance is the width of the omnidirec­
tional image after unwrapping and can be chosen arbitrarily. In 
our experiments, we used w =360, which means that the angu­
lar resolution was 1 pixel/◦. To increase the resolution to 0.1◦, 
we used cubic spline interpolation with 0.1 pixel precision. We 
also tried larger image widths, but we did not get any remark­
able improvement in the final results. Thus, we used w =360 
as the unwrapping can be done in a negligible amount of time. 
The Euclidean distance between the two images in Fig. 10 as a 
function of the column-wise shift of the second image is shown 
in Fig. 12. 

The distance minimization in (18) makes sense only when 
the camera undergoes a pure rotation about its vertical axis, as 
a rotation corresponds to a horizontal shift in the appearance. In 
the real case, the vehicle is moving and translational component 

Fig. 12. Euclidean distance between the two images in Fig. 10 as a function of 
the column-wise shift of the second image. The distance is computed according 
to (18). 

is present. However, the “pure rotation” assumption still holds 
if the camera undergoes small displacements or the distance 
to the objects (buildings, tree, etc.) is large compared to the 
displacement. In the other cases, this assumption does not hold 
for the whole image, but an improvement that can be done 
over the theoretical method is to only consider parts of the 
images, namely the front and back part (see Fig. 11). Indeed, the 
contribution to the optic flow by the motion of the camera is not 
homogeneous in omnidirectional images; a forward/backward 
translation mostly contributes in the regions corresponding to 
the sides of the camera and very little in the parts corresponding 
to the front and back of the camera, while the rotation contributes 
equally everywhere. 

Because we are interested in extracting the rotation informa­
tion, only considering the regions of the images corresponding 
to the front and back of the camera allows us to reduce most of 
the problems introduced by the translation, in particular sudden 
changes in appearance (parallax). 

According to the last considerations, in our experiments, we 
used a reduced FOV around the front and back of the camera 
(Fig. 11). The reduction of the FOV was done on both the hor­
izontal and vertical planes. A reduced horizontal FOV of about 
30◦ around the front part is shown by the white window in 
Fig. 10. Observe that we also reduced the FOV on the vertical 
plane, in particular under the horizon line. The reason was to re­
duce the influence of the changes in appearance of the road. The 
resulting vertical FOV was 50◦ above and 10◦ below the horizon 
line (the horizon line is indicated in red (gray) in Fig. 10). 

The fact of reducing the FOV (especially on the horizontal 
plane) provided an important improvement over using the whole 
FOV in terms of stability and sensitivity to prominent features 
at the sides of the camera. The effect of the size of the horizontal 
FOV on the estimation of the camera trajectory is depicted in 
Fig. 14 and will be discussed in Section VI. 

V. MOTION ESTIMATION ALGORITHM 

As already mentioned, the appearance-based approach pro­
vides rotation angle estimates that are more reliable and stable 
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than those output by the pure feature-based approach. Here, 
we describe how we combined the rotation angle estimates of 
Section IV with the camera translation estimates of Section II. 

In our experiments, the speed of the vehicle ranged between 
10 and 20 Km/h, while the images were constantly captured 
at 10 Hz. This means that the distance covered between two 
consecutive frames ranged between 0.3 and 0.6 m. For this short 
distance, the camera configuration (x, y, θ), which contains its 
2-D position (x, y) and orientation θ, can be approximated in 
this way 

 
δθi    xi+1  = xi + δρi cos θi +  2  

(20)   yi+1  = yi + δρi sin θi + 
δθi  2   

θi+1  = θi + δθi 

where we use δρ = T h and δθ = ∆ϑ.| |
Observe that T is the same translation vector used in 

Section II, and thus, |T = t12 + t22 , where t1 and t2 are|
computed as described in Section II-D and E. Parameter h is the 
scale factor (i.e., in our case, this is the height of the camera to 
the ground plane). The camera rotation angle ∆ϑ is computed 
as described in Section IV. Observe that we did not use at all 
the rotation estimates provided by the feature-based method of 
Section II. 

Now, let us resume the steps of our motion estimation scheme, 
which have been detailed in Sections II and IV. Our omnidirec­
tional visual odometry operates as follows. 

1) Acquire two consecutive frames. Consider only the region 
of the omnidirectional image, which is between Rmin  and 
Rmax  (see Fig. 11). 

2) Extract and match SIFT features between the two frames. 
Use the double consistency check to reduce the number 
of outliers. Then, use the calibrated camera model to nor­
malize the feature coordinates by reprojecting them onto 
a plane perpendicular to the z-axis and distant 1 from the 
origin. 

3) Unwrap the two images and compare them using the ap­
pearance method described in Section IV. In particular, 
minimize (18), with reduced FOV, to compute the column-
wise shift between the appearances and use (19) to com­
pute the rotation angle ∆ϑ. 

4) Use RANSAC to reject points that are not coplanar 
(Section II-F); in particular, use the available rotation esti­
mate ∆ϑ from the visual compass to speed up RANSAC, 
as explained at the end of Section II-F. 

5) Apply the linear algorithm described in Section II-D to 
estimate R and T from the remaining inliers. In doing this, 
switch between the Triggs algorithm and the Euclidean 
method, as described in Section II-D. Then, refine R and 
T using maximum likelihood estimation (Section II-E). 

6) Use δρ = |T h and δθ = ∆ϑ and integrate the motion |
using (20).


7) Repeat from step 1.


Fig. 13. Comparison between the camera trajectory recovered thorough two 
distinct approaches: solid line, the trajectory recovered using the whole al­
gorithm described in this paper (feature and appearance based); dashed line, 
the trajectory recovered using only the feature-based approach described in 
Section II. 

Fig. 14. Comparison of a camera trajectory recovered by using different FOVs. 

Fig. 15. Heading direction θ (in degrees) versus the traveled distance (in 
meters). The results are shown for different FOVs. 
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Fig. 16. Estimated path superimposed onto a Google Earth image of the test environment. The scale is shown at the lower left corner. 

Fig. 17. Image mosaicing that shows a textured 2-D reconstruction of the estimated path. The two arrows point out the final error at the loop closure (the two 
pedestrian crossings pointed to by the arrows in reality coincide). 

VI. RESULTS 

The approach proposed in this paper has been successfully 
tested on a real vehicle equipped with a central omnidirectional 
camera. A picture of our vehicle (a Smart) is shown in Fig. 1. 

Our omnidirectional camera, composed of a hyperbolic mir­
ror (KAIDAN 360 One VR) and a digital color camera (SONY 
XCD-SX910, image size 640 × 480 pixels), was installed on the 
front part of the roof of the vehicle. The frames were grabbed at 
10 Hz, and the vehicle speed ranged between 10 and 20 km/h. 

The resulting path estimated by our visual odometry algo­
rithm using a 10◦ FOV is shown in Figs. 13, 16, and 17. Our 
ground truth is a satellite image of the same test environment 
provided by Google Earth (Fig. 16). The units used in the three 
figures are meters. 

In this experiment, the vehicle was driven along a 400-m-long 
loop and returned to its starting position (pointed to by the yellow 
(gray) arrow in Fig. 16). The estimated path is indicated with red 
(gray) dots in Fig. 16 and is shown superimposed on a satellite 
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image for comparison. The final error at the loop closure is 
about 6.5 m for the distance and 5◦ for the orientation. This 
error is due to the unavoidable visual odometry drift; however, 
observe that the trajectory is very well estimated until the third 
90◦ turn. After this turn, the estimated path deviates smoothly 
from the expected path instead of continuing straight. After 
road inspection, we found that this deviation was due to three 
0.3-m-tall road humps (indicated by the cyan (gray) circle in 
Fig. 16) that violate the planar motion assumption. 

The content of Fig. 17 is very important as it allows us to 
evaluate the quality of motion estimation. In this figure, we 
show a textured top viewed 2-D reconstruction of the whole 
path. Observe that this image is not a satellite image but is 
an image mosaicing. Every input image of this mosaic was 
obtained by an inverse perspective mapping (IPM) of the original 
omnidirectional image onto an horizontal plane. This inverse 
mapping is always possible for central cameras, i.e., when a 
camera has a single effective viewpoint. After being undistorted 
through IPM, these images were merged together using the 
2-D poses estimated by our visual odometry algorithm. The 
estimated trajectory of the camera is shown superimposed with 
red (gray) dots. If the reader visually and carefully compares 
the mosaic (see Fig. 17) with the corresponding satellite image 
(see Fig. 16), he will recognize in the mosaic the same elements 
that are present in the satellite image, i.e., trees, white footpaths, 
pedestrian crossings, roads’ placement, etc. Furthermore, the 
reader can verify that the location of these elements in the mosaic 
fits well the location of the same elements in the satellite image. 

As mentioned in Section IV, we also evaluated the effect 
of the reduced horizontal FOV on the final motion estimation. 
Fig. 14 shows the recovered estimated trajectory respectively 
using FOV = 10◦, FOV  = 20◦, FOV  = 30◦, and FOV = 60◦. 
Observe that the estimation of the trajectory improves as the 
FOV decreases. Indeed, as mentioned already in Section IV, 
the fact of reducing the FOV allows us to reduce most of the 
problems introduced by the translation, like sudden changes 
in parallax. The best performance in terms of closeness to the 
ground truth of Fig. 16 is obtained when FOV = 10◦. 

In Fig. 15, the effect of the FOV on the estimation of the 
heading direction is also shown. Also, the best performance is 
when FOV = 10◦. In this case, in fact 90◦ turns are very well 
estimated. Furthermore, when FOV = 10◦ the heading direction 
stays quite constant after each turn, i.e., when the vehicle covers 
a straight path. Note that when the vehicle returns to its start 
position, the estimated heading direction is equal to 355◦, which 
means that the orientation error at the loop closure is 5◦. 

Finally, a comparison of the proposed algorithm with the only 
feature based method of Section II is shown in Fig. 13. 

VII. CONCLUSION 

In this paper, we described a real-time algorithm for com­
puting the ego-motion of a vehicle relative to the road. The 
algorithm uses as input only those images provided by a single 
omnidirectional camera. The front ends of the system are two 
different trackers. The first one is a feature-based tracker that 
uses SIFT features and a RANSAC-based outlier removal to 

track the key points that most likely belong to the ground plane. 
The second one uses an appearance-based approach to give 
high-resolution estimates of the rotation angle of the vehicle. 
Using the first tracker to compute the vehicle displacement in 
the heading direction and the second tracker to compute the vehi­
cle rotation proved to give very good visual odometry estimates 
under planar motion assumption. Furthermore, the performance 
of the motion estimation given by the proposed method is better 
than the pure feature-based approach (see Fig. 13). 

The proposed algorithm was successfully applied to videos 
from an automotive platform. We gave an example of a camera 
trajectory estimated purely from omnidirectional images over 
a distance of 400 m. The accumulated error after 400 m (i.e., 
error at the loop closure) was about 6.5 m for the distance and 5◦ 

for the orientation. For performance evaluation, the estimated 
path was superimposed onto a satellite image of the same test 
environment and a textured 2-D reconstruction of the path was 
built. 
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