
Terrender: A Web-Based Multi-Resolution Terrain Rendering
Framework

Julian A. Croci
julian.croci@bluewin.ch
University of Zurich
Zurich, Switzerland

Alireza Amiraghdam
amiraghdam@ifi.uzh.ch
University of Zurich
Zurich, Switzerland

Renato Pajarola
pajarola@ifi.uzh.ch
University of Zurich
Zurich, Switzerland

Figure 1: Using Terrender for real-time rendering of Switzerland based on high-resolution height and color data (left) and the
corresponding wireframe (right). The triangulation density is adapted to the distance and roughness of the terrain.

ABSTRACT
Terrain rendering is a fundamental requirement when visualizing
3D geographic data in various research, commercial or personal ap-
plications such as geographic information systems (GIS), 3D maps,
simulators, and games. It entails handling large amounts of data
for height and color as well as high-performance algorithms that
can benefit from the parallel rendering power of GPUs. The main
challenge is (1) to create a detailed renderable mesh using a fraction
of the data that is most relevant to a specific camera position and
orientation, and (2) to update this mesh in real time as the camera
moves while keeping the transition artifacts low. Many algorithms
have been proposed for adaptive adjustment of the level of detail
(LOD) of large terrains. However, the existing web-based terrain
rendering frameworks do not use state-of-the-art algorithms. As a
result, these frameworks are prone to classic shortcomings of sim-
pler terrain rendering algorithms such as discontinuities and limited
visibility. We introduce a novel open-source web-based framework
for rendering high quality terrains with adaptive LOD: Terrender.
Terrender employs RASTeR, a modern LOD-based terrain rendering
algorithm, while running smoothly with a limited bandwidth on all
common web browsers, even on mobile devices. Finally, we present
a thorough analysis of our system’s performance when the camera
moves on a predefined trajectory. We also compare its performance
and visual quality to another well-known framework.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9914-2/22/11.
https://doi.org/10.1145/3564533.3564567

CCS CONCEPTS
• Human-centered computing → Geographic visualization;
Visualization systems and tools; •Computingmethodologies
→ Rasterization; • Theory of computation→ Computational ge-
ometry.

KEYWORDS
web-based, terrain rendering, open source, level of detail

ACM Reference Format:
Julian A. Croci, Alireza Amiraghdam, and Renato Pajarola. 2022. Terrender:
A Web-Based Multi-Resolution Terrain Rendering Framework. In The 27th
International Conference on 3D Web Technology (Web3D ’22), November 2–
4, 2022, Evry-Courcouronnes, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3564533.3564567

1 INTRODUCTION
Terrain is a fundamental component of visualizing 3D geographic
data in geographical information systems (GIS), 3D maps, and
games. Virtual terrains can be generated and displayed based on
height data. The area extent and the amount of detail affect the size
of the data, which can be so large that techniques for managing
and visualizing variable levels of detail (LOD) are required. This
has been researched extensively and many solutions have been pro-
posed. Nevertheless, implementing an efficient LOD-based terrain
renderer in a web-based system remains demanding.

Therefore, frameworks such as CesiumJS [Cesium GS 2021] and
ArcGIS [Environmental Systems Research Institute 2022] have been
developed to be used by other developers to integrate a LOD terrain
renderer quickly into a web-based systemwith minimal effort. How-
ever, despite the advanced features these frameworks provide in

https://doi.org/10.1145/3564533.3564567
https://doi.org/10.1145/3564533.3564567


Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Croci et al.

other areas, their terrain rendering techniques are not state-of-the-
art and are prone to classic shortcomings such as discontinuities
and inefficient distribution of details.

In this paper, we introduce a novel open-source web-based multi-
resolution terrain renderer called Terrender, which can be used as a
base for any geographic visualization system that relies on large
and detailed data for terrain height and texture. Our contribution is
a system offering the full pipeline for preprocessing the raw input
data, setting up a server for distributing the preprocessed data, and
a web client that generates and renders the terrain mesh in real time
using adaptively varying LOD. The displayed terrain eventually
consists of a simple mesh which can be rendered using the WebGL
shader pipeline. Due to this simplicity, it is suitable for applying a
wide variety of rendering extension techniques.

2 RELATEDWORK
Focusing on mesh based real-time terrain rendering, one can orga-
nize terrain data as Triangulated Irregular Networks (TINs) [Fowler
and Little 1979], regular grids or hybrid methods such as e.g. [Pa-
jarola et al. 2002; Paredes et al. 2016]. While TINs and hybrid meth-
ods can better optimizemesh sizes for a targeted geometric accuracy,
regular or semi-regular grid models offer advantages in terms of
tiling and downsampling, as well as compression and rendering
performance. Due to the simplicity of working with regular grids
and their resemblance with images, we use regular grids as a basis
for Terrender and commonly refer to them as height textures. See
also the surveys on multiresolution terrain triangulation and ren-
dering [De Floriani et al. 1996; Pajarola and Gobbetti 2007] as well
as digital Earth systems [Mahdavi-Amiri et al. 2015]. Furthermore,
due to the limited scope of this paper we do not further discuss
aspects of data compression, for this see other prior methods such
as e.g. [Dick et al. 2009; Gerstner 2003a; Gobbetti et al. 2006].

The LOD of a terrain is adjusted using scene and terrain depen-
dent error metrics. To have a continuous LOD terrain triangulation,
no hanging vertices (i.e. cracks or T-junctions) should be present
in the generated mesh. The continuity of the terrain can be main-
tained in different ways [Hill 2002], e.g., cracks can be covered by
additional triangles, vertical triangles can be added to the edges of
the tiles so that the cracks are not visible, or the background color
can be used to make the cracks less visible [Holst 2004]. However,
the drawback of these methods is that they either only hide the
cracks or require further analysis of the data at run time.

Bintrees can be used for managing the triangles formed by the
vertices in regular grids, which enable us to create lower LOD
terrains. However, the challenge is that splitting a triangle, e.g.
for increasing the LOD, not only affects the direct triangles in the
bintree but requires a series of further splits in neighboring triangles
that can be far in the tree. Looking up neighboring triangles can be
explicitly tracked [Duchaineau et al. 1997] or can be avoided, e.g.,
by creating the LOD tree bottom up [Pajarola 1998] which causes
the algorithm to need all the vertices at run time. Another approach
to avoid the explicit look-up of neighbors is to make the LOD error
metric inherently guarantee that if one node is split, its neighbor
is automatically split as well. The saturation condition term was
introduced [Ohlberger and Rumpf 1999] as a property of error
metrics that can guarantee this implicitly. An efficient way to ensure

the saturation condition for camera-angle-dependent error metrics,
such as viewing distance and view culling, is using the bounding
shapes that enclose all possible triangles that can be affected by a
particular triangle split. While spherical bounding shapes can be
used [Cignoni et al. 2003; Lindstrom and Pascucci 2001, 2002], an
optimized octagonal alternative was proposed in [Gerstner 2003b].
For Terrender, we use this octagon metric that encloses only the
volume of interest and can still be evaluated efficiently in real time.

Algorithms for terrain mesh generation and rendering need to
be designed considering the GPUs’ ability of processing groups of
elements in parallel. In addition, GPUs have specific memory and
require efficient memory management strategies. Thus instead of
focusing on single vertices and triangles, GPU performance can
better be optimized by selecting the LOD in terms of triangulated
terrain patches [Bösch et al. 2009; Cignoni et al. 2003; Lario et al.
2003; Pomeranz 2000]. The RASTeR [Bösch et al. 2009] algorithm
defines the basic LOD terrain management component in Terrender.

With larger terrain datasets where the data cannot be stored lo-
cally, the data has to be streamed to the client. A subset of multireso-
lution techniques are suitable for client-server architectures [Bettio
et al. 2007; Gobbetti et al. 2006]. In client-server approaches, data
compression is used to reduce the transfer bandwidth and memory
footprint. For example, in [Bettio et al. 2007], data compressed by
a customized lossy wavelet compression algorithm is sent to the
client to be decompressed on the CPU.

CesiumJS [CesiumGS 2021] and ArcGIS [Environmental Systems
Research Institute 2022] are two major frameworks for GIS applica-
tions in web browsers. ArcGIS is an entirely commercial product,
while parts of CesiumJS (especially the frontend) are open source.
Some open-source alternatives exist for the commercial parts of
CesiumJS [Zwaagstra and rumicuna 2016; Zwaagstra et al. 2018].
Apart from these two frameworks, not many others exist. Three
different GIS software products are compared in [Mat et al. 2009]
that precompute a file which can then be shown in the browser
using a viewer that explicitly needs to be installed. A GIS browser
implementation using WebGL was proposed in [Feng et al. 2011].
While WebGL has the advantages that it does not need to be in-
stalled, this system does not offer any form of LOD selection. A
similar approach without LOD selection, presented in [Larrick et al.
2020], is mostly concerned with the required backend. Recently, a
system that uses CesiumJS is proposed to bring real-life satellite
image data together with a digital elevation model [Wan et al. 2021].
None of these works offer or use a framework that employs a more
sophisticated state-of-the-art algorithm as Terrender does.

3 TERRENDER
Terrender is composed of three units as shown in Fig. 2. (1) The
preprocessor takes the raw height and optional color data as input
and creates a multiresolution pyramid data structure. Each layer
includes a tiled representation of the original data in a specific
resolution. The preprocessor can optionally calculate the geometry
errors used by the frontend when updating the terrain’s mesh.
(2) The backend is responsible for serving the frontend with the
geometry error and the tiles. (3) The frontend creates and updates
a variable-LOD mesh based on the RASTeR algorithm [Bösch et al.
2009] using scene and terrain dependent error metrics such as the



Terrender: A Web-Based Multi-Resolution Terrain Rendering Framework Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

octagon metric [Gerstner 2003b]. It requests the relevant tiles for
the current state of the mesh from the backend and sends the mesh
and data to the WebGL renderer.

Preprocess Backend Frontend

Raw Height Data

Raw Color Data

Ti
le

 M
ak

er

Geometry Error

Height

Color Ti
le

 S
er

ve
r

D
at

a 
M

an
ag

er

Camera

Mesh

Color

Height

W
eb

G
L 

R
en

de
re

r

Mandatory Optional

Mesh Updater
Pyramid of Color Tiles

Pyramid of Height Tiles

Geometry Error

Figure 2: An overview of the full pipeline of Terrender.

3.1 RASTeR
The RASTeR algorithm [Bösch et al. 2009] influences how the data
is preprocessed and defines the behavior of the frontend. RASTeR
works by subdividing root triangles that span the whole terrain
recursively until the desired level of detail is reached in specific
areas dependent on the scene. The subdivision process is stored in
a bintree. Each node of the bintree is associated with a triangulated
triangle called K-patch making the tree significantly smaller as
when single vertices were considered. The height and color data are
stored in a quadtree. Each node of the quadtree is called a M-block
and is associated with one or more nodes of the bintree. For a more
detailed explanation see Appendix A and [Bösch et al. 2009].

3.2 Error Metrics
When creating or updating the bintree, Terrender uses three dif-
ferent error metrics to decide if a triangle T needs to be subdi-
vided [Gerstner 2003b]: (1) distance metric denoted as µdis (T ) gen-
erates an error value based on a predefined function of the distance
from the triangle. (2) culling metric denoted as µcul (T ) generates an
error value based on whether the respective node is inside the view
frustum. (3) geometry metric denoted as µдeo (T ) generates an error
value based on the height difference that the triangle can cause, i.e.
flat areas cause lower errors thus need less triangles. An example
of a triangulation using each of these metrics applied separately to
a specific camera location is depicted in Fig. 3(a-c). Finally, a total
error value is calculated for a node using the formula

µ(T ) = µdis (T ) × µcul (T ) × µдeo (T ) (1)
An example triangulation using the combined error value is

shown in Fig. 3(d).
In order to maintain the continuity of the mesh, two criteria

must be fulfilled: Adjacent triangles sharing a common hypotenuse
must be subdivided simultaneously and both triangles have to exist.
The first criterion is achieved by making the error value dependent
on the refinement point on the middle of the hypotenuse instead

of the triangle itself. As two neighboring triangles share the same
refinement point, they will thus both get the same error value.

We enforce the second criterion using the saturation condi-
tion [Ohlberger and Rumpf 1999]. For the distance and culling
metric, we use the octagon metric [Gerstner 2003b] that is based
on bounding shapes. Instead of using the refinement points in the
error metric functions, it uses an octagon around the triangle. This
octagon encompasses all other triangles affected by the current
one. Therefore, no child can be subdivided without its parent being
subdivided first. As the center of the octagon is the refinement
point also the first criterion holds. The geometry error is calculated
in a preprocess stage since the complete height data is not available
at runtime. A bintree which stores an error value calculated us-
ing min-max bounds represents the geometry error. The resulting
bintree is saturated by setting the error value of a node to the max-
imum error value of its children and its neighbor’s children. We
extended the usage of binary addresses [Gerstner 2003a] of nodes
to find neighbors to also work with multiple side-by-side bintrees
to support the use of non square terrains.

4 IMPLEMENTATION
In this section, we explain the implementation of the three units of
Terrender shown in Fig. 2: Preprocess, Backend and Frontend.

4.1 Data Preprocessing
The data preprocessing consists of two main steps. First, the M-
block quadtrees are created for the color and the height data accord-
ing to the RASTeR algorithm. The quadtrees are created bottom up.
The raw data is first tiled into squares with the desired M-block
side length. Then, each four tiles are merged and downsampled to
form the parentM-block tile in the next LOD. The tiles that only
contain zero values are deleted to save space. At last, the tiles are
converted to the desired format e.g. PNGs, TIFs or JPGs.

Lossy compression can not easily be used for height tiles since the
values of the same vertices should match across different LODs. The
precision of the data format of the tiles is matched with the original
data. For instance, if the type of the height values is 32bit floating
point, the four bytes of the height value are stored separately in
four channels in RGBA format because a raster image format is
easier to process in the frontend. It is also possible to keep them
as TIFs, in this case other data types such as unsigned integers are
supported.

Instead of using the whole height data, the frontend can calculate
the geometry error by using the min-max bounds of the height
values. Therefore, in the second step of the preprocess, we calculate
these values for all nodes of the full bintree. After saturating the
tree, we store the resulting tree in a file. The backend sends this file
to the frontend when the program is loaded.

For calculating the min-max bounds, the bintree is created bot-
tom up. First, the min-max bounds for all leaf triangles in the lowest
level of the bintree are calculated. Then, the next levels are calcu-
lated one by one up to the root of the bintree. Depending on the
K-patch size, the leaf triangles cover three or more height values.
The min bound Bmin for leaf nodes are calculated as

Bmin (T ) =min(H (T ) ∪ H (N (T ))) (2)



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Croci et al.

Figure 3: Three differentmetrics used inTerrender plus their combination: (a) DistanceMetric, (b) CullingMetric, (c) Geometry
Metric, (d) Combined Metrics. The view frustum is illustrated in red in (a),(b), and (d). (c) is independent of the view frustum.

where H (T ) returns the height values covered by triangle T and
N (T ) returns the neighbor of triangle T . The min bound for the
intermediate nodes are calculated as

Bmin (T ) =min{Bmin (Cl (T )),Bmin (Cr (T )),

Bmin (Cl (N (T ))),Bmin (Cr (N (T )))}
(3)

where Cl (T ) returns the left child and Cr (T ) returns the right child
of triangle T . The neighbor of a triangle is looked up using the
algorithm from [Gerstner 2003a]. Likewise, the max bound Bmax is
calculated for the leaf and intermediate nodes. Every two neighbor-
ing triangles have the same min-max bounds since N (N (T )) = T
and therefore Bmin (N (T )) = Bmin (T ). Finally, the subtrees with
small min-max bounds are removed to reduce the output size at the
cost of information loss. The default threshold is 0 to avoid the loss.

4.2 Backend
The backend of Terrender is a web server that provides the frontend
with the code and the geometry error at the beginning. Afterwards,
it serves the frontend with the height and color tiles that the fron-
tend requests. The implementation of this web server is independent
of the frontend. We implemented a simple server in Node.js.

4.3 Frontend
As aweb-based application, Terrender is limited towhat the browser
allows. Therefore, unlike a stand-alone real-time graphics program,
it can not run a render loop. Instead, the rendering process, which

repeatedly produces the frames, is triggered by the browser. The
whole process is shown in Figure 4 and is explained in this section.

4.3.1 Parallel Processing. Terrender’s main goal is to adapt the
terrain’s details to the current camera state as fast as possible.
However, this adaptions may require a lot of new data from one
frame to another depending on the speed of the camera movement.
Considering the limited bandwidth in a network, downloading the
data that is required for the optimum details can possibly take
longer than the time available for one frame. Instead of waiting
for the new data, Terrender continues to display the terrain using
the available data and switches to the new data as soon as it is
ready. This requires the data management and rendering to be done
in parallel. JavaScript, the programming language of Terrender,
does not support multi-threadingwith shared memory access but
provides other limited options of parallel processing which we
exploit to achieve this.

We use three mechanisms for running another part of the pro-
gram without blocking the current process, shown as dotted con-
trol flows in the flowchart in Fig. 4: Asynchronous code execution,
browsers’ built-in background tasks (e.g. downloading data), and
web workers. Asynchronous code execution still runs in the main
thread but does not block the current process. Instead, the execution
of the code is delayed until no more code is running. In contrast, the
browsers’ background tasks are optimized to reliably run in parallel
to the main thread. When the task is completed, a callback function
is called on the main thread. Additionally, they can transform some
image data formats, e.g. color JPGs and PNGs, to a format that can
be directly loaded to GPU. We transform other formats, such as



Terrender: A Web-Based Multi-Resolution Terrain Rendering Framework Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Camera	
moved	and	no	
M-block	request	

pending?

All	
requested	

M-blocks	are	
loaded	to	
GPU?

Camera	
moved?

Render

R

Set	future	list	
as	render	list

Unload	oldest	M-
blocks	from	GPU	and	
RAM	if	list	length	
exceeds	threshold

Update	onGPU and	
onRAM lists	with	no	
longer	used	M-blocks	
from	old	render	list

Update	
the	

Bintree

Update	
the	

Quadtree

Request	the
not-cached	
M-blocks	

from	server

Update	the	future	list,	
remove	reused	

M-blocks	from	onGPU
and	onRam lists

Load	the	
onRAM
M-blocks	
to	GPU

yes

yes

no

Browser’s	
render	
signal

no

Main	Thread	1

yes

Background

Web	Worker

Main	Thread	3

Download	data	
from	server

Add	M-block	
to	web	

worker	queue

A	web	
worker	is	

available	and	the	
queue	is	not	
empty?

Assign	a	M-block	
from	the	queue	to	
a	web	worker

Process	the	
downloaded	data

Load	the	M-block	
to	GPU

yes
Main	Thread	4

no

no

R Render	Signal End Control	Flow Non-blocking	CallProcess Condition

Main	Thread	2

Figure 4: The process of the front end depicted as a flowchart. Note that Main Thread 1 to 4 denote the same thread.

TIFs, in web workers before loading them to the GPU. Web workers
offer parallel computation without shared memory access.

The standard way of communication with web workers that
run custom code in parallel to the main thread is message passing.
To avoid copying large data back and forth, instead of message
passing, we use buffers that can be handed over to web workers.
After computing the result, the webworker hands the buffer back
to the main thread. At any time, either the main thread or the web
worker can access the buffer. As shown in the flowchart, when a
M-block is required, a background download is started to run in
parallel. Meanwhile, the browser can possibly invoke the rendering
code several times and the user can navigate the terrain. When
the download is done, a function in the main thread is called to
assign the downloaded data to a web worker to prepare it as a
usable M-block. A fixed number of webworkers defined by the
number of cores (if disclosed by the browser) or a constant is used.
When a M-block is downloaded and no web worker is available,
the downloaded data waits in a queue until a web worker finishes
its task. When the web worker is done, it asynchronously calls two
functions: one to load theM-block to the GPU which must be done
in the main thread and the other to assign waiting downloaded data
to a free web worker.

The background downloads run in parallel to the main thread
and to each other. When the camera moves to a new location, all
the downloads are started at the same time. We keep track of the
number of downloading M-blocks. The individual M-blocks that
are ready for use can not be used until all requested M-blocks
are ready. However, every singleM-block that is downloaded and
processed by the web worker is loaded to the GPU immediately
to avoid loading large amount of data to the GPU at once. When
height and color data of all requiredM-blocks is on the GPU, the
newly downloadedM-blocks can be used for rendering.

4.3.2 Data Structures. The frontend of Terrender uses three data
structures. The bintree is responsible for adapting the LOD to the
current state of the camera by managing the subdivisions of K-
patches. The quadtree is responsible for storing theM-blocks. Ad-
ditionally, the nodes of the quadtree form four doubly linked lists:

(1) render list that contains theM-blocks that are available on the
GPU and are being used for rendering the terrain. (2) future list
that contains the M-blocks that are needed based on the current
state of the camera. (3) OnGPU list that contains theM-blocks that
are on the GPU but are not in use. (4) onRAM list that contains the
M-blocks that are available on RAM and can be loaded onto GPU if
needed. In Fig. 5, an example situation of the quadtree and its four
lists is shown. In this example, the green nodes are being used for
rendering the terrain. Based on the camera state, the blue nodes
and two of the green nodes are required for the next adaptation
of the LOD. Terrender waits until all blue nodes are downloaded,
prepared and loaded to the GPU. The orange nodes exist on GPU
but are not in use. If the camera moves in a way that any of these
nodes are needed, those nodes are available immediately. The red
nodes have been previously downloaded. If they are needed again,
they can be loaded to GPU and are afterwards available.

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 3 1 4 17Render List

Future List 11 12 13 1 5

20 8 14 15 16onGPU List

19 21onRAM List

1

6 7 2 9 10

Figure 5: An arbitrary example of the quadtree data struc-
ture and the linked lists formed by the quadtree nodes.

4.3.3 Creating the Mesh. Each time the rendering task is invoked
by the browser, two actions can occur which are shown in Fig. 4 in
Main Thread 1 and Main Thread 2. First, if the camera has moved
and there are noM-blocks waiting to be moved from future list to



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Croci et al.

render list, the bintree is updated. Then, the quadtree is updated
based on the new bintree and the requiredM-blocks are added to
the future list. The future M-blocks that are on the onRAM list
are loaded to the GPU and the rest of the required M-blocks that
are not in the onGPU list nor in the render list are requested to
be downloaded in the background in parallel. Second, if all the
M-blocks in the future list are loaded to the GPU, the future list
becomes the render list and theM-blocks from the render list that
are not in the future list are moved to the onGPU list. Finally, the
scene is rendered with the new data. If unfinishedM-block requests
exist and the camera has moved, the new frame is rendered with
the unchanged render list using the available data on the GPU.

Every bintree node corresponds to a K-patch, is associated with
a M-block, and has a transformation that positions the K-patch
inside the M-block. The required M-blocks are identified based on
these associations.

During long camera movements, a large amount of new data may
be needed. Instead of waiting for all the required data to become
ready, we progressively increase the details without compromising
any property of Terrender. To achieve this, we decide if a new level
of the bintree should be created based on the ratio between the not
loaded and loaded quadtree nodes. If the ratio exceeds a certain
threshold, the bintree creation is stopped at the current level and the
data required starts loading. Once the loading finished the bintree
is reevaluated. This progressive increase of details results in higher
visual fidelity during long movements.

The nodes in the onGPU and onRAM lists are ordered based on
the time they were last used for rendering. Every time a node is
added to the onGPU or onRAM lists, we check if the length of theses
lists exceeds a certain threshold. In this case, the older nodes are
removed from the list. The ones unloaded from the GPU memory
go to the onRAM list.

4.3.4 Rendering. While the frontend is triggered every frame by
the browser, the terrain is only redrawn if either (a) the camera
state has changed, e.g. the camera moved, (b) new data is ready for
rendering, (c) the rendering mode changed, e.g. from triangles to
wireframe lines, or (d) an external module requests rendering. An
external module can be an application built on top of Terrender. If
none of these reasons applies, the frontend will not draw anything.
This reduces the computational footprint of the application and
helps especially on mobile devices to limit the battery usage.

During the effective drawing of the terrain, a draw call is issued
for every leaf of the bintree. Each draw call results in a K-patch to
be rendered. The vertices of the K-patches do not have the height
dimension and can be reused for different nodes. In the vertex
shader, first, a 2D transformation provided by the bintree node is
applied to the vertices of the K-patch to translate and rotate the
K-patch into its correct location within the M-block. Then, the
transformed 2D coordinates are used to look up the height value in
the height texture of theM-block. The resulting 3D coordinate of
the vertex is still relative to the M-block. A model matrix for the
currentM-block is applied to the relative 3D coordinates to obtain
the world coordinate of the vertices. At this point, the vertices of
the K-patch can be treated as vertices of a static textured mesh.
This enables the developers to apply a broad range of rendering
techniques in forward and deferred pipelines.

5 RESULTS
Terrender provides an easy to use terrain renderer with adaptive
level of details both for height and color data. The resulting terrain
is always a continuous textured surface. The navigation through
the terrain is always smooth and the background processes such
as downloading new data and adapting the LOD do not affect the
user experience adversely. Based on our experiments, it runs on the
three major web browsers. Supporting both WebGL 2 and WebGL 1
with a fewwidely-supported extensions make Terrender compatible
with mobile devices as well as desktops.

In addition, Terrender is capable of different rendering modes
and displaying statistics which are precious for debugging and
exploring the internal behavior of the RASTeR algorithm. In this
regard, it can visualize the effect of different metrics by rendering
only the K-patch outlines shown in Fig. 6(d). It also can render the
wireframe mesh which allows us to better evaluate the actual LOD
of the terrain as illustrated in Fig. 6(a, b). Furthermore, it is possible
to haveM-blocks randomly colored for visualizing the extents of
each M-block and understand the connection between K-patches
and M-blocks as shown in Fig. 6(c). Additionally, Terrender can
generate buffers containing the world coordinates of the terrain per
screen pixel useful for further applications with deferred rendering
pipeline. The rendering parameters that control the quality of the
rendered terrain can be changed at run time allowing to investigate
the optimal parameters for a given terrain and usage environment.

We tested Terrender with a dataset of Switzerland. The raw
height data saved as GeoTif is 60.6GB in size, and the generated
pyramid consisting of GeoTifs compressed using the deflate algo-
rithm is 41.1GB in size. The pyramid using PNG files is 29.2GB.
Fig. 6(a,b) show how detailed the height dataset is. The raw color
data is 250.1GB in size when saved as uncompressed GeoTif. The
generated pyramid is 190.5GB in size using deflated GeoTif. Con-
verting the tiles to JPEG reduces the total size to 32.8GB. In Fig. 6(a),
the color can be seen on the mesh wireframe. For all reported bench-
marks, the data is preprocessed to 257-blocks and 129-patches are
used. A MacBook Pro from 2021 with an M1 Max processor and
64GB of RAM has been used for all benchmarks.

5.1 Terrender’s Performance
We first tested Terrender under optimal conditions without a band-
width limit. This is an ideal stress test for the frontend JavaScript
code as the loading of the data is not a limiting factor. In this bench-
mark, the camera moves on a predefined trajectory for 10 seconds.

We ran this experiment using three different browsers: Chrome,
Firefox and Safari. In Fig. 7, the frame rate during the trajectory is
visualized. While in all three browsers the application was usable,
the differences between the browsers are notable. In Chrome, the
application runs at a nearly constant 60FPS. However, in Safari and
Firefox, notable frame drops are visible.

In Fig. 8, the terrain updates during the trajectory are marked
using a more life-like bandwidth of 40Mbit/s in Chrome browser.
The values on the y axis denote the depth of the quadtree that has
been created. The terrain is updated fairly often at the beginning
because data from the initial render can be reused. Later in the
trajectory, the updates are more apart and the depth of the used



Terrender: A Web-Based Multi-Resolution Terrain Rendering Framework Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Figure 6: The different view modes of Terrender with the view showing a mountain road. (a) Mesh with normal colors. (b)
Mesh with height dependent color gradient. (c)M-blocks rendered in a random color. (d) Outlines of the rendered K-patches

FP
S

0

10

20

30

40

50

60

70

80

90

100

Time [s]
0 1 2 3 4 5 6 7 8 9 10

Firefox Safari Chrome

Figure 7: The frames per second of Terrender during the trajectory.

quadtree decreases as more data needs to be loaded. The maximum
depth of the quadtree is 9 in this benchmark.

5.2 Example Application
One of the advantages of Terrender is the simplicity of the final
rendering data. After retrieving the height data for each pixel in
the vertex shader, the rest of the pipeline can be freely designed by
the developer. To show this capability, we implemented an exam-
ple application with a deferred rendering pipeline that allows the

user to draw lines on top of the terrain. For finding the click point,
we used the world coordinates output written to a G-buffer. For
rendering the lines, we implemented the deferred vector rendering
technique [Thöny et al. 2018]. In this technique, the lines are pro-
vided as vector data stored in a texture. The data structure of the
texture allows optimized spatial queries. In the fragment shader,
each pixel of the terrain is tested against the lines. If the pixel is
covered by a line, the pixel gets the line color. A screenshot of this
application drawing lines over the terrain is displayed in Fig. 9.



Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Croci et al.
De

pt
h 

of
 g

en
er

at
ed

 Q
ua

dt
re

e

6

7

8

9

Time [s]
0 2.5 5 7.5 10

Figure 8: The timestamps at which the terrain was updated
in Terrender and the depth of the generated quadtree.

Figure 9: ExampleApplication built on top of Terrender that
allows the drawing of lines on the terrain.

5.3 Comparison with CesiumJS
CesiumJS is a well-known open-source framework for creating web-
based geographical information systems. It has been developed for
a long time and provides a wide variety of features. We focus only
on the terrain component of CesiumJS for the comparison.

The main difference between CesiumJS and Terrender is the
advantages of using the RASTeR algorithm. Both systems divide
the terrain into quadratic tiles but there are two major differences
in their usage. Firstly, CesiumJS renders each of them as a whole
while Terrender uses the tiles partially based on the current need.
Secondly, RASTeR can use tiles from different LODs side by side
without causing discontinuities in the terrain’s mesh. We compare
both systems during a camera movement.

To setup CesiumJS for comparison, we preprocessed our height
data using the open source preprocessor built for CesiumJS [Zwaagstra
et al. 2018]. An open source server for CesiumJS [Zwaagstra and
rumicuna 2016] served the height data. The cameras were pro-
grammed to move along the same trajectory in both systems. The
bandwidth for both systems was limited to 40Mbit per second. The
color data, however, is not the same. For CesiumJS we used the
color data provided as default by Cesium GS, Inc which itself is
provided by Bing Maps. As this color data was not hosted on our
local server, we measured the ping of the requests to be in the range
of 50-100ms and artificially added a similar delay to our local server
when serving color data.

Fig. 10 shows a comparison between the visual quality of the
rendered output of CesiumJS and Terrender. In (a) and (b), the
camera is not moving. In this situation, both systems create com-
parable results. Some of the differences like the CesiumJS’s fog in
the far distance and harder shadows in Terrender are due to the
different styles and color textures. In (c) and (d) the screenshot
is captured when the camera was moving thus the data was not
completely loaded. In this situation, some discontinuities are visible
in the output of CesiumJS. The terrain in Terrender is guaranteed
to be always continuous. The comparison was conducted using the
Chrome browser on which both algorithms perform their best.

Both frameworks are able to maintain a fluid frame rate through-
out the trajectory. For the whole trajectory, Terrender downloaded
70MB of color and terrain data and CesiumJS 25MB. In total, e.g. in-
cluding scripts and geometry error, Terrender downloaded 100MB
and CesiumJS 44MB. The lower data usage of CesiumJS is due to
using more compressed tiles in comparison to the raster tiles that
Terrender uses. On the other hand, the number of single requests
is considerably higher for CesiumJS. Terrender sent in total 524
requests while CesiumJS sent 2849. The reason is that CesiumJS
tries to load all the tiles up to a certain distance from the same LOD
while Terrender can use lower LODs for medium to far regions.

In the second comparison between Terrender and CesiumJS,
we wanted to know how much each system is behind their own
ideal state when the camera is moving. Therefore, we counted
the number of complete terrain updates during the trajectory. By
complete terrain update we mean that no more data would be
loaded if the camera would not move again. We have disabled the
progressive increase of details in this test to make Terrender be
comparable to CesiumJS. As CesiumJS continuously renders loaded
data, for this comparison, we stop the camera as long as CesiumJS
was loading. When the loading completes and CesiumJS is in its
ideal state, we moved the camera to the next position where the
camera should be at that time stamp. As Terrender only updates the
terrain once all data has been loaded no modifications were done.

Fig. 11 depicts the updates that CesiumJS and Terrender performs.
Closer updates means that the system is able to catch up with the
camera movement better. Both systems are able to generate and
update the mesh at a similar frequency. Terrender updates the
terrain a bit more frequently especially at the beginning where only
close tiles are updated and the required new data is smaller. When
camera moves further, the amount of required new data increases
and both systems fall behind their ideal states. At this situation, the
integrity of the terrain in Terrender is maintained.

Our comparison results show that Terrender performs on the
same level as a well-known and well-developed terrain rendering
systemwhile offering additional advantages. Our system guarantees
high-fidelity mesh for the terrain even when the data it requires
for the scene is delayed. This advantage currently comes with a
data overhead which can be reduced in a future research, e.g. by
optimizing the tile data structure.

6 CONCLUSION
In this paper we introduced Terrender, an open-source, web-based,
real-time, variable LOD terrain rendering framework that can han-
dle large-scale terrain height and color texture data. By employing



Terrender: A Web-Based Multi-Resolution Terrain Rendering Framework Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

Figure 10: Screenshot of the terrain with for the scene optimal mesh in (a) Terrender and (b) CesiumJS and the same scene
during the trajectory in (c) Terrender and (d) Cesium. In (d) the discontinuities in CesiumJS are visible. Color data in CesiumJS
courtesy of Bing Maps.

Time [s]
0 2.5 5 7.5 10

Cesium Terrender

Figure 11: The timestamps at which the terrain was updated
for both CesiumJS and Terrender.

RASTeR, a modern multi-resolution terrain rendering algorithm, at
its core, Terrender can generate and continuously update a high-
fidelity triangulated terrain mesh in real time. It can locally adapt
the triangle density to the camera parameters and the geometry
error. Our framework is intended for development of web-based
rendering systems that need to render a terrain based on real-world
or generated height and color data.

Terrender can run in web browsers on a wide range of desktop
and mobile devices including laptops, phones and tablets. The be-
havior of Terrender can flexibly be adjusted by changing the error
metric functions and mesh parameters such as the K-patch size.
This enables the quality to be adjustable according to the avail-
able resources like the network bandwidth. In the future, these ad-
justments could be automatized. Additionally, Terrender produces

simple accessible meshes suitable for a wide range of GPU-based
computer graphic techniques.

We compared our system with the terrain rendering from Ce-
siumJS. The results show that our system performs competitively
while increasing the fidelity and quality of the mesh, especially
when the required data for a scene is not completely available. This
can often happen in web applications with a limited bandwidth.

Terrender shows that sophisticated terrain rendering algorithms
such as RASTeR are feasible in web applications, despite the limited
resources and functionalities. Also, it demonstrates that the limited
parallel computing power of JavaScript is sufficient for preparing
the data concurrently without affecting the user experience.

Next, we will focus on additional tools to enhance the workflow
of developing applications on top of Terrender, while keeping the
simplicity and accessibility of the rendering data structure.

ACKNOWLEDGMENTS
The authors want to thank the Swiss Federal Office of Topography
Swisstopo for providing the Swiss SwissTLM dataset. This project
was partially supported by a Swiss National Science Foundation
(SNSF) research grant (project no. 200021_169628).

REFERENCES
Fabio Bettio, Enrico Gobbetti, Fabio Marton, and Giovanni Pintore. 2007. High-quality

networked terrain rendering from compressed bitstreams. In Proceedings ACM
Conference on 3D Web Technology. 37–44.

Jonas Bösch, Prashant Goswami, and Renato Pajarola. 2009. RASTeR: Simple and
Efficient Terrain Rendering on the GPU. In Proceedings Eurographics Areas Papers,
Scientific Visulization. 35–42. https://doi.org/10.2312/ega.20091006

https://doi.org/10.2312/ega.20091006


Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France Croci et al.

Inc Cesium GS. 2021. Cesium JS. https://cesium.com/platform/cesiumjs/. Accessed:
2021-11-02.

Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio, and
Roberto Scopigno. 2003. BDAM - Batched Dynamic Adaptive Meshes for High
Performance Terrain Visualization. Computer Graphics Forum 22, 3 (2003), 505–514.

Leila De Floriani, Paola Marzano, and Enrico Puppo. 1996. Multiresolution Models
for Topographic Surface Description. The Visual Computer 12, 7 (August 1996),
317–345.

Christian Dick, Jens Schneider, and Rüdiger Westermann. 2009. Efficient Geometry
Compression for GPU-based Decoding in Realtime Terrain Rendering. Computer
Graphics Forum 28, 1 (March 2009), 67–83.

Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Marc C. Miller, Charles Aldrich,
and Mark B. Mineev-Weinstein. 1997. ROAMing Terrain: Real-time Optimally
Adapting Meshes. In Proceedings IEEE Visualization. Computer Society Press, 81–
88.

Inc. Environmental Systems Research Institute. 2022. ArcGIS. https://developers.arcgis.
com/javascript/latest/. Accessed: 2022-04-08.

Lei Feng, Chaoliang Wang, Chuanrong Li, and Ziyang Li. 2011. A Research for 3D We-
bGIS based on WebGL. In Proceedings of 2011 International Conference on Computer
Science and Network Technology, Vol. 1. 348–351. https://doi.org/10.1109/ICCSNT.
2011.6181973

Robert J. Fowler and James J. Little. 1979. Automatic Extraction of Irregular Network
Digital Terrain Models. SIGGRAPH Comput. Graph. 13, 2 (aug 1979), 199–207.
https://doi.org/10.1145/965103.807444

Thomas Gerstner. 2003a. Multiresolution Compression and Visualization of Global
Topographic Data. Geoinformatica 7, 1 (2003), 7–32.

Thomas Gerstner. 2003b. Top-Down View-Dependent Terrain Triangulation using the
Octagon Metric. Technical Report. Institute of Applied Mathematics, University of
Bonn.

Enrico Gobbetti, FabioMarton, Paolo Cignoni, MarcoDi Benedetto, and Fabio Ganovelli.
2006. C-BDAM – Compressed Batched Dynamic Adaptive Meshes for Terrain
Rendering. Computer Graphics Forum 25, 3 (September 2006), 333–342. http:
//www.crs4.it/vic/cgi-bin/bib-page.cgi?id=’Gobbetti:2006:CCB’

David Hill. 2002. An efficient, hardware-accelerated, level-of-detail rendering technique
for large terrains. Master’s thesis. University of Toronto, Department of Computer
Science.

Hanna Holst. 2004. Avoiding cracks between terrain segments in a visual terrain database.
Master’s thesis. Institutionen för teknik och naturvetenskap.

Roberto Lario, Renato Pajarola, and Francisco Tirado. 2003. HyperBlock-QuadTIN:
Hyper-Block Quadtree based Triangulated Irregular Networks. In Proceedings
IASTED International Conference on Visualization, Imaging and Image Processing
(VIIP). 733–738.

Gregory Larrick, Yun Tian, Uri Rogers, Halim Acosta, and Fangyang Shen. 2020.
Interactive Visualization of 3D Terrain Data Stored in the Cloud. In 2020 11th
IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON). 0063–0070. https://doi.org/10.1109/UEMCON51285.2020.9298063

Peter Lindstrom and Valerio Pascucci. 2001. Visualization of Large Terrains Made Easy.
In Proceedings IEEE Visualization. Computer Society Press, 363–370.

Peter Lindstrom and Valerio Pascucci. 2002. Terrain Simplification Simplified: A Gen-
eral Framework for View-Dependent Out-of-Core Visualization. IEEE Transactions
on Visualization and Computer Graphics 8, 3 (2002), 239–254.

Ali Mahdavi-Amiri, Troy Alderson, and Faramarz Samavati. 2015. A Survey of Digital
Earth. Computers & Graphics 53 (December 2015), 95–117. https://doi.org/10.1016/
j.cag.2015.08.005

Ruzinoor Che Mat, Abdul Rashid Mohamed Shariff, and Ahmad Rodzi Mahmud. 2009.
Online 3D Terrain Visualization: A Comparison of Three Different GIS Software. In
2009 International Conference on Information Management and Engineering. 483–487.
https://doi.org/10.1109/ICIME.2009.57

Mario Ohlberger and Martin Rumpf. 1999. Adaptive Projection Operators in Multires-
olution Scientific Visualization. IEEE Transactions on Visualization and Computer
Graphics 5, 1 (January-March 1999), 74–93.

Renato Pajarola. 1998. Large scale Terrain Visualization using the Restricted Quadtree
Triangulation. In Proceedings IEEE Visualization. 19–26,515. https://doi.org/10.1109/
VISUAL.1998.745280

Renato Pajarola, Marc Antonijuan, and Roberto Lario. 2002. QuadTIN: Quadtree
based Triangulated Irregular Networks. In Proceedings IEEE Visualization. 395–402.
https://doi.org/10.1109/VISUAL.2002.1183800

Renato Pajarola and Enrico Gobbetti. 2007. Survey on Semi-Regular Multiresolution
Models for Interactive Terrain Rendering. The Visual Computer 23, 8 (2007), 583–605.
https://doi.org/10.1007/s00371-007-0163-2

Enrique G. Paredes, Margarita Amor, Marcial Bóo, Javier Díaz Bruguera, and Jürgen
Döllner. 2016. Hybrid Terrain Rendering based on the External Edge Primitive.
International Journal of Geographical Information Science 30, 6 (2016), 1095–1116.
https://doi.org/10.1080/13658816.2015.1105375

Alex A. Pomeranz. 2000. ROAM Using Surface Triangle Clusters (RUSTiC). Master’s
thesis. University of California at Davis.

Matthias Thöny, Markus Billeter, and Renato Pajarola. 2018. Large-Scale Pixel-Precise
Deferred Vector Maps. Computer Graphics Forum 37, 1 (February 2018), 338–349.

https://doi.org/10.1111/cgf.13294
Wei Wan, Zhenkun Yang, Xingqiang Du, and Xinwei Zhao. 2021. Space Make the

Virtual a Reality: A Web-Based Platform for Visualization and Analysis with Earth
Observation Satellite Data. In 2021 IEEE 7th International Conference on Virtual
Reality (ICVR). 279–285. https://doi.org/10.1109/ICVR51878.2021.9483848

Homme Zwaagstra and rumicuna. 2016. Cesium Terrain Server. https://github.com/
geo-data/cesium-terrain-server. Accessed: 2022-04-08.

Homme Zwaagstra, Thomas Weidner, Akira Kurosava, Chris Cooper, Takayuki Mizu-
tani, Jule, and gberaudo. 2018. Cesium Terrain Builder. https://github.com/geo-data/
cesium-terrain-builder. Accessed: 2022-04-08.

A RASTER
When displaying a 3D terrain on a screen, the distance from the
camera to the terrain is not constant and varies depending on
the camera perspective. In order to render the terrain efficiently,
the LOD of different locations on the terrain is adapted to their
distances from the camera, such that the overall LOD of the mesh
projected on screen appears uniform. This is especially important
when the height data is large and the entire terrain can not be
displayed at the highest LOD. Our terrain renderer follows the
RASTeR approach [Bösch et al. 2009] for displaying large-scale
terrains with view-dependent LOD without the need to manipulate
vertices at run time to preserve the continuity of the terrain.

RASTeR creates the terrain’s mesh by starting with a small set
of primary isosceles right triangles that cover the whole area, and
subdivides each triangle into two new isosceles right triangles when
more details are needed at a region of the terrain. The subdivision
is done by adding a vertex in the middle of the hypotenuse and
connecting it to the opposite vertex. RASTeR avoids hanging nodes
or T-junctions by always also subdividing the adjacent triangle
sharing the same hypotenuse.

To avoid too many checks and subdivisions at run time, RASTeR
uses pre-triangulated triangular patches with a fixed number of
vertices per side. These are called K-patches where the K stands
for the number of vertices on one side as illustrated in Fig. 12. The
size K of the K-patch has to satisfy the condition K = 2k + 1 where
k ∈ N.

Figure 12: Examples of K-patches. (a) A 9-patch with differ-
ent orientation. (b) how the 9-patches from different LODs
can be attached to each other without creating T-junctions.

The subdivision process of each primary triangle is represented
as a binary tree. These bintrees can be created top-down using view
and terrain dependent error metrics to evaluate if a bintree node
should be subdivided or not. From the generated bintree, which
can be unbalanced, the leaf nodes are rendered.

https://cesium.com/platform/cesiumjs/
https://developers.arcgis.com/javascript/latest/
https://developers.arcgis.com/javascript/latest/
https://doi.org/10.1109/ICCSNT.2011.6181973
https://doi.org/10.1109/ICCSNT.2011.6181973
https://doi.org/10.1145/965103.807444
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2006:CCB'
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2006:CCB'
https://doi.org/10.1109/UEMCON51285.2020.9298063
https://doi.org/10.1016/j.cag.2015.08.005
https://doi.org/10.1016/j.cag.2015.08.005
https://doi.org/10.1109/ICIME.2009.57
https://doi.org/10.1109/VISUAL.1998.745280
https://doi.org/10.1109/VISUAL.1998.745280
https://doi.org/10.1109/VISUAL.2002.1183800
https://doi.org/10.1007/s00371-007-0163-2
https://doi.org/10.1080/13658816.2015.1105375
https://doi.org/10.1111/cgf.13294
https://doi.org/10.1109/ICVR51878.2021.9483848
https://github.com/geo-data/cesium-terrain-server
https://github.com/geo-data/cesium-terrain-server
https://github.com/geo-data/cesium-terrain-builder
https://github.com/geo-data/cesium-terrain-builder


Terrender: A Web-Based Multi-Resolution Terrain Rendering Framework Web3D ’22, November 2–4, 2022, Evry-Courcouronnes, France

The actual height data is represented by square terrain tiles called
M-blocks which are organized in a quadtree. The size M of theM-
blocks stays the same across all levels while the LOD resolution
doubles every level in the quadtree. TheM-block tiles must comply
to three criteria: (1) the side length of the tiles should be of size
M =m2 + 1 wherem ∈ N. (2) Each tile must have one line of pixels
in common with all its neighboring tiles to avoid cracks when tiles
of the same LOD are side by side. (3) when downsampling the tiles
for a lower resolution, exactly every second value from the child
tiles is taken to avoid cracks when combining tiles from different
LODs. The K-patches are associated with the lowest resolution
M-block that provides a unique height value for each vertex. For
this to be possible, the size M of theM-block and the size K of the
K-patch have to satisfy the following condition:

K ≤
(M − 1)

2
+ 1 (4)

In the end, eachK-patchmaps into exactly oneM-block, however,
oneM-block can contain multiple different K-patches. The number
of K-patches that can map into oneM-block is proportional to the
quotient betweenM and K . In Fig. 13, (a) shows a 5-block and (b)
shows its four children that together cover the same area. Each child
is a 5-block that shares two sides with two other child 5-blocks. The
shared sides contain exactly the same values. (c) shows an example
set of 14 3-patches. Each triangle is a 3-patch with three points
on its sides. Three of the 3-patches use the height values from the
red 5-block. Five of them use the yellow 5-block, and six of them
use the blue 5-block. There are overlapping points from 3-patches
that are bound to different 5-blocks. However, all the 5-blocks have
exactly the same value at the overlapping points. For example, in
the center, corners from the red, yellow and blue 3-patches overlap.
Even though these 3-patches get the heights from three different
5-patches, the values are the same. (d) shows the terrain mesh when
the internal lines of 3-patches are drawn.

Figure 13: The relationship between K-patches and M-
blocks. (a) A 5-block, (b) the same area covered by four 5-
blocks from the next higher LOD, (c) an example of 14 3-
patches. The color of each point indicates which 5-blocks
share the point. Points with gradient colors are shared be-
tween multiple 5-blocks. White points are not used by any
3-patch. (d) The corresponding terrain mesh.


	Abstract
	1 Introduction
	2 Related Work
	3 Terrender
	3.1 RASTeR
	3.2 Error Metrics

	4 Implementation
	4.1 Data Preprocessing
	4.2 Backend
	4.3 Frontend

	5 Results
	5.1 Terrender's Performance
	5.2 Example Application
	5.3 Comparison with CesiumJS

	6 Conclusion
	Acknowledgments
	References
	A RASTeR

