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Abstract

Data that are associated with valid time interval are common in nowadays databases. They
often store the time point now that represents the current time point and therefore changes its
value over time. With ongoing time points like now, we face the problem, that the result of
a query changes when time progresses. A new ongoing approach wants to calculate query
results which remain valid over time. This was achieved with a new type of date, called
ongoing date, that stays uninstantiated during query evaluation. With ongoing dates we can
have a time interval whose duration changes as time passes by. If we do not want to refresh
the duration results all the time, we need an ongoing integer, which holds different values for
different time points to describe such a duration. This ongoing integer was implemented in this
thesis into the widely-used PostgreSQL database system. This was achieved with a new data
type called ogint. To integrate the new data type into the ongoing approach we implemented
functions to measure the duration of an ongoing interval and additionally an addition and a
maximum function. With the ogint we achieved a runtime for the duration function that was
as fast as a bind approach, where we first need to convert ongoing dates to fixed dates. The
major advantage to the bind approach is that we do not need to reevaluate our queries as time
passes by.



Zusammenfassung

Daten, die einem Gültigkeitszeitintervall zugeordnet sind, sind in heutigen Datenbanken üblich.
Sie speichern oft den Zeitpunkt now, der den aktuellen Zeitpunkt repräsentiert und somit
seinen Wert mit fortschreitender Zeit ändert. Mit ongoing Zeitpunkten wie now haben wir
das Problem, dass sich das Ergebnis einer Abfrage mit der Zeit ändert. Ein neuer ongo-
ing Ansatz möchte Abfrageergebnisse evaluieren, die über die Zeit hinweg gültig bleiben.
Dies wurde mit einem neuen Datentyp erreicht, der als ongoing date bezeichnet wird und
während der Abfrageauswertung uninstantiiert bleibt. Mit ongoing dates können wir ein
Zeitintervall haben, dessen Dauer sich mit der Zeit ändert. Daher brauchen wir einen on-
going integer, der verschiedene Werte für verschiedene Zeitpunkte enthält, um eine solche
Dauer zu beschreiben. Dieser ongoing integer wurde in dieser Arbeit in das weit verbreitete
PostgreSQL-Datenbanksystem implementiert. Dies wurde mit einem neuen Datentyp namens
ogint erreicht. Um den neuen Datentyp in den ongoing Ansatz zu integrieren, haben wir Funk-
tionen implementiert, um die Dauer eines ongoing Intervalls zu messen und zusätzlich die
Addierung zu ermöglichen und das Maximum zu bestimmen. Mit dem ogint haben wir eine
Laufzeit für die Duration-Funktion erreicht, die so schnell war wie der bind Ansatz, wobei
wir zunächst die ongoing dates in fixe Daten umwandeln müssen. Der Hauptvorteil vom bind
Ansatz ist, dass wir unsere Abfragen nicht im Laufe der Zeit erneuern müssen.
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1 Introduction

1.1 Temporal Databases
Data that are associated with a valid time interval are common in nowadays databases. These
intervals often contain the time point now, e.g. an employment contract which has no fixed
ending date. In the paper of Mülle Y. et al. [4] a new type of date, a so-called ongoing
date, was proposed to store a time point such as now which keeps uninstantiated while time
progresses. In most databases the now time point is instantiated at the current time of the
query, so it can be treated like a fixed time point [1]. The ongoing dates are not instantiated
during the query evaluation and therefore allow, that results stay valid as time passes by. This
can be useful to store tuples with a valid time, where it is crucial for the result at what time the
query is executed.
Let’s say we have a contract which is valid from 2018/1 until now and we query for the
duration of the employment on the date 2018/2. The result of the query would return one
month, but this result does not remain valid as soon as time progresses.

1.2 Problem Statement
When we want to know the result of the duration, not shown as a time interval but as an in-
teger, we face the same problem as with the fixed time points where we need to refresh the
result. The ongoing integer is a new approach where we describe the value of an integer for all
reference time points. With such an ongoing integer, it is possible to describe the duration of
an ongoing time interval, even though the result changes as time passes by. With the ongoing
integer we can know the duration for any reference time.
Consider a company with a relational database that keeps track of their employment contracts.
To identify the contract, it has a unique ID and it also stores the name of the employee. The
validity of the contract is described by the attribute vt storing a time interval.

In the relation figure, we have two contracts for Tom and Max. The contract from Tom is
running out on March 2018 and Max starts at the company in January 2018 with an open end.
When query for the duration of Tom’s contract, it does not matter when we do the query, the
result keeps the same. Whereas for the duration of Max’s contract, the time point our query
refers to, is crucial. When we query before 2018/1 the result is always zero, afterwards the

ID Name VT
101 Tom (2016/1,2018/3)
102 Max (2018/1,now)
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result is increasing with each time increment. The ongoing integer has the property to be built
with segments each describing a different alteration of the integer, so that we can describe the
development of the integer which first stays zero and afterwards starts growing.
In this thesis we will integrate the ongoing integer into the widely used and open source
database system PostreSQL. The new data type will be implemented with C into the Post-
greSQL kernel. The implementation includes low level functions as for example the serializa-
tion which is necessary, so we can store our data type, up to high level functions which are
aimed for queries and the usage with other ongoing data types e.g. the duration function.
Finally, we will evaluate the new data type, called ogint, with real-world and synthetic datasets.
We measure the overhead of an ogint compared to a fixed integer and we will analyze how
the number of segments grows in different functions as well as how the runtime changes with
different input.
The thesis is organized as follows. Chapter 2 describes the ongoing time points and introduces
the ongoing integer in a formal way. In chapter 3 the implementation of the new data type into
the database system PostgreSQL is described as well as the algorithms used for the addition
and maximum function. In chapter 4 the tests and their evaluation is described and chapter 5
concludes the thesis and points to future work.
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2 Ongoing Data Types

In this chapter the ongoing data types ongoing date and ongoing integer are described for-
mally. The focus is on the ongoing integer but because until now an ongoing integer only
emerges when the duration of an ongoing time interval is measured, we first need to get a
quick overview of ongoing time points.

2.1 Preliminaries
We assume a linearly ordered, discrete time domain T with −∞ as the lower limit and∞ as
the upper limit. A time point is an element of time domain T . A time interval[ts, tw) consists
of an inclusive start point ts and an exclusive end point te. Fixed data types consists of values
that do not change as time passes by. Ongoing data types include values that change as time
passes by.
In the table 2.1 are the symbols listed which are used for further description of ongoing and
fixed data types.

Symbol Meaning
T domain of fixed time points
Ω domain of ongoing time points
Z domain of ongoing integers
now ongoing time point
[ts, te) fixed or ongoing time interval
‖·‖rt bind operator

Table 2.1: Notation.

2.2 Ongoing Dates
We briefly introduce the ongoing time points and time intervals proposed by Mülle Y. et al.
[4].

Definition 1 (Ongoing Time Point) Let rt ∈ T be a reference time and a, b ∈ T with a ≤ b.
The ongoing time point a+b is defined as

‖a+b‖rt =


a rt ≤ a

rt a < rt < b

b otherwise
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An ongoing time point includes a time interval whit a start and end time point called a and
b, both are fixed. We can use the bind operator ‖‖rt to instantiate the ongoing time point to a
fixed reference time. When the reference time is within the time interval, the bound operation
returns the same time point as the reference time. Otherwise it returns either the start point,
when the reference time is below the starting point or the end point, if it is above the end point.
The time interval is noted as a+b where a and b are either a point in time or ±∞. The +
describes all time points between the start and the end point. The expression a+b is read as,
not earlier than a, but not later than b. With the constraint that b cannot be smaller than a.
The two variables a and b can store either a time point or±∞, with different combinations we
can build five different types of ongoing time points, all different types are illustrated in the
figure 2.1. When both variables store the same time point, we call it a fixed ongoing time point.
If a is equal−∞ it is called limited and if only b is∞ it is referred to as growing. When both a
and b hold−∞ and∞ it describes the time point now, since it includes all possible time points.

Ongoing time
point

Type
Fixed time point Time point now Growing time point Limited time point

Notation
- as a+b a+b a+a −∞+∞ a+∞ −∞+b
- short a+b a now a+ +b
Example 2018/1+2018/4 2018/1 now 2018/1+ +2018/1
Semantics

rt

;

2018/1

2018/4

2018/1 rt

;

2018/1

2018/1 rt

;

2018/1

2018/1 rt

;

2018/1

2018/1 rt

;

2018/1

2018/1

Figure 2.1: Illustration of ongoing time points a+b[4].

As you can describe a time interval with fixed dates, e.g. from March 2018 until Septem-
ber 2018, we can also build an ongoing time interval. For instance, in the example from the
introduction, we saw that the contract of Tom was valid from 2016/1 until 2018/3. With the
ongoing approach we would use two fixed time points to describe the start and the end of this
interval. When we look at the valid time interval of Max, we have a valid time from 2018/1
until now, with ongoing time points we would write it as [(2018/1+2018/1), (−∞+∞)), or
in short form [2018/1, now).
We can instantiate a ongoing time interval to a certain reference time. This instantiation means
that we use the bind operator on both ongoing time points from the interval, so we get a fixed
time interval as a result.
When we instantiate the latter interval to the two reference time points, 2017/1 and 2018/5,
we would get, ‖[2018/1, now)‖2017/1 = ∅ and ‖[2018/1, now)‖2018/5 = [2018/1, 2018/5).
The first interval is empty because te is smaller than ts and a negative time interval is senseless.
The duration of an interval can be described as an integer, but because the interval changes de-
pending on the reference time, we would need to calculate the duration for each instantiation.
To avoid this recalculation, we use an ongoing integer which can store different integer values
for different reference times.
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2.3 Ongoing Integers
An ongoing integer is represented as a set of ongoing integer segments s[(a # b, s) at [rts, rte)].
This segment describes the value of an integer at each point in time during the the reference
time interval from rts until rte. The variable a is the integer value at reference time rts and b is
the value at the time point rte. During the time between rts and rte the value of a increments
with s per reference time increase. The definition is as in[3]:

Definition 2 (Ongoing Integer Segment) Let a, b, s ∈ Z be integers and rt, rts, rte ∈ T be
reference times with rts < rte. Let a − b = s · (rte − rts). An ongoing integer segment
s[(a # b, s) at [rts, rte)] is defined as

‖s[(a # b, s) at [rts, rte)]‖rt =



a + s · (rt− rts) rts ≤ rt < rte

∧ |a| 6=∞
b− s · (rte − rt) rts ≤ rt < rte

∧ |b| 6=∞
ω otherwise

When the bind operator is applied on an ongoing integer segment, its value is instantiated and
returns the integer value at the reference time. The value is calculated, as described in the
definition, with the change value and the difference in time. Therefore, a segment is predom-
inantly characterized by the incrementation value s and by its reference time interval. This
means that from the reference time interval we know, whether the segment is long or short
and s expresses what type of segment we have, constant, increasing or decreasing. They are
shown graphically in the table 2.2.

Ongoing Integer Segment Type
Constant Increasing Decreasing

Notation s[(a # a,0) at [rts, rte)] s[(a # b,+s) at [rts, rte)] s[(a # b,−s) at [rts, rte)]
Properties
– a and b a = b a < b a > b
Example s[(2 # 2, 0) at [2018/4, 2018/7)] s[(2 # 8,+2) at [2018/4, 2018/7)] s[(6 # 3,−1) at [2018/4, 2018/7)]

rt

int

2
4
6
8

2018/4 /7
rt

int

2
4
6
8

2018/4 /7
rt

int

2
4
6
8

2018/4 /7

Table 2.2: Illustration of all ongoing integer segment types.

An ongoing integer contains only segments which are one of these three types. When we
imagine an ongoing integer graphically, it can be seen as a concatenation of segments as they
are illustrated in in table 2.2. Each end point of such a line segment must be the start point of
another one. Every time there is an edge in the line, a new segment must start. We define an
ongoing integer as in [3]:
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Definition 3 (Ongoing integer) Let T be the time domain of the reference time. An ongoing
integer i is a set of ongoing integer segments {s[(aj # bj, sj) at [rtjs, rtje)]}, such that

1. (
⋃|i|

j=1[rtjs, rtje)) = T and

2. ∀sj, sk ∈ i (sj = sk ∨ ([rtjs, rtje) ∩ [rtks, rtke) = ∅))

The first property guarantees that an ongoing integer returns a value for each possible refer-
ence time point. Additionally, the second property guarantees that it instantiates to exactly one
integer value for each reference time.
Now let’s look at an example to demonstrate how we can use an ongoing integer when we
measure the duration of an ongoing time interval. We use the contract from Max as an
example where the valid time interval was [2018/1, now). When we instantiate this on-
going interval to any reference time before 2018/2 the resulting interval would be empty.
With a reference time greater than 2018/1 the interval would increase with every time incre-
ment. This behavior can be expressed with an ongoing integer made out of two segments.
One is constant, holding the value 0 and the second one is incremental starting at the value
0. So the duration of this ongoing time interval described by an ongoing integer would be
s[(0 # 0, 0) at [−∞, 2018/1)], s[(0 #∞, 1) at [2018/1,∞)].
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3 Implementation

This chapter describes and explains the implementation of the ongoing integer into the kernel
of PostgreSQL. Starting with the structure of the data type itself, we will then look at the basic
functions, reading the data type in, printing it out and the underlying serialization. These are
needed so we can start working with it. Furthermore, we implemented the duration function,
which is essential, because we can measure the duration of an ongoing time interval and
therefore can integrate the ongoing integer into the ongoing approach. It is also the only
function until now, which has an ongoing integer as output but not as input. Additionally, the
addition and the maximum function were implemented to test the runtime of the functions and
how much overhead is created when using ongoing integers.

3.1 Ongoing Integers
The decision what to include in the new data type, was based on three aspects. First, the
amount of memory usage, since we do not want to waste any memory space of the database.
Second, any information must not be missing, so all necessary operations on the ongoing in-
teger are applicable. Third, aesthetics and readability, since ongoing integers are also planned
to be returned uninstantiated to the user, the reader should be able to read them easily and get
the important information quickly.
In the previous chapter we used the notation s[(a # b, s) at [rts, rte)] to describe an ongoing
integer segment. An ongoing integer segment consists of three integer values and two fixed
dates. This is a lot of information, which is presented to the reader and as soon as we have
several segments together, it gets difficult to conceive the nature of the ongoing integer. Below
we have an example of an ongoing integer with only two segments:

s[(0 # 0, 0) at [−∞, 2018/1)], s[(0 #∞, 1) at [2018/1,∞)],

Even with only two segments, it gets difficult to read because the expression is quite long.
Looking at this specific ongoing integer, there are four zeros in total, where two of them de-
scribe the same integer value for the same reference time. The date 2018/1 appears also twice,
because the end point of the reference time interval is exclusive and the start point is inclusive.
Therefore, a date and a value will be listed twice in an ongoing integer, for every consecutive
pair. This redundancy is not necessary for a practical manner, since we know that an ongoing
integer is defined for the whole time domain T and therefore the start point of an segment
must be the end point of the precedent segment.
The simplest way to find improvement in all three aspects, memory usage, complete informa-
tion and readability, is to reduce or eliminate the redundancy. This would help to lower the
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memory usage, without any loss of information plus the readability could increase, since the
reader needs to filter out less, when looking at a string representation of an ongoing integer.
Before we look at an example we need first to recall a few points from the definition about
an ongoing integer. We know from the definition, that an ongoing integer is defined for the
whole time domain T . Therefore, rts from the first segment of an ongoing integer will always
be equal to −∞ and rte from the last segment will always be equal ∞1. The second point
guarantees us, that there is exactly one integer for each point in time and since rte of a segment
is equal to rts from its subsequent segment, b will be equals to a of its subsequent segment.
So these four variables contain redundancy and this is true for all segments except the last one,
but we will come to that after the example.
Let’s look now at the example from before. We wrote it as:

s[(0 # 0, 0) at [−∞, 2018/1)], s[(0 #∞, 1) at [2018/1,∞)]

Even though there are only two segments, one which is constant and the other one increasing,
it is not so easy to see it with a quick glance. To improve the readability, we eliminate rte and
b from each segment and reorder the segment, so we get: a(rts)s.
The reading flow is from left to right as: what value at what time does change with what
amount, e.g. zero at 2018/1 increasing by one. Finally, the ogint presented as a string would
be written as:

0(−∞)0, 0(2018/1)1

This is a lot shorter than before and still holds all the necessary information. As mentioned
before, we do not see the last rte and the last value from the last segment. This is the only
missing information, but since the last date is always ∞ and the last value is either equal to
the start value of the last segment or ±∞, depending on the change value s, we can know this
values with very little interpretation. In listing 1 is the actual implementation of the ogint data
type in the PostgreSQL kernel written in C code.
We store the set of ongoing integers as a list. Therefore, a fourth value is stored in the struct,

which is a pointer to the next ogint of the ordered set of segments. The decision to couple the
elements as a list, was made out of two reasons. First, the number of elements in an ongoing
integer is not always known when we create a new one. We will look at the reason why in
this chapter of the maximum and addition function. In a list we can easily add new nodes to
the last node. Second, in a set of ongoing integer segments we orient us on the dates, and
not on the position of the segment in the set. Therefore, when we want to know a value at
a certain date, we will need to travel from the start on through each element and check the
dates. Because the number of segments in a ongoing integer is rather small, we will not lose
too much time going through the list.

1When ±∞ is mentioned in the implementation part we refer to the maximum and minimum value of an int32,
since PostgreSQL uses this as an internal representation of ±∞
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1 typedef struct ogint{
2 // value(date)change
3 int32 value;
4 DateSingleADT date;
5 int32 change;
6 struct ogint *next;
7 } ogint;

Listing 1: New data type ogint

3.2 Basic Function
There are a few basic functions which are needed when integrating a new data type into the
PostgreSQL kernel. For the implementation of this thesis, we chose to implement only those
functions, which were necessary, so we could start working with the ogint. Therefore, only the
functions to read the data type in and print it out, as well as the functions which are needed,
such that the ogint can be stored in the database, were implemented. Other functions which
were not implemented will be discussed in the section 3.2.3.

3.2.1 Read and Write Function
As a user you need to be able to insert an ogint into and retrieve it from a relation. This is
done with the ogint_in and a ogint_out function. These two functions are aimed for the user
and work mainly with strings. In the reading function the input string needs to be checked for
the correct syntax, e.g. are the ogint separated by commas, are the braces in correct order?
Second, we check for correctness of the values, are the values of two consecutive segments
precisely calculated, and were correct dates inserted? Third, we check for the correct order of
the dates. The write function just needs to convert the integer values back into a correct string.

3.2.2 Serialize and Deserialize
The database needs to store the newly read in data type, an internal representation for the
kernel. The ogint is a new data type and therefore we needed to implement the serialization
function by our self. Within the kernel, any data type is stored as a sequence of bytes. The
problem is that the length of a list can vary. Therefore, an extra data type needed to be con-
structed which is called varlena-header and stores the information, how many bytes, including
the header itself, belong to the stored data type. When an ogint is stored, we write after the
header all ogint as a sequence of bytes. This means that we use first four bytes to store the
value, then use four bytes to store the date, which is also an int32, then another four bytes for
the change value and finally the last four bytes for the pointer. The order is important since
we need to know which byte belong to what value when we want to deserialize the ogint.
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3.2.3 Sort and Search
For a better control of ongoing integers in the PostreSQL database, more functions would be
needed to be implemented. Sorting is essential for a database, therefore are search and sorting
functions, e.g. the binary search, essential for a proper usability of the data stored. Sorting
is built upon the comparative operators and which are executed always between two entities.
Comparing by itself is not a big issue but we need to find useful criteria which we can compare.
An ongoing integer stores three different values, comparing two of them can be done in many
ways. A simple way would be to compare the fixed value of an ogint at a specific reference
date, but for this we only need to instantiate the ogint and can then use existing comparing
functions. Since the ogint is defined over time, we could use the value of a certain time interval
for comparison. For such a comparison we would need to calculate the integral value for this
time interval. Of course, many other criteria could be used for comparison, e.g. number of
segments, change value at a fixed date or the dates themselves. Future applications and users
will decide what is necessary and useful.
Hashing is needed for many tasks, e.g. to build hash tables for the purpose of searching. But
since we have structs which build a list and have three different values stored in them, there is
not only one value we can hash. One approach would be to build a hash function which uses
the values, change, date and value which are all int32 and a additional coefficient to guarantee,
that two different ogint have the same hash value.
Additionally, a send and receive function would also be useful for PostgreSQL, but due to the
limitation of time we focused only on the most necessary functions.

3.3 Duration Function
The duration function is an important function, since it integrates the ogint into the ongoing
approach because it uses the ongoing dates as an input. The duration is measured as the
difference between two fixed time points. Since we measure the duration of an ongoing time
interval we get an integer value for each point in time, therefore we need an ongoing integer.
For a better intuitive understanding, such an ongoing time interval and the resulting duration
are illustrated in the figure 3.1.

rt

vt

2018/1

2018/3

2018/5

2018/7

2018/1 2018/7

(a) Ongoing time interval.

rt

int

1
2
3
4
5

2018/1 2018/7

(b) Duration.

Figure 3.1: Evaluation of duration function dur on ongoing time interval
[2018/1+2018/4, 2018/6+2018/8).
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As mentioned in section 2.2, are time intervals, where te is smaller or equal ts, empty.
Therefore, if the interval would be negative, the duration is 0. The duration from the figure 5
would be described as an ongoing integer with five segments. The number of resulting seg-
ments varies, depending on the ongoing time points of the ongoing interval. It can go from
one segment up to five. A general definition of the duration function is the following as in [3].

Definition 4 (Duration dur : Ω × Ω → Z) Let [a+b, c+d) ∈ Ω × Ω be an ongoing time
interval. Let c′ = maxF (a, c) and d′ = maxF (b, d). The duration function dur is defined as

dur([a+b, c+d))

= { s[(c′ − a # c′ − a, 0) at [−∞, a)],

s[(c′ − a # maxF (c′ − b, 0),−1) at [a,minF (b, c′))],

s[(maxF (c′ − b, 0) # maxF (c′ − b, 0), 0) at [minF (b, c′),maxF (b, c′))],

s[(maxF (c′ − b, 0) # d′ − b,+1) at [maxF (b, c′), d′)],

s[(d′ − b # d′ − b, 0) at [d′,∞)]}

This definition describes all five segments which can occur when measuring the duration of
an ongoing time interval. The implementation from this thesis of the duration function took
a different approach than converting this definition into C code. Instead of implementing a
general valid duration function, many different functions were written each corresponding to
a different case. To understand the reasons behind this decision, we need to recall a few points.
First, there are only four different kind of ongoing time points, so the number of possible com-
binations of two dates in an interval is limited. Second, the number of segments in an resulting
ongoing integer are at least one and at most five. The chosen approach for this function goes as
follows: first determine what case it is from all possible ones and then, depending on the case,
build the resulting ogint. This led to a very simple but verbose code. So, the duration function
has an if-else statement resulting in 25 cases and almost each case has its own function, e.g.
for the case of two fixed ongoing time points, we only need to calculate the duration between
those two dates and can then directly build a single segment ogint with the calculated value
and the change attribute is zero. This was done mainly because of two reasons.
First, when measuring the duration between two fixed ongoing dates the result is a single
segment ogint. So, when using the approach from the definition we would build first five seg-
ments and then collapsing them back into one. This is highly time consuming.
Second, the DateADT can contain the infinity-values which always need a special treatment
since it is possible to have an integer overflow. This is because the infinity-values are rep-
resented as the maximum and minimum values of an int32. To guarantee that there is no
overflow, a lot of if statement would be necessary and to determine the case in advance there
are at most five if statements.
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3.4 Addition Function
Adding two ongoing integers is not very different from adding fixed integers, since it is just an
addition of two integers at every possible reference time. Since an ongoing integer describes
all values from its start point until its end point through the integer value and the change value,
we only need to add the values of the edge points when a new segment starts. So, every time
we get to a new ogint node, we add the corresponding value of the other ogint at the same
reference time to its own value and we add their change values together. In the algorithm 1 is
the algorithm used to calculate the addition of two ogint.
Let’s apply algorithm 1 to an example. We use a two ogint which both have two segments.

Procedure: Addition i1 + i2
Input: i1, i2 ∈ Z: two ongoing integers
Output: ir ∈ Z: ongoing integer.

1 ir = [];
2 sj ← i1.first;
3 sk ← i2.first;
4 changej ← sj .change;
5 changek ← sk.change;
6 while sj 6= ω ∧ sk 6= ω do
7 if sj .date< sk.date then
8 sr ← add(sj, sk, changek);
9 ir.append(sr);

10 changej ← sj .change;
11 sj ← i1.next ;
12 else if sk.date< sj .date then
13 sr ← add(sk, sj, changej);
14 ir.append(sr);
15 changek ← sk.change;
16 sk ← i2.next ;
17 else
18 sr ← sk + sj;
19 ir.append(sr);
20 changek ← sk.change changej ← sj .change;
21 sj ← i1.next sk ← i2.next ;
22 end
23 buildTail(ir, sj, sk, changej, changek);
24 cleanUp(ir);
25 return ir;

Algorithm 1: Algorithm to calculate the addition of two ongoing integers.
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Input 1 10(−∞)0 10(2018/8)1

Input 2 4(−∞)0 4(2018/7)2

In the first iteration we get into the else clause of line 16, because the dates of the first segments
are equal. So, we just add their values and changes together and create the resulting ogint.

Ogint 1 10(−∞)0 10(2018/7)2

Ogint 2 4(−∞)0 4(2018/8)1

Result 14(−∞)0

In the second iteration we get to the if clause at line 6, since 2018/7 < 2018/8. The add function
the value of the second ogint at the date 2018/7 is calculated. Since we already point to the its second
segment, we need the change value of the first segment from the second ogint.

Ogint 1 10(2018/7)2

Ogint 2 4(2018/8)1

Result 14(2018/4)2

In the third iteration, we go out of the while loop, because one of the two ogint is at its end. The
function buildTail() runs through the rest of the segments of the second ogint and adds the correspond-
ing value of the other ogint to its segments.

Ogint 1
Ogint 2 4(2018/8)1

Result 16(2018/6)3

Because we do not compare the change attributes of the resulting ogint in the while loop starting at
line 5, it can happen, that we build two segments with the same change value even though they are
consecutive. So, we run through the resulting ogint and eliminate the second segment if we find such a
pair.

3.5 Maximum Function
When applying the maximum operation for two ongoing integers we want to know which the high-
est value at each reference time is. In the definition, is the F -superscript for operations on fixed
data types used. For instance, minF is the standard minimum function over fixed arguments, i.e.,
minF (j, k) = jifj < k and minF (j, k) = k otherwise

Definition 5 (Maximum max : Z × Z → Z) Let i1, i2 ∈ Z be two ongoing integers. The maximum
function max is defined as

∀rt ∈ T (‖max(i1, i2)‖rt ≡ maxF (‖i1‖rt, ‖i2‖rt)

We implemented the max function for ongoing integers as given in algorithm 2. The complete maxi-
mum function is divided in three parts such that the function does not get too verbose. The first part
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creates the first segment of the resulting ogint. This is because the first segment of an ogint contains
special values like ±∞, which need to be treated differently. With the first part we also guarantee that
the two input ogints and the resulting ogint have the necessary requirements, which are listed in the next
paragraph, for the second part, that is described by algorithm 2. The second part builds the maximum
of two ogints as long as both did not reach their last segment. Then starts the third part, where we have
to use different calculations for the comparison, because we often access the values of the next ogint
for comparison, what would lead to a segmentation fault. In this section we will focus on the main part
which is the middle part and uses recursion.

The input for the function has the requirement that the first input must be the ongoing integer which is
the current maximum value, we refer to it as high ogint. The other one is called low ogint. The max
ogint is the resulting ogint and is either equal to the high one or its date is later than the high ones. We
will come to that later in this section. After the first part we built an artificial segment such that both
segments have the same date. This will be discussed in the next section
The basic idea of the algorithm is to build in each recursion step at least one segment of the resulting
max ogint and that the low pointer always points to the segment which has the closest date compared
to the high one but its date is always smaller than the date from the high one.
When we look at algorithm 2, we see that in line 5, we check for the result of the intersection function.
This function returns true if the low ogint reaches a higher value than the high ogint, before the date of
the next high segment. Note that when we say, a higher value than, we compare the two ogint always
at the same reference time. So if the low ogint becomes the high ogint within the time interval of the
current high segment, it returns true and false otherwise. When the return value is a false, we can add
the segment from the current high ogint to the resulting max ogint.

When the intersection function returns true we need to distinguish between two cases. This is done
by the function cleanCrossing. What we have to check for is, because we have only discrete val-
ues, it is possible that the two crossing segments never have the same value. For example, the ogint
0(2018/1)3 and 9(2018/1)− 1, will have on the date 2018/3 the values 7 and 6 and on 2018/4 it will
be 6 and 9. So here we would need to build a extra segment for one time increment because from 7 to 9
the change is 2 and not 3 as in the first ogint. This is done in the algorithm by the function buildBridge.
The other two build- functions just use the values from the new high ogint to build the segment at the
correct date.
The algorithm advances either in the else clause in line 18 where the high ogint jumps to its next seg-
ment or in the intersection function where the low ogint travels through the segments. Even though it
is possible, that in a iteration the two ogint do not advance with their segments, it is guaranteed, that
they will in the next iteration, because after an intersection the two values must diverge. This means
that in the next iteration either progress is made in the intersection or there is no intersection and the
high ogint advances.

For a better understanding, let’s look at an example of the algorithm with three iterations. The pointer
name tells what segment was called as high or as low in this iteration. The arrow tells us where the low
pointer will travel in this iteration. Above the table we will write the output of the intersection function.
In the lowest row we write the segments which are added to the result in this iteration. The three points
symbolize, that we do not start at the beginning of an ogint.

21



Procedure: Maximum max(i1, i2, ir)
Input: i1, i2 ∈ Z, ir: ir is not a complete ongoing integer

1 high← i1;
2 low ← i2;
3 tmp;
4 if high = ω ∨ low = ω then return . termination of the recursion ;
5 if intersection(high,low,max) then . check if high becomes low until the next segment
6 if cleanCrossing(high, low) then . check if their values become the same
7 tmp← buildSegFromCrossing(high,low);
8 ir.append(tmp);
9 max(low, high, ir) ;

10 else
11 tmp← buildBridge(high,low) . build "bridge"-segment for 1 time increment
12 ir.append(tmp);
13 tmp← buildSegAfterBridge(high,low);
14 ir.append(tmp) max(low, high, ir);
15 ;
16 else
17 high←i1.next;
18 ir.append(high);
19 max(high, low, ir) ;
Algorithm 2: Algorithm which describes the second part of the complete maximum
function.
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First iteration: intersection() -> false

Pointer to ogint 1 ... high
Ogint 1 ... 10(2018/2)0 10(2018/5)− 2 0(2018/10)0

Ogint 2 ... 2(2018/1)0 2(2018/3)2 12(2018/8)0

Pointer to ogint 2 low
Segment added to result 10(2018/5)− 2

The intersection function returned false, so the high ogint jumps to the next segment and we add it
to the max ogint.

Second iteration: intersection() -> true

Pointer to ogint 1 high
Ogint 1 ... 10(2018/2)0 10(2018/5)− 2 0(2018/10)0

Ogint 2 ... 2(2018/1)0 2(2018/3)2 12(2018/8)0

Pointer to ogint 2 ... low ->
Segment added to result 8(2018/6)2

Within the intersection function the low ogint went to its next segment and detected a coming in-
tersection. On the date 2018/6 both ogint will have the value 8 so the cleanCrossing function returns
true and the new segment is added to the max ogint. Now the high and low ogint will be swapped.

Third iteration: intersection() -> false

Pointer to ogint 1 low
Ogint 1 ... 10(2018/2)0 10(2018/5)− 2 0(2018/10)0

Ogint 2 ... 2(2018/1)0 2(2018/3)2 12(2018/8)0

Pointer to ogint 2 high
Segment added to result 12(2018/8)0

In the third iteration both ogint did not advance, but in the next iteration we have again progress,
because we swapped high and low so we know, that there is no intersection before one of both ogint
will go to its next segment.

3.6 Special Points of Focus
In both, the maximum and addition function, dealing with the start and the end of the lists, lead to an
extra overhead, because they needed a special treatment.
The first segment can contain values of ±∞ which will lead to an overflow in the addition, when we
would add a positive value to ∞. The solution was to add only the change values to each other and
then it will be decided what value to store depending on whether the resulting change value is greater
or smaller than zero. Since ∞ can only have a negative change value and vice versa for −∞. If it
becomes zero, we just add the value of the next segment together.
In the maximum function it does not makes sense to compare∞ with∞. Another problem with the
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maximum function at the beginning was that we normally calculate the value of a segment at a specific
reference time with its value, date and change, but each first segment contains the date −∞ so we need
to access the date from the next segment and calculate it from there.
Because we do not know how many times an ogint crosses the other one within its first segment and
we need a special calculation for the comparison, we get fast many different cases to cover. Therefore,
we want to get past the first part of the function and come to the algorithm described before, as fast as
possible. To achieve this, we checked which one of both second segment date was earlier and then built
a artificial segment as this date for the other ogint. Like this both ogint are not at their first segment
anymore and we can use the algorithm from before.
When one ogint reached its last segment, we get to the last part, where we just travel through the
segments of the other ogint, while we check whether it crosses this segment or not.
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4 Evaluation
In this chapter we will evaluate the newly implemented data type ogint and the additional functions on
runtime performance and how the number of segments evolve within the different functions. For the
evaluation of the runtime performance, we will compare the duration function with the bind approach
where we use fixed time intervals to measure the duration. For the addition and the maximum, we want
to know how the runtime increment correlates to the increasing number of segments.

4.1 Setup

4.1.1 Experimental Setup
The experiments were carried out on a Linux virtual machine with 64 GB RAM. The machine the VM
was running on has two 2.40 GHz XEON(R) CPU. The client and the database server ran on the same
server. The runtime of a query was measured with the internal explain analyze function of PostgreSQL.

4.1.2 Real-world Dataset
One dataset used for the tests comes from the Mozilla defect tracking set [2]. The relation contains
394878 tuples and the attributes used for the tests were the ID which is an integer and the valid time
which is of type daterange. A daterange is the data type for an ongoing time interval and it contains
two ongoing time points which are of type date in this the PostgreSQL database used.

4.1.3 Synthetic Dataset
Data from a real application is a good reference on how big ongoing integers could become and how
fast the functions run when used in a real-world environment. To test the functions specifically for the
runtime performance with different numbers of segments in the input and output, we build synthetic
datasets with ogints of different length. The ogints were chosen in such a way, that they either had a
rather short or long output, when used for the maximum and addition function. This is done, simply
so we can see the correlation between number of ongoing integer segments and the runtime of the
implemented functions. We will elucidate on what we focused while building the synthetic datasets in
the next section. All synthetic datasets were build with 10 different tuples. In the tests those 10 tuples
were inserted up to 10’000 times, so the resulting set had 100’000 tuples. This was done to simplify
the comparison of the runtime with the duration function using the Mozilla dataset.

4.2 Tests and Results
In this section we will first analyze how the number of elements of the output can vary for the different
functions. We will then look at the structure and the results of the tests from each function separately.
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4.2.1 Result size
The number of segments from the output from each function depends strongly on the kind of input.
For the duration function we know quite well how many segments the output will have depending on
the input. For each possible case the number of segments can be determined beforehand. There is a
limit to the possible combinations of two ongoing time points, since we have a limit of different types,
fixed, limited, growing, now and a general ongoing time point. The minimum of segments in all those
combinations is one and the maximum is five.

For the addition and maximum function this is a little bit different. To describe the number of seg-
ments within an ongoing integer we use the notation of: |i|seg
When we add to ogint together the maximal number of segments which can occur is:

Maximum of |ir|seg = |i1|seg + |i2|seg − 1

This is, because for each segment from the input, we need to build one in the output, since at ev-
ery with every segment a shift in the change value happens. When all segments start on a different date,
we will get as many segments in the output as in the input combined. But because the first segment
always start at −∞ the first segments from the input will merge, therefore the minus one.
The minimum is one segment but only for a very special case. This is possible when two ogint have
the same date in each segment and the addition of their change values is equal to the change value of
the preceding result-segment.
While adding two ogints, for each segment which have the same date value, two segments will be
merged together to one. So, the result size for the addition depends on whether the input data is more
likely to have similar dates or not.

The result size of the maximum function depends on how often they alternate in being the maximum.
When they never alternate and the ogint with less segments is the maximum we get the minimum of
the possible result size. So, the minimum is:

Minimum of |ir|seg = min(|i1|seg, |i2|seg)

But for each time the maximum ogint alternates we get an additional segment for the result. When
the discrete values not match on a certain date we get even two segments, since we need to build an
extra segment to "bridge" to the new maximum. So the maximum of the result size is:

Maximum of |ir|seg = max(|i1|seg, |i2|seg) + 2 ∗min(|i1|seg, |i2|seg)

4.2.2 Duration Function
To test the duration function, we used both, synthetic and real-world datasets. Unlike the addition and
maximum function, we could compare the duration function with the bind approach, since the input are
not ogints. To compare the bind with the ongoing approach, we used the real-world dataset, to see how
they would perform in a real-world environment. The bind approach has to use the bind operator for the
upper and the lower date attribute which are stored in the daterange data type. Then we can subtract the
resulting fixed dates from each other. This means that with the bind approach the result will be a fixed
integer and not an ongoing integer. The query used is shown in listing 2. To compare the two different
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results we just look at, after how many refreshments of the bind approach, the result of the ongoing
approach becomes faster. In the queries, the vt attribute is the valid time of type daterange with the
lower() and upper() command we can access the single dates. 2018/1/1 was chosen as reference time
point for the bind approach.

1 select
2 (date_bind(upper(vt),'2018-01-01')
3 -
4 date_bind(lower(vt),'2018-01-01'))
5 from mozillaset;

Listing 2: Bind approach

1 select date_dur(lower(vt),upper(vt))
2 from mozillaset;

Listing 3: Ongoing approach

The results from these two queries are illustrated in the figure 4.1. We can see, that the ongoing
approach is as fast as the bind approach. The duration in the bind approach is measured with a single
subtraction of the dates, which is fast operation. In the bind approach we need to do the bind operation
twice. This is where the bind approach loses time. The absence of the bind operation in the duration
function, makes up the overhead of comparison and building ogint.
The results show, that when we are using ongoing dates, there is no overhead compared to the bind
approach, when measuring the duration of an ongoing interval.

Because we do not only want to know how the duration function performs with the one real-world
dataset we used, but also what are the possible upper and lower boundaries of the runtime of the
function, we did also tests with synthetic datasets. e used different synthetic datasets where each holds
a certain type of ongoing time points. With those datasets we want to see how large the difference
is between measuring the duration of e.g. two fixed ongoing time points where the result is an ogint
with only one segment and two ongoing time points, where the resulting ogint holds five segments. We
decided to use different types of combinations to see how large the difference between short and long
resulting ogints are, so we can have a upper and lower boundary for the duration function.
We used six different synthetic datasets with the most common combination of ongoing time points,
the most expensive and the cheapest ones. Common combinations are e.g. two fixed time points and a
fixed and open one. These combinations were the biggest part of the Mozilla dataset.
The query used, was the same as in the query of listing 3. The legend says what types of ongoing
time points were used for the dataset. The Zero dataset holds ongoing time intervals that result in an
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Figure 4.1: Comparison of ongoing and bind approach. Duration function with Mozilla dataset
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Figure 4.2: Duration function with synthetic dataset

empty interval when instantiated and therefore return a single segment ogint with the value 0. The
results from the different sets return ogint with a different amount of segment. The Zero and FixFix
dataset return one segment, the FixOpe returns 2 and FixCap and CloOpe returned each 3. The set
CapCap returns 5 segments and this is also the maximum number of possible segments for the duration
function. We see clearly that the more segments the result has, the bigger the runtime. But the runtime
from two captured ongoing time points is roughly 30% slower than the one from two fixed time points
even though it has five times the number of segments in the result. The results of the runtime from the
Zero set were around 30% faster than the ones from the FixFix set even though it has the same number
of segments in the result. Therefore, not only the building of segments is responsible for the runtime
increment but also the calculation of its values. In the Zero set we do not calculate the value, we go
through if statements and then build directly a segment with the value 0.
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When we compare the runtime of the Mozilla set with the synthetic ones, we see that with 100’000
tuples the runtime of the Mozilla set is at 115ms and the average of the synthetic sets is 109ms, and
without the zero set the average is 116ms. Therefore, the Mozilla dataset is a good reference for the
runtime of the duration function and other sets should not differ too much in the runtime performance.

4.2.3 Addition Function
For the addition function we used only synthetic datasets for the tests, because our focus was not on
the comparison with a bind approach but rather on how much the performance changes with different
input. So we can better estimate how runtime performs when the number of segments increases. For
these tests we made two sets of synthetic datasets. In each set we used five different datasets containing
ogints with only one and up to five segments. We chose five segments because this is the maximum
number of segments which can result in a duration function. So each dataset with a certain size of
ogint in it, has a corresponding dataset in the other set. The difference between them is the size of the
resulting ogint. Whereas one set of datasets return ogint with the same number of segments as the input
ogint has, does the other one return an ogint with the maximum of possible segments. The queries were
only simple select query of the form: select add(ogint1 , ogint2 ) from table ;
The results are shown in the figure 4.3
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Figure 4.3: Addition function with synthetic datasets

When we compare the runtime of each dataset with its corresponding dataset from the other diagram,
we see that not all change with the same amount. The two datasets with only one segment, have of
course no change in the runtime, since the number of segments of the output is the same. For the
others, the output has almost double the number of segments as in the corresponding short dataset. The
runtime increments from short to long, for the five segment-dataset is around 30% whereas for the two
segment-dataset, it is only around 10%. This is because the relative amount of additional segments,
which are built, increases with the amount of input segments. This means, that compared to the short
dataset, in the long dataset the two segment ogint had to build only 1 more segment which is 50% from
the input, whereas the ogint with five input segments needed to build 4 additional segments which is
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equal to 80% of the number of segments from the input.
So, the main cause for the runtime increment is each segment which needs to be built and checked.

4.2.4 Maximum Function
The tests for the maximum function were built quite similarly as for the addition function. We also used
two sets of synthetic datasets with different ogints in it. The goal was also to show how the runtime
changes with a larger output1. The query used was also of the form:
select max(ogint1,ogint2 ) from table ;
In the legend the average number of segments from the input and the output are listed.
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Figure 4.4: Maximum function with synthetic datasets

We see that the runtime increase is more than with the addition function. As mentioned in the result
size section, we know that the maximum number of resulting segments is max(|i1|seg, |i2|seg) + 2 ∗
min(|i1|seg, |i2|seg), since our input ogint always had the same amount of segments it is just 3∗ |i|seg, |.
In the short dataset, the runtime of the maximum function was similar to the one of the addition,
whereas in the long set they differ a lot. Obviously, the larger number of resulting segments lead to the
time increase.
The synthetic data was built for the purpose to reach the maximum of possible segments, so we could
get a upper boundary for the runtime. This was achieved by ogints which switched with being the
maximum in each segment. Such ogints are very special and it will depend highly on the data used how
many times two ogints will switch for the maximum.

1Our implemented of the maximum function returns ongoing integers with too many segments for a special
case. Because of a time bottleneck, the bug could not be resolved. The results can still be used to show a
tendency how the results evolve, since only the results of two datasets are affected.
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5 Conclusions and Future Work
The goal of this thesis was to integrate a new data type of an ongoing integer into the widely-used
database system PostgreSQL. This new data type came from a new ongoing approach to deal with
so-called ongoing time points as for example now. This new approach is in comparison with the bind
approach where we use the current time stamp when we face a now in our database. Since we also
want to measure the duration of an ongoing time interval a new data type was needed to describe such
a result. To have a correct result an ongoing integer was invented by [3], so one can display and work
with those results.
In this thesis the ongoing integer which is a set of consecutive ongoing integer segments was imple-
mented as a ogint struct in C code. This ogint is a simplified version of an ongoing integer segment
which also holds a pointer to its successor, such that it is built as a list of segments. The most basic
functions to be able to handle this new data type were implemented. Since one of the needs was to mea-
sure the duration of an ongoing interval, accordingly such a function was implemented and compared
to the current bind approach. To further test the new data type for overhead two aggregation functions,
the addition and the maximum, were implemented and tested as well.
The implemented duration function had a runtime which was equal to the current bind approach, where
the dates of the ongoing interval needed to be bound to a fixed date and then were subtracted. Because
with ongoing data types we do not need to refresh our results with every time increment it it becomes
faster than the bind approach with every additional refreshment cycle. The tests with the addition and
maximum function showed that the main contributor to a runtime increase is each segment from the
input and the output. The minimum number of segments for the addition from a resulting ogint is 1
and the maximum is |ir|seg = |i1|seg + |i2|seg − 1. For the maximum function the numbers of seg-
ments from the result is bound by the minimum of |ir|seg = min(|i1|seg, |i2|seg) and a maximum of
|ir|seg = max(|i1|seg, |i2|seg) + 2 ∗min(|i1|seg, |i2|seg).

The next steps to have a full functioning data type would be to implement more functions, so we
can work properly with the ogint. As in the thesis already mentioned are comparison and hashing func-
tion an important feature for a data type in a database. Also, additional functions as for example the
subtraction and the minimum are necessary to have a closure for the ogint.
The ongoing integer complements the ongoing approach and together with other ongoing data types it
can help to solve the problem of results that do not remain valid as time passes by.
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