
Software Engineering HS’16

Lecture: Modular Design

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

Software Engineering HS’16

Lecture: Modular Design

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

Software Engineering HS’16

Lecture: Modular Design

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

Reading!
For next lecture: (all required)
Composite Design Pattern
http://sourcemaking.com/design_patterns/composite

Mediator Design Pattern
http://sourcemaking.com/design_patterns/mediator

Façade Design Pattern
http://sourcemaking.com/design_patterns/facade

2

Modular Design Overview

n  Introduction to Modularity

n  Principles and Heuristics for good Modularity
q  High Cohesion
q  Loose Coupling
q  Information Hiding
q  Open/Closed Principle
q  Liskov Substitution Principle
q  Law of Demeter

3

By the end of this unit you will be able to:

n  Critique a UML diagram and provide concrete
suggestions of how to improve the design

n  Explain the goal of a good modular design and why it is
important

n  Apply design-principles (the ones presented)
appropriately

Learning Goals

4

Recap: Bad Design

5

Software Design – Modularity

6

The goal of all software design techniques is to
break a complicated problem into simple pieces.

Modular Design

7

8

Why Modularity?

9

n  Minimize Complexity
n  Reusability
n  Extensibility
n  Portability
n  Maintainability
n  …

Why Modularity?

10

n  There is no “right answer” with design

n  Applying heuristics/principles can provide
insights and lead to a good design

What is a good modular Design?

11

Pragmatic Programmer:

Eliminate Effects Between Unrelated Things –
design components that are:
self-contained,
independent,
and have a single, well-defined purpose.

Andrew Hunt and David Thomas

What is a good modular Design?

12

13

Design
Principles

13

Principles & Heuristics for modular
Design

n  High Cohesion
n  Loose Coupling
n  Information Hiding
n  Open/Closed Principle
n  Liskov Substitution Principle
n  Law of Demeter
n  ….

14

Discussion question

n  Which of these two designs is better?
A. public	class	AddressBook	{	
				private	LinkedList<Address>	theAddresses;	
				public	void	add	(Address	a)	
									{theAddresses.add(a);}	
									//	...	etc.	...	
			}	
	
B.	public	class	AddressBook		
		 	 	 	 	extends	LinkedList<Address>	{	
		//	no	need	to	write	an	add	method,	we	inherit	it	
}	

15

High Cohesion

n  Cohesion refers to how closely the functions in a
module are related

n  Modules should contain functions that logically
belong together
q  Group functions that work on the same data

n  Classes should have a single responsibility
(no schizophrenic classes)

versus

16

High or low cohesion?

public class EmailMessage {
 …
 public void sendMessage() {…}
 public void setSubject(String subj) {…}
 public void setSender(Sender sender) {…}
 public void login(String user, String passw) {…}
 ….
}

17

The Or-Check

n  A class description that describes a class in
terms of alternatives is probably not a class but a
set of classes

 “A ClassRoom is a location where students
 attend tutorials OR labs”
 May need to be modeled as two classes:
 TutorialRoom and ComputerLab

18

Loose Coupling

n  Coupling assesses how tightly a module is
related to other modules

n  Goal is loose coupling:
 modules should depend on as few modules
 as possible

n  Changes in modules should not impact other
modules; easier to work with them separately

19

Tightly or loosely coupled?

20 from Alverson (UW)

Tightly or loosely coupled?

21 from Alverson (UW)

Information Hiding

22 from CodeComplete by Steve McConnell

A	good	class	is	a	lot	
like	an	iceberg:	seven-
eights	is	under	water,	
and	you	can	see	only	
the	one-eight	that’s	
above	the	surface.	

Information Hiding
n  Only expose necessary

functions

n  Abstraction hides complexity
by emphasizing on essential
characteristics and
suppressing detail

n  Caller should not assume
anything about how the
interface is implemented

n  Effects of internal changes
are localized

23

Information Hiding: Example 1

The chief scientist of the elementary particle research
lab asks the new intern about his latest results: “So
what is the average momentum of these neutral
particles?”
a) 42
b) Hmmm. Take this pile of sheet with my
observations, here is the textbook that explains how to
calculate momentum, also you will need to search
online for the latest reference tables. Oh, and don’t
forget to correct for multiplicity!

Which answer is the most likely to get the intern fired?

24

Information Hiding: Example 2
n  Class DentistScheduler has

q  A public method automaticallySchedule()
q  Private methods:

n  whoToScheduleNext()
n  whoToGiveBadHour()
n  isHourBad()

n  To use DentistScheduler, just call
automaticallySchedule()
q  Don’t have to know how it’s done internally
q  Could use a different scheduling technique: no

problem!

25

Open/Closed Principle

n  Classes should be open for extensions
q  It is often desirable to modify the behavior of a class

while reusing most of it
n  Classes should be closed for change

q  Modifying the source code of a class risks breaking
every other class that relies on it

n  Achieved through inheritance and
dynamic binding

26

Open/Closed and Information Hiding
n  Modifying the source code of a class risks

breaking every other class that relies on it

n  However, information hiding says that we should
not assume anything about implementation

n  So is there a need to keep classes closed for
change?
q  Yes because the implied behavior should never

change!
q  Inherit to reuse an interface while changing the

behavior

27

class Drawing {
 public void drawAllShapes(List<IShape> shapes) {
 for (IShape shape : shapes) {
 if (shape instanceof Square()) {
 drawSquare((Square) shape);
 } else if (shape instanceof Circle) {
 drawCircle((Circle) shape));
 } } }

 private void drawSquare(Square square) { …// draw the square… }
 private void drawCircle(Circle square) { …// draw the circle… }
}

28

Open/Closed Example

29

Open/Closed Example

class Drawing {
 public void drawAllShapes(List<IShape> shapes) {
 for (IShape shape : shapes) {
 shape.draw();
} } }

interface IShape {
 public void draw();
}

class Square implements IShape {
 public void draw() { // draw the square }
}

Open/Closed Caveat

n  nice in theory, but in practice deriving a class to
modify its behavior is not always best thing to do

n  however, it becomes increasingly important to
adhere to the open/closed principle as classes
mature and are more and more relied upon

n  some classes are not meant to be reusable, so
the Open/Closed principle doesn’t apply

30

Picture from Marc Palyart’s slides

Liskov Substitution Principle

An object of a superclass
should always be substitutable
by an object of a subclass

q  Subclass has same or weaker
preconditions

q  Subclass has same or stronger
postconditions

Derived methods should not
assume more or deliver less

31

Liskov Substitution Principle
Example

Reasonable to derive a square from a rectangle?

Rectangle

Square

see http://www.objectmentor.com/resources/articles/lsp.pdf 32

LSP Example – Rectangle & Square

class Rectangle {

 private double fWidth, fHeight;

 public void setWidth(double w) { fWidth = w; }
 public void setHeight(double h) { fHeight = h; }
 public double getWidth() { return fWidth; }
 public double getHeight() { return fHeight; }
}

33

LSP Example – Rectangle & Square

class Square extends Rectangle {

 public void setWidth(double w) {
 super.setWidth(w);
 super.setHeight(w);
 }

 public void setHeight(double h) {
 super.setHeight(h);
 super.setWidth(h);
 }
}

34

LSP Example – Rectangle & Square

35

// somewhere else
public void calculate(Rectangle r) {
 r.setWidth(5);
 r.setHeight(6);
 assert(r.getWidth() * r.getHeight() == 30);
}

// somewhere else
Rectangle r = new Square(…);
calculate(r);

n  Postcondition for Rectangle	setWidth(…)	method
	assert((fWidth	==	w)	&&	(fHeight	==	old.fHeight));	

n  Square	setWidth(…)	has weaker postcondition
q  does not conform to (fHeight	==	old.fHeight)	

n  Square	has stronger preconditions
n  Square assumes fWidth == fHeight

n  In other words
q  Derived methods assume more and deliver less.

LSP Example – Rectangle & Square

36

LSP Continued

LSP shows that a design can be structurally consistent
(A Square ISA Rectangle)

But behaviourally inconsistent

So, we must verify whether the pre and postconditions in
properties will hold when a subclass is used.

“It is only when derived types are completely substitutable
for their base types that functions which use those base
types can be reused with impunity, and the derived types
can be changed with impunity.”

37

Law of Demeter
(a.k.a. Principle of Least Knowledge)

n  Assume as little as possible about
other modules

n  Restrict method calls to your
immediate friends

 “Only talk to your friends”

38

Law of Demeter for classes

n  Method M of object O should only call methods of:
q  O itself
q  M’s parameters
q  Any object created in M
q  O’s direct component objects

n  “Single dot rule”
q  “a.b.method(…)” breaks LoD
q  “a.method(…)” does not

39

Class Activity
Which principle is violated?
a) 52 different “import …” statements at the top of a Java file
b) public final class Bird { … }
c) Point x = body.getCenterOfMassPos();

 Vec s = body.getCenterOfMassSpeed();
 Vec a = body.getCenterOfMassAcceleration();
 a = a + force * body.getMass();
 s = s + a * dt;
 x = x + s * dt;
 body.setCenterOfMassPos(x);
 body.setCenterOfMassSpeed(s);
 body.setCenterOfMassAcceleration(a);

40

Which principle is violated?

d) public class Road extends Highway { … }
e) rect.setHeight(52);

 // Following line is not needed because setHeight updates maximum
height
 // rect.setMaxHeight(52);

f) public class System {
 public void changeCarSpeed();
 public void changeCarColor();
 public void changeHighwayMaxSpeed();
 public void updatePoliceCarPosition();
 };

g) public class Kid extends Person {
 // Inherited from parent class. Does nothing because kids
 // do not know how to “Reason”
 public void Reason() {} }

41

Class Activity – Revisiting Your Design

n  Examine your class diagrams and check for the
design principles in your design
q  Did you violate any
q  Did you use any, which ones and why

n  Be able to articulate which principles you used
and why!

42

Modular Design Summary

n  Goal of design is to manage complexity by
decomposing problem into simple pieces

n  Many principles/heuristics for modular design
q  Strong cohesion, loose coupling
q  Call only your friends
q  Information Hiding

n  Hide details, do not assume implementation
q  Open/Closed Principle

n  Open for extension, closed for modification
q  Liskov Substitution Principle

n  Subclass should be able to replace superclass

43

High Cohesion

!! Cohesion refers to how closely the functions in a
module are related

!! Modules should contain functions that logically
belong together
"! Group functions that work on the same data

!! Classes should have a single responsibility
(no schizophrenic classes)

versus

16

Picture from Marc Palyart’s slides

Liskov Substitution Principle

An object of a superclass
should always be substitutable
by an object of a subclass

"! Subclass has same or weaker
preconditions

"! Subclass has same or stronger
postconditions

Derived methods should not
assume more or deliver less

31

Law of Demeter
(a.k.a. Principle of Least Knowledge)

!! Assume as little as possible about
other modules

!! Restrict method calls to your
immediate friends

 “Only talk to your friends”

38

Software Engineering HS’16

Lecture: Modular Design

Thomas Fritz & Martin Glinz

Many thanks to Philippe Beaudoin, Gail
Murphy, David Shepherd, Neil Ernst and
Meghan Allen

High Cohesion

!! Cohesion refers to how closely the functions in a
module are related

!! Modules should contain functions that logically
belong together
"! Group functions that work on the same data

!! Classes should have a single responsibility
(no schizophrenic classes)

versus

16

Picture from Marc Palyart’s slides

Liskov Substitution Principle

An object of a superclass
should always be substitutable
by an object of a subclass

"! Subclass has same or weaker
preconditions

"! Subclass has same or stronger
postconditions

Derived methods should not
assume more or deliver less

31

Law of Demeter
(a.k.a. Principle of Least Knowledge)

!! Assume as little as possible about
other modules

!! Restrict method calls to your
immediate friends

 “Only talk to your friends”

38

