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Abstract

We study the problem of ranking a set of (reference) time series according
to their similarity to a (base) time series. Creating such a ranking is an
important subroutine for many algorithms, e.g. TKCM exploits ranked ref-
erence time series to impute missing values in a (base) time series. In this
report, we describe two similarity measures, called the Pearson correlation
coefficient (PCC) and Case Matching Similarity (CMS), for computing the
similarity between time series. Both measures have been implemented and
tested on a large real-world data set of meteorological time series that we
collected from MeteoSwiss. An experimental evaluation has shown that the
similarity of two time series depends heavily on their length. In particular,
the ranking of the reference time series fluctuates strongly for short time se-
ries. We found three interesting weather phenomena in the MeteoSwiss data
set: the Föhn, the Bise, and the temperature inversion. The experiments
with the weather phenomena have shown that rather short periods of time in
which the weather phenomena occur are too short to have a high impact on
the PCC or CMS, because a strong linear correlation exists in the remaining
period.
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1 Introduction

A streaming time series s is a sequence of data points that receives a new
value every time unit (e.g. every 10 minutes). Such data appears in many
applications, e.g. the financial stock market, meteorology, sensor networks,
and network monitoring to name only a few. Often streams are incomplete
as values are missing.

Top-k Case Matching (TKCM) is an algorithm to impute missing values
in streams of meteorological time series, i.e. to replace the missing value with
good estimates of what the values could have been [1]. TKCM imputes a
missing value at time t of (base) time series s by looking for similar values
to those seen at a set of reference time series at time t. TKCM assumes that
a ranking of reference time series for a time series s is provided by domain
experts.

This paper focuses on two similarity (or correlation) measures to auto-
matically create a ranking of reference time series. The first measure is the
Pearson Correlation Coefficient (PCC), which measures the linear correlation
between two time series. Informally, two time series are linearly correlated
when their scatter plot shows a linear trend. We prove that PCC reaches its
maximum value if the scatter plot shows a perfectly straight line.

The second measure is the Case Matching Similarity (CMS), which is also
able to detect non-linear correlation between time series. Time series shifted
in the time axis are an example of non-linearly correlated time series. As for
PCC, we also show for CMS under which circumstances two time series are
maximally correlated.

The paper is structured as follows: In Section 2, we introduce the basic
notation and define the goal of our work. Section 3 introduces the MeteoSwiss
data set which has been used during an experimental evaluation. Section 4
introduces the PCC and shows formally the connection between PCC and
linear regression. More specifically, it shows that PCC can be interpreted
as quality measure for the obtained regression line. Section 5 introduces the
CMS and discusses its properties; for instance, we show that CMS is asym-
metric, i.e. CMSw(r, s) 6= CMSw(s, r) for two time series s, r. This stems
from the fact that in TKCM a time series r can be a good reference for time
series s, but not vice versa. In addition, a formula was specified to provide
an interval for the CMS’s bucket width. Section 6 presents pseudocode of the
implementation to compute PCC and CMS incrementally on streams of time
series. Furthermore, a complexity analysis of the implementation is given.

We continue with the experimental evaluation in Section 7 which com-
prises an experimental evaluation including the impact of the sliding window
on the ranking and the impact of the bucket width on the ranking. In addi-
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tion, Section 7.2 explains three weather phenomena that can be found in our
data set and we test our implementation during their occurrence. Section 8
concludes our work and presents future research directions.
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2 Problem Statement

We consider a set S = {s1, s2, . . . , sn} of n streaming time series. Each time
series s ∈ S reports values from a sensor measured at time points t1, t2, . . . ,
where s(t) denotes the value of s at time t. Since streaming time series are
unbounded, we introduce a sliding window W of length LW . The sliding
window W = {tn−LW+1, . . . , tn−1, tn} contains the LW last time points of the
measurements that are kept in main memory where tn is the current time.
The aim of our work is to determine for some (base) time series s ∈ S a
ranking of the remaining time series R = S\{s}. We call a time series r ∈ R
a reference time series. To establish a ranking, we use a similarity function
f(s, r) that computes the similarity (or correlation) between a base time
series s and a reference time series r ∈ R. Let r1, r2 ∈ R be two reference
time series, we say that r1 is more similar to s than r2 to s if and only if
f(s, r1) < f(s, r2).

Definition 1. (Ranking) Let s be a time series and let f be a similarity
function. A ranking of reference time series 〈ri1 , ri2 , . . . , rin−1〉 is an ordered
sequence of time series ri ∈ R such that f(s, rij) < f(s, rij+1

) for any j ∈
[1, n− 1).

The goal of our work is to study two similarity function f : the Pearson
Correlation Coefficient (PCC) [2] and the Case Matching Similarity (CMS)
[3]. PCC is able to detect linear correlation, while CMS is able to detect also
non-linear correlation. The PCC ranges from -1 to 1, where a higher abso-
lute value denotes stronger correlation, hence PCC(s, r1) < PCC(s, r2) ⇐⇒
|PCC(s, r1)| ≥ |PCC(s, r2)|. The CMS range is [0,∞), with 0 denoting max-
imum similarity, hence CMSw(s, r1) < CMSw(s, r2) ⇐⇒ CMSw(s, r1) ≤
CMSw(s, r2). Table 1 summarizes the notations used in this paper.
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S Set of all time series
R Set of all reference time series
s Base time series
r Reference time series
t Time of measurement
s(t) The measured value at time t in time series s
W Sliding Window
LW The maximum length of the sliding window W
bz A bucket, where z denotes the ID of the bucket and z ∈ Z
w Bucket width, where w ∈ R>0

σz Bucket standard deviation
b̄z Bucket mean
c Average rate of change

Table 1: Summary of main notations.
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3 The MeteoSwiss Data Set

The Federal Office of Meteorology and Climatology MeteoSwiss operates 1268
weather stations in Switzerland, each station records several meteorological
parameters in variable intervals. Temperature data, sunshine duration, rain-
fall, air pressure data, and many other parameters are recorded in a one,
five, ten, 15 minutes and hourly interval. Our meteorological data set com-
prises 117 time series, each ten years long – from 2006 to 2015. The data
set sources from 80 different weather stations mainly located in the cantons
Wallis, Graubünden and the Rhone-valley. Since weather phenomena like the
Föhn occurs in valleys close to the Alps, these region’s weather data suits
best for our analysis. The data set contains 40,698,841 measurements in to-
tal, where the shortest and longest time series contain 13,353 and 525,888
measurements respectively. 20,830,055 values in the data set are missing
(33.85%). Missing values often occur in groups, i.e. blocks of consecutive
missing values. Small blocks are mainly caused by transmission problems
while larger occur due to sensor failures. Around 62% of the data set are
temperature measurements. The temperature is measured two meters above
ground. 28% of the data set consist of barometric pressure and the rest
contains measurements about absolute humidity. The lowest temperature
measured was -35.1 ◦C in Samedan in February 2012, 39.7 ◦C in Genève-
Cointrin was the highest measured temperature respectively. The lowest
barometric pressure was measured on the Piz Corvatsch with 641.5hPa. The
highest measured barometric pressure in the timeframe from 2006 to 2015
was measured in Genève-Cointrin with 990.5hPa. The lowest absolute hu-
midity was 0 g/m3 - the highest absolute humidity was measured in Sitten
with 18.4 g/m3.

Figure 1 and 2 show the distribution of all chosen weather stations. The
northernmost station is Güttingen. The easternmost station is Scuol in
the area called Engadin. The southernmost station is called Grosser Sankt
Bernhard in the canton Wallis and the westernmost Genève-Cointrin. The
weather stations have common parameters such as they are located in the
same valley or on the same altitude above sea level. The station Grono
in the canton Graubünden has with 323m above sea level the lowest alti-
tude. Whereas the station on the Piz Corvatsch, also located in canton
Graubünden, is 3302m above sea level.

3.1 Sample Data Set

The sample data set is a subset of our meteorological data set. It will be
used in this paper for applying formulas and algorithms. Table 2 defines a

9



Figure 1: Weather stations in the canton Graubünden and Vaduz.

Figure 2: Weather stations in the canton Wallis and the Rhone-valley.
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set S = {r1, s1} of time series.

Time t ∈ W r1(t)
◦C s1(t)

◦C

1 (22:00) 1.3 7.9
2 (22:20) 0.6 7.5
3 (22:40) 0.5 7.7
4 (23:00) 0.1 7.4
5 (23:20) 0 8
6 (23:40) 0.2 5.9
7 (00:00) 0 6.3
8 (00:20) -0.5 5.8
9 (00:40) -0.8 5.3
10 (01:00) -1.2 5.1
11 (01:20) -1.4 5.5
12 (01:40) -1.2 5
13 (02:00) -1.1 5.6

Mean -0.269 6.385

Table 2: Weather data from Siders (r1) and Visp (s1) while the Föhn occurs
(14/15.03.15).
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4 Pearson Correlation Coefficient

The Pearson Correlation Coefficient (PCC), also product moment correlation
coefficient, is a measure of the linear correlation between two variables, giving
a value between +1 and -1 inclusive, where 1 is a total positive and -1 a total
negative linear correlation respectively. In the case the scatter plot of the
two variables (time series in our case) shows a perfectly rising or falling line,
as we will prove in this section. PCC approaches zero the more values differ
from the straight line. If the two variables do not linearly correlate at all,
the PCC’s value is zero. First we define PCC and calculate then various
quantities using the data set defined in Section 3. Later on we formally
show the connection between PCC and linear regression. More specifically,
we show that PCC can be interpreted as a quality measure for the obtained
regression line.
Let r and s be two time series then PCC is defined as

PCC(s, r) =

∑
t∈W (r(t)− r̄)(s(t)− s̄)√∑

t∈W (r(t)− r̄)2
√∑

t∈W (s(t)− s̄)2
(1)

where

s̄ =

∑
t∈W s(t)

Lw

(2)

is the mean of s, r respectively [2]. We wish to measure both the direction
and the strength of the linear relationship between s and r. First we develop
the covariance and then the correlation coefficient (Equation 1). Let us draw
a horizontal line at s̄1 and a vertical line at r̄1 on the scatter plot (Figure 3)
of the two time series s1 and r1 of our running example. For our data set the
means are

s̄1 =

∑
t∈W s1(t)

Lw

=
83

13
= 6.385 and r̄1 =

∑
t∈W r1(t)

Lw

=
−3.5

13
= −0.269.

The two lines divide the scatter plot into four quadrants. The following
quantities are computed in Table 3 for each time point t ∈ W :

• (s1(t)− s̄1), the deviation of each observation s1(t) from s̄1,

• (r1(t)− r̄1), the deviation of each observation r1(t) from r̄1,

• the product of the above two quantities, (s1(t)− s̄1)(r1(t)− r̄1).

The quantity (s1(t) − s̄1) is positive for every point in the first and second
quadrants, and it is negative for every point in the third and fourth quadrants.
Similarly, the quantity (r1(t)− r̄1) is positive for every point in the first and

12
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Figure 3: Data set’s (Table 2) scatter plot indicating s̄1, r̄1 and the quadrants.

t ∈ W (s1(t)− s̄1) (r1(t)− r̄1) (s1(t)− s̄1)(r1(t)− r̄1)

1 1.515 1.569 2.378
2 1.115 0.869 0.970
3 1.315 0.769 1.012
4 1.015 0.369 0.375
5 1.615 0.269 0.435
6 -0.485 0.469 -0.227
7 -0.085 0.269 -0.023
8 -0.585 -0.231 0.135
9 -1.085 -0.531 0.576
10 -1.285 -0.931 1.196
11 -0.885 -1.131 1.000
12 -1.385 -0.931 1.289
13 -0.785 -0.831 0.652

Sum 0.000 0.000 9.766

Table 3: Quantities needed to compute covariance between the temperature
series of Visp (s1) and Siders (r1).
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fourth quadrants, and it is negative for every point in the second and third
quadrants. As Table 3 shows the sums of (s1(t)− s̄1) and (r1(t)− r̄1) equal
zero. Since the quantities reflect the distance to the mean the sums are
supposed to be zero. If the linear relationship between s1 and r1 is positive
(as s1 increases also r1 increases), then there are likely more points in the
first and third quadrants than in the second and fourth quadrants. In this
case, the sum of the product (s1(t) − s̄1)(r1(t) − r̄1) is likely to be positive
because there are more positive than negative quantities. Conversely, if the
relationship between s1 and r1 is negative (as s1 increases, r1 decreases), then
there are likely more points in the second and fourth quadrants than in the
first and third quadrants. Hence the product (s1(t)− s̄1)(r1(t)− r̄1) is likely
to be negative. If we compare with our data set, all data points lie in the
first and third quadrants except the time points t = 6, 7 lying in the fourth
quadrant which results in a negative sign of the product (s1(t)−s̄1)(r1(t)−r̄1)
for t = 6, 7 (see Table 3). Therefore the sign of the quantity

Cov(s, r) =

∑
t∈W (s(t)− s̄)(r(t)− r̄)

Lw

(3)

which is known as the covariance between r and s, indicates the direction
of the linear relationship between s and r. If Cov(s, r) > 0, then there is a
positive relationship between s and r, if Cov(s, r) < 0, then the relationship
is negative. If Cov(s, r) = 0, then there is no linear relationship between s
and r [2].
Since the sum of the products in Table 3 is positive for our data set we
expect Cov(s1, r1) > 0 and therefore a positive linear relationship between
the time series s1 and r1 (i.e. as the temperature in Siders increases also the
temperature in Visp increases) which is the case applying Equation 3:

Cov(s1, r1) =

∑
t∈W (s1(t)− s̄1)(r1(t)− r̄1)

Lw

=
9.766

13
= 0.751. (4)

Unfortunately the covariance does not tell us anything about the strength of
the relationship because it is affected by the changes in the units of measure-
ment. In case of our weather data the covariance depends on whether the
temperature is measured in degree Celsius or e.g. in degree Fahrenheit. The
covariance for measurements in degree Fahrenheit would be greater than the
covariance for measurements in degree Celsius. To avoid this disadvantage,
we standardize the data first, by dividing the covariance with the standard
deviations of r1 and s1 which is defined for ri as

σ(r) =

√∑
t∈W (r(t)− r̄)2

Lw

(5)
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and for si respectively. Using the Equation 3 and 5 resulting in:

PCC(s, r) =
Cov(s, r)

σ(r) · σ(s)
=

∑
t∈W (s(t)− s̄)(r(t)− r̄)√∑

t∈W (r(t)− r̄)2
√∑

t∈W (s(t)− s̄)2
(6)

which is equivalent to Equation 1. Using the quantities in Table 4, the
standard deviations for our data set are

σ(r1) =

√∑
t∈W (r1(t)− r̄1)2

Lw

=

√
15.637

13
= 0.801 and (7)

σ(s1) =

√∑
t∈W (s1(t)− s̄1)2

Lw

=

√
8.348

13
= 1.097. (8)

Using the results of Equation 4, 7 and 8 in Equation 6 we obtain

PCC(s1, r1) =

∑
t∈W (s1(t)− s̄1)(r1(t)− r̄1)√∑

t∈W (r1(t)− r̄1)2
√∑

t∈W (s1(t)− s̄1)2

=
0.751

2.889 · 3.954
= 0.855.

(9)

The high value of PCC(s1, r1) = 0.855 is consistent with the strong linear
relationship between s1 and r1 we saw in the scatter plot (Figure 3). If PCC
equals 1 (-1), the positive (negative) linear relationship between s1 and r1
would be perfect. In this case all time points would lie on one line, the so
called regression line. If PCC equals zero, no linear relationship exists. In
order to show how the time point’s distribution relates to the regression line
and the PCC, we introduce regression analysis. Regression analysis is an ex-
tension to correlation analysis because it postulates a model that can be used
not only to measure the direction and the strength of a relationship between
the reference time series and the base time series but also to numerically
describe that relationship.

4.1 Linear Regression

In linear regression the relationship between a reference time series r and its
base time series s is postulated as a linear model

s(t) = β0 + β1r(t) + εt (10)

where β0 and β1 are constants called the model regression coefficients and ε is
a random error [2]. It is assumed that the linear model (Equation 10) provides
an acceptable approximation to the true relationship between r and s. In

15



t ∈ W (s1(t)− s̄1)2 (r1(t)− r̄1)2

1 2.296 2.462
2 1.244 0.756
3 1.730 0.592
4 1.031 0.136
5 2.609 0.072
6 0.235 0.220
7 0.007 0.072
8 0.342 0.053
9 1.176 0.282
10 1.650 0.866
11 0.783 1.279
12 1.917 0.866
13 0.616 0.690

Sum 15.637 8.348

Table 4: Quantities needed to compute the standard deviations of the tem-
perature series of Visp (s1) and Siders (r1).

other words we assume a linear relationship between the time series r1 and s1
of our weather data shown in Table 2. A linear relationship between r1 and
s1 exists since we obtain a strong positive correlation of PCC(s1, r1) = 0.855
and we see a linear trend in the scatter plot (Figure 4).
The regression line is the best-fitting line using the least squares method [2].

The coefficient β1 in Equation 10, called the slope, may be interpreted as the
change in s for one unit change in r. The constant coefficient β0, called the
intercept, is the predicted value of s(t) when r(t) = 0.
Based on the available data in Table 2, we wish to estimate the parameters
β0 and β1. This is equivalent to finding the straight line that gives the best
representation of the points in the scatter plot of the times series s1 versus the
time series r1 (Figure 4). We estimate the parameters using the mentioned
least squares method, which gives the line that minimizes the sum of squares
of the vertical distances (Figure 5) from each point to the line. We square
the vertical distances in order to

• get only positive distances, such that positive and negative distances
do not cancel out,

• emphasize larger differences.
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Figure 4: Data set’s (Table 2) scatter plot indicating the regression line.
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Figure 5: Data set’s (Table 2) scatter plot indicating the regression line and
the error distances ε5 and ε6.
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The vertical distances represent the errors in s1. These errors can be obtained
by rewriting Equation 10 as

εt = s(t)− β0 − β1r(t). (11)

The sum of squares of these distances can be written as

Dist(β0, β1) =
∑
t∈W

ε2t =
∑
t∈W

(s(t)− β0 − β1r(t))2. (12)

We find the values β0, β1 that minimize Dist(β0, β1) in order to get the re-
gression line that best approximates the data set. The first derivative of
Equation 12 provides us the values of β0 and β1 that minimize Dist(β0, β1).
We partially differentiate with respect to β0 and β1 and solve for the critical
points:

∂Dist(β0, β1)

∂β0
= −2

∑
t∈W

(s(t)− β0 − β1r(t) = 0 (13)

∂Dist(β0, β1)

∂β1
= −2

∑
t∈W

(s(t)− β0 − β1r(t))r(t) = 0. (14)

Solving for β0 and β1 we obtain (see Appendix A for details):

β0 = s̄− β1r̄ (15)

β1 =

∑
t∈W (s(t)− s̄)(r(t)− r̄)∑

t∈W (r(t)− r̄)2
. (16)

Once β1 is calculated, then we can obtain β0 by using Equation 15.
β0 and β1, called the least squares estimates, denote the intercept and the
slope of the line that has the smallest possible sum of squares of the vertical
distances from each point to the line. For this reason the line is called least
squares regression line and it is given by

ŝ(t) = β0 + β1r(t). (17)

Using Table 3 and 4 we obtain for our data set

β1 =

∑
t∈W (s1(t)− s̄1)(r1(t)− r̄1)∑

t∈W (r1(t)− r̄1)2
=

9.766

8.348
= 1.170 (18)

and
β0 = s̄1 − β1r̄1 = 6.385− 1.170 · (−0.269) = 6.700. (19)
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Thus the regression line intersects the y-axis ŝ1(t) = 6.700 when r1(t) = 0 and
if the temperature in Siders increases one degree Celsius, the temperature in
Visp increases 1.170 degrees Celsius. The Equation of the regression line in
Figure 4 then results using Equation 17 in

ŝ1(t) = 6.700 + 1.170 · r1(t). (20)

The least squares line always exists because we can always find a line that
gives the minimum sum of squares of the vertical distances. The t-th fitted
value ŝ(t) represents the point on the least squares regression line (Equation
17) corresponding to r(t). The vertical distance corresponding to the t-th
observation is

εt = s(t)− ŝ(t). (21)

These vertical distances are called the ordinary least squares residuals. One
property of the residuals in Equation 21 is that their sum is zero. This means
that the sum of the vertical distances above the regression line is equal to
the sum of the vertical distances below (see Appendix B for details):∑

t∈W

εt = 0. (22)

Using Equation 19 and 21 we are now able to calculate the fitted values ŝi(t)
and the ordinary least squares residuals εt as we are now in the possession of
the least squares estimates β0 and β1. E.g. for data point t = 5 they result
in

ŝ1(5) = 6.700 + 1.170 · 0 = 6.700, (23)

and
ε5 = 8− 6.700 = 1.300. (24)

Study Figure 5 to see ŝ1(t) and εt for the points (r(5), s(5)) and (r(6), s(6))
in the scatter plot referencing Table 5 for the fitted values ŝ1(t) and the
ordinary least squares residuals εt of all weather data.
The closer the data points scatter around the regression line in Figure 4, the
closer is the PCC to ±1, as we will show next.

4.2 Measuring the Quality of Fit

After fitting a linear model relating s to r, we are not only interested in
knowing whether a linear relationship exists and in predicting or imputing
values but also in measuring the quality of the fit of the model to the data.
Therefore we introduce a useful measure called the coefficient of determina-
tion denoted by R2 [2]. R2 can be interpreted as the proportion of the total
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t ŝ1(t) εt

1 8.220 -0.320
2 7.402 0.098
3 7.285 0.415
4 6.817 0.583
5 6.700 1.300
6 6.934 -1.034
7 6.700 -0.400
8 6.115 -0.315
9 5.764 -0.464
10 5.296 -0.196
11 5.062 0.438
12 5.296 -0.296
13 5.413 0.187

Sum 83.000 0.000

Table 5: The fitted values ŝ1(t) and the ordinary least squares residuals εt
for the weather data.

variation in s that is accounted for by the predictor r. It is the square of the
already introduced PCC, such that

[PCC(s, r)]2 = R2. (25)

The coefficient of determination is developed as follows: After we compute
the least squares estimates of the parameters of a linear model, let us compute
the following quantities:

SST =
∑
t∈W

(s(t)− s̄)2,

SSR =
∑
t∈W

(ŝ(t)− s̄)2,

SSE =
∑
t∈W

(s(t)− ŝ(t))2 =
∑
t∈W

ε2t ,

(26)

where SST stands for the total sum of squared deviations of s from its mean
s̄, SSR denotes the sum of squares due to regression, and SSE represents the
sum of squared residuals (vertical error distances). From [2] we know that:

R2 =
SSR

SST
. (27)
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The quantities (s(t)− s̄), (ŝ(t)− s̄) and (s(t)− ŝ(t)) are presented in Figure
6 for a typical point (r(t), s(t)). A horizontal line is drawn at s(t) = s̄. Note
that for every point (s, r), there are two points, (r(t), ŝ(t)), which lies on the
fitted line, and (r(t), s̄(t)) which lies on the line s(t) = s̄. According to Figure

r(t)

s̄

s(t)
(r(t), s(t))

(r(t), ŝ(t))

(r(t), s̄)

ŝ = β̂0 + β̂1r

(s(t)− ŝ(t))

(ŝ(t)− s̄)

(s(t)− s̄)

r

s

Figure 6: A graphical illustration of quantities defined in Equation 26, shown

6, the total sum of squared deviations, SST, in s can be decomposed into the
sum of two quantities. The first, SSR, measures the quality of r as a predictor
of s. The second, SSE, measures the error in this prediction. Next we want
to combine the quantities SST, SSR and SSE in a single equation, as this
will allow us to prove that if all points in the scatter plot lie on the regression
line, the PCC reaches its maximum. By definition we have s(t) = ŝ(t) + εt.
Subtracting s̄ on both sides of this expression, we have

s(t)− s̄ = ŝ(t)− s̄+ εt.

Squaring both sides:

(s(t)− s̄)2 = ((ŝ(t)− s̄) + εt)
2

= (ŝ(t)− s̄)2 + ε2t + 2εt(ŝ(t)− s̄).
Summing for all t:∑

t∈W

(s(t)− s̄)2 =
∑
t∈W

(ŝ(t)− s̄)2 +
∑
t∈W

ε2t + 2
∑
t∈W

εt(ŝ(t)− s̄). (28)

It can be shown that the last term on the right hand side, i.e. 2
∑

t∈W εt(ŝ(t)−
s̄), equals zero (see Appendix C for details). Hence Equation 28 simplifies to∑

t∈W

(s(t)− s̄)2 =
∑
t∈W

(ŝ(t)− s̄)2 +
∑
t∈W

ε2t . (29)
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Thus the equality is given by

SST = SSR + SSE. (30)

Using Equation 25 and 27 we have

[PCC(s, r)]2 = R2 =
SSR

SST
= 1− SSE

SST
. (31)

Note that 0 ≤ R2 ≤ 1 because SSE ≤ SST . If R2 is near 1, then r accounts
for a large part of the variation in s. For this reason, R2 is known as the
coefficient of determination because it gives us an idea of how strongly r de-
termines s. Considering Equation 31, the smaller the vertical error distances
SSE, the greater R2 and PCC accordingly and vice versa.

Theorem 1. Let r and s be two time series. Let ŝ(t) = β0 + β1r(t) be the
least squares regression line. |PCC(s, r)| = 1 if and only if there is a perfect
linear relationship between r and s, i.e. ∀ t ∈ W (s(t) = ŝ(t)).

Proof. First observe that ∀ t ∈ W (s(t) = ŝ(t)) is equivalent to SSE =∑
t∈W (s(t)− ŝ(t))2 = 0.

(If-part) We assume SSE = 0, hence PCC(s, r)2 = 1 − 0
SST

= 1 and
|PCC(s, r)| = 1.
(Only-if-part) We assume |PCC(s, r)| = 1, hence 12 = 1− SSE

SST
, which yields

SSE
SST

= 0. Consequently SSE = 0.

Using our data set defined in Table 2 and the fitted values in Table 5 as
well as the defined PCC in Equation 6 we can calculate PCC(s1, r1) = 0.855
from which it follows that R2 = 0.8552 = 0.731. The same value can be
computed using Equation 27 and the quantities in Table 6:

R2 = 1− SSE

SST
= 1− 4.211

15.637
= 0.731. (32)

The value of R2 = 0.731 indicates that 73.1% of the total variability in s1
is accounted for by r1. It also indicates that a strong linear relationship
between r1 and s1 exists.
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t (s1(t)− s̄1)2 (ŝ1(t)− s̄1)2 (s1(t)− ŝ1(t))2

1 2.296 3.370 0.103
2 1.244 1.034 0.010
3 1.730 0.810 0.173
4 1.031 0.187 0.340
5 2.609 0.099 1.691
6 0.235 0.301 1.068
7 0.007 0.099 0.160
8 0.342 0.073 0.099
9 1.176 0.386 0.215
10 1.650 1.186 0.038
11 0.783 1.750 0.192
12 1.917 1.186 0.087
13 0.616 0.945 0.035

Sum 15.637 11.426 4.211

Table 6: The quantities SST, SSR and SSE for the weather data.

5 Case Matching Similarity

As shown the PCC can be used to measure the strength of linear correlation
between time series. The Case Matching Similarity (CMS) can also discover
the existence of non-linear correlations between time series. A time series
value in a non-linearly correlated data set does not change proportionally as
changing the other time series’s value. However non-linearity does not mean
time series can not correlate.

Lets consider the two time series from Figure 7. The red line represents a
base time series s2, where s2(t) = sin2(t). The blue line represents a reference
time series r2, where r2(t) = sin(t). The scatter plot in Figure 8 clearly shows
that between the time series r2 and s2 exists no linear relationship. However,
they are still related, since s2(t) = r2(t)

2, i.e. time series s2 can be seen as a
function of r2.

CMS considers this fact and intuitively checks if similar values of any two
time series s and r co-occur frequently. A time series s is considered similar
to r if for any two time points t1, t2 ∈ W , s has similar values at t1 and t2
if r has similar values at these two time points. Therefore, on a high level,
CMS tries to measure how similar the value s(t1) and s(t2) are to each other
when r(t1) ≈ r(t2).

The Case Matching Similarity was developed in the context of the impu-

23



0 200 400 600 800
−1

−0.5

0

0.5

1
t1 t2

Time t

T
em

p
er

at
u
re

◦ C

r2 = sin(t)

s2 = sin2(t)
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Figure 8: The scatterplot of r2 and
s2 shows the non-linear correlation
of two time series.

tation algorithm TKCM [1]. A missing value s(t2) in a base time series s is
imputed using one or more reference time series r. TKCM, in its simplest
form, looks for values r(t1) similar to r(t2) and uses the corresponding value
s(t1) of the base time series s to impute the missing value s(t2). TKCM
assumes that whenever the reference time series observes similar values, also
the base time series does and CMS is designed to find reference time series
that satisfy this property.

Example 5.1. To show an example of co-occurrence, let us consider Figure
7. Assuming t1 = 210 and t2 = 330, we have that r2(t1) = r2(t2) = −0.5
and s2(t1) = s2(t2) = 0.25. From the scatter plot in Figure 8, we conclude
that for every value of r2(t), time series s2 has exactly one value s2(t). Due
to the relation of s2 and r2 illustrated in Figure 8, time series r2 can be
used to impute a missing value in s2 using TKCM [1]. Intuitively, if s(t2)
is missing,TKCM looks for values similar to r(t2) = −0.5 and would find
r(t1) = −0.5. The value s(t1) = 0.25 is used to impute s(t2), which would in
this case be the correct imputation.

CMS proposes an algorithm to actually measure the strength of co-occurrence
between two time series s and r, where a small CMS implies a strong co-
occurrence and a large CMS a weak co-occurrence. CMS splits the range
of time series r into equal-sized sub-ranges, called buckets. Each bucket bz
contains the values of s such that the corresponding value of r is within the
bucket limits.

bz = {s(t)|t ∈ W ∧ zw ≤ r(t) < (z + 1)w} (33)
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bz t r1(t) s1(t)
b−4 01:20 -1.4 5.5

b−3

01:00 -1.2 5.1
01:40 -1.2 5
02:00 -1.1 5.6

b−2
00:20 -0.5 5.8
00:40 -0.8 5.3

b−0

23:00 -0.1 7.4
23:20 0 8
23:40 0.2 5.9
00:00 0 6.3

b1
22:20 0.6 7.5
22:40 0.5 7.7

b3 22:00 1.3 7.9

Table 7: Buckets bz with corresponding s1(t) for bucket width w = 0.4.

with z ∈ Z as the bucket’s ID and w ∈ R>0 as the bucket’s width.

Example 5.2. We compute the buckets for our running example data from
Table 2 with bucket width w = 0.4. Using our weather data from Table
2, each value s1(t) gets mapped into the corresponding bucket bz. In Table
7 the buckets bz, timestamps t, the values from reference time series r1(t)
and the corresponding values s1(t) are shown. For example, bucket b−3 =
{s1(01:00), s1(01:40), s1(02:00)} contains all values s1(t) such that −3×0.4 =
−1.2 ≤ r1(t) < −0.8 = −2× 0.4.

CMS then calculates each bucket’s standard deviation. The smaller a
bucket’s standard deviation is, the closer are the values s(t) ∈ bz to the
bucket mean b̄z, the more similar are they to each other and the stronger
is the co-occurrence. Formally, the standard deviation for each bucket is
defined as

σz =

√
1

|bz|
∑

s(t)∈bz

(s(t)− b̄z)2 (34)

with b̄z = 1
|bz |

∑
s(t)∈bz s(t) as the bucket’s mean.

Let B = {bz|bz 6= ∅} be the set of all non-empty buckets. Then CMS is
defined as the average bucket standard deviation, where each term is weighted
by the number of elements in the corresponding bucket

CMSw(s, r) =
1

|B|
∑
bz∈B

|bz|
LW

σz (35)
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Figure 9: A graphical illustration of buckets in the scatter plot of r1 and s1.

The reason for the weighting factor |bz |
LW

of the bucket’s standard deviation
σz is that a bucket that contains many values should have a bigger influence
on the CMS than a bucket that contains only few values. In our example,
the standard deviation from bucket b1 will be multiplied by 2

13
, and therefore

the weighted standard deviation σ1 is 0.015.

Example 5.3. Continuing with our buckets from Table 7, we calculate the
the standard deviation σz for each bucket. The standard deviation indicates
how much the bucket’s values differ from its average. Figure 9 shows the
scatter plot between r1 and s1, where the buckets partition the x-axis. For
each bucket we indicate the bucket mean b̄z and standard deviation σz.

Finally CMS calculates the sum of the average bucket standard deviation
weighted by the number of elements in the corresponding bucket. For w = 0.4
CMS is defined as CMS0.4(s1, r1) = 1

6
× ( 1

13
× 0 + 3

13
× 0.262 + 2

13
× 0.25 +

4
13
× 0.839 + 2

13
× 0.1 + 1

13
× 0) = 0.0621 .

5.1 Asymmetry

As we have seen in Section 4, the Pearson Correlation Coefficient is symmet-
ric, which means that PCC(s, r) = PCC(r, s). This does no apply for Case
Matching Similarity, where in general CMSw(s, r) 6= CMSw(r, s). Figure 11
illustrates the scatter plot of CMSw(r2, s2), where again r2(t) = sin(t) and
s2(t) = sin2(t). Compared to Figure 8, which presents the scatter plot of
CMSw(s2, r2), the shape of the data points in Figure 11 has rotated 90 de-
grees to left. Observe that whenever time series s2 has some value s2(t), time
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series r2 can have two different values, except when s2(t) = 0, in which case
r2(t) = 0 too. For example consider the time points t2 = 330 and t3 = 510.
We have that s2(t2) = s2(t3) = 0.25, but r2(t2) = −0.5 and r2(t3) = 0.5.
Therefore, whenever s2 has similar values, it is not the case that r2 has sim-
ilar values too. For this reason, we expect CMSw(s2, r2) < CMSw(r2, s2)
and indeed this is the case as CMSw(s2, r2) = 0.01 < CMSw(r2, s2) = 0.13
for w = 0.25. The asymmetry of CMS is a positive property. As mentioned
above, CMS is used to find the most suitable reference time series r for a
base time series s. In reverse, s can be a bad reference time series for r.
This example has shown that using s as a reference time series to impute a
missing value in r with TKCM can yield very bad results, as TKCM would
find widely varying values of r (e.g 0.5 and -0.5) and could not distinguish
between good and bad candidates.
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Figure 10: Two non-linearly corre-
lated time series r2 and s2.
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Figure 11: The scatterplot of s2 and
r2.

5.2 Analysis

CMSw(s, r) ranges from 0, in which case s and r perfectly correlate, to ∞
(excluded). In this subsection, we show when CMS reaches its minimum.

Theorem 2. Let r and s be two time series over the sliding window W .
CMS reaches its minimum, zero, as bucket width w approaches zero if and
only if s has the same value for any two time points t1, t2 ∈ W when r has
the same value for t1, t2, i.e.

lim
w→0

CMSw(s, r) = 0⇐⇒ ∀t1, t2 ∈ W : r(t1) = r(t2)→ s(t1) = s(t2)
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Proof. (If-Part) We assume ∀t1, t2 ∈ W : r(t1) = r(t2) → s(t1) = s(t2). Ob-
serve that for any two values s(t1), s(t2) ∈ bz that belong to the same bucket
bz, by definition we have that |r(t1)− r(t2)| ≤ w. Hence, for w approaching
0, we have that |r(t1)− r(t2)| ≤ 0, implying that r(t1) = r(t2). By assump-
tion we know that if r(t1) = r(t2) we have that s(t1) = s(t2), hence for any
two values s(t1), s(t2) ∈ bz in a bucket bz we know that s(t1) = s(t2) = b̄z.
Consequently, every standard deviation σz = 0 and lim

w→0
CMSw(s, r) = 0.

(Only-if-part) We assume lim
w→0

CMSw(s, r) = 0. Since w → 0, we know

that for any two time points t1, t2 the values s(t1), s(t2) ∈ bz are in the same
bucket only if r(t1) = r(t2). Moreover, since lim

w→0
CMSw(s, r) = 0 we know

that σz = 0 for any bucket bz ∈ B. The bucket standard deviation σz can
only be 0 if every value s(t1), s(t2) ∈ bz is equal. Combining these two facts
we know that ∀t1, t2 ∈ W : r(t1) = r(t2)→ s(t1) = s(t2).

To interpret Theorem 2, we use the examples from Figure 8 and 11.
Imagine the bucket width w approaches zero, every distinct measurement
s2(t) in Figure 8 would be in a separate bucket and the standard devia-
tion of each bucket bz will be σz = 0, and therefore, lim

w→0
CMSw(s2, r2) =

0. Considering Figure 11, with bucket width w approaching zero, every
bucket contains two distinct measurements r2(t) (e.g. r2(330) = −0.5 and
r2(510) = 0.5, as before), except bucket b0 which only contains one distinct
measurement r2(t) = 0. Therefore the bucket standard deviation bz 6= 0 and
lim
w→0

CMSw(r2, s2) 6= 0.

5.3 Bucket Width w

The Case Matching Similarity of two time series s and r strongly depends
on bucket width w. There exists a tradeoff, choosing a too small bucket
width w, results that each distinct value gets its own bucket and therefore
there are too many buckets. Having many buckets leads to less values within
the bucket. Having only a few values in a bucket makes the bucket’s stan-
dard deviation less meaningful and less representative. Choosing a too large
bucket width w results that all values are put in one bucket and therefore
too few buckets. Choosing a too big bucket width results in a higher dis-
tribution of values within the bucket which increases the standard deviation
and therefore lead to a higher CMS. To illustrate the effect of the bucket
width we ran an experiment with our sample time series s1 and r1. The
graph in Figure 12 shows the heavy impact of the bucket width w on the
CMS, as the range of CMSw(s1, r1) increases from 0.012 for w = 0.05 till
0.267 for w = 2.5. It is expected that CMSw(s1, r1) will be never 0, since
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Figure 12: Effect of bucket width w on CMSw(s1, r1).

even with w approaching 0, there will be two buckets with more than one
value. For example r1(01:00) and r1(01:40) have the same measured value
of -1.2◦C, and therefore s1(01:00) = 5.1 and s1(01:40) = 5.0 will be always
in the same bucket and their standard deviation can never be zero. Starting
with w = 0.05, as expected CMSw(s1, r1) is growing as w grows. The curve
plateaus for w ∈ [0.6, 1.35], because then there are only two relevant buckets.
We call a bucket relevant if it contains more than one value and hence can
have a non-zero standard deviation. With bucket width w = 0.6, the only
two relevant buckets are b−2 = {s1(00:40), s1(01:00), s1(01:40), s1(02:00)}
and b0 = {s1(22:40), s1(23:00), s1(23:20), s1(23:40), s1(00:00)}. Starting with
w = 1.35, CMSw(s1, r1) shoots up and flattens out at 0.267. With w = 1.4,
again all values are distributed in two buckets. With w = 0.6 there were also
only two relevant buckets, however, CMS1.4(s1, r1) has a three times higher
CMS than CMS0.6(s1, r1). This is because of the weighting of the bucket’s
standard deviation. Since with w = 1.4 buckets contain more values, the
standard deviation of that bucket has a higher weight. From w = 1.4, CMS
does not change anymore, because the number of buckets does not change
anymore.

A formula has been developed to determine an interval for a meaningful
bucket width w. As shown above, the bucket width has an impact on the
number of values m which are stored within one bucket. To calculate a
statistically valid and meaningful standard deviation, at least md ≥ 3 values
per bucket are desired.

Consider again Figure 9, on its x-axis we have the values of reference time
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series r, sorted by value. As shown before, the bucket width w partitions the
x-axis of the scatter plot. To ensure that a bucket is “wide” enough and
contains, on average, at least md values, we look at the average absolute
difference c between two consecutive measurements of r on the x-axis of the
scatter plots. In other words, we compute the average absolute difference
c between two consecutive measurements when reference time series r is
sorted by value. We denote with r′ time series r sorted by value. That is,
r′ = 〈r(ti), r(ty), . . . , r(tLW

)〉, where r′(ti) ≤ r′(ty). Then c is given by,

c =
1

LW − 1

∑
ti∈W\{tLW

}

|r′(ti)− r′(ti+1)|

Applying this formula on the reference time series r1 in our sample data
set we get cr1 = 0.225.

To calculate a lower-bound of w, the minimum desired number of values in
a bucket md is multiplied with the average difference between two consecutive
measurements c, w ≥ mdc. The lower-bound of w ensures that all buckets
store on average at least md values.

The upper-bound of w ensures that bucket width w is not too big and not
all values are stored in one single bucket, i.e. we are aiming to have at least
two buckets. Therefore to calculate the upper-bound of w, the difference of
the maximum and minimum of r is divided by 2, i.e. w ≤ max(r(t))−min(r(t))

2
.

Having calculated c and determined the desired number of values in
bucket md, the lower- and upper-bound formulas can be merged in one for-
mula to calculate an interval for w. Equation 36 show the formula to calculate
the interval for w.

mdc ≤ w ≤ max(r(t))−min(r(t))

2
(36)

Applying this formula on our sample data set we get an interval of
[0.675, 1.35] for w. The green area in Figure 12 illustrates this interval.

Generally, there exists no universal value for w which is optimal for all
time series since the bucket width w depends heavily on the time series
characteristics. The formula from Equation 36 provides an interval for w by
excluding the extremes, we aim to have on average at least md values in a
bucket and have at least two buckets. However, it remains an open issue to
find an optimal w inside this interval.
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6 Implementation

Computing the Pearson Correlation Coefficient and Case Matching Similarity
for a streaming time series can be CPU and memory expensive if they are
recalculated from scratch whenever the streams produce a new value and the
sliding window W shifts forward. To avoid that all measurements from W
have to be considered for every recalculation of PCC and CMS, we propose
to compute the two measures incrementally from this new stream values.

For both measures a PCC-Object po, respectively a CMS-Object co is
created. Theses objects provide the necessary state that enables us to com-
pute the two measures incrementally as well as three functions, AddMeasure-
ment, RemoveMeasurement and CalculatePCC, respectively CalculateCMS.
The objects itself will be explained below in Section 6.1 respectively 6.2.

To simulate a streaming time series, we introduce a sliding window W
of size LW which slides over the time series. The simulation is for both
similarity measures identical. Algorithm 1 shows the simulation of streaming
time series and the computation of CMS and PCC on this streams. The
simulation consists of two phases, the growing phase and the sliding phase.
In the growing phase the simulation only adds values to sliding window W
using the AddMeasurement-Function because it does not contain LW time
points yet (|W | < LW ). In the sliding phase, the sliding window W is full
(|W | = LW ) and slides over the time series, therefore every time a new
value is added, a old value gets removed. As shown in Algorithm 1, with
every measurement of s, the po-Object respectively the co-Object is updated
through the function AddMeasurement. In the sliding phase, always the last
measurement of the sliding window will be removed through the function
RemoveMeasurement-Function.
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Algorithm 1: Main

1 begin
2 W ← {}
3 for s(t) ∈ s do
4 W ←W ∪ {t}
5 texp ← t− LW

6 for r ∈ R do
7 po← r.po
8 co← r.co
9 AddMeasurement(po, s(t), r(t))

10 AddMeasurement(co, s(t), r(t))
11 if texp ∈W then
12 RemoveMeasurement(po, s(texp), r(texp))
13 RemoveMeasurement(co, s(texp), r(texp))

14 end

15 end
16 W ←W\{texp}
17 end

18 end

6.1 PCC

In Section 4, Equation 1 has been introduced to calculate the linear corre-
lation of two time series through the PCC. For the implementation of the
PCC, an alternative but equivalent formula has been used to compute the
PCC. The used formula in the implementation of the PCC is represented in
Equation 37 [4].

PCC(s, r) =

n× (
∑
t∈W

s(t)× r(t))− (
∑
t∈W

s(t))× (
∑
t∈W

r(t))√
[n

∑
t∈W

s(t)2 − (
∑
t∈W

s(t))2]× [n
∑
t∈W

r(t)2 − (
∑
t∈W

r(t))2]
(37)

=
n× sum sr − sum s× sum r√

[n× sum s2 − (sum s)2]× [n× sum r2 − (sum r)2]
(38)

This alternative formula in Equation 37 can be split into independent
components which makes it trivial to calculate the PCC. Examining Equation
37, we see that the equation consists of six terms.

1. n, the number of measurements, n = |W |

2.
∑
s(t)× r(t), the sum of the product of s(t)× r(t)
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3.
∑
s(t), the sum of all values from s

4.
∑
r(t), the sum of all values from r

5.
∑
s(t)2, the sum of the square of the measurement s(t)

6.
∑
r(t)2, the sum of the square of the measurement r(t)

All these six terms can be trivially calculated incrementally. As already
mentioned above, we use a po-Object to keep track of these components. The
po-Object has therefore the following structure 〈n, sum sr, sum s, sum r,
sum s2, sum r2, PCC〉. Compared to Equation 37, the po-Object has seven
elements. The seventh element PCC, is the return value of Equation 37.
Rewriting the components from Equation 37 with the elements used in the
po-Object, we get Equation 38.

When the sliding window W slides forward, the Main-Function calls
the AddMeasurement-Function in Algorithm 2 to add a new value pair, a
measurement of s(t) and r(t). AddMeasurement-Function then updates the
PCC-Object po and calls the CalculatePCC -Function in Algorithm 4. Calcu-
latePCC then calculates the PCC according to the Equation 37, respectively
Equation 38.

Algorithm 2: PCC AddMeasurement

Input: po, Measurement s(t), Measurement r(t)
1 begin
2 po.sum s← po.sum s+ s(t)
3 po.sum r ← po.sum r + r(t)
4 po.sum sr ← po.sum sr + (s(t)× r(t))
5 po.sum s2 ← po.sum s2 + s(t)2

6 po.sum r2 ← po.sum r2 + r(t)2

7 po.n← po.n+ 1
8 CalculatePCC(po)

9 end

When the sliding window advances and W is full, the oldest timestamp
texp drops out. When timestamp texp is no element anymore of W , s(texp)
and r(texp) have to be removed from the PCC. The RemoveMeasurement-
Function in Algorithm 3 updates the PCC-Object po through subtracting
from the elements of the PCC-Object po. Once the PCC-Object po is up-
dated, the PCC is re-calculated with the CalculatePCC -Function in Algo-
rithm 4.
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Algorithm 3: PCC RemoveMeasurement

Input: po, Measurement s(t), Measurement r(t)
1 begin
2 po.sum s← po.sum s− s(t)
3 po.sum r ← po.sum r − r(t)
4 po.sum sr ← po.sum sr − (s(t)× r(t))
5 po.sum s2 ← po.sum s2 − s(t)2
6 po.sum r2 ← po.sum r2 − r(t)2
7 po.n← po.n− 1
8 CalculatePCC(po)

9 end

Algorithm 4 shows how the PCC is calculated according to Equation 38.
If n = 0, i.e. there are no measurements in W , PCC is set to 0 to avoid a
division by zero.

Algorithm 4: CalculatePCC

Input: po
1 begin
2 if po.n > 0 then
3 po.pcc = po.n×po.sum sr−po.sum s×po.sum r√

[po.n×po.sum s2−(po.sum s)2]×[po.n×po.sum r2−(po.sum r)2]

4 end

5 end

6.2 CMS

Similar to the calculation of the PCC, the CMS is also calculated incremen-
tally. The CMS-Object co has therefore the following structure 〈buckets[],
w, n, CMS〉. buckets[] represents a hash table of buckets, w is the specified
bucket width and n is the number of measurements added to the object.
From Equation 35 in Section 5, we know that the CMS is calculated from
the bucket’s standard deviation. To calculate the CMS incrementally, we
therefore have to keep track of all buckets and calculate the bucket’s stan-
dard deviation incrementally. However, we do not have to actually store
measurements s(t) in the buckets as long as we still can compute their stan-
dard deviation. To calculate the standard deviation, the variance is needed.
Equation 39 shows how to calculate the “unnormalized variance” Sm incre-
mentally and recursively [5].
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Sm = Sm−1 + (s(t)− b̄m−1)(s(t)− b̄m), where S0 = 0 (39)

Examining Equation 39, we see that it consists of three components be-
sides value s(t) that is added to the CMS.

1. Sm−1, the “unnormalized variance” before the m-th value is added to
the bucket

2. b̄m−1, the mean before the m-th value is added to the bucket

3. b̄m, the mean after the m-th value is added to the bucket

To derive from “unnormalized variance” Sm to standard deviation σ we

can calculate σ =
√

Sm

m
. For computing mean b̄m incrementally according to

Equation 40, we also need the number of values m in the bucket.

b̄m = b̄m−1 +
1

m
(s(t)− b̄m−1), where b̄0 = 0 (40)

Equation 39 and 40 are numerically stable because it avoids accumulating
large sums [5]. To summarize, to calculate the standard deviation, three
quantities are needed: number of values in the bucket m, current mean in the
bucket b̄m and the “unnormalized variance” Sm. As already mentioned above,
we use a CMS-Object co to keep track of these components. Every bucket
bz stored in the hash table contains the three components to incrementally
compute the bucket’s standard deviation. It is structured as bz = 〈m, b̄, S〉.

Summarized, CMS is incremental calculated in three steps:

1. In the first step b̄m is calculated using Equation 40

2. In the second step Sm is calculated using Equation 39

3. In the third step σ is calculated:

σ =

√
Sm

m

When the sliding window W shifts forward, the Main-Function calls the
AddMeasurement-Function in Algorithm 5 to add a new value pair to the
CMS. To look up the bucket in the hash table, first the bucket ID z is
derived from measurement r(t) and bucket width w. Second, a lookup is
made to find the bucket b in the buckets hash table of the CMS-Object co.
If b is not found a new bucket b is created and added to the hash table.
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Algorithm 5: CMS AddMeasurement

Input: co, Measurement s(t), Measurement r(t)
1 begin

2 z ← b r(t)
co.w
c

3 b← HASH FIND(co.buckets, z)
4 if b = NULL then
5 b← 〈0, 0, 0〉
6 HASH ADD(co.buckets, z, b)

7 end
8 b.m← b.m+ 1
9 b̄m−1 ← b.b̄

10 b.b̄← b̄m−1 + 1
b.m

(s(t)− b̄m−1)
11 Sm−1 ← b.S
12 b.S ← Sm−1 + (s(t)− b̄m−1)× (s(t)− b.b̄)
13 co.n← co.n+ 1;
14 CalculateCMS(co)

15 end

Once bucket b is determined, the CMS-Object co is in Algorithm 5 up-
dated according to the step one and two of the three steps above. At the
end, the CalculateCMS -Function in Algorithm 7 is called to calculate the
final CMS.

When value pairs drops out of the sliding window W , they also get
removed from the CMS through Algorithm 6. The RemoveMeasurement-
Function works similar than the AddMeasurement-Function in Algorithm 5.
The only difference is that it subtracts instead of adding. Therefore, for sub-
tracting, Equation 39 changes to Sm = Sm+1 − (s(t)− b̄m+1)(s(t)− b̄m) and
Equation 40 changes to b̄m = b̄m+1 + 1

m
(s(t)− b̄m+1). In addition, when the

last value of a bucket gets removed, RemoveMeasurement-Function removes
the bucket from the hash table.

Similar to the AddMeasurement-Function, the RemoveMeasurement -
Function then calls the CalculateCMS -Function in Algorithm 7. The Cal-
culateCMS -Function then deduces the standard deviation from the bucket’s
“unnormalized variance” and sums up the weighted standard deviation. Fi-
nally, CMS is calculated by dividing the sum through the number of buckets.
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Algorithm 6: CMS RemoveMeasurement

Input: co, Measurement s(t), Measurement r(t)
1 begin

2 z ← b r(t)
co.w
c

3 b← HASH FIND(co.buckets, z)
4 b.m← b.m− 1
5 if b.m = 0 then
6 HASH REMOV E(co.buckets, z)
7 else
8 b̄m+1 ← b.b̄
9 b.b̄← b̄m+1 − 1

b.m
(s(t)− b̄m+1)

10 Sm+1 ← b.S
11 b.S ← Sm+1 − (s(t)− b̄m+1)× (s(t)− b.b̄)
12 end
13 co.n← co.n− 1;
14 CalculateCMS(co)

15 end

Algorithm 7: CalculateCMS

Input: co
1 begin
2 sum← 0
3 nr buckets← 0
4 for b ∈ co.buckets do

5 sum← sum+ b.m
co.n
×

√
b.S
b.m

6 nr buckets← nr buckets+ 1

7 end
8 co.cms← 1

nr buckets
× sum

9 end
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6.3 Complexity Analysis

In this section, runtime complexity and space complexity are presented for
updating incrementally the PCC(s, r) and CMSw(s, r).

Lemma 1. Let s and r be two time series. Incrementally updating PCC(s, r)
takes O(1) time.

Proof. Algorithm 2, 3 and 4 are executed in a runtime of O(1) each, since
a constant number of basic arithmetic computations are performed. The
overall runtime complexity for incrementally updating PCC(s, r) results in
O(1).

Lemma 2. Let s and r be two time series. Incrementally updating CMSw(s, r)

takes O( (max(r(t))−min(r(t))
w

) time.

Proof. The search of bucket bz in the Hash Table in Algorithm 5 and 6 is
done in a average runtime O(1). If there is no bucket with the bucketID
bz, it adds a new bucket to the hash table with a average runtime O(1). If
the bucket is empty after removing the value, the bucket will be deleted in
the hash table with a runtime O(1) and updating b̄ and S will be done in
O(1) as well. Calculating the CMS in Algorithm 7 goes then through all
buckets in the hash table. Therefore, the runtime depends on the number
of buckets used to compute the CMS. The maximum number of buckets can
be computed by dividing the difference of the biggest value in the reference
time series r and the smallest value in the reference time series r through the
bucket width w. Therefore, the overall runtime complexity for CMSw(s, r)

results in O( (max(r(t))−min(r(t))
w

)

Regarding space complexity, assume both time series s and r are loaded
into ring buffers in main memory, each of size O(LW ). Although PCC and
CMS are computed incrementally, measurements in the sliding window W
have to be kept in the main memory because once the sliding window ad-
vances, the measurement which drops out of the sliding windows has to be
removed from the PCC and CMS.

Lemma 3. Let s and r be two time series. The space complexity for incre-
mentally calculating PCC(s, r) is O(LW ).

Proof. As shown before, maintaining r and s in two ring buffers has space
complexity O(LW ). The PCC-Object consists of a constant number of el-
ements to compute the PCC. Therefore, the overall space complexity for
PCC(s, r) results in O(LW ).
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Lemma 4. Let s and r be two time series. The space complexity for incre-
mentally calculating CMSw(s, r) is O(LW + (max(r(t))−min(r(t))

w
).

Proof. Similar to the space complexity for incrementally calculating PCC(s, r),
the time series r and s are maintained in two ring buffers with a space com-
plexity O(LW ). A single bucket consists of a constant number of elements
to calculate the standard deviation and has therefore space complexity O(1).
However, space complexity for calculating CMSw(s, r) depends on the num-
ber of buckets used. Therefore, the overall space complexity for CMSw(s, r)

results in O(LW + (max(r(t))−min(r(t))
w

).
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7 Experimental Evaluation

7.1 Sliding Window

In this Section we conduct experiments to study the impact of the sliding
window’s size LW on the ranking of the time series and its runtime. The goal
is to find the optimal sliding window size LW . A value for LW is optimal
if it is the smallest possible value that produces a stable ranking. We look
for the smallest possible value LW , as to retain the least amount of data in
main memory. For all experiments, unless otherwise noted, the temperature
time series of Montana has been randomly chosen as the base time series s
and the temperature time series of Sitten as the reference time series r. The
measured unit is degree Celsius.

In Figure 13 we show the development of PCC(s, r) for r over a time
range of LW = 24 months. Similarly in Figure 14, we show how CMSw(s, r)
for w ∈ {0.5, 1} changes over the same time frame and time series. In Figure
13 we observe that for LW < 3 months PCC behaves very unstable and
assumes values between 0.4 and 0.8. The same pattern is observable for
CMSw in Figure 14 where CMS0.5 fluctuates between 0.035 and 0.07 and
CMS1.0 between 0.075 and 0.0125 respectively. This might be due to outliers
weighted stronger for a small sliding window LW .

An identical pattern occurs for PCC and CMS for a sliding window be-
tween three and ten month, i.e. 3 6 LW < 10. PCC and CMS are ap-
proaching their stable values during this window but behave still unstable.
Both, PCC and CMS reach their stable, observable values PCC = 0.95,
CMS0.5 = 0.025 and CMS1.0 = 0.06 for a sliding window greater or equal 15
months, i.e. 15 6 LW , as indicated in Figures 13 and 14. These results show
that weather data in general has a strong linear relationship over a certain
time frame and it has a direct influence on finding the reference time series r
which is most similar with the base time series s, i.e. being ranked first (see
Figures 15, 16 and 17). Thus we summarize that reliable results should be
considered with a set holding data over 15 months or 64’800 measurements.
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Figure 13: Development of PCC(s, r) with increasing LW .
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Figure 14: Development of CMSw(s, r) with increasing LW .

Figures 15 to 17 show the development of the ranking of nine reference
time series as LW increases. The figures indicate the size of the sliding window
LW on the x-axis and the position of a reference time series in the rankings
from one to nine on the y-axis. We can observe that since PCC and CMS
fluctuate heavily for LW < 3 months, the rankings behave correspondingly.
As discussed before, since PCC and CMS have not stabilized yet for 10 6
LW < 15, the rankings in Figures 15 to 17 are still fluctuating. Finally PCC
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and CMS stabilize for LW > 15, time series’ rankings are not supposed to
alter as the sliding window increases over 15 months. This is true for the
PCC (see Figure 15). The rankings of CMS in Figures 16 and 17 show that
the ranking changes even if LW > 15 months. This occurs if two reference
time series are very similar to each other, e.g. Samedan and Scuol, which
both are located in the same area facing the same environment.
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Figure 15: PCC Ranking change with increasing LW .
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Figure 16: CMS0.5 ranking change with increasing LW .
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Figure 17: CMS1.0 ranking change with increasing LW .

In Table 8, we can observe that both CMS rankings are almost identical
(Figures 16 and 17) . Thus the bucket width w has in this settings very
little influence on the rankings. We can further conclude that the rankings
of CMS0.5 and CMS1.0 are identical for LW = 24 months. However this is
not true for PCC with LW = 24 months, whose rankings are different from
CMS0.5 and CMS1.0 for LW = 24 months, as Figures 15 to 17 indicate.

Rank Station PCC Station CMS0.5 CMS1.0

1 Evolene 0.975 Evolene 0.017 0.034
2 Scuol 0.947 Scuol 0.022 0.044
3 Sitten 0.945 Sitten 0.024 0.048
4 Genève-Cointrin 0.943 Nat.Park Bestand 0.024 0.048
5 S. Bernardino 0.936 Samedan 0.025 0.049
6 Nat.Park Bestand 0.924 Nat.Park Freiland 0.026 0.052
7 Samedan 0.920 Genève-Cointrin 0.027 0.055
8 Nat.Park Freiland 0.919 S. Bernardino 0.030 0.059
9 Poschiavo/Robbia 0.902 Poschiavo/Robbia 0.034 0.067

Table 8: Overview of PCC and CMS rankings over a sliding window LW = 24.

7.2 Weather Phenomena

In this section we introduce three different weather conditions that can be
found in our data set: the Föhn, the Bise and Temperature Inversion. Then

43



we execute PCC and Case Matching Similarity (CMS) on these phenomena
to see how the similarity changes.

7.2.1 Föhn

Föhn is a common weather phenomena in mountainous regions. Föhn winds
are caused by the subsidence of moist air after passing a high mountain. The
air is forced to move upslope when it encounters a mountain barrier. As the
temperature decreases with height, the moist air will become saturated and
condense to form clouds and rain when it rises to a certain height. After
passing the mountain barrier and descending along the leeside (downwind
side) of the mountain, the air becomes warmer. Temperature of drier air will
rise even faster. This results in dry and hot winds. According to the Federal
Office of Meteorology and Climatology MeteoSwiss [6] Föhn leads to a rapid
increase of the temperature.
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Figure 18: Temperature Güttingen / Vaduz Feb 2010.

Figure 18 shows the temperature curve of Vaduz and Güttingen in a time
frame of one week. Vaduz lies in a typical Föhn-Valley whereas Güttingen
lies rather in lowlands. As we see in Figure 18, the temperature in both
places is quite similar, however the temperature in Vaduz at the 4. February
2010 shoots up in a very short time. There is even no significant temperature
decrease during the night. On the other hand, the temperature in Güttin-
gen significantly goes down in the night and goes up again during the day.
This rapid temperature increase is a typical characteristics of the weather
phenomena Föhn.
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Figure 19: Scatter plot Temperature Güttingen / Vaduz Feb 2010.

In Figure 19 we see the temperature scatter plot from Vaduz and Güttin-
gen between 1.2.2010 and 8.2.2010. A linear relationship between these two
locations is evident. However, a cluster of outliers is conspicuous. The rea-
son for this pattern is the weather phenomena Föhn on the fourth and fifth
February 2010. The warm winds from the Föhn led the temperature in Vaduz
increase noticeably with respect to the temperature in Güttingen.

Table 9 contains the result of calculating the PCC and CMS of the two
temperature time series of Vaduz and Güttingen. According to [7], a PCC of

Result #Values Rank

PCC(Vaduz, Güttingen) 0.557172 1152 48/78
CMS0.5(Vaduz, Güttingen) 0.088440 1152 55/78
CMS1(Vaduz, Güttingen) 0.187341 1152 58/78

Table 9: Overview of PCC and CMSw of Vaduz / Güttingen in Feb 2010.

0.55 indicates a moderate linear correlation between Vaduz and Güttingen.
Nevertheless, the ranking shows that Vaduz is rather a bad reference time
series for Güttingen. Comparing the PCC ranks from the same time period
with the previous three years and the following three years, it shows that the
ranking of the PCC has only been worse in 2008, when Vaduz was ranked
49th. The other five times it has been ranked 17th (2007), 35th (2009),
18th (2011), 10th (2012) and 8th in 2013. This shows that during a Föhn
period, the linear correlation between two time series diminishes and causes
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a noticeable change in the rankings. Considering the CMS ranks, there is no
noticeable change in the rankings which is caused due to the Föhn. In 2007
CMS0.5 (respectively CMS1) ranked Vaduz as 45th (46th), in 2008 as 54th

(53th), in 2009 as 55th (54th), in 2011 as 27th (31th), in 2012 as 73th (71th)
and in 2013 as 77th (73th). Table 10 shows a summary of of the rankings.

PCC Rank CMS0.5 Rank CMS1 Rank

2007 17 45 46
2008 49 54 53
2009 35 55 54
2010 48 55 58
2011 18 27 31
2012 10 73 71
2013 8 77 73

Table 10: PCC and CMSw ranking of Güttingen / Vaduz in Feb 2007 –
2013.

7.2.2 Bise

Bise is a cold, dry wind from northeast which blows through the Swiss Mid-
land. It is caused by canalization of the air-current along the northern edge
of the Alps, during high-pressure conditions in northern or eastern Europe
respectively. Towards western Midland, the Bise is pressed between Jura and
Pre-Alps whereby it strengthens and mostly climaxes on the western shore
of Lake Geneva because the distance between the Alps and Jura mountains
gets smaller to the west. In summer, Bise wind causes rather dry and sunny
weather whereas in winter, it frequently forms low stratus clouds over the
Midland by strengthening the inversion layer [6].

In Figure 20 the barometric pressure of Güttingen and Genève-Cointrin in
May 2014 is shown. As the diagram shows, in the western part of Switzerland
there is mostly a higher barometric pressure. This results in wind from south
west through Midland. However, on 15.5.2014, Güttingen has a slightly
higher barometric pressure than Genève-Cointrin – which led to a cold wind
from northeast, the so called Bise.

Figure 21 shows the scatter plot of the barometric pressure of Güttingen
and Genève-Cointrin in May 2014. The red line in the figure represents the
linear regression line. The scatter plot shows a very interesting pattern of
the two time series. As we have seen in Figure 20, the Bise occurs, when
the barometric pressure in Güttingen lies in the interval [970, 980] hPa. The
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Figure 20: Barometric Pressure Güttingen / Genève-Cointrin May 2014.
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Figure 21: Scatterplot Barometric Pressure Güttingen / Genève-Cointrin
May 2014.
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pattern in top right corner in Figure 21, when Genève-Cointrin’s barometric
pressure is between [972, 980], is a result of the increasing barometric pressure
in Figure 20. The reason is that Güttingen usually has roughly 5-10 hPa lower
barometric pressure than Genève-Cointrin, but during the Bise period, the
barometric pressure suddenly increases and reaches or even surpasses that of
Genève-Cointrin.

Result #Values Rank

PCC(Genève-Cointrin, Güttingen) 0.907644 4464 1/110
CMS0.5(Genève-Cointrin, Güttingen) 0.030262 4464 1/110
CMS1(Genève-Cointrin, Güttingen) 0.063294 4464 1/110

Table 11: Overview of PCC and CMSw of Genève-Cointrin / Güttingen in
May 2014.

Table 11 contains the calculated PCC and CMS measures. Noteworthy is
the very high PCC of 0.907644 which indicates a very high linear correlation
of the two time series despite the pattern on the top right. This high corre-
lation is because weather data in general do have a strong linear relationship
over a certain time frame, especially barometric pressure time series. More-
over, we found that the rather short periods of time in which this weather
phenomena occur are too short to have a high impact on the PCC or CMS,
because in the remaining period a strong linear correlation exists.

The PCC and CMS measures of the two time series is less interesting
due to the fact that the two time series are similar. From 2011 till 2015
Genève-Cointrin has always been ranked as the top reference time series for
Güttingen with some exceptions. PCC has ranked Genève-Cointrin on the
second place in 2013. CMS0.5 has ranked Genève-Cointrin on second place
in 2012 and 2013 and CMS1 in 2013. Table 12 shows a summary of of the
rankings for May from 2011 –2015.

7.2.3 Temperature Inversion

Temperature inversion is the reversal of the normal behavior of temperature
in the troposphere, in which a layer of cool air at the surface is overlain
by a layer of warmer air. A common cause for a temperature inversion in
Switzerland is high inversion fog which is a result of the Bise. The cold air
is blown from the northeast into the Swiss Midland under the lighter, warm
air and remain there. The result is an inversion layer. In lower regions, the
weather is cold and cloudy. Above the fog, the weather is less cold with clear
blue sky [6].
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PCC Rank CMS0.5 Rank CMS1 Rank

2011 1 1 1
2012 1 2 1
2013 2 2 2
2014 1 1 1
2015 1 1 1

Table 12: PCC and CMSw ranking of Güttingen / Genève-Cointrin in
May 2011 – 2015.
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Figure 22: Temperature Chur / Valbella Dec 2014.
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The chart in Figure 22 illustrates an example of a temperature inversion.
The blue line of represents the temperature of Chur, which is 556 meters
above sea level. The temperature of Valbella is represented by the red line.
Valbella is 1569 meters above sea level. In mid December 2014, the temper-
ature in Valbella is clearly colder than in Chur. Around the 22. December
2014, the temperature in Valbella starts to increase while the temperature
in Chur stays stable. For the next couple of days, a temperature inversion
is present. It is significantly warmer in Valbella than in Chur. Beside the
warmer temperature in Valbella during the day, also the night is warmer
than in Chur. On 22. December 2014, the warmest measured temperature
in Valbella was 8.4 ◦C and in Chur 6.4 ◦C. During the night, the temperature
then decreases in Valbella to 3.2 ◦C whereas the temperature in Churs goes
to 0.1 ◦C.
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Figure 23: Scatter plot Temperature Chur / Valbella Dec 2014.

The temperature inversion has also an impact on the scatter chart in
Figure 23. In the left part of the scatter chart when Chur’s temperature is
between [-10, 0] degree celsius, the temperature of both locations correlate
linearly. On the right side of the scatter chart, no linear correlation is visible,
that is, the points scatter in a wide range around the regression line. This is
due that the temperature in Valbella is increasing whereas the temperature
in Chur stays on the same level.

Table 9 contains the result of calculating the PCC and CMS of the two
temperature time series of Chur and Valbella in December 2014.

Temperature inversion is very common weather phenomena in the winter.
Considering the same time period from 2011 till 2015, in every time period
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Result #Values Rank

PCC(Chur, Valbella) 0.775177 4320 25/110
CMS0.5(Chur, Valbella) 0.032744 4320 9/110
CMS1(Chur, Valbella) 0.067276 4320 10/110

Table 13: Overview of PCC and CMSw of Chur / Valbella in December
2014.

at least one temperature inversion occurs. However, considering Table 14 the
ranking of all three measures are rather volatile from 5th place till 45th place.
Therefore, temperature inversion does only have a very small impact on the
PCC, respectively on the CMS. This is because the time period during a
temperature inversion occurs is rather short and during the remaining period
a linear correlation exists.

PCC Rank CMS0.5 Rank CMS1 Rank

2011 16 37 38
2012 7 5 5
2013 26 45 45
2014 25 9 10
2015 31 28 29

Table 14: PCC and CMSw ranking of Chur / Valbella in December 2011 –
2015.

7.3 Runtime Analysis

As shown in Section 5.3, the bucket width has an impact on the number
of buckets used to compute the CMS. In addition, the bucket width has an
impact on the number of values which are stored on average within one bucket
and as proven in Lemma 2 (Section 6.3), the overall runtime complexity for

CMSw(s, r) results in O( (max(r(t))−min(r(t))
w

), which mean in other words that
a higher bucket width w leads to a smaller runtime.

To perform the runtime analysis of the CMS, we ran our algorithm ten
times and measured the average runtime, excluding the time for fetching the
data from the database. For our experiment we use the temperature time
series from Montana as a base time series and the temperature time series
from Sitten as a reference time series. We compute the runtime over a time
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frame from 01.01.2006 to 26.09.2009 (1000 days). Using a sliding window
length LW = 15 months. In Sitten, the highest measured temperatures was
35.9 ◦C and the lowest measured temperature was -12.8 ◦C.

Figure 24 presents the average runtime of ten runs of CMSw(s, r), as we
increase bucket width w from 0.1 ◦C to 10 ◦C. CMS0.1(s, r) has the highest
average runtime with 986.9 milliseconds.
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Figure 24: Runtime in milliseconds of CMSW (s,r) with increasing bucket
width w.

Doubling w reduces the runtime almost by half, CMS0.2(s, r) has an av-
erage runtime of 561.4. From a bucket width w of 4, the runtime is flattening
out with a runtime average of 121.7 milliseconds and the runtime remains
mostly stable with increasing bucket width w. The lowest average runtime
has been measured with a bucket width of 8.5.

The reason for the high runtime with a small bucket width is because
a small bucket width leads to more bucket. The algorithm for calculating
CMS requires to loop over every bucket. Consequently, a higher number of
buckets leads to a higher runtime.
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8 Conclusion

Our work introduces into time series analysis and its application on a real
data set. The goal is to analyze and compare the similarity (or correlation) of
a base time series to a reference time series. Finally the reference time series
shall be ranked according to its similarity to the base time series. Therefore
we studied and implemented two similarity functions: The Pearson Correla-
tion Coefficient (PCC) (Section 4) and the Case Matching Similarity (CMS)
(Section 5). We introduced first PCC as a symmetric similarity measure to
automatically rank a reference time series to a base time series. We have
formally shown the connection between PCC and linear regression. More
specifically, we have shown how PCC can be interpreted as quality measure
for the obtained regression line. PCC is able to detect linear correlations
only. Its range reaches from maximum +1, which represents a perfect, posi-
tive linear relationship to a minimum of -1, representing a perfect, negative
linear relationship. If the two variables do not linearly correlate at all, the
PCC’s value is zero.

CMS in contrary is also able to detect non-linear correlation. CMS splits
the range of the reference time series into equal-sized buckets. Each bucket
contains the values of s such that the corresponding value of r is within the
bucket limits. The CMS range is [0,∞), with 0 denoting maximum similarity.
CMS bucket width allows a small degree of adaption to the nature of the time
series at the same time the bucket width has a direct impact on the number
of buckets which leads to different results and runtime. We provided rough
guidelines how to choose bucket width w.

Section 6 explains how the two algorithms are implemented. Since weather
data’s time series are by definition infinite and memory capacity is limited,
the sliding window keeps only data in memory of a chosen time frame. This
allows to implement efficient algorithms and to calculate PCC and CMS
incrementally. The algorithms space and memory complexity have been an-
alyzed.

In Section 7 we first analyzed the impact of the sliding window’s size
on the resulting PCC and CMS. Thereby we found out that both PCC and
CMS produce unstable results for small streaming windows. The results are
stable applying a sliding window over more than 15 months. Thus reliable
results should be considered with a data set holding at least data over 15
months. Further we analyzed in the same section impacts of three weather
phenomena on the PCC and CMS rankings. Since all of them occur on
rather short time ranges and data should be analyzed at least for a time
frame of more than 15 months, their impact on the rankings is negligible
small. The last experiment analyzed the impact of the bucket width of CMS
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on the algorithm’s runtime. We found out that a smaller bucket width leads
to more buckets. A higher amount of bucket intensifies calculations and
increases the algorithm’s runtime.
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Appendices

A Solving Least Squares

Rewriting Equation 13 and 14 we obtain∑
t∈W

s(t) = Lwβ0 + β1
∑
t∈W

r(t) and (41)∑
t∈W

s(t)r(t) = β0
∑
t∈W

r(t) + β1
∑
t∈W

r(t)2. (42)

Dividing both sides of Equation 41 by LW , we get

s̄ = β0 + β1r̄ or

β0 = s̄− β1r̄.

Substituting β0 in Equation 42, we get∑
t∈W

s(t)r(t) = (s̄− β1r̄)
∑
t∈W

r(t) + β1
∑
t∈W

r(t)2

= s̄
∑
t∈W

r(t)− β1r̄
∑
t∈W

r(t) + β1
∑
t∈W

r(t)2.

Solving for β1 we obtain:

β1 =

∑
t∈W s(t)r(t)− s̄

∑
t∈W r(t)∑

t∈W r(t)2 − r̄
∑

t∈W r(t)
=

∑
t∈W (s(t)− s̄)(r(t)− r̄)∑

t∈W (r(t)− r̄)2
.

B The Sum of Residuals

We want to show that the sum of residuals
∑

t∈W εt = 0. We substitute εt
and obtain ∑

t∈W

(s(t)− ŝ(t)) = 0∑
t∈W

(s(t)− β0 − β1r(t)) = 0∑
t∈W

s(t) = Lwβ0 + β1
∑
t∈W

(r(t))

Notice the last equation corresponds to Equation 41 in Appendix A, where
we have shown how to choose β0 and β1 with the least squares method to
satisfy this equation.
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C Coefficient of Determination

We want to show that 2
∑

t∈W εt(ŝ(t)− s̄) = 0, which can be rewritten as∑
t∈W

εtŝ(t)− s̄
∑
t∈W

εt = 0

The second term, ŝ
∑

t∈W = 0 as we have shown in Appendix B. Therefore
we need to show that ∑

t∈W

εtŝ(t) = 0.

We substitute ŝ(t) and obtain:∑
t∈W

εtŝ(t) =
∑
t∈W

εt(β0 + β1r(t)) = β0
∑
t∈W

εt + β1
∑
t∈W

εtr(t) = 0.

Again, from Appendix B we know that β0
∑

t∈W εt = 0 and therefore we need
to show that β1

∑
t∈W εtr(t) = 0. We substitute εt and obtain

β1
∑
t∈W

(s(t)− ŝ(t))r(t) = β1
∑
t∈W

(s(t)− β0 − β1r(t))r(t) = 0.

Notice that this last equation is equivalent to Equation 14 and that due to
the least squares method (see Appendix A), values β0 and β1 were chosen
such that this equation is satisfied.
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