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1 Introduction

The main target of the project is to extend the PostgreSQL kernel by a new SQL operator.
We should be able to multiply two relations with the new operator, by considering the
relations as matrixes with the columns “r’(row), “c”(column) and “v”(value). At the end of
the day the output relation should be the matrix multiplication of the two input relations.
For example, out of relations Inputl and Input2, we should get the result relation Output.
On the left side, the matrix that is represented by each relation is shown.

Table 2: Inputl
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Table 4: Input2
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Table 6: Output
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To do so, we need to edit the process between transmitting a query to the server and
receiving a result from it, but first we need to know how PostgreSQL is constructed.
PostgreSQL is built in three stages: The Parser, the Optimizer and the Executor. The
Parser controls if the entered query has correct syntax and creates a query tree. This query
tree is given as an input to the Optimizer. The optimizer creates possible ways (paths),
which lead to the correct result the query is looking for and calculates the costs for all
possible paths. The path with the lowest cost is selected and expanded into a detailed
plan tree, which the executor can use. Finally, the executor iteratively steps through the
received plan tree from top to bottom, execute the described plans and returns the result
rows. In the following parts each section is described in more detail and applied to our
matrix multiplication example.
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2 Parser

Like already described in the introduction, the Parser checks if an entered query has a
correct syntax and then it builds a query tree. Before it can start with that, the input
query needs to be split up in tokens, which the parser can recognize. This step is done by
the lexer. For every keyword and identifier of an object (e.g. relation, attribute) the lexer
finds in the given query, a token is generated and handed in to the parser. The parser
itself consists of a set of grammar rules with a corresponding action for every rule. A rule
is a list of consecutive tokens and its action is activated if the list of tokens appears in
the token list received from the lexer. For every subsequence of tokens from the token
list delivered by the lexer, there need to be a rule in the parser, which is fired, when the
corresponding sequence of tokens is recognized. If a specific sequence of the input tokens is
not matched with any rule of the parser, there is a syntax error in the query. When a rule
is triggered, the corresponding action creates a parse node, a data structure which stores
the necessary information for use later in the process of evaluating the given query. Every
node can have other nodes as children. Because of this a query tree is generated out of the
created parse nodes and is delivered to the optimizer. Later in the optimizer this tree can
be handled iteratively starting from the root node, which calls its child nodes and so on.
The control whether the required relations exist or not, is inspected in a semantic check
right after the Parser. We skip a detailed description of this analyzing phase, because we
don’t really need to do something with it. To better understand the concept of the parser,
Listing 1, Listing 2 and Figure 1 show the individual steps for a simple example.

Listing 1: Entered query
SELECT r, ¢ FROM Inputl WHERE v > 10

Listing 2: Generated token list (Lexer output)
[SELECT, r, ’,’, c, FROM, Inputl, WHERE, v, >, 10]

7T7”7C

0r>10

|
Inputl

Figure 1: Genrated query tree (Parser output)

Hence to let PostgreSQL know the syntax of the matrix-multiplication operation we
need to extend the parser and add some new rules and keywords for it. The matrix-
multiplication can be compared to a join, because it somehow takes two input relations,
joins them, and return a new output relation. Out of this reason we don’t need to build
a completely new parse node and we can just extend the join parse nodes to store in-
formation for a matrix multiplication. The C datatype that represents a join in a query
tree is JoinExpr. In the JoinExpr all the necessary information of a join are stored. In
Listing 3 the most important attributes of JoinExpr are shown. The type of the join
is stored in an enum called jointype. Possible values of it are JOIN_INNER, JOIN_LEFT,
etc. The relations, which are joined, are stored in the fields larg and rarg. Optional join
conditions are stored in the quals node. If an alias clause exists, it is stored in the alias
node. This is the basis that forms a JoinExpr.



Listing 3: JoinExpr

typedef struct JoinExpr

{
JoinType jointype; /* type of join */
Node *larg; /* left subtree */
Node *rarg; /* right subtree */
Node *quals; /* qualifiers on join, if any */
Alias *alias; /* user-written alias clause, if any */
(some other members)
} JoinExpr;

Now we need to extend this JoinExpr, so that it can also store the necessary information
for matrix multiplication operation. At the first part we just need to store in JoinExpr
the information that a matrix-multiplication is required by the query. This is first done
by adding a new rule in the parser, which is activated when the matrix multiplication
keyword MMUL appears and assigning JOIN_MMUL as jointype to the JoinExpr. To make
this legitimate, we also need to add the type JOIN_MMUL to JoinType enum. Also we
need to specify what information are needed to execute the matrix-multiplication. In the
first hand it seems that no more information are needed to perform the join, but if we
look a bit forward to the optimizer and the executor, it gets obvious that we also need
to know the dimensions of the input tables in order to calculate the costs and to execute
the algorithm later. The dimensions represent the number of rows and columns of the
two input tables. It would have been also possible to calculate the dimensions through
another SELECT statement, but that would have been out of scope, and probably also
not that efficient. The dimensions are stored in JoinExpr as integer fields. So the new
JoinExpr node with the added information is shown in Listing 4.

Listing 4: JoinExpr with matrix multiplication members

typedef struct JoinExpr

{
JoinType jointype; /* MMul-join is assigned here */
Node *larg; /* left subtree */
Node *rarg; /* right subtree */
Node *quals; /* qualifiers on join, null in our example */
Alias *alias; /* user-written alias clause */
(some other members)
// our added dimensions
int rowlLeft; /* number of rows left subtree */
int colleft; /* number of columns left subtree */
int rowRight; /* number of rows right subtree */
int colRight; /* number of columns right subtree */
} JoinExpr;

Since we have defined how a matrix multiplication operator is stored in a query tree, we
need to define the new parser rule to recognize this operator. To build the rule we first
need to know how the final query looks like. Our query takes 2 tables as input and joins
them with the keyword MMUL. The values of the dimensions are placed right after the
relations and they are introduced with the keyword DIMENSIONS, both for the left and the
right relation. At the end the alias clause is placed. In Listing 5 an example of such a
query is shown.

Listing 5: Example input query for a matrix multiplication operation
SELECT * FROM (Inputl MMUL Input2) DIMENSIONS 3 2 DIMENSIONS 2 2 AS Output;




Out of the query we can build our new rules. The rule which is added for the matrix-
multiplication is shown in Listing 6. The rule matches the FROM part of the query, where
the MMUL keyword appears. It handles all the tokens after the FROM keyword and before the
AS keyword. In our rule a JoinExpr node is built and the necessary values are assigned
to it. To access tokens of the rule body the ’$’ sign is used. With $i we can access the
i" token of the rule. For example with the statement (n->larg = $2), the second token
(the first table_ref) is assigned to the left argument of the JoinExpr. The head of the
rule, that is finally returned is assigned to $$.

Listing 6: Parse rule for matrix multiplication

mmul_join:
>(? table_ref MMUL table_ref ’)’ DIMENSIONS Iconst Iconst DIMENSIONS Iconst

Iconst
{
/* letting join_type reduce to empty doesn’t work */
JoinExpr #*n = makeNode(JoinExpr) ;
(some other initializations)
n->jointype = JOIN_MMUL;
n->larg = $2;
n->rarg = $4;
n->quals = NULL;
n->rowlLeft = $7;
n->colleft = $8;
n->rowRight = $10;
n->colRight = $11;
$$ = n;
}

Summarized we extended the JoinExpr node with a new joinype that performs matrix
multiplication and 4 dimension attributes. Also we added a new rule for the matrix
multiplication join, to make the PostgreSQL parser accept our new query type along with
the dimensions of input matrixes. Also we added an alias for the output at the end, just
to give the whole query a nicer flair.

After applying these changes to PostgreSQL source code the Parser accepts inputs like
Listing 5, but Postgresql throws an error during the optimization process. To prohibit
this we also need to adapt the optimizer.

3 Optimizer

The main goal of the optimizer is to create an optimal execution plan for a given query.
The execution plan is constructed in a plan tree, which is composed of plan nodes. A
plan node describes the specific algorithm that can be used to evaluate a corresponding
SQL operator. A plan node returns a number of tuples, thus a table, when it’s executed.
Therefore when we have the resulting plan tree, the root plan node is called and it is
resolved iteratively, getting resulting tables from its children as input tables.

For a given query, there can exist more than one way to execute it, each with the same
set of results. The optimizer task is to find the way which is the cheapest to evaluate the
query. To do so it builds a set with all possible path trees, which are delivering the correct
results. A path tree is similar to a plan tree, but compared to a plan tree it takes only
the necessary information to calculate the costs and therefore to find the cheapest path,
it omits the information that is only need for the execution process. To better compare



a Plan and a Path , the basic Plan node is shown in Listing 7 and the basic Path node
is shown in Listing 8. Both can be applied to simple plan types like the sequential scan.
We don’t want to go deep in detail, but we can see, that the Path keeps less information
than the Plan. The Path more or less only cares about the type of itself (in this example
a sequential scan) and its cost to execute. It doesn’t even care about the input relation,
which is scanned. At the other side the Plan needs the information like the childtrees
(lefttree, righttree = NULL in a scan) and the qual conditions, in which the selection
condition are stored, to execute the query.

Listing 7: Plan node

typedef struct Plan

{
NodeTag type;
Cost startup_cost; /* cost expended before fetching any tuples */
Cost total_cost; /* total cost (assuming all tuples fetched) */
double plan_rows; /* number of rows plan is expected to emit */
int plan_width; /* average row width in bytes */
List xtargetlist; /* target list to be computed at this node */
List *qual; /* implicitly-ANDed qual conditions */
struct Plan *lefttree; /* input plan tree(s) */
struct Plan *righttree;
List *initPlan; /* Init Plan nodes (un-correlated expr *

subselects) */

Bitmapset *extParam;
Bitmapset *allParam;

} Plan;

Listing 8: Path node

typedef struct Path

{
NodeTag type;
NodeTag pathtype; /* tag identifying scan/join method */
RelOptInfo *parent; /* the relation this path can build */
ParamPathInfo *param_info; /* parameterization info, or NULL if none */
double TOowS; /* estimated number of result tuples */
Cost startup_cost; /* cost expended before fetching any tuples */
Cost total_cost; /* total cost (assuming all tuples fetched) */
List xpathkeys; /* sort ordering of path’s output */

} Path;

The paths can be differed for example in the algorithm of scan or join operations that are
executed. For example if a sequential or an index scan can be chosen, and both delivers
the same result. Out of the cheapest path the plan tree is built by adding the necessary
information for the executor again. Two possible path trees for our initial example in
Figure 1 are shown in Figure 2. The IndexScan is probably the better path in this simple
example, because it doesn’t need to scan every tuple once.

Since there is only one implemented algorithm to evaluate matrix multiplication, we only



Figure 2: Two possible paths for our initial example
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consider the paths, which include this algorithm. Our algorithm is implemented in a way
similar to the Nested Loop algorithm, only two different paths are possible, one with the
left relation as the outer relation and one with the right relation as the outer relation. For
both options we calculate the I/O costs and take the one, which has the smaller 1/0 costs.
I/O costs are the number of tuples which are read from a table or written to a table. To
calculate these costs we first need to know how the algorithm works, out of this reason
we move the cost calculations after the part about the executor.

So far PostgreSQL generates a plan for matrix multiplication operation. The next step is
to extend the executor, so that we add some behavior to the new function.

4 Executor

Yet we have not discussed some algorithm and what exactly our new function should
do. For this part the Executor is responsible. Like already mentioned the optimizer
delivers a plan tree with all the necessary information to execute each node. At the
beginning, a second tree with identical structure like the plan tree is built. This tree
contains executor state nodes, where every state node belongs to a plan node from the
plan tree and also points to it. A state node stores data, that is used during the execution
of the corresponding plan node. In this way the information in the plan nodes are never
changed and the plan tree is allowed to be read-only: all data that is modified during
execution is in the state tree.

The plan tree is resolved iteratively as a demand-pull pipeline, that each node calls (pulls
information) from its child nodes. At every call of a node one tuple is returned. If no
more tuples are available, the called node returns NULL to its parent. For example if the
root node is called, it calls its children and gets from each child a tuple. With this child
tuples it creates a new tuple and returns it. After that, it calls its children again and does
the same process. This is done until the root tuple returns NULL, which means that no
more tuples are available and that we’re done.

The implementation of a plan node consists of three functions: The ExecInit, the Exec
and the ExecEnd function. The ExecInit function is called at the beginning of the
execution process and initializes the state node belonging to the plan node.

After the initialization, the Exec function is called. This is the main part of the executor
and the output is actually built by this function. For every output tuple the Exec function
is called once and delivers a tuple. Like already mentioned we use the state nodes to save
information between the different calls of the Exec function.

At the end, if the Exec function returns NULL the ExecEnd function is called. In the
ExecEnd function everything which was initialized gets freed. A sample algorithm of this
process is shown in a generalized way in Listing 9.



Listing 9: Main process in Executor

Main(){
StateNode state = ExecInitNode(RootPlanNode);
do{
TupleSlot* tuple = ExecNode(state);
output (tuple) ;
}while(tuple != NULL);
ExecEndNode (state)
}

While a simplified example of the iteratively called ExecNode function is described in
Listing 10.

Listing 10: Generalized ExecNode algorithm

ExecNode (node) {
leftTuple = ExecNode(node->leftChild);
rightTuple = ExecNode(node->rightChild) ;
outputTuple = ProduceOutputTuple(leftTuple, rightTuple);
//content of Planstate node may change
return outputTuple;

}

To understand the next steps, a brief description of our algorithm would be helpful. In
the following examples, we make the assumption, that the left is the outer relation. Our
algorithm reads one row from the outer relation and then reads one column after the
other from the inner relation. We assume that both relations are sorted, the left relation
in (row, column) order and the right relation in (column, row) order. So we can read a
row of the left relation or a column of the right relation with a sequential scan. For every
(row, colum)-pair it outputs a tuple. If the inner relation has no more tuples to read, the
function reads a new row from the outer relation and rescans the inner relation from the
start and again reads column by column. An output tuple is constructed by a row i from
the outer relation and a column j from the inner relation, which have the same length.
To make the calculation examples clearlier, we call this length med. The row and column
value of the output tuple is also i and j, while the value from it need to be calculated like
the following (Assuming that R is the left relation and S the right):

med

value; ; = E R.rowg * S.coli

K=0

rowg is the K*" tuple in the current row. The resulting output table is sorted in the same
way like the outer relation.

In every call of the function Exec, we need to know the dimensions of the tables to know
how much tuples we need to read. During the execution of the algorithm we need to
know, if we have scanned the whole inner relation for the current row of the outer, thus
if we need a new row from the outer relation. This information is stored in a boolean
called mj_NeedNewOuter. In another boolean (leftIsOuter) we store the information
which path was picked by the optimizer, so if the left or the right relation is the outer.
To store the current row from the outer relation, which we need to calculate the output
tuples, we also have a float array in our state node. As a last element we have a Matrix-
Element, whose type definition is shown in Listing 11. It contains two integers for the
row and column and one float for the value, hence it ’s similar to an output tuple. In this
MatrixElement we store the values (row, col, value), which will be returned next.



10

Listing 11: Typedef of MatrixElement

typedef struct {
int r, c;
float v;

} MatrixElement;

All this combined with the standard attributes of a Join State result in the MMulJoinState
node, which is shown in Listing 12.

Listing 12: Typedef of MMulJoinState
typedef struct MMulJoinState

{
(normal join stuff)
bool mj_NeedNewQuter;
int rowLeft;
int collLeft;
int rowRight;
int colRight;
float *outerSafe;
bool leftIsOuter;

MatrixElement rme;
} MMulJoinState;

This MMulJoinState is built and initialized in the ExecInitMMulJoin. Most of the values
like the dimensions can just be assigned from the MMulJoin node to the MMulJoinState
node. The boolean mj_NeedNewOuter need to be true at the beginning, since we need to
read a new row from the outer relation, because we haven’t read one yet. The first output
row should have the values (0, 0, float). Because the row integer in the MatrixElement
increases by 1 when a new row from the outer relation is read, the MatrixElement is
initialized with the values -1 for row and 0 for column. The ExecInitMMulJoin is shown
in Listing 13.

Listing 13: ExecInitMMulJoin Function

ExecInitMMulJoin(MMulJoin *node){
MMulJoinState *mjstate;
mjstate = makeNode (MMulJoinState);

mjstate->rowLeft = node->rowlLeft;
mjstate->colLeft = node->colleft;
mjstate->rowRight = node->rowRight;
mjstate->colRight = node->colRight;

I
|
[
..

mjstate->rme.r
mjstate->rme.c = 0;
mjstate->rme.v

I
o

mjstate->outerSafe = palloc(sizeof (float)*node->colleft);

mjstate->mj_NeedNewOuter = true;

After we initialized the MMulJoinState in the ExecInitMMulJoin function, the actual
work is done in the ExecMMulJoin function. At the start of the ExecMMulJoin a Matrix-
Element is initialized, in which we temporarily store each tuple we read from a relation.
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The value of node->rme.v is set to 0 again, that we can store the intermediary result
of our calculations in it. After the initialization we enter a while loop, which is running
until we read a column from the inner relation and running is set to false. Normally
the loop is processed only once. Just in the cases, in which we have read the full inner
relation and getting NULL as result from reading the next inner tuple, we need to go back
to the start of the loop and first read a new outer relation and rescan the inner. Inside
the while loop first we check if we need a new row from the outer relation. If it’s true,
the outer safe is filled with a new row from the outer relation. For example, this is done
in the first time the method is called. Like already mentioned the row integer increases
by 1 when a new row is read. Also the column integer is set to 0 again and the inner
relation is rescanned, because we have a new row. After this section we scan a column
from the inner relation. If we get NULL as result we need to scan a new row from the outer
relation and we go back to the top of the while loop. Otherwise we have a row from the
outer relation and a column from the inner relation. Thus we can return a new tuple by
multiplying the values from the outer row with the values from the inner columns. But
before we return the tuple we increase the column integer of our MatrixElement by 1.
This function is called until the scanning from the outer relation returns NULL, then the
ExecMMulJoin Function is finished. In a simplified way the algorithm is shown in Listing
14. The functions readSlot and readMatrixElement read a Slot/MatrixElement first
parameter) and assign the values to another construct(second parameter).

Listing 14: ExecMMulJoin Function

ExecMMulJoin(MMulJoinState *node){
// first some standard initalization
MatrixElement temp = allocateTempMatrixElement() ;

rme->v = 0;
bool running = true;
while(running){
if (node->needNewOuter){
//get new row of outerPlan
for(int j = 0; j<colLeft; j++){
outerTubleSlot = ExecProcNode(outerPlan) ;
if (TupIsNull (outerTubleSlot){
return NULL;
}
readSlot (outerTubleSlot, temp);
node->outerSafe[j] = temp->v;
//outerSafe is an array storing values of 1 row of the outerPlan
node->rme.r += 1;
node->rme.c = 0;
}
node->needNewOuter = false;
ExecReScan(innerPlan) ;

}

for(int i= 0; i<colLeft; i++){
//get new column of innerPlan
innerTubleSlot = ExecProcNode(innerPlan);
if (TupIsNull (innerTubleSlot){
//need to scan a new outer first
node ->needNewOuter = true;
break;
Yelsed{
//inner and outer tuple is available -> new tuple can be generated
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running = false;

}

readSlot (innerTubleSlot, temp);

rme->v += node->outerSafe[i] * temp->v;

}

}
pfree(temp);
readMatrixElement (node->rme, resSlot);
node->rme.c += 1;
return resSlot;

}

At the end in the ExecEndMMulJoin all the structures, which were initialized in the Ex-
ecInitMMulJoin, gets freed and the process is finished.

5 Cost Calculations

Now that we know the exact algortihm we can calculate the I/O cost to execute it. We
know that the outer relation is scanned only once, and the inner relation is scanned
rowLeft times if the left is the outer and colRight times if the right is the outer. If the
left is the outer we need to read or write tuples like the following term:

rowlLeft x colLeft + rowLe ft * rowRight x col Right + rowLe ft x col Right
If the right is the outer we need to read or write tuples like the following term:
rowRight x col Right + col Right x rowLe ft x col Le ft + rowLe ft x col Right

Compared both I/O cost with each other we get the following result. We take the left as
the outer if:

rowLeft % col Le ft + rowLeft x rowRight * col Right + rowLeft * col Right <

rowRight x col Right + col Right x rowLe ft % col Le ft + rowLe ft x col Right

Since we know that colLeft and rowRight are the same and both sides have the section
+rowLeft % col Right in it, we can reduce the calculation to the following(taking med for
colLeft and rowRight):

rowLeft x med+rowLe ft+med* col Right < med * col Right 4+ col Right x row Le ft x med

Subtracting rowLe ft x med *x col Right at both sides leads to the following:

rowlLe ft x med < med * col Right
Dividing both sides with med leads to the following:

rowLeft < col Right

Now we see that if the number of rows from the left relation is smaller than the number
of columns from the right relation, it is cheaper to take the left relation as the outer and
if it is bigger, it would be better to take the right as the outer relation.

The difference between the costs can be proved by some tests, where we compare the time
to calculate the same query once with the “good” relation as the outer relation and once
with the “bad” relation as the outer. Table 7 shows the time needed to process the query
for both variants along with the 4 dimensions.



Table 7: Tests

Example | rowLeft | colLeft | rowRight | colRight “good” “bad”
1 10 10 10 1 1.077ms 1.157ms
2 10 10 10 100 7.636ms 8.245ms
3 1000 10 10 100 514.603ms 524.425ms
4 1000 10 10 1 8.504ms 13.727ms
5 1000000 10 10 10 73982.231ms | 80542.414ms
6 10000 100 100 1 323.835ms 635.441ms
7 1000 100 100 2 649.677ms 970.235ms
8 1000 100 100 3 963.935ms | 1293.760ms
9 1000 100 100 4 1296.738ms | 1552.843ms
10 10000 100 100 5 1575.867ms | 1853.592ms
11 10000 100 100 10 3113.068ms | 3428.076ms
12 10000 100 100 100 31502.871ms | 32000.282ms

13

The results from the tests show that the difference between the two options isn’t that
huge in the most cases, but the bad option takes nearly 2x longer when one of rowLeft
and colRight is 1 and the other isn’t (examples 4 and 6). In example 1 the time spent
to calculate is so small and with a huge deviation, that this result isn’t really significant.
This difference can be calculated. We take the 2 cost calculations from above and divide
them with each other to see the cost difference factor. To simplify the calculation we
abbreviate the terms (rowLeft = rl, colRight = cr, med = m).
rlxd-+rlxdx*cr

crxd+rlixdx*cr

This term can be simplified by removing d to the following.
rl* (14 cr)

er* (14 rl)
This formula confirms our tests, because we can see that the factor is at the most 2, if

one of rl or cr is 1 and it sinks when the smaller of rl or cr increases. Approximated the
elapsed time for the bad and the good plans are in the following relation:

1
min(rowLeft, col Right)

bad = (1 + ) * good

Our test results are close to this relation. We did just 10 trials per test case and took the
average. The numbers from examples 1-4 are really small, and because of this, there is a
big deviation, but in the example with bigger input relations (examples 5-12), it is really
close to this formula.

6 Conclusions

As a short final statement we want to assess our algorithm in efficiency and scalability.
Our algorithm has complexity O(rowLeft * med * colRight) which is a high complexity,
but we cannot avoid it since for every output tuple we need to compute the inner product
of a row and a column. In terms of scalability if one row contains a number of tuples and
the memory can’t store them all at once, the process breaks.

What can be done better is to reduce the I1/O cost considering storing more than one row
of the outer relation in memory. Of course the outer relation still need to be scanned
once, but the inner relation doesn’t need to be scanned rowLeft times, because we could
calculate more than one output tuple with one scanned column from the inner relation.



14

The algorithm would stay more or less the same, but instead of computing only one output
tuple with a inner column, we could compute many tuples. When we could store i rows
from the outer relation, we need to scan the inner relation only %Left times. The I/O
cost would sink to the following:

rowLeft

rowlLeft x col Le ft + x rowRight * col Right 4+ row Le ft % col Right

It should be noted, that in this case the outer relation isn’t sorted anymore.

Another beneficial thing about the algorithm is, that it could be parallelized easily. This
benefit comes from the one after the other row handling. Every row from the outer relation
is handled separately one after the other, and in this structure, we can handle every row
individual and so we can also handle every row in parallel.

As a last point we want to consider the I/O cost when the input relations are increased.
Starting from the I/O cost function:

rowLeft x med + rowLe ft x med % col Right + rowLe ft x col Right

With the I/O cost function, we can see that the I/O costs are increased approximately
linear when one of rowLeft, colRight or med is increased. This means if one of the
dimensions is doubled, also the I/O cost doubles. When rowLeft is doubled we need
to scan the inner relation twice as much. When colRight is doubled we need to scan
twice as many columns per row as before. In this two cases just one input relation has
the double size, but when we double med both input relations get doubled and still just
doubled I/O cost. When med is doubled, we just need to read twice as many tuples and
so the I/O cost also just get doubled. In Table 7 in examples 6-12 only one dimension
is changed, and the cost are changed in the same factor in the good plan. In examples
1-4 there is also just one dimension changed, but like already mentioned the numbers are
to small to have really significant data. So if only one dimension is increased the cost
increases linearly. But if more than one dimension is increased, then the cost increases
polinomially.



