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Abstract

Wrist-worn accelerometers are increasingly employed for human activity recognition (HAR) in
various medical contexts. However, existing algorithms often struggle to generalize to unseen
datasets, particularly those recorded in real-life scenarios. This report investigates the perfor-
mance of hierarchical machine learning (ML) models and multi-branch convolutional neural net-
work (CNN) models for HAR, using multiple publicly available datasets to assess activity recog-
nition and generalizability. We evaluate our models on the Capture24 dataset, which closely
resembles real-life activities.

Our research questions and aims focus on evaluating the performance of hierarchical ML and
multi-branch CNN models for HAR, understanding their generalizability to unseen datasets, and
exploring the effects of transformation techniques on model performance. We employed two
approaches for model construction: a hierarchical ML model and a multi-branch CNN model.

Our analysis reveals that, while the hierarchical ML model tends to outperform the CNN
model in terms of F1 scores for the majority of activities, the efficacy of the models varies when
considering individual activities. The CNN model displays a marked degree of generalizabil-
ity, and hints at the potential for enhanced performance with the incorporation of more diverse
datasets. Our study also underscores the importance of dataset selection, suggesting that datasets
closely resembling the target dataset should be preferred. Furthermore, the choice of transforma-
tion techniques appears to be activity-specific, further underlining the need for nuanced decision-
making when developing models for human activity recognition.

In conclusion, this report provides valuable insights into the performance of ML and CNN
models for HAR, highlighting the advantages of hierarchical ML training structures and multi-
branch CNN models. Our findings not only emphasize the strengths and limitations of each
approach but also underscore the importance of considering the target dataset and the choice of
transformation techniques when developing HAR models for real-world applications.
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Chapter 1

Introduction

Wrist-worn accelerometers are increasingly employed for human activity recognition (HAR) in
various medical contexts, including sleep studies, chronic disease management, and post-stroke
recovery (Acampora et al., 2013). However, one major challenge faced by existing algorithms is
their limited ability to generalize to unseen datasets, especially those recorded in realistic, ev-
eryday scenarios. While simple algorithms may perform exceptionally well on single, controlled
datasets, their performance can significantly degrade when faced with real-life, complex scenar-
ios. Therefore, it is essential to develop robust and generalizable activity classification techniques
that can handle diverse, real-world situations.

In this project, we aim to develop activity classification techniques for the Axivity AX3 ac-
celerometer, a widely used device in large-scale studies like the UK Biobank (Doherty et al., 2017).
We use multiple publicly available datasets to assess the types of activities that can be recognized
and the extent to which these techniques can be generalized to new datasets recorded in varying
scenarios. We leverage five meticulously curated datasets, all recorded on various wrist-worn
3-axis accelerometers with sampling frequencies ranging from 20Hz to 256Hz. Our evaluation is
conducted on the Capture24 dataset, which closely resembles real-life activities (Chan Chang and
Doherty, 2021).

It is important to note that the test data in the Capture24 dataset represents more complex,
real-life activities, while the training data employed in this study is relatively "artificial," being
recorded in a laboratory or controlled environments. This distinction ensures that the resulting
classification model is expected to work well in practice.

In recent years, deep learning techniques have gained significant attention for their ability
to achieve remarkable performance in various domains, including HAR. However, conventional
machine learning (ML) models still hold relevance because of their simplicity, interpretability, and
lower computational requirements. In certain scenarios, these conventional models may provide
comparable performance to deep learning models, while being more resource-efficient and easier
to implement. Consequently, exploring the potential of hierarchical ML models for HAR remains
an important research direction.

To achieve our goal, we construct a pipeline (as shown in Figure 1.1 and Appendix A.2) to
compare two different approaches: a hierarchical machine learning (ML) model and a multi-
branch convolutional neural network (CNN) model. The hierarchical ML model utilizes a top-
down approach, where activities are classified at a high-level and then broken down into sub-
activities with increasing specificity. In contrast, the multi-branch CNN model extracts different
frequency components from the accelerometer data using parallel CNN branches, where each
branch extracts features that correspond to different characteristics of the data, such as different
frequency components, frequency or time-domain features.

Our results demonstrate that although the hierarchical ML model outperforms the CNN model
in terms of F1 scores for most activities of interest and overall performance, the CNN model ex-
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Figure 1.1: DATA PIPELINE.

hibits superior generalizability. Furthermore, the potential of CNN models for enhanced per-
formance increases as more diverse datasets are incorporated. We also recommend that, when
possible, the selection of datasets should be closer to the target usage scenario, and the transfor-
mation techniques should be tailored to the specific activities being investigated.

The remainder of this report is organized as follows. In the next chapter, we provide an
overview of related work in the field of activity recognition, with a focus on wrist-worn ac-
celerometers. Then, we describe our methodology, which encompasses data preprocessing steps,
feature extraction techniques, and the ML and CNN algorithms used for activity classification.
Next, we present and analyze the results of our experiments. Finally, we discuss the limitations of
our study, suggest directions for future research, and conclude with a summary of our findings.

This project’s primary contributions can be summarized as follows:

• We designated the Capture24 dataset for testing purposes and examined the performance
of both hierarchical machine learning models and CNN models, aiming to optimize clas-
sification accuracy on Capture24 without prior training on the Capture24 dataset. This ap-
proach ensures that we gain a realistic understanding of the models’ performance on unseen
datasets.

• We explored four distinct transformation techniques to emulate various wearable sensor
positions, enabling us to evaluate the adaptability of our models to diverse scenarios.

• We assessed the hierarchical training structure in ML training and the utilization of multiple
branches in CNN models, concluding that these techniques can benefit HAR performance.
We also determine that while conventional ML models may achieve better performance
with small-scale and similar training data, CNN models offer greater generalizability and
hold potential for further improvements.

The work distribution of this group project is detailed in Appendix A.1.



Chapter 2

Related Work

Real-world HAR based on wearable sensors
Wearable sensors, such as accelerometers and gyroscopes, have become a popular choice for cap-
turing human movement data because of their low cost, small size, and ease of use (Yang et al.,
2015). Various studies have used wearable sensors to recognize activities, including Banos et al.
(2014); Shoaib et al. (2015); Wu et al. (2012). In our work, we utilize publicly available datasets,
which were collected using 3-axis accelerometers from wrist-worn devices, allowing us to focus
on the most commonly worn body position for activity recognition in everyday life.

It is worth noting that many existing HAR studies have been conducted in laboratory or con-
trolled environments (Lara and Labrador, 2012; Bulling et al., 2014). While these studies provide
valuable insights into the field, they may not fully capture the complexity and variability of real-
world scenarios.

Data Preprocessing and Feature Extraction
Data preprocessing, such as resampling, windowing, and scaling, plays a crucial role in HAR, as
they can significantly impact the performance of the recognition models (Garcia-Gonzalez et al.,
2020; Bulling et al., 2014). To improve models’ adaptability to various sensor positions and orien-
tations, data transformation techniques are widely used several research fields, such as amplitude
perturbation in speech recognition (Qin et al., 2019) and rotation perturbation in image classifi-
cation (Lowe, 1999). Our research conducts several transformation techniques inspired by these
approaches, aiming to enhance the generalizability of our models.

The choice of features also plays an important role. Statistical features, spectral features, geo-
metric features, and temporal features are commonly employed in HAR literature (Bulling et al.,
2014; Wang and Chen, 2009). In our study, we adopt some of these feature extraction techniques
to represent the underlying patterns in the accelerometer data. We also explore the effect of var-
ious data transformations on the classification performance, aiming to understand how these
techniques can be leveraged to improve the recognition of activities in real-world settings.

Machine Learning Methods for HAR
A wide range of machine learning algorithms has been applied to the problem of HAR, including
Decision Trees, Support Vector Machines (SVMs), Random Forests (RF), and k-Nearest Neigh-
bors (k-NN) (Garcia-Gonzalez et al., 2020; Bulling et al., 2014; Shoaib et al., 2015). Hierarchical
approaches for HAR have been previously explored in the literature, with several studies demon-
strating the benefits of grouping activities based on their similarities (Leutheuser et al., 2013). In
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our work, we employ a hierarchical ML training process that categorizes activities into groups
based on their intensities, aiming to further improve the classification performance.

Deep Learning Methods for HAR
Deep learning methods have shown great potential in the field of HAR by identifying com-
plex patterns in data, and Convolutional Neural Networks (CNN) have been widely applied in
HAR, showing promising results(Wang et al., 2019). Noori et al. (2020a) explored various fusion
methods for multi-representations of sensor data using CNNs, while Kalouris et al. (2019) imple-
mented three CNN architectures for activity classification of older people. They also utilize data
augmentation and cross-utilize knowledge about physical activity of younger persons to improve
generalization. Both of the models are set as benchmarks in our study. Additionally, the multi-
branch model of CNN and bidirectional LSTM proposed by Noori et al. (2020b) for wearable
sensor data classification inspired us to build our multi-branch CNN model.



Chapter 3

Setup and Dataset

3.1 Environment Setup
In this project, we place great emphasis on creating a consistent and reproducible environment
across multiple machines to facilitate seamless collaboration among team members. To achieve
this, we utilize well-configured requirement files to establish a uniform Python environment on
different machines, ensuring that all required libraries and dependencies are installed and main-
tained in a consistent manner.

In order to optimize the process of submitting jobs to the Slurm workload management system
employed by the ETH Euler cluster, additional steps are necessitated beyond those required for
running a Python script on a local machine. These additional procedures are detailed in Appendix
A.3. We also curate comprehensive documentation within our repository This documentation elu-
cidates the necessary steps for configuring and submitting the four types of jobs that are integral
to our project: data preprocessing, feature extraction, hierarchical ML model training, and multi-
branch CNN model training. The documentation accompanying each step includes a detailed de-
scription of the folder structure, a template file in YAML demonstrating configurable parameters,
and an example bash command for submitting a corresponding Slurm job using sbatch. Our
comprehensive guide empowers team members to effectively leverage the computing resources
provided by the Euler cluster, thereby greatly enhancing the overall efficiency and productivity
of our project.

Moreover, we adopt an object-oriented programming (OOP) approach and employ parame-
terization in our codebase to promote collaboration and simplify the process of integrating indi-
vidual contributions. By structuring our code using OOP principles, we ensure that the code is
modular, reusable, and easy to maintain, making it more accessible for team members to work
on different components of the project simultaneously. Parameterization further facilitates the
process of fine-tuning the models and experimenting with various configurations, enabling us to
identify optimal settings for our activity recognition techniques.

In addition, we harness the power of Dask (Rocklin, 2015), a parallel computing library, in
conjunction with parameterization to enable efficient local prototyping. By leveraging Dask, we
are able to distribute computations across multiple cores or even clusters, significantly reducing
the time required for model training and experimentation. This approach proves invaluable for
rapid prototyping and testing of our models, allowing us to iterate and refine our techniques
more effectively.

As our activity recognition pipeline is designed to be portable and capable of running on var-
ious machines, it is important to consider the recommended hardware specifications to achieve
optimal performance and obtain results within an acceptable timeframe. We suggest using a ma-
chine equipped with at least 12 CPU cores or threads, 24GB of RAM, and 200GB of SSD storage
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to ensure efficient processing and data handling. Additionally, for GPU acceleration, we rec-
ommend an NVIDIA GPU with support for CUDA 11.8 or higher and at least 12GB of VRAM.
Utilizing a machine with these specifications will enable our models to train and process data
more effectively, ultimately resulting in more timely activity recognition using the Axivity AX3
accelerometer.

Furthermore, we employ GitHub as a version control and collaboration platform for our
project. This allows team members to effectively share, review, and merge their code changes
while maintaining a comprehensive history of the project’s development. The use of GitHub
further enhances the communication and collaboration within the team, ensuring that all contri-
butions are seamlessly integrated into the codebase.

The elements in our activity recognition pipeline allow us to focus on refining our models
and addressing the challenges associated with achieving higher accuracy in activity recognition
using the 3-axis accelerometers. The specific details, including the various stages and techniques
employed, will be presented in the following section. This comprehensive overview will provide
a deeper understanding of the methodologies and tools used in the development of our activity
recognition models for the Axivity AX3 accelerometer.

While we strive to ensure that our pipeline is scalable, efficient, and reusable, we acknowledge
that opportunities for improvement, particularly in terms of processing speed, still exist. With this
understanding, we maintain a balanced perspective on our progress and remain dedicated to the
continual exploration of enhancements.

3.2 Dataset
In this project, we utilize six different Human Activity Recognition (HAR) datasets, five of which
are used as training data, namely WISDM, Selfback, Gotov, Adl_hmp, Act_cp. The Capture24
dataset is used to evaluate the performance of models. It should be noted that the train data
used in this project is collected in a controlled laboratory setting, while the test data comprises
daily life activity data. To standardize the labels in different datasets, we translate the activities
of all datasets to uniform labels, the activities and translations of each dataset are listed in A.5.
Activities not included in our project are assigned as "unknown".

3.2.1 Description of Datasets
WISDM The WISDM (Wireless Sensor Data Mining) dataset (Weiss et al., 2019) is a widely used
publicly available dataset for HAR. It consists of data collected from 51 subjects who performed
18 activities, each lasting for 3 minutes. During the data collection process, participants wore a
smartwatch with a sensor at a rate of 20 Hz on their dominant hand.

SELFBACK The Selfback dataset (Sani et al., 2016) is an HAR dataset that contains data of
nine different activities performed by 33 participants. The data was recorded with a tri-axial
accelerometer sampling at a frequency of 100Hz, mounted on the participant"s dominant side
wrist. Each participant performed an activity for approximately three minutes.

GOTOV The Gotov dataset (Paraschiakos et al., 2021) is a wearable sensor-based HAR dataset of
physical activities for 35 healthy elderly individuals over 60 years old. The dataset contains data
collected from different body locations and devices with a sampling rate of 88 Hz. We leverage the
data from GeneActives accelerometer wearing at wrist. The 35 individuals followed a protocol of
16 activities of daily living for approximately an hour and a half in a semi-lab environment.
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ADL_HMP The Adl_hmp (Activities of Daily Living with a Wrist-Worn Accelerometer) dataset
(Bruno et al., 2013) consists of recordings of 14 simple activities of daily living, performed by 16
volunteers. The data were collected using a single tri-axial accelerometer attached to the right-
wrist of the volunteer with 32 Hz.

ACP_CP The Act_cp dataset (Leotta et al., 2021) contains three-axial accelerometer, magnetome-
ter, and gyroscope data recorded from different parts of the body while performing 17 different
daily-life activities. The data were recorded using medical-grade devices at a high sampling fre-
quency (up to 256Hz). The dataset includes data from eight healthy volunteers aged between
23-37. The subjects wore three devices, and we use the data recorded on a Actigraph Centrepoint
wearing at the dominant wrist.

Capture24 The Capture24 dataset (Chan Chang and Doherty, 2021) contains Axivity AX3 wrist-
worn activity tracker data collected from 151 participants in Oxford, UK, during 2014-2015. Par-
ticipants were asked to wear the device in their daily lives for approximately 24 hours, resulting
in a total of nearly 4,000 hours of data. The ground truth activities performed during this period
were obtained using Vicon Autograph wearable cameras and Whitehall II sleep diaries, resulting
in over 2,500 hours of labeled data. The labeled data were manually annotated by trained anno-
tators using labels from the Compendium of Physical Activities based on the camera images and
time use diaries. The Axivity AX3 device measures acceleration along three axes with a sampling
rate of 100Hz.

3.2.2 Utilization of Data and Annotations
The datasets used in this study involve the use of accelerometers placed on various body parts.
However, for consistency purposes, only data from the wrist have been included. It should be
noted that the datasets comprise varying label sets. To reconcile these variations and maintain
consistency, all original activity annotations have been translated into a unified set of eight labels:
"lying," "sitting," "standing," "walk_slow" (representing slow-paced walking), "walk_mod" (signi-
fying moderate to vigorous walking), "stairs" (covering both stair ascent and descent), "jogging,"
and "unknown". The mapping schema delineating the relationship between the original labels
and these newly assigned labels for each respective dataset is documented in Appendix A.5. Ad-
ditionally, to align with the hierarchical ML model delineated in Chapter 1, these labels have been
categorized into higher-level groups based on their corresponding activity types. The structure
of these groups and their affiliated labels is represented in Figure 3.1.

Notably, we have decided to exclude certain annotations from our training datasets that are
ambiguous or potentially encompass multiple labels. Take, for example, "NA" in the Gotov
dataset, which represents activities not included in their activity protocol. While these were
deemed "unknown" in the context of Gotov"s study, they may include activities that are iden-
tifiable in our project, such as "jogging". Another instance of ambiguous labeling is "relaxing" in
the Act_cp dataset, which denotes "relaxing on a chair". While this might initially seem akin to
"sitting", the specific type of chair and the participant"s exact posture are unclear. Considering
that a participant might be reclining or even lying down on the chair, classifying such an activity
simply as "sitting" could lead to inaccuracies. Therefore, to maintain clarity and precision in our
activity labeling, we"ve chosen to exclude such ambiguous annotations from our model training
input.

The sample distributions for training and test datasets are displayed in Table 3.1.
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Table 3.1: NUMBER OF LABELS IN EACH DATASET WITH TRANSLATION APPLIED.

Label Dataset
Selfback Wisdm Gotov Adl_hmp Act_cp Capture24

Lying 1183 0 2433 0 0 680153
Sitting 1163 2108 3612 0 0 161795
Standing 1198 2142 774 0 0 25056
Walk_slow 1188 0 1219 0 0 97327
Walk_mod 2345 2083 2383 0 368 43483
Stairs 1002 2050 117 224 241 104
Jogging 1569 2036 0 0 0 1500
Unknown 0 20708 3657 687 3975 833140



Chapter 4

Data Processing and Features

In this chapter, we will introduce and discuss the pipeline for data preprocessing, transformation,
and feature extraction, which are all vital aspects of activity recognition using the Axivity AX3
accelerometer. The datasets in our study are typically divided into separate files by participants.
Our pipeline leverages Dask library to efficiently manage the loading and processing of these files
from various training datasets into corresponding partitions or blocks, allowing for concurrent
preprocessing while efficiently managing memory usage.

To ensure that concurrent processing does not exhaust the available RAM, we utilize Dask
Delayed. This feature allows us to build a task graph that represents the entire computation,
enabling Dask to execute the tasks in a well-ordered manner that optimizes the memory usage.
As a result, our pipeline can efficiently process large volumes of data without overwhelming the
system resources.

The processing of the datasets comprises a series of preprocessing steps and transformations.
As illustrated in Figure 1.1, data are initially resampled to a uniform frequency, subsequently
undergoing transformations to emulate various sensor orientations and conditions. Following
these transformations, additional preprocessing techniques—including data range reduction and
resolution alignment—are implemented to further refine the data.

Following the processing stage, partitions of the Dask dataframe are stored as parquet files,
serving as the basis for feature extraction. Feature extraction operations are executed concurrently
on these parquet files, with results subsequently stored within expandable HDF5 files. In line with
the methodology employed by Yuan et al. (2022), we utilize a window length of 10 seconds and a
hop length of 5 seconds for feature extraction in this project. The features extracted include raw
data, time-domain features and frequency-domain features, along with additional features such
as distance matrices. A more detailed discussion of these features can be found in Section 4.3.

Upon completion of the feature extraction process, the output (X,Y ) is prepared for training.
The input matrix X has a shape of (N, 3,number of features), where 3 is the number of axes and
N represents the number of windows, or training samples. The output matrix Y has a shape of
(N, 3), which comprises original annotation, group, and label, as introduced in Section 3.2.2.

By applying these preprocessing, transformations, and feature extraction techniques, our pipeline
effectively addresses the complexities and challenges associated with processing wrist-worn ac-
celerometer data, thus laying a solid foundation for subsequent HAR tasks. Detailed descriptions
and evaluations of these techniques, including their impact on model performance, will be pro-
vided in the subsequent chapters and sections.
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4.1 Data Preprocessing
The preprocessing stage is an essential part of any data-driven project. In this section, we discuss
the preprocessing techniques applied to the raw accelerometer data to prepare it for the subse-
quent stages of the pipeline. The primary preprocessing techniques used in this project are data
loading, annotation translation, resampling, and range reduction. Note that transformation is
also an important preprocessing technique employed in this project, but as a kind of data aug-
mentation, it will be discussed in Section 4.2.

4.1.1 Data Loading
The initial step in the preprocessing pipeline is data loading and annotation translation. Loading
the raw accelerometer data involves reading one or more CSV files and converting them into a
Dask dataframe for efficient processing. Annotation translation ensures that the activity labels
from multiple datasets are consistent, enabling their use in training and evaluation of the activity
recognition models.

The raw accelerometer data in this project is typically stored in CSV files. We load them into a
Dask dataframe using the read_csv function. The raw data typically contains several columns,
such as timestamp, x, y, z, annotation, and participant. However, some columns may not be
necessary for further processing, so we only preserve the relevant columns. After loading the
data into a Dask dataframe, we map the annotation to group and label, and convert the unit of
the accelerometer data to the gravity acceleration g if it is not already in that unit. Furthermore,
to distinguish the records from various sources, we encode the name of the dataset and the path
to the CSV file using UUID version 7 and store this information in the dataframe as well.

4.1.2 Resampling
Resampling is a critical preprocessing step in accelerometer-based activity recognition, as various
datasets may have diverse sampling rates. A consistent sampling rate across all datasets is essen-
tial for accurate feature extraction, comparison, and model training in the subsequent stages of
the pipeline. In this project, we opt to resample the data from all three axes to 20 Hz using the
librosa.resample function.

The choice of 20 Hz as the target sampling rate is based on the observation that human ac-
tivities typically have frequencies below 10 Hz (Mannini and Sabatini, 2010). According to the
Nyquist-Shannon sampling theorem, the sampling rate should be at least twice the highest fre-
quency component in the signal to avoid aliasing artifacts (Shannon, 1949). Therefore, a sampling
rate of 20 Hz is sufficient to capture the majority of the frequency content present in human activ-
ity data while minimizing the computational burden.

The resampling process can be performed using various methods, each with its trade-offs
between computational efficiency and the preservation of the original signal’s characteristics. In
this project, we use the soxr_hq (high-quality) method from the SoX Resampler library for band-
limited sinc interpolation. This method was chosen for its ability to provide high-quality resam-
pling while maintaining a reasonable level of computational efficiency. The soxr_hq method
utilizes the sinc function, which is an ideal interpolation function in the frequency domain, to
reconstruct the signal at the desired sampling rate (Smith, 2011). The band-limited aspect of the
method ensures that the resampled signal does not introduce any unwanted frequency compo-
nents that may distort the original signal’s characteristics.
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4.1.3 Range Reduction
Human daily activities typically yield accelerations within the range of −2g to 2g (Liu et al., 2009).
As such, data points falling outside of this range may be interpreted as outliers representing
activities conducted with either temporary or sustained extreme intensity. In a bid to mitigate
overfitting and enhance the generalizability of our model, we impose a clipping mechanism to
confine the data from all three axes within this specified range.

4.1.4 Data Resolution Alignment
Quantization error may influence model accuracy, particularly when the model incorporates mul-
tiple accelerometers with varied resolutions (Yoo et al., 2023). One potential strategy to attenu-
ate this quantization error is to construct a linear space between predetermined minimum and
maximum values, and subsequently map the data onto this space. However, this method can im-
pose significant computational burdens, particularly with expansive datasets. A similar challenge
arises in relation to the resolution refinement method proposed by Yoo et al. (2023).

In the context of this project, we have elected for a simpler and more computationally effi-
cient approach, rounding the data to the nearest thousandth decimal place, to achieve resolution
uniformity across data. We anticipate that minor variations within accelerometer data will likely
have negligible effects on overall activity recognition. This method, by virtue of its enhanced
speed compared to alternative approaches, is well suited to processing large datasets in a compu-
tationally efficient manner.

4.2 Transformation
In this section, we detail the distinct transformations applied to the preprocessed accelerometer
data, which are designed to emulate different sensor positions and conditions. Such transfor-
mations serve a crucial role in evaluating the generalizability of our models to new datasets and
diverse scenarios. Our methodology encompasses four principal types of transformations: swap-
ping axes, reverting axes, amplitude perturbation, and rotation perturbation. Each transforma-
tion is executed on a window-by-window basis to guarantee consistent application across an en-
tire window. Although our pipeline is designed to accommodate combined transformations, we
have elected to perform these transformations separately due to computational resource limita-
tions. Regardless of the specific transformation employed, it should be noted that untransformed
data is always incorporated into downstream tasks.

Swapping Axes
Swapping the x and y axes involves interchanging the x and y values of each data point in the
accelerometer readings. Mathematically, this transformation is represented as (4.1).

(x, y, z) → (y, x, z) (4.1)

This transformation allows our model to adapt to varying accelerometer orientations, a vari-
ability arising from differing sensor designs encountered in real-world usage. While there is no
standardized positioning of the x and y axes due to the diverse range of wrist-worn accelerome-
ter designs and potential variations in how users wear the device, the z-axis is typically oriented
wrist-outwards to ensure a consistent measurement of vertical acceleration (Yuan et al., 2022).
Consequently, we excluded the z-axis from this transformation, focusing on the x and y axes to
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account for potential inconsistencies in their positioning. In this way, the model becomes more
robust to variations in sensor position (Qureshi and Golnaraghi, 2017).

Reverting Axes
Reverting the axes consists of multiplying the x, y, and z values by −1, with all possible combi-
nations of the axes being considered. This results in a total of 8 different possibilities, which can
be mathematically represented as (4.2).

(x, y, z) → (±x,±y,±z) (4.2)

Reverting the axes simulates changes in the sensor’s orientation that may occur because of
different wrist movements, mounting positions, or sensor specifications (Jain and Kanhangad,
2015).

Amplitude Perturbation
Amplitude perturbation is inspired by the concept of data augmentation, which is widely em-
ployed in various fields, including speech recognition (Qin et al., 2019). The objective of this
method is to introduce minor variations into the data, thereby enhancing the model’s robustness
to real-world signal fluctuations. Such fluctuations might be induced by factors such as sensor
calibration discrepancies, changes in battery status, or external interferences. In this project, we
apply this idea to accelerometer data by multiplying the data by a random factor k sampled from
a Gaussian distribution N (1, 0.1). Mathematically, this can be represented as (4.3).

(x, y, z) → (kx, ky, kz) (4.3)

Rotation Perturbation
To enhance the model’s robustness against variations in sensor rotation, rotation perturbation is
often utilized as a data transformation technique in the field of HAR (Heng et al., 2016; Tang et al.,
2020). Essentially, rotation perturbation involves rotating the accelerometer vector by a random
angle in the range of 1 to 5 degrees, while the magnitude remains constant. Given an original
vector v = (x, y, z), the rotated vector v′ can be calculated using a rotation matrix R, as indicated
in (4.4).

v′ = Rv (4.4)

The rotation matrix R can be generated using any axis of rotation and a random angle θ sam-
pled from the uniform distribution between 1 and 5 degrees. This transformation aims to improve
the model’s robustness to slight variations in sensor orientation that may occur during everyday
activities.

4.3 Feature Extraction

4.3.1 Description of Features
In this project, we extract a variety of features from the raw accelerometer data to provide a com-
prehensive representation of the underlying activities. These features, calculated on each window



4.3 Feature Extraction 13

basis, are extracted from the raw data using various methods. Some features extract combined
features from each axis, resulting a size of 1 in the first dimension. To enable concatenation and
storage of the features together, the first dimension of all features (except the distance matrix) is
padded to a size of 3.

Time-domain Features

Statistical features capture the basic properties of the accelerometer data and provide insights into
the overall activity patterns.

• Magnitude of windows (padded) [3 × 200]: The magnitude of each window is computed
as the Euclidean norm for each sample within the window.

• Distance matrix of magnitude [200 × 200]: A distance matrix of magnitude D contains the
distance between each pair of points. It’s calculated as (4.5), where xi, xj are the magnitudes
of each data points in a window (Noori et al., 2020a). This feature is only used in one of the
CNN benchmark models with shape of 200 × 200. Therefore, we calculate it separately for
training this benchmark model.

Di,j = ∥xi − xj∥ (4.5)

• Filtered accelerometer data of windows [3 × 200]: The filtered accelerometer data of each
window is computed after applying a low-pass, a high-pass, and a band-pass filter to the
magnitude with Butterworth filters. The butterworth filters are implemented using the
scipy.signal.butter function from the SciPy library (Virtanen et al., 2020). The filtered
data was then obtained using the scipy.signal.sosfiltfilt function. The cut-off fre-
quencies for the axis filters were set to 30% and 70% of the Nyquist frequency, correspond-
ing to 3 Hz and 7 Hz, respectively, given the sampling rate of 20 Hz. The selection of these
frequencies was determined through experimentation. To better understand the filter’s fre-
quency components, examples of the Butterworth filters used in our model is provided in
the Appendix A.4.

• Filtered magnitude of windows (padded) [3×200]: The filtered magnitude of each window
is computed after applying a low-pass, a high-pass, and a band-pass filter to the magnitude
with Butterworth filters. Unlike the magnitude filter, the cut-off frequencies for filters are
determined through experimentation with various combinations of frequencies. The cut-off
frequencies of the filters for magnitude are set to 20% and 50% of the Nyquist frequency,
resulting in cut-off frequencies of 2 Hz and 5 Hz, respectively, given the sampling rate of 20
Hz.

• Minimum, maximum, and average amplitude of windows per axis [3 × 3]: For each win-
dow, we calculate the minimum, maximum, and average amplitude for each axis, providing
a sense of the range and central tendency of the accelerometer readings.

• Standard deviation of amplitude of windows per axis [3 × 1]: The standard deviation of
the amplitude for each axis within a window is computed, which captures the variability of
the accelerometer readings.

• Average resultant acceleration (ARA) (padded) [3 × 1]: The ARA is the average of the
square root of the sum of the squares of the x, y, and z axis values. It provides a measure of
the overall acceleration magnitude within a window. It’s calculated as (4.6), where N is the



14 Chapter 4. Data Processing and Features

number of samples within the window, and xi, yi, and zi are the accelerometer readings for
each axis at sample i (Weiss et al., 2019).

ARA =
1

N

N∑
i=1

√
x2
i + y2i + z2i (4.6)

• Binned distribution and histogram per axis [3 × 20]: The distribution of the magnitude
of the windows and the individual axis values are divided into N equal-sized bins (with
nbins = 20) for each axis. The number of samples falling into each bin is counted to create a
distribution. This captures the overall distribution and frequency of the signal amplitudes
(Weiss et al., 2019).

• Time between peaks [3 × 1]: The time between the first two peaks of the acceleration sig-
nal is calculated. This feature provides insight into the periodicity and regularity of the
activities being performed (Weiss et al., 2019).

Frequency-domain Features

Spectral features are derived from the frequency domain representation of the accelerometer data,
providing insights into the frequency content and energy distribution of the activities.

• Mel-frequency cepstral coefficients (MFCCs) [3 × 13]: Mel-frequency cepstral coefficients
(MFCCs) are widely used in the field of audio processing and speech recognition due to their
ability to mimic the human auditory system’s nonlinear perception of pitch and frequency.
More recently, MFCCs are utilized in Human Activity Recognition (HAR) as they offer a
compact representation of the power spectrum of a signal, capturing temporal patterns in
sensor data effectively (Cruciani et al., 2020; Ramanujam et al., 2021). Computation involves
dividing the signal into small frames, calculating the power spectrum of each frame via a
Fast Fourier Transform (FFT), mapping frequencies onto the Mel scale, taking logarithm
of powers at each Mel frequency, and applying a Discrete Cosine Transform (DCT). This
project uses a set of 13 MFCCs for each time frame as a feature.

• Spectral centroid [3 × 1]: The spectral centroid represents the center of mass of the power
spectrum and can be considered as a measure of the "brightness" of a signal (Klapuri and
Davy, 2006). For accelerometer data, it provides an indication of the dominant frequency
content of the activities.

• Spectral bandwidth [3 × 1]: The spectral bandwidth represents the spread of the power
spectrum around the spectral centroid. It provides information about the spectral shape
and the range of frequency components present in the signal (Klapuri and Davy, 2006). In
the context of accelerometer data, it can help distinguish activities with different frequency
patterns.

The features described above provide a comprehensive representation of the accelerometer
data, capturing various aspects of the underlying patterns and structures present in the signal.
The time domain features capture intensity, range information, and statistical measures of signal
amplitude, while also considering the filtered frequency components. On the other hand, the
frequency domain features capture the distribution of activity frequencies. By combining features
from both domains, we achieve an effective characterization of activity patterns across the time
and frequency dimensions.
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4.3.2 Feature Extraction Pipeline
The feature extraction pipeline is a crucial part of the human activity recognition process, as it
transforms the raw accelerometer data into a more informative and compact representation that
can be effectively utilized by machine learning models. In this project, we have designed a highly
efficient and scalable pipeline for extracting a wide range of statistical and spectral features using
the Dask parallel computing library. This section provides a detailed description of the feature ex-
traction pipeline, highlighting its key components and the strategies employed to ensure optimal
performance.

Data Partitioning and Storage

The first step in the feature extraction pipeline involves reading the preprocessed accelerometer
data from parquet files. To facilitate efficient data processing and avoid out-of-memory issues, the
data is partitioned by participants and split into four-hour intervals. This partitioning strategy
enables the pipeline to process large volumes of data by loading only a small portion of the data
into memory at a time, thereby reducing the overall memory footprint.

The extracted features are then saved to an extendable HDF5 container, partition by partition.
The HDF5 format is a high-performance, flexible, and portable binary data format that supports
efficient I/O operations and can store large, complex, and heterogenous datasets with ease. By
adopting the HDF5 format, we ensure that the feature extraction pipeline can scale effectively to
handle large-scale human activity recognition tasks, while also facilitating seamless interoperabil-
ity with other data processing tools and machine learning frameworks.

Dask Delayed Interface

To further enhance the efficiency and scalability of the feature extraction pipeline, we leverage the
dask.delayed interface, which allows us to create task graphs directly with a light annotation
of normal Python code without triggering the computation immediately. The dask.delayed in-
terface provides a simple and flexible way to build and execute complex, multi-stage computation
pipelines with minimal overhead and maximal parallelism.

In our pipeline, we use the dask.delayed interface to define the feature extraction tasks,
including the computation of various statistical and spectral features from the raw accelerometer
data. By encapsulating these tasks as delayed objects, we can build a task graph that represents
the entire computation pipeline, from data loading to feature extraction and storage, without
actually executing any computation. This approach allows us to reason about and optimize the
pipeline more effectively, as well as to schedule the tasks for parallel execution using Dask’s
advanced scheduling capabilities.

Dask Distributed Interface

Once the task graph has been constructed using the dask.delayed interface, the next step is to
execute the tasks in parallel using the dask.distributed interface. The dask.distributed
interface is a powerful and flexible system for parallel and distributed computing with Dask, pro-
viding a range of advanced features such as dynamic task scheduling, data locality, and fault tol-
erance. By leveraging the dask.distributed interface, we can efficiently parallelize the feature
extraction pipeline across multiple CPU cores or even distributed clusters, thereby significantly
reducing the overall processing time and improving the scalability of the pipeline.

In our implementation, we use the dask.distributed interface to schedule and execute
the tasks defined in the task graph, ensuring that the tasks are distributed evenly across the avail-
able computational resources and executed concurrently whenever possible. This parallelization
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strategy enables the pipeline to process large volumes of data more quickly and efficiently, while
also providing a high degree of fault tolerance and resiliency in the face of hardware or software
failures.



Chapter 5

Model: Hierarchical ML

This chapter delves into the hierarchical ML models developed for our study. One motivation for
investigating hierarchical ML models is the work of Leutheuser et al. (2013), which demonstrates
that a hierarchical ML system for HAR can outperform a non-hierarchical ML system (called "flat"
models). By categorizing activities based on their intensities and organizing them into activity
groups, the authors were able to create a more effective classification system. Inspired by this
approach, we aim to build a similar ML training pipeline for our study.

Drawing inspiration from the related works of Leutheuser et al. (2013), Piczak (2015), and
Weiss et al. (2019), we employ the following features introduced in Section 4.3 in this chapter:

• Minimum, maximum, and average amplitude of windows per axis
• Standard deviation of amplitude of windows per axis
• ARA
• Binned distribution per axis
• Time between peaks
• MFCCs
• Spectral centroid
• Spectral bandwidth

To expedite the training and prediction processes and ensure timely generation of results,
we employ CUDA-accelerated implementations for the models in this chapter through the cuML
library.

To evaluate the performance of the implemented models on our dataset, we utilize precision,
recall, and F1 score metrics per class in a one-vs-rest (OvR) manner. This evaluation provides a
detailed understanding of the model performance for each activity. Additionally, we calculate
the macro-average F1 scores (macro-F1) and Matthews correlation coefficient (MCC) to provide a
single-value metric for overall model performance.

This chapter presents the performance evaluations of flat ML model, followed by an in-depth
discussion on the hierarchical ML model, which includes its structure, methodology, and results.
Finally, we will highlight the key outcomes of our experiments and discuss possible avenues for
improvement.

5.1 Baselines
This section seeks to evaluate the performance of two commonly implemented machine learning
models, Support Vector Machine (SVM) and Random Forest (RF), in the context of HAR using
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Table 5.1: PARAMETERS USED IN ML HYPERPARAMETER TUNING.

Model Parameters Candidate(s) Description

SVM

C 0.1, 1.0,
10, 100

The regularization strength is inversely propor-
tional to C.

penalty l2 This refers to the norm used in penalization. In this
study, we only consider the L2 regularizer.

loss hinge,
squared_hinge

Specifies the cost function to be minimized dur-
ing optimization. We use hinge loss ("hinge") and
squared hinge loss ("squared_hinge").

max_iter 5000 The maximum number of iterations to be run.

RF
n_estimators 100, 300, 500 The number of trees in the forest.
max_depth 16, 32, 64 The maximum depth of the tree.

max_features 1.0, sqrt

Determines the number of features to consider
when deciding on the best split. A value of 1.0 con-
siders all features; "sqrt" considers the square root
of the total number of features.

sensor data. The selection of these models is underpinned by their robust performance in a range
of classification problems, including HAR, as shown in previous studies (Bao and Intille, 2004;
Gjoreski et al., 2011). Subsequently, we will explore the potential of enhancing model performance
by implementing an ensemble model using a soft voting mechanism (Kittler et al., 1998). In this
approach, the probabilities for each class produced by the constituent models are averaged to
ascertain the final predicted class.

SVMs are a class of supervised learning models originally designed for binary classifica-
tion problems. However, they can be extended to handle multi-class classification tasks by em-
ploying techniques like one-vs-one (OvO) or one-vs-rest (OvR) approaches (Cortes and Vapnik,
1995). SVMs have been extensively used in HAR tasks because of their ability to handle high-
dimensional data and their robustness against overfitting (Garcia-Gonzalez et al., 2020). Although
SVMs can effectively model complex decision boundaries by employing different kernel func-
tions, due to the computational resources limitation we have, we only employ linear kernel.

On the other hand, RF is an ensemble learning method that constructs multiple decision trees
and combines their outputs to improve classification performance (Breiman, 2001). RF is known
for its robustness to noise, and resistance to overfitting (Liaw et al., 2002). These characteristics
make RF a popular choice for HAR problems, as demonstrated by numerous studies in the litera-
ture (Kwapisz et al., 2011; Shoaib et al., 2014). Notably, RF is sensitive to class imbalance, an issue
that could influence the model’s performance. Considering the variations in class distributions
across our training and test data (as illustrated in Table 3.1), we balance the classes by randomly
undersampling the training input. This resampling method was chosen due to the computational
resources and time constraints we have in our project.

Both SVM and RF models necessitate the optimization of several hyperparameters. To iden-
tify the optimal hyperparameter values, we employ GridSearchCV from the scikit-learn
library, which conducts hyperparameter tuning over five stratified folds. The range of candidate
values for the hyperparameters under consideration, along with other important parameters, are
detailed in Table 5.1. Following this procedure, the parameter set yielding the highest Matthews
correlation coefficient (MCC) is chosen for the training of the final classifier. For the specific hy-
perparameters selected, please refer to Table A.9a for selected hyperparameters.

The performance of the baseline models and their corresponding soft voting ensemble is illus-
trated in Table 5.2. Each of the models utilizes all five training datasets, along with the transfor-
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Table 5.2: PERFORMANCE OF FLAT ML MODELS. P=Precision, R=Recall, F1=F1-score. The first 8
rows present the performance metrics for each activity individually, while the Macro Avg row represents
the average values of activity-specific scores. The MCC row denotes the overall performance of the model.

Activity SVM RF SoftVoting(SVM, RF)
P R F1 P R F1 P R F1

Lying 0.7774 0.7104 0.7424 0.7525 0.5322 0.6235 0.7886 0.6988 0.7410
Sitting 0.1179 0.4266 0.1848 0.1094 0.5626 0.1831 0.1199 0.4734 0.1913
Standing 0.0386 0.1727 0.0631 0.0432 0.1839 0.0700 0.0419 0.1757 0.0676
Walk_slow 0.2858 0.0276 0.0504 0.3646 0.0319 0.0587 0.3258 0.0232 0.0432
Walk_mod 0.3538 0.4472 0.3951 0.4430 0.4994 0.4695 0.4194 0.4665 0.4417
Stairs 0.0006 0.1827 0.0011 0.0005 0.1442 0.0010 0.0006 0.1635 0.0012
Jogging 0.2554 0.9047 0.3984 0.3287 0.8653 0.4764 0.2835 0.9073 0.4320
Unknown 0.7403 0.3735 0.4965 0.7406 0.2939 0.4208 0.7393 0.3625 0.4865
Macro Avg 0.3212 0.4057 0.2915 0.3478 0.3892 0.2879 0.3399 0.4089 0.3006
MCC 0.3294 0.2639 0.3306

mations detailed in Section 4.2. A review of the scores reveals that SVM generally outperforms RF
in terms of both the macro-F1 score and MCC, whereas the soft voting of the two models outper-
forms each individually. However, performance fluctuates across different activities, and neither
model exhibits consistently robust performance for all activity classes. Possible reasons for this
outcome could be that the individual models in the ensemble have complementary strengths and
weaknesses, which might not necessarily lead to a significant improvement in the overall perfor-
mance. For comparative purposes, the soft voting ensemble, which boasts the highest macro-F1
score and MCC, is selected as the baseline in this chapter.

5.2 Methodology
In this section, we present the hierarchical training process for HAR. This methodology hinges
on training multiple classifiers within a hierarchical structure, thus enabling the classification of
activities at varying levels of granularity. As previously discussed, activities are grouped based
on their intensities, illustrated in Figure 3.1.

Figure 5.1 provides a broad overview of the training procedure, with each classifier embody-
ing the structure depicted in Figure 5.2. Each classifier performs a similar hyperparameters grid
search as detailed in Section 5.1 (the selected hyperparameters can be found in Table A.9). For
the hierarchical training, an initial base-layer model is trained to classify the activity groups. If a
group consists of more than one label, a sub-layer model is subsequently trained to classify the
labels within that particular group. For each group that contains more than one label, a sub-layer
model is trained to classify the labels within that group, respectively. Both the group classifier
and the label classifiers can be composed of a soft voting ensemble model, similar to the approach
used in baseline models.

During the prediction phase, the data is initially processed by the group classifier to predict
the group and its associated probability. If the predicted group contains multiple labels, the data
is subsequently fed into the corresponding label classifier to determine the final activity label and
its probability.

By employing an ensemble of classifiers and adopting a soft voting strategy, our objective is to
enhance the performance of the hierarchical training process. This methodology facilitates a more
comprehensive interpretation of the inherent patterns in the data. It also enables more accurate
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Figure 5.1: OVERVIEW OF THE HIERARCHICAL ML TRAINING STRUCTURE. The process begins with
a base-layer model that classifies the activity groups. For each group containing more than one label, a
sub-layer model is trained to further classify the labels within that group.
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Figure 5.2: CLASSIFIER STRUCTURE USED IN THE HIERARCHICAL TRAINING.

predictions by capitalizing on the unique strengths of different classifiers.

5.3 Results
Table 5.3 demonstrates that the hierarchical training process improves the classification perfor-
mance for "walk_slow," "walk_mod" and "jogging" activities, and has similar performance as flat
ML model for "sitting" activity. However, it has slightly diminished performance on classifying
the "lying" and "unknown" labels based on their OvR F1 scores. Neither model has managed to
classify "stairs" effectively. Interestingly, labels with improved performance are within the "sit-
stand" or "walking" group (refer Figure 3.1), while other activities (except "jogging") exhibit a de-
crease. This suggests potential avenues for further investigation into activity translation, feature
selection, or transformation techniques for the group classifier.

The confusion matrix for the hierarchical ML model, depicted in Figure 5.3, shows that mis-
classifications primarily occur among "lying," "sitting," and "standing" activities, likely due to
feature similarities causing model confusion. "Walk_slow" is mostly misclassified as "unknown,"
possibly due to its less distinct features. The low score and misclassification of "stairs" as "stand-
ing" imply possible feature overlap, ineffective model capture of unique characteristics, or varia-
tions in stair activity execution between training and testing datasets.

The model exhibits high recall but low precision for "jogging," decreasing confidence in re-
sults identified as this activity. As for unseen activities like "bicycling," "driving," "eating," "gym,"
"housework," and "shopping," the majority are correctly classified as "unknown," aligning with
expectations. Most misclassifications for "driving," "eating," "talking," and "working" are as "sit-
ting," likely due to stationary postures or limited movements during these activities. Further
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Table 5.3: PERFORMANCE COMPARISON OF FLAT AND HIERARCHICAL ML MODELS. P=Precision,
R=Recall, F1=F1-score. The first eight rows present the performance metrics for each individual activity.
The Macro Avg row represents the average values of activity-specific scores. We use macro-F1 and MCC
to represent overall performance.

Activity Flat ML Hierarchical ML
P R F1 P R F1

Lying 0.7886 0.6988 0.7410 0.7525 0.5322 0.6235
Sitting 0.1199 0.4734 0.1913 0.1094 0.5626 0.1831
Standing 0.0419 0.1757 0.0676 0.0432 0.1839 0.0700
Walk_slow 0.3258 0.0232 0.0432 0.3646 0.0319 0.0587
Walk_mod 0.4194 0.4665 0.4417 0.4430 0.4994 0.4695
Stairs 0.0006 0.1635 0.0012 0.0005 0.1442 0.0010
Jogging 0.2835 0.9073 0.4320 0.3287 0.8653 0.4764
Unknown 0.7393 0.3625 0.4865 0.7406 0.2939 0.4208
Macro Avg 0.3399 0.4089 0.3006 0.3478 0.3892 0.2879
MCC 0.3306 0.2639

investigation and improvements are, however, required to distinguish these activities more effec-
tively from the "sitting" category.

In conclusion, the results presented in this chapter demonstrate that the hierarchical training
process can improve the classification performance for most of the activities, with some excep-
tions. However, there is still room for improvement, particularly in differentiating between activ-
ity groups and detecting unseen activities. Further investigation on the use of training datasetas
and transformation techniques will be conducted in Section 7.1.
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Figure 5.3: CONFUSION MATRIX FOR HIERARCHICAL ML MODEL. Numbers with a green back-
ground indicate the count of correctly classified samples. "Sum_pred" and "sum_true" represent column
and row summaries, respectively. The green text in "sum_pred" denotes precision, while the green text in
"sum_true" signifies recall.
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Model: Multi-branch CNN

Deep learning has emerged as a promising approach for activity recognition tasks because of
its ability to overcome the limitations of traditional methods. Convolutional Neural Networks
(CNNs) are particularly powerful for this task since they are capable of identifying complex pat-
terns in the data that are difficult to detect using traditional methods (Wang et al., 2019).

In this chapter, we present a comprehensive analysis of our proposed CNN model for activity
recognition using accelerometer data. We begin by benchmarking two existing CNN models and
evaluating their performance on our test dataset in Section 6.1. Next, we introduce our base multi-
branch CNN model structure in Section 6.2.1, which involves incorporating accelerometer data
with Butterworth filters of low-pass, high-pass, and band-pass using parallel CNN branches.
Furthermore, we explore the potential for improving our model’s performance by combining
the predictions of our multi-branch CNN model with features extracted from each window in
Section 6.2.1, which we refer to as the combined CNN. Our results suggest that the proposed
CNN model outperforms the benchmark models on the test dataset, indicating the effectiveness
of our proposed model.

To realize our model, we provide detailed explanations of the model architecture and train-
ing process. The training datasets used in our CNN model include WISDM, Selfback, Gotov,
Adl_hmp, and Act_cp. We use 20% of the training datasets as validation to find the best perfor-
mance, and Capture24 serves as the test dataset to evaluate performance. During the training
process, we utilize the cross-entropy loss function to evaluate model performance. To prevent
overfitting, we implement early stopping with a tolerance of 5 epochs and set the maximum
number of epochs to 100.

6.1 Benchmarks
In order to evaluate the performance of our proposed CNN models, we use two established CNN
models as benchmarks. The first benchmark model(Noori et al., 2020a) utilized accelerometer
data recorded from a smartphone for human activity recognition. In their work, Noori et al. ex-
plored several methods of fusion for multi-representations of data from sensors. They generated
multiple representations of sensor data and fused them using Deep Convolutional Neural Net-
works (CNNs) to achieve a great performance for the Context-Awareness via Wrist-Worn Motion
Sensors (HANDY) dataset and the Wireless Sensor Data Mining (WISDM version 1.1) dataset,
respectively.

The second benchmark model was trained on datasets that included accelerometer, gyroscope,
and optionally magnetometer data(Kalouris et al., 2019). Their work focused on activity classifi-
cation for older people, who are often difficult to obtain a large number of labeled samples from.
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Figure 6.1: THE DATA-LEVEL FUSION STRUCTURE OF THE CNN MODEL IN BENCHMARK 1.

They implemented three different CNN architectures and incorporated Bayesian optimization for
efficient hyper-parameter tuning.

To evaluate the performance of our proposed models, we compare them to the two established
CNN models in the papers mentioned above and served as benchmarks. However, to ensure
comparability with our datasets, we make some adjustments to the benchmark models. Firstly,
we use our own datasets, which consist of accelerometer data collected from wrist-worn wearable
devices, unlike the benchmark models that used data from smartphones and multiple sensors.
Additionally, we adjusted the input shape of models to recognize the activities that were present
in our datasets, which may differ from those in the benchmark models.

Benchmark 1

Compared to the smart-watch data used in our project from the WISDM dataset, Noori et al.
(2020a) collected data from a smartphone-based accelerometer by instructing participants to carry
the phone in their pocket. They sampled the accelerometer with 5-second windows (i.e., 100 data
points with a sample rate of 20 Hz) with 25% overlapping.

The authors experimented with two different representations of accelerometer data: a distance
matrix and x, y, and z images. These representations were used in fusion at the input level. The
distance matrix representation involved calculating the pairwise Euclidean distances between
the magnitudes of accelerometer samples, resulting in a 100 × 100 matrix. The x, y, and z image
representation is the raw accelerometer data from each axis with a shape of 3×100. After stacking
the distance matrix and x, y, z images into shape of 100 × 10 × 10 and 3 × 10 × 10 respectively
to maintain a consistent depth, both representations were stacked, and a new representation was
extracted, i.e., 103 × 10 × 10 as input of the model as shown in Figure 6.1.

The CNN architecture utilized in their study included four convolutional layers, two max-
pooling layers, and two dropout layers (with p = 0.25). The first two convolutional layers had
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Figure 6.2: THE STRUCTURE OF THE CNN MODEL IN BENCHMARK 1.

16 kernels each, while the last two had 32 kernels each. Each convolutional layer used a kernel
of size 3 and a stride size of 1, and ReLU activation was applied to both convolutional and fully
connected layers. After passing through the convolutional and max-pooling layers(with max
pooling size of 2), the data was flattened and fed into a fully connected layer with 512 units and
dropout (p = 0.50). Finally, a classification layer with 10 units, corresponding to the ten activities,
and a softmax activation function were used for the final classification.

In our project, the data is segmented into 10-second intervals with a sampling rate of 20 Hz,
resulting in 200 data points for each input. To adapt the CNN model structure to our datasets,
the representations are calculated as a matrix of dimensions 200 × 20 × 10 and 3 × 20 × 10, and
concatenated to form an input of shape 203× 20× 10. To achieve stable performance with given
structure and hyper-parameters, we randomly select five combinations of batch size and learning
rate. Among the different combinations, the batch size of 64 and learning rate of 0.0001 yield
the lowest validation loss. The model with optimal hyper-parameters is selected to evaluate the
performance of the CNN model on test dataset.

Upon reaching the optimal model, the training process of first benchmark model complete 50
epochs. The training loss achieved is 1.595 and the validation loss obtained is 1.624, where there’s
no evidence of overfitting.

As shown in Table 6.1, despite the high accuracy of the performance in their dataset, the model
achieved an MCC score of 0.1707 on the test set of Capture 24. The results of the benchmark model
1 reveal that the performance of the model is quite low. The model’s F1-scores for activities such
as jogging, stairs, and standing are close to zero, indicating that the model is unable to distin-
guish these activities accurately. The model’s performance is relatively better for activities such
as lying, unknown, and walking_mod, with F1-scores of 0.5827, 0.2380, and 0.3081, respectively.
The weighted average F1-score of the model is only 0.1962, which indicates that the model is not
performing well across all activities.

Benchmark 2

Kalouris et al. (2019) utilized three distinct CNN architectures trained on data from elderly indi-
viduals that included accelerometer, gyroscope, and magnetometer data. While CNN2 and CNN3
operate on 2D convolutional layers, utilizing multiple sensing modalities by stacking N sensors
(accelerometer, gyroscope, and optionally magnetometer), our project only considers accelerome-
ter data. Therefore, we have chosen to apply the CNN1 architecture with 1D convolutional layers
as a benchmark.

In their project, the authors used a time window of 68 time points with 50% overlap, corre-
sponding to a total window duration of 2.72 seconds. The data was collected from three tri-axial
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Figure 6.3: THE STRUCTURE OF THE CNN MODEL IN BENCHMARK 2.

sensors, resulting in an input size of 9×68. Figure 6.3 in their work depicts the CNN1 architecture.
The CNN architecture used in their study consists of three convolutional layers, two max-

pooling layers, and one dropout layer. The first convolutional layer has 65 kernels, while the
second convolutional layer has 100 kernels and the third convolutional layer has 45 kernels. The
kernel size for the first and second convolutional layers is 5, while the kernel size for the third
convolutional layer is 3. A stride size of 1 is used for all convolutional layers, and batch nor-
malization and ReLU activation are applied after each convolutional layer. The first max-pooling
layer reduces the spatial dimensions by a factor of 2 using a max-pooling size of 2, while the
second max-pooling layer has a max-pooling size of 4. After passing through the convolutional
and max-pooling layers, the data is flattened and fed into a fully connected layer with 583 units
and dropout (with a dropout rate of 0.6). Finally, a classification layer with 5 output channels is
used for the final classification. We adjust the input size(3 × 200) and output channels(8 classes)
of benchmark 2 model to our dataset, using the same hyper-parameter tuning method employed
for benchmark 1 model. This is done to obtain a reliable performance evaluation on our datasets.

The results are shown in Table 6.1, which reports the F1-score for each class, as well as the
MCC and macro-averaged F1-score. The results show that the model performs well for some ac-
tivities, such as lying, walk_mod and unknown, achieving F1-scores of 0.5051, 0.3810 and 0.3489,
respectively. However, the model performs poorly for other activities, such as stairs and stand-
ing, achieving F1-scores of 0.0007 and 0.0468, respectively. The overall MCC score of the model is
0.1725, indicating that it is also not very effective at correctly classifying the activities. In conclu-
sion, the benchmark model presented in Kalouris et al. (2019) achieved a moderate performance
in recognizing activities using accelerometer data and the benchmark 2 model exhibits a slightly
better performance than the benchmark 1 model. Therefore, we use the benchmark 2 model to
compare with our CNN model.

6.2 Multi-Branch CNN Models
In this section, we introduce our base multi-branch CNN model and the combined CNN model,
which aim to accurately recognize activities based on raw accelerometer data, their magnitudes,
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Table 6.1: PERFORMANCE OF CNN BENCHMARK MODELS. P=Precision, R=Recall, F1=F1-score.
The first 8 rows present the performance metrics for each activity individually, while the Macro Avg row
represents the average values of activity-specific scores. The MCC row denotes the overall performance of
the model.

Activity BM1 BM2
P R F1 P R F1

Lying 0.6257 0.5452 0.5827 0.5842 0.4448 0.5051
Sitting 0.1132 0.3007 0.1645 0.1081 0.4674 0.1755
Standing 0.0199 0.2384 0.0367 0.0265 0.2011 0.0468
Walk_slow 0.1628 0.1243 0.1410 0.3126 0.1479 0.2008
Walk_mod 0.2305 0.4646 0.3081 0.4267 0.3442 0.3810
Stairs 0.0002 0.2788 0.0004 0.0004 0.1923 0.0007
Jogging 0.0517 0.9147 0.0979 0.1488 0.8720 0.2542
Unknown 0.6200 0.1473 0.2380 0.6739 0.2354 0.3489
Macro Avg 0.2280 0.3768 0.1962 0.2851 0.3631 0.2391
MCC 0.1707 0.1725

and filtered versions. Incorporating the magnitude of accelerometer data is essential as it pro-
vides a measure of the overall intensity of the movement. As shown in Figure 6.4(a), the base
CNN model consists of eight parallel branches, each processing input from raw acceleration sig-
nals and magnitude. These branches incorporate specific Butterworth filters to extract different
frequency components. Additionally, the trained base multi-branch CNN model is enhanced by
incorporating an additional branch with fully connected layers that incorporates time domain and
frequency domain features as illustrated in Figure 6.4(b). This inclusion aims to further explore
improvement of the model’s performance.

This approach offers several advantages in enhancing the model’s performance. By incorpo-
rating parallel branches, the model is able to capture the distinctive characteristics of each filter
and their individual contributions to the overall performance. This enables the model to learn
and extract features from different frequency ranges independently, leading to a more robust and
accurate activity recognition model. Furthermore, the integration of time domain and frequency
domain features based on the predictions of the base multi-branch CNN model enhances the pre-
cision of the model’s predictions. By combining these complementary features, the model gains a
more comprehensive understanding of the underlying patterns and dynamics in the data, result-
ing in improved prediction accuracy.

In the following sections, we describe the details of our model architectures, the training pro-
cess, and the experimental results, followed by an analysis of the results.
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(a) Base multi-branch CNN Structure (b) Combine CNN model structure

Figure 6.4: CNN STRUCTURE. This figure including the structure of the base multi-branch CNN model
used in this project (a) and how it combines features of each time window in combined CNN model (b)

.

6.2.1 Model Structure
As illustrated in Section 4.3, we utilize a sliding window technique to extract overlapping time
windows of 10 seconds with a 5-second overlap, resulting in each time window having a size of
3 × 200 for raw accelerometer data. The magnitude data and the filtered magnitude data have a
shape of 1 × 200. Since we use the same convolutional structure for each branch, the magnitude
and filtered magnitude data are padded to the same shape as the raw accelerometer data. This
ensures that each branch of the model has the same input size of 3× 200.

Base Multi-Branch CNN model

As depicted in Figure 6.4(a), our base multi-branch CNN model is designed with a specific ar-
chitecture that consists of eight parallel branches (2 + 2 × 3), all sharing the same structure.
Each branch receives inputs from the raw acceleration signals, magnitude data, and data that
has passed through three different Butterworth filters (high pass filter, band pass filter, low pass
filter). The purpose of applying these filters is to extract various frequency components from both
the raw data and the magnitude.

By incorporating multiple branches, our model can capture different aspects of the input data
and leverage the extracted frequency components to enhance its understanding of the underlying
patterns and structures. This parallel architecture allows for parallel processing and facilitates the
model’s ability to learn distinct representations from different branches.

The structure in each branch of our model includes five 1D convolutional layers, two max-
pooling layers. The first two convolutional layers have 16 kernels each, while the second two
have 32 kernels each, and the final layer has 64 kernels. Each convolutional layer uses a kernel
of size 5 and a stride size of 1, and ReLU activation is applied to both convolutional and fully
connected layers. After passing through the convolutional and max-pooling layers with size of
2, the data is flattened. After flattened, each branch is then concatenated together and fed into
a fully connected layer with 512 units and dropout (p = 0.50). Finally, a classification layer with
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eight units, corresponding to the eight activities, and a softmax activation function are used for
the final classification.

Combined CNN model

To further improve the performance of our activity recognition model, we explore the potential of
combining the predictions of our trained base multi-branch CNN model with additional features
extracted from each window, named combined CNN model. In particular, we extract a set of time-
domain features and frequency-domain features (minimum, maximum, average, and standard
deviation amplitude of windows per axis, ARA, binned distribution and histogram per axis, time
between peaks, MFCCs, spectral centroid and spectral bandwidth). We incorporate these features
by passing them through two fully connected layers with ReLU activation and a classification
layer with softmax activation, generating feature representations. These representations are then
concatenated with the output of the trained base multi-branch CNN model and fed into a final
classification layer with softmax activation. This approach allows us to combine the predictions
of the two models, leveraging their different strengths and weights determined during training.
Figure 6.4b illustrates the architecture of the combined CNN model.

6.2.2 Training process
During training, 20% of the training data is set aside as a hold-out set for validation. We use a
randomized search method for hyper-parameter tuning, conducting 10 trials to randomly sample
combinations of hyper-parameters and selecting the best hyper-parameters for final training. The
weights of the best performing model on the validation set are utilized for the final evaluation
on the test set. To streamline the process of training and testing CNN models, we chose to use
PyTorch Lightning, a user-friendly and robust deep learning library.

To address the issue of class imbalance in the training data, we experiment two methods:
under-sampling and assigning class weights in loss function. Under-sampling involved reducing
the number of samples from the majority class, creating a more balanced dataset. On the other
hand, class weights were utilized in the loss function to assign higher weights to the minority
class samples, penalizing the misclassification of minority class samples during training. The
class weights are calculated as (6.1), where nsamples represents the total number of samples, nclasses
represents the total number of classes, and nsamplesi represents the number of samples belonging
to each class i.

nsamples

nclasses × nsamplesi

(6.1)

Both the base multi-branch CNN and combined CNN model are trained using the Adam
optimizer and cross entropy loss function is used to evaluate the model performance. We train
the models for up to 100 epochs, and early stopping of 5 epochs is applied meanwhile.

We first tune the hyper-parameters in the base multi-branch CNN model. Once we obtain
the optimal hyper-parameters, we load the optimal base multi-branch CNN model weights and
combine them with the extra branch of fully connected layers to create the combined CNN model.
The weights of the base multi-branch CNN model are set untrainable when tuning the hyper-
parameters for the combined CNN model.

For the base multi-branch CNN model, the hyper-parameters considered are the learning rate,
kernel size, and number of neurons in the fully connected layer. The search space for the learning
rate includes values of 1e-5, 1e-4, and 1e-3. The kernel size is selected from the options of 3, 4,
and 5. The number of neurons in the fully connected layer is chosen from the values of 64, 128,
256, and 512. After evaluating ten combinations, we find that the model with a kernel size of 5, a
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(a) Loss of the base multi-branch CNN model (b) Loss of the combined CNN model

Figure 6.5: TRAINING AND VALIDATION LOSS OF THE CNN MODELS. This figure shows the training
and validation loss of the base multi-branch CNN model (a) and the combined CNN model (b) during the
training process. The blue line indicates the training loss while the red line indicates the validation loss.

learning rate of 0.0001, and 512 units in the fully connected layer achieves the lowest validation
loss, indicating its superior performance among the considered combinations.

For the combined CNN model, the hyper-parameters considered are the learning rate, number
of neurons in the first and second fully connected layer. The search space for the learning rate
includes values of 1e-5, 1e-4, and 1e-3. The numbers of neurons in the fully connected layers are
chosen from the values of 64, 128, 256, and 512. After evaluating ten combinations, we find that
the model with a learning rate of 0.0001, 256 units in the first fully connected layer and 512 units
in the second fully connected layer achieves the lowest validation loss.

Figure 6.5 demonstrates the convergence of the CNN models during the training process. In
Figure 6.5(a), we observe the training and validation loss of the base multi-branch CNN model.
The figure demonstrates that both the training and validation loss decrease as the model con-
verges. This observation aligns with our implementation of early stopping with a tolerance of 5
epochs, which helps prevent overfitting.

Similarly, in Figure 6.5(b), we present the training and validation loss curves for the combined
CNN model. The graph exhibits a similar pattern, with both the training and validation loss
decreasing as the model converges. The loss of the combined model, built upon the trained base
multi-branch CNN model, quickly reaches a low value and continues to gradually decrease.

6.3 Discussion
In this project, two methods are employed to address the issue of imbalanced training data in
CNN models. The prediction results of the base CNN model and the combined CNN model
using these methods are presented in Table 6.2 and Table 6.3, respectively.

The first approach involves applying random under-sampling to the training data, aiming to
reduce the class imbalance and prevent bias towards the majority class. This technique randomly
removes samples from the majority class, resulting in a more balanced distribution of samples
across all classes. The second approach utilizes the class weights function in the cross-entropy
loss function which assigns higher weights to minority classes, effectively giving them more im-
portance during training. This method aims to explicitly address the class imbalance by adjusting
the loss computation.

The results of the models trained with the weighted loss are presented in Table 6.2. The base
multi-branch CNN model demonstrates better performance on activities such as "walk_mod,"
"jogging," and "unknown," achieving F1 scores of 0.5053, 0.5252, and 0.4750, respectively. How-
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Table 6.2: PERFORMANCE OF CNN MODELS WITH CLASS WEIGHTS IN LOSS FUNCTION.
P=Precision, R=Recall, F1=F1-score. The first 8 rows present the performance metrics for each activity
individually, while the Macro Avg row represents the average values of activity-specific scores. The MCC
row denotes the overall performance of the model.

Activity Base Combined
P R F1 P R F1

Lying 0.5507 0.1714 0.2614 0.5749 0.1652 0.2567
Sitting 0.0927 0.4814 0.1555 0.0930 0.5651 0.1597
Standing 0.0323 0.2623 0.0575 0.0413 0.2041 0.0688
Walk_slow 0.3618 0.0888 0.1427 0.3760 0.0439 0.0786
Walk_mod 0.4955 0.5156 0.5053 0.4919 0.5755 0.5304
Stairs 0.0007 0.2500 0.0015 0.0012 0.2500 0.0023
Jogging 0.3676 0.9200 0.5253 0.3788 0.8727 0.5282
Unknown 0.6506 0.3740 0.4750 0.7436 0.4036 0.5232
Macro Avg 0.3190 0.3829 0.2655 0.3376 0.3850 0.2685
MCC 0.2037 0.1767

ever, it shows relatively lower performance on activities like "standing" and "stairs," with F1 scores
of 0.0575 and 0.0015, respectively.

After incorporating additional features in the combined CNN model, we observe improve-
ments in the performance of most activities, except for "lying" and "walk_slow." This results in
a slight increase in the macro average F1 score from 0.2655 to 0.2685. However, it is noteworthy
that the MCC score in the combined CNN model decreases from 0.2037 to 0.1767.

As shown in Table 6.3, the base multi-branch CNN model trained with sampled data shows
better performance compared to that trained with weighted loss in most activities, especially
"lying," with an F1 score improvement from 0.2614 to 0.6737. However, it performs relatively
worse on "walk_slow," "stairs," and "jogging." The base multi-branch CNN model trained with
balanced data achieves an overall macro average F1 score of 0.3186 and an MCC score of 0.3018.

However, after incorporating the additional features, only activities such as "sitting," "stairs,"
and "jogging" show slight improvements. Other activities experience poorer predictions, resulting
in a worse overall performance.

Hence, the optimal CNN model for our project is the base multi-branch CNN model trained
with balanced data. Our CNN model surpasses both benchmark models in Table 6.1 by achieving
higher performance in all activities except "walk_mod," resulting in a significantly superior over-
all performance. Furthermore, the MCC score of our optimal model is 74.96% higher than that of
the optimal benchmark model, which had a MCC performance of 0.1725.

In conclusion, our CNN analysis highlights several key findings. Firstly, balancing the train-
ing data in our CNN models proves to be a more effective approach compared to assigning class
weights in the loss function. This technique results in improved performance across various ac-
tivities and addresses the issue of class imbalance.

Secondly, the addition of an extra branch with input features does not yield significant im-
provements over our base multi-branch CNN model. While there may be marginal enhancements
in certain activities, the overall impact on performance is limited.

Finally, our CNN model demonstrates significant improvements in the human activity recog-
nition project compared to the optimal benchmark model. It outperforms the benchmarks in most
activities and achieves higher overall performance. Notably, our CNN model achieves a 74.97%
improvement in the MCC score, highlighting its superior performance.

These findings emphasize the importance of data balancing techniques and indicate that fea-
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Table 6.3: PERFORMANCE OF CNN MODELS WITH RANDOM UNDER SAMPLER APPLIED IN TRAIN-
ING DATA. P=Precision, R=Recall, F1=F1-score. The first 8 rows present the performance metrics for each
activity individually, while the Macro Avg row represents the average values of activity-specific scores. The
MCC row denotes the overall performance of the model.

Activity Base Combined
P R F1 P R F1

Lying 0.7368 0.6206 0.6737 0.7389 0.5995 0.6619
Sitting 0.1174 0.4599 0.1870 0.1187 0.4526 0.1880
Standing 0.0398 0.2574 0.0690 0.0353 0.3159 0.0635
Walk_slow 0.3960 0.0838 0.1383 0.3937 0.0780 0.1302
Walk_mod 0.5684 0.5019 0.5331 0.4382 0.5986 0.5060
Stairs 0.0006 0.2212 0.0011 0.0006 0.1923 0.0012
Jogging 0.3138 0.9180 0.4677 0.3407 0.9180 0.4969
Unknown 0.7794 0.3458 0.4791 0.7359 0.2949 0.4210
Macro Avg 0.3690 0.4261 0.3186 0.3503 0.4312 0.3086
MCC 0.3018 0.2767

ture augmentation may not always lead to substantial performance gains. The optimal strategy
for our project involves balancing the training data and utilizing the base multi-branch CNN
model.
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Comparison and Discussion

7.1 Datasets and Transformations
In this section, we aim to assess the informativeness of the training datasets and the effectiveness
of transformation techniques by examining their impact on the performance of our hierarchical
machine learning model as well as CNN models. To this end, we first conduct experiments cov-
ering all transformation techniques and all possible combinations of training datasets on the hier-
archical ML models, then proceed to conduct similar experiments by excluding training datasets
or transformations individually from the inputs in ML or CNN training for a clearer comparison
between the two models.

The results of excluding training datasets are shown in Table 7.1. Observing the results from
ML models in Table 7.1a, we notice that including the Selfback dataset for training increases clas-
sification performance, whereas including the WISDM dataset for training leads to a considerable
decrease in performance except for "walk_mod" activity. The positive contribution from the Self-
back dataset may be attributed to the fact that the data in this dataset were recorded using the
same product, Axivity AX3, as used in Capture24, the test dataset. In contrast, the device used
in the Wisdm dataset is a smartwatch, LG G Watch, which may have different specifications from
the Axivity AX3, resulting in relatively low performance even with transformations applied.

In a bid to investigate whether excluding the WISDM dataset would similarly impact the per-
formance of the flat ML model, we executed an additional experiment, the results of which are
presented in Table 7.1b. Evidently, the F1 scores across most activities exhibit an improvement,
echoing our previous findings. It is, however, noteworthy that this enhancement is not as sub-
stantial as that witnessed in the hierarchical ML model. Additionally, with the WISDM dataset
excluded, our hierarchical ML model outperforms the flat ML model in terms of the classification
performance of the "jogging" activity and the macro-F1 score, despite showing a slight underper-
formance in classifying the "lying" activity and a lower MCC score.

Interestingly, Table 7.1c shows that including the WISDM dataset in our experiments does
not significantly affect the CNN model’s performance. Although removing WISDM data leads to
minor improvements in activities such as "lying," "jogging," and "walk_slow," it also causes a de-
crease in terms of F1 scores on other activities, resulting in a slightly lower overall performance.
Specifically, the MCC value decreases from 0.3018 to 0.2900. Therefore, it is not necessary to ex-
clude the WISDM dataset from the training data for the CNN model. This finding might indicate
that CNN models could generalize our training datasets better than ML models, enabling them
to better adapt to variations in the data.

The results in Table 7.2 demonstrate that most transformations can improve the performance
of both ML and CNN models across the majority of activities. It is important to note that, due to
the computationally intensive training process of the CNN model, we limit the experiment with
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the CNN model to either applying all transformations or none. Notably, for specific activities like
"lying," swapping the x and y axes results in worse performance, possibly because the alteration
in movement direction makes the features for "lying" less distinguishable. For the "walk_slow" ac-
tivity, it is somewhat perplexing to note that the best performance for both ML and CNN models
is achieved without applying any transformations. This observation warrants further investiga-
tion. Moreover, for activities such as "sitting," "standing," and "walk_mod," the application of
amplitude perturbation might cause the intensity of the activities to become too similar to that of
other activities within the same group. This could lead to less distinct features and subsequently
lower performance.

In summary, ML models tend to perform better when the training input shares similar specifi-
cations with the target evaluation data. In contrast, incorporating more diverse datasets in CNN
training yields similar or even better results, potentially indicating the higher generalization abil-
ity of the CNN model. Transformation techniques can generally benefit the performance of both
ML and CNN models. However, it is essential to emphasize that the choice of transformation
techniques should be guided by the specific activities being studied, as their effectiveness may
vary depending on the context.

7.2 ML and CNN Comparison

In this section, we present a detailed comparison between the performance of ML models and
CNN models on the activity recognition task, as shown in Table 7.3. We compare the flat ML,
hierarchical ML, CNN benchmark, and our proposed CNN model, taking into account the F1
scores, macro-F1 score, and MCC.

From the results in Table 7.3, it is evident that the best-performing benchmark CNN model
from the literature, shows a lower overall performance compared to both the flat ML and hi-
erarchical ML models, with lower macro-F1 and MCC scores. From this project, our proposed
CNN model demonstrates a significant improvement over the CNN benchmark model, achiev-
ing higher macro-F1 and MCC scores. This suggests that the modifications we made to the CNN
model have contributed to the enhancement of its performance.

When comparing the hierarchical ML model and our proposed CNN model on a per-activity
basis, it can be observed that the hierarchical ML model achieves higher F1 scores for some of the
activities, such as "sitting," "standing," and "jogging." However, our proposed CNN model sur-
passes the hierarchical ML model in the walking activities such as "walk_slow" and "walk_mod".
It is also worth noting that the CNN model has similar macro-F1 score as our hierarchical ML
model, while the hierarchical ML model has higher MCC score.

Despite the traditional ML models exhibiting better performance across most activities, this
could only exist with Wisdm dataset excluded. The CNN model demonstrates superior general-
izability, which can be particularly useful in real-world scenarios where diverse data sources and
sensor positions are involved. Furthermore, the potential of CNN models for enhanced perfor-
mance increases as more diverse datasets are incorporated, as observed in the earlier comparison
between ML and CNN models with different training datasets.

Based on the results we currently have and our knowledge, we would suggest that the selec-
tion of ML or CNN models for activity recognition should be guided by the specific requirements
of the application, such as the level of generalization needed and the diversity of data sources
involved.
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Table 7.1: EXPERIMENT RESULTS WITH REMOVED TRAINING DATASETS. This table displays the per-
formance of the models when one of the training datasets is removed.

Metric Excluded dataset
N/A Selfback Wisdm Gotov Adl_hmp Act_cp

F1

Lying 0.6235 0.2938 0.7259 0.2479 0.4509 0.4477
Sitting 0.1831 0.1689 0.1968 0.1230 0.1659 0.1690
Standing 0.0700 0.0531 0.0695 0.0451 0.0592 0.0598
Walk_slow 0.0587 0.0457 0.0935 0.0300 0.0605 0.0714
Walk_mod 0.4695 0.5070 0.4466 0.4624 0.5091 0.4901
Stairs 0.0010 0.0017 0.0012 0.0010 0.0017 0.0015
Jogging 0.4764 0.5098 0.5312 0.4734 0.4963 0.4319
Unknown 0.4208 0.5973 0.4739 0.6496 0.5869 0.5435
Macro Avg 0.2879 0.2721 0.3173 0.2541 0.2913 0.2768

MCC 0.2639 0.1898 0.3245 0.1950 0.2354 0.2152
(a) Experiment results for hierarchical ML model

Metric Excluded dataset
N/A Wisdm

F1

Lying 0.7410 0.7423
Sitting 0.1913 0.1913
Standing 0.0676 0.0680
Walk_slow 0.0432 0.0431
Walk_mod 0.4417 0.4417
Stairs 0.0012 0.0011
Jogging 0.4320 0.4449
Unknown 0.4865 0.4879
Macro Avg 0.3006 0.3025

MCC 0.3306 0.3317
(b) Experiment results for flat ML model

Metric Excluded dataset
N/A Wisdm

F1

Lying 0.6737 0.7066
Sitting 0.1870 0.1833
Standing 0.0690 0.0638
Walk_slow 0.1383 0.1508
Walk_mod 0.5331 0.5147
Stairs 0.0011 0.0010
Jogging 0.4677 0.6597
Unknown 0.4791 0.3728
Macro Avg 0.3186 0.3316

MCC 0.3018 0.2900
(c) Experiment results for CNN model
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Table 7.2: EXPERIMENT RESULTS WITH REMOVED TRANSFORMATIONS. This table displays the per-
formance of the models when one of the transformation techniques is removed. Wisdm dataset is excluded
from ML training

Metric Excluded transformation

N/A Swapping
x and y

Reverting
x, y, and z

Amplitude
Perturbation

Rotation
Perturbation All

F1

Lying 0.7259 0.7354 0.7161 0.7171 0.7244 0.7100
Sitting 0.1968 0.1966 0.1843 0.1973 0.1972 0.1839
Standing 0.0695 0.0675 0.0652 0.0713 0.0704 0.0474
Walk_slow 0.0935 0.1011 0.0460 0.1069 0.0998 0.1631
Walk_mod 0.4466 0.4492 0.3796 0.4515 0.4487 0.4139
Stairs 0.0012 0.0011 0.0005 0.0012 0.0012 0.0005
Jogging 0.5312 0.2979 0.4061 0.5290 0.5327 0.1824
Unknown 0.4739 0.4730 0.4677 0.4716 0.4753 0.5420
Macro Avg 0.3173 0.2902 0.2832 0.3182 0.3187 0.2721

MCC 0.3245 0.3283 0.3074 0.3213 0.3251 0.3080
(a) Experiment results for hierarchical ML model

Metric Excluded transformation
N/A All

F1

Lying 0.6737 0.5008
Sitting 0.1870 0.1668
Standing 0.0690 0.0453
Walk_slow 0.1383 0.1731
Walk_mod 0.5331 0.5272
Stairs 0.0011 0.0018
Jogging 0.4677 0.4822
Unknown 0.4791 0.5124
Macro Avg 0.3186 0.3012

MCC 0.3018 0.2216
(b) Experiment results for CNN model

7.3 Discussion and Future Directions
In this report, we have investigated the performance of ML and CNN models for human activ-
ity recognition and explored various training datasets and transformation techniques to enhance
their performance. Besides our work, several avenues for future research and improvement can
be considered.

First, extracting some less-fluctuating features, such as Gabor features or other related frequency-
bound features, could be applied to better distinguish between activities with similar features,
such as "lying," "sitting," and "standing," and to improve the poor performance of "stairs" classifi-
cation.

Second, incorporating more diverse datasets, potentially from a wider range of devices, can
increase the model’s generalization ability and robustness. Although our training datasets were
diverse and representative, they were collected in controlled environments, which may not fully
capture the complexity and variability of real-world situations. By including more diverse and
extensive datasets, the model, especially the CNN model, could better recognize activities across
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Table 7.3: FINAL RESULTS FOR THE ML AND CNN MODELS. This table compares the performance of
the flat ML model, hierarchical ML model, CNN benchmark model, and our proposed CNN model. WISDM
dataset is excluded from training in ML models. The CNN benchmark model represents the best-performing
CNN (benchmark 2) from the literature.

Metric Flat ML Hierarchical ML CNN Benckmark CNN

F1

Lying 0.7423 0.7259 0.5051 0.6737
Sitting 0.1913 0.1968 0.1755 0.1870
Standing 0.0680 0.0695 0.0468 0.0690
Walk_slow 0.0431 0.0935 0.2008 0.1383
Walk_mod 0.4417 0.4466 0.3810 0.5331
Stairs 0.0011 0.0012 0.0007 0.0011
Jogging 0.4449 0.5312 0.2542 0.4677
Unknown 0.4879 0.4739 0.3489 0.4791
Macro Avg 0.3025 0.3173 0.2391 0.3186

MCC 0.3306 0.3245 0.1725 0.3018

different devices and contexts, potentially improving performance for activities like "stairs."
Third, the data augmentation techniques utilized in this study, such as swapping the x and y

axes, could potentially result in ambiguity between analogous activities like "sitting" and "stand-
ing." Furthermore, our application of rotation perturbation was limited to a singular direction,
when an exploration of both directions may yield performance improvements. Future research
should consider exploring alternative data augmentation methodologies that more effectively
maintain the integrity of activity labels. Additionally, gathering more diverse and comprehensive
datasets encompassing a wider variety of sensor modalities could enhance the model’s general-
izability and performance within natural environments.

For the hierarchical ML model, further exploration of other machine learning models or en-
semble techniques could improve classification performance. For instance, employing techniques
like AutoEncoder (Hinton and Salakhutdinov, 2006) to automatically learn a hierarchical repre-
sentation of the data could lead to more meaningful groupings of activities and address the issue
of poor performance for certain activities.

For the CNN model, while our multi-branch CNN architecture was designed to be adaptable
to different sensor modalities and sub-tasks, we only use a single fixed structure for our specific
human activity recognition task. Future work could investigate the benefits of adjusting the ar-
chitecture and hyperparameters of each branch for different sub-tasks or sensor modalities and
explore how to effectively fine-tune the model for optimal performance.

Additionally, although we attempt to address the issue of class imbalance using focal loss,
unfortunately, the results were meaningless. This highlights the need for further exploration into
alternative methods for handling class imbalance. Meanwhile, in an effort to mitigate the effects of
network agnostophobia and enhance the model’s performance, the adoption of Entropic Open-
Set and Objectosphere losses proposed by Dhamija et al. (2018) might prove effective. These
techniques could potentially offer more robust handling of unknown activities and improve the
model’s discrimination capacity.

Finally, the activity translation in our study is largely informed by our knowledge and intu-
ition. However, it is conceivable that there may be room for refinement or alternative perspec-
tives in this area. For instance, the subtleties of certain activities or the interrelationships between
them may be better captured with input from domain experts, such as physiologists or exercise
scientists. Collaborating with such experts could yield more nuanced and precise definitions of
activity classes, leading to more accurate translations and potentially improved classification per-
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formance.
In summary, by addressing these potential areas of improvement and exploring new avenues

for research, we can further enhance the performance of hierarchical ML and CNN models for
human activity recognition and better understand the nuances of these techniques in real-world
applications.



Chapter 8

Conclusion

In this report, we have investigated and compared the impact of datasets and data transforma-
tion techniques, and the performance of ML and CNN models for HAR. Through the analysis of
various training datasets, transformation techniques, and model structures, we have identified
several key insights that can guide future research in HAR.

First, we found that employing a hierarchical training structure enhances the classification
performance in HAR tasks. This approach allows the model to focus on differentiating between
broader categories of activities first and then classify the activities within each category.

Second, utilizing a multiple branches CNN model to capture different frequency components
of data and features proves advantageous. Incorporating an additional branch with fully con-
nected layers for other features did not significantly improve the model’s performance. This sug-
gests that the existing branches already capture sufficient information from the data, rendering
the additional features redundant.

Third, while traditional ML models, such as SVM and RF, demonstrate higher performance in
our experiments, CNNs offer greater generalizability. This finding suggests that CNNs may have
the potential to perform better on new datasets or under more diverse conditions, given their
ability to generalize across different contexts.

Fourth, our results indicate that CNNs hold potential for improved performance as more di-
verse datasets are incorporated. As the model’s training data becomes more representative of
real-world situations, the CNN’s ability to recognize activities across different devices and con-
texts is expected to increase.

Fifth, the choice of transformation techniques should be guided by the specific activities un-
der study. While some transformations improve the overall performance of the models, certain
techniques may negatively affect the classification of specific activities. Therefore, it is essential to
carefully consider the impact of each transformation technique on the activities of interest.

Lastly, the choice of datasets for training should, if possible, be as close as possible to the
target dataset. Our results show that ML models perform better when the training data has sim-
ilar specifications to the target evaluation data. However, incorporating more diverse datasets in
CNN training results in similar or even better performance, further highlighting the generaliza-
tion ability of CNN models.

In conclusion, this report has provided valuable insights into the performance of ML and CNN
models for HAR and the impact of various training datasets and transformation techniques on
their performance. By building on these findings and addressing the potential areas of improve-
ment, future research in HAR can continue to advance our understanding of these techniques and
improve their applicability in real-world settings.





Appendix A

Attachments

A.1 Work distribution

In this project, we purposefully allocated tasks to effectively leverage the unique strengths and
areas of expertise of each group member, aiming to maintain a roughly equal workload distri-
bution. We postulate that such an approach not only cultivates a productive and cooperative
team environment, but also potentially enhances the quality of our collective output. For greater
transparency, Table A.1 delineates the specifics of task allocation, listing the names of members
assigned to each distinct task.

Table A.1: DISTRIBUTION OF PROJECT TASKS AMONG GROUP MEMBERS.

Tasks Study Implementation Writing report
Abstract and introduction N/A N/A He Liu
Dataset and data loader Siqi Bao, He Liu He Liu Siqi Bao

Data Preprocessing He Liu He Liu He Liu
Transformation He Liu He Liu He Liu

Feature Selection Siqi Bao Siqi Bao & He Liu Siqi Bao
Extraction pipeline He Liu He Liu He Liu

Hierarchical ML He Liu He Liu He Liu

CNN Models Siqi Bao Siqi Bao Siqi Bao
Training pipeline He Liu He Liu Siqi Bao

Results, discussion, and conclusion He Liu, Siqi Bao He Liu, Siqi Bao He Liu, Siqi Bao
Others Code documentation N/A N/A He Liu

A.2 Data pipeline

Figure A.1 showcases our data processing pipeline for model training, highlighting the specific
libraries and functions used at each step.
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Figure A.1: DATA PIPELINE WITH DETAILS IN EACH STAGE.
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A.3 Preparation of the Computational Environment
on the ETH Euler Cluster

The present section aims to illustrate the steps involved in the preparation of an environment suit-
able for computational task execution on the ETH Euler cluster. Essential environmental variables
employed in the context of this project are enumerated in Table A.2. Beyond the establishment of
these variables, the preloading of certain Lmod modules, detailed in Table A.3, is a requisite1.

In instances where there is a need for establishing a connection between a compute node and
an external service beyond the ETH network (for instance, tracking model training on WandB), it
becomes necessary to configure a proxy 2.

Upon appropriate establishment of environment variables and preloading of required Lmod
modules, the next progression is the preparation of the Python environment. In the ETH Euler
environment, it is advocated to utilize Python’s native virtual environment (venv) rather than
conda3. The Python package dependencies crucial for the project are listed in Table A.4.

Table A.2: ENVIRONMENTAL VARIABLES USED IN THE PROJECT EXECUTION.

Variable Description

ON_CLUSTER Set to 1 for running on ETH Euler; otherwise set for local
development.

OUTPUT_DIR
Specifies the directory where the prediction results and
trained models are saved. Defaults to the "_output" direc-
tory in the repository root.

DATA_DIR Indicates the directory where the datasets are located. De-
faults to the "data" directory in the repository root.

CACHE_DIR
Defines the directory where preprocessed data and ex-
tracted features are saved and loaded. Defaults to the
"cache" directory in the repository root.

VENV_DIR Points to the location of the Python virtual environment.
Not required for local development.

OMP_NUM_THREADS Determines the number of threads requested. Must be set
before job submission.

WANDB_API_KEY Represents the authentication key for logging metrics on
WandB. Leave unset to disable WandB logging.

1Consult the Euler wiki for additional details about Lmod modules: https://scicomp.ethz.ch/wiki/Euler_
applications_and_libraries

2The following guide provides the necessary steps for proxy setup: https://scicomp.ethz.ch/wiki/
Accessing_the_clusters#Security

3For more details about not using conda on Euler, refer to this page: https://scicomp.ethz.ch/wiki/Conda

https://scicomp.ethz.ch/wiki/Euler_applications_and_libraries
https://scicomp.ethz.ch/wiki/Euler_applications_and_libraries
https://scicomp.ethz.ch/wiki/Accessing_the_clusters#Security
https://scicomp.ethz.ch/wiki/Accessing_the_clusters#Security
https://scicomp.ethz.ch/wiki/Conda
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Table A.3: LMOD MODULES REQUIRED IN THE PROJECT EXECUTION. For proper functioning,
gcc/8.2.0 should always be the first module to be loaded.

Module Version
gcc 8.2.0
python_gpu 3.8.5
cuda 11.8.0
cudnn 8.8.1.3
hdf5 1.10.9
openmpi 4.1.4
libsndfile 1.0.28
curl 7.73.0

Table A.4: PYTHON PACKAGE DEPENDENCIES.

Packages Version Packages Version Packages Version
pyyaml 6.0 seaborn 0.12.2 pytorch-lightning 2.0.1
coloredlogs 15.0.1 librosa 0.10.0 scikit-learn 1.2.2
kaggle 1.5.13 dask 2023.1.1 imbalanced-learn 0.10.1
uuid6 2022.10.15 dask-ml 2023.3.24 fastparquet 2023.2.0
shortuuid 1.0.11 numpy 1.23.5 pyarrow 10.0.1
wandb 0.15.2 pandas 1.5.3 h5py 3.8.0
torch 2.0.0 scipy 1.10.1 bokeh 2.4.3
kornia 0.6.11 bottleneck 1.3.7 python-snappy 0.6.1

A.4 Butterworth filters
This section illustrates "filtered accelerometer date of windows" and "filtered magnitude of win-
dows" features for a "jogging" activity using Butterworth filters, serving as an appendix to Section
4.3. Figure A.3 and Figure A.2 depict the raw data components along each axis, as well as the
magnitude.

(a) Low frequency component of
magnitude

(b) Middle frequency component of
magnitude

(c) High frequency component of
magnitude

Figure A.2: FILTERED MAGNITUDE WITH AN EXAMPLE OF JOGGING. This figure includes the three
frequency parts of magnitude of accelerometer data in each axis filtered by Bandwidth filters. The cut points
for low pass filter is 2Hz (a), (2Hz, 5Hz) for band-pass filter (b), 5Hz for high pass filter (c).
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(a) Low frequency component of
raw data in axis 0

(b) Middle frequency component of
raw data in axis 0

(c) High frequency component of
raw data in axis 0

(d) Low frequency component of
raw data in axis 1

(e) Middle frequency component of
raw data in axis 1

(f) High frequency component of
raw data in axis 1

(g) Low frequency component of
raw data in axis 2

(h) Middle frequency component of
raw data in axis 2

(i) High frequency component of
raw data in axis 2

Figure A.3: FILTERED DATA WITH AN EXAMPLE OF JOGGING. This figure includes the three frequency
parts of accelerometer data in each axis filtered by Bandwidth filters. The cut points for low pass filter is
3Hz (a), (3Hz, 7Hz) for band-pass filter (b), 7Hz for high pass filter (c).

A.5 Label Translation
We standardized the activity labels across different datasets by assigning them to uniform labels.
The label translations for the five training datasets are presented in two separate tables, namely
Table A.5 and Table A.6, due to page limitations. The label transformation details for the test
dataset, Capture 24, are provided in Table A.7 and Table A.8.

A.6 Hierarchical ML parameters
This section outlines the optimal hyperparameters for the flat and hierarchical ML models utilized
within this project (as shown in Table A.9). The candidate hyperparameters considered for tuning
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are detailed in Table 5.1, with the optimal values listed in this section being the results derived
from the best_params_ attribute of the GridSearchCV function from the scikit-learn li-
brary. The output represents the hyperparameter combination that yielded the highest MCC score
during cross-validation.
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Table A.5: LABEL TRANSLATION FOR TRAINING AND TEST DATASETS. The tables present the trans-
lation from the original annotations to the new labels and groups adopted in our project. Annotation
represents the activities performed in the data, while annotation_id stands for the corresponding unique ID
of the annotation. Label denotes the raw labels used in the datasets. Label-group and label-use indicate the
groups and labels utilized in our project. "-" indicates the activities excluded from training.

annotation annotation_id label label-group label-use
brush_teeth adl_hmp-1 brush_teeth unknown unknown
climb_stairs adl_hmp-2 upstairs walking stairs
descend_stairs adl_hmp-3 downstairs walking stairs
drink_glass adl_hmp-4 drinking unknown unknown
eat_meat adl_hmp-5 eating unknown unknown
eat_soup adl_hmp-6 eating unknown unknown

(a) Label translation in Adl_hmp

annotation annotation_id label label-group label-use
NA gotov-1 unknown unknown unknown
standing gotov-2 standing sitstand standing
lyingDownLeft gotov-3 lying lying lying
lyingDownRight gotov-4 lying lying lying
sittingSofa gotov-5 sitting sitstand sitting
sittingCouch gotov-6 sitting sitstand sitting
sittingChair gotov-7 sitting sitstand sitting
walkingStairsUp gotov-8 upstairs walking stairs
washingDishes gotov-9 housework unknown unknown
vacuumCleaning gotov-10 housework unknown unknown
walkingSlow gotov-11 walk_slow walking walk_slow
walkingNormal gotov-12 walk_mod walking walk_mod
walkingFast gotov-13 walk_fast walking walk_mod
cycling gotov-14 bicycling unknown unknown

(b) Label translation in Gotov

annotation annotation_id label label-group label-use
other act_cp-1 other - -
relax act_cp-2 relaxing - -
keyboard_writing act_cp-3 keyboard_writing unknown unknown
laptop act_cp-4 laptop unknown unknown
handwriting act_cp-5 handwriting unknown unknown
handwashing act_cp-6 handwashing unknown unknown
facewashing act_cp-7 facewashing unknown unknown
teethbrush act_cp-8 teethbrush unknown unknown
sweeping act_cp-9 sweeping unknown unknown
vacuuming act_cp-10 vacuuming unknown unknown
eating act_cp-11 eating unknown unknown
dusting act_cp-12 dusting unknown unknown
rubbing act_cp-13 rubbing unknown unknown
downstairs act_cp-14 downstairs walking stairs
walking act_cp-15 walking walking walk_mod
walking_fast act_cp-16 walking_fast walking walk_mod
upstairs act_cp-17 upstairs walking stairs
upstairs_fast act_cp-18 upstairs_fast walking stairs

(c) Label translation in Act_cp
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Table A.6: LABEL TRANSLATION FOR TRAINING AND TEST DATASETS.. The second part of the trans-
lation tables.

annotation annotation_id label label-group label-use
upstairs selfback-1 walking stairs stairs
downstairs selfback-2 walking stairs stairs
walk_slow selfback-3 walking walk_slow walk_slow
walk_mod selfback-4 walking walk_mod walk_mod
walk_fast selfback-5 walking walk_mod walk_mod
sitting selfback-6 sitstand sitting sitting
lying selfback-7 lying lying lying
standing selfback-8 sitstand standing standing
jogging selfback-9 sports jogging jogging

(a) Label translation in Selfback

annotation annotation_id label label-group label-use
A wisdm-1 walking walking walk_mod
B wisdm-2 jogging sports jogging
C wisdm-3 stairs walking stairs
D wisdm-4 sitting sitstand sitting
E wisdm-5 standing sitstand standing
F wisdm-6 typing unknown unknown
G wisdm-7 brushing teeth unknown unknown
H wisdm-8 eating soup unknown unknown
I wisdm-9 eating chips unknown unknown
J wisdm-10 eating pasta unknown unknown
K wisdm-11 drinking from cup unknown unknown
L wisdm-12 eating sandwich unknown unknown
M wisdm-13 kicking unknown unknown
O wisdm-14 playing catch - -
P wisdm-15 dribbling - -
Q wisdm-16 writing unknown unknown
R wisdm-17 clapping - -
S wisdm-18 folding clothes unknown unknown

(b) Label translation in Wisdm



A.6 Hierarchical ML parameters 49

Table A.7: LABEL TRANSLATION FOR TEST DATASET CAPTURE 24-1. The first part of the label trans-
lation of Capture 24.

annotation annotation_id label-group label-use
transportation;private transportation;1010 bicycling;MET 4.0 capture24-1 unknown unknown
home activity;household chores;house cleaning;floors;5010 cleaning sweeping carpet or floors;MET 3.3 capture24-2 unknown unknown
home activity;household chores;house cleaning;furniture;5020 cleaning heavy such as car/windows/garage;MET 3.5 capture24-3 unknown unknown
home activity;miscellaneous;5025 (generic) multiple household tasks all at once including standing/lifting/sitting;MET 2.8 capture24-4 unknown unknown
home activity;household chores;house cleaning;furniture;5032 dusting or polishing furniture;MET 2.3 capture24-5 unknown unknown
home activity;household chores;preparing meals/cooking/washing dishes;5035 kitchen activity general cooking/washing/dishes/cleaning up;MET 3.3 capture24-6 unknown unknown
home activity;household chores;preparing meals/cooking/washing dishes;5035 cleaning up table after meal implied walking (e.g. leaving from eating table to the kitchen);MET 3.3 capture24-7 unknown unknown
occupation;interruption;5041 kitchen activity in the working place;MET 1.8 capture24-8 unknown unknown
occupation;interruption;miscellaneous;5041 kitchen activity in the working place;MET 1.8 capture24-9 unknown unknown
home activity;household chores;preparing meals/cooking/washing dishes;5051 serving food/setting table implied walking and standing;MET 2.5 capture24-10 unknown unknown
leisure;miscellaneous;walking;5060 shopping miscellaneous;MET 2.3 capture24-11 unknown unknown
leisure;miscellaneous;5060 shopping miscellaneous;MET 2.3 capture24-12 unknown unknown
home activity;household chores;grocery shopping;5060 shopping;MET 2.3 capture24-13 unknown unknown
leisure;eating;not-social;5060 buying foods or drinks as a takeaway;MET 2.3 capture24-14 unknown unknown
leisure;eating;social;5060 buying foods or drinks as a takeaway;MET 2.3 capture24-15 unknown unknown
leisure;eating;5060 buying foods or drinks as a takeaway;MET 2.3 capture24-16 unknown unknown
home activity;household chores;washing/ironing/mending clothes;5070 ironing;MET 1.8 capture24-17 unknown unknown
home activity;miscellaneous;sitting;5080 sitting non-desk work (with or without eating at the same time);MET 1.3 capture24-18 unknown unknown
leisure;miscellaneous;sitting;5080 sitting non-desk work (with or without eating at the same time);MET 1.3 capture24-19 unknown unknown
home activity;household chores;washing/ironing/mending clothes;5090 folding or hanging clothes/put clothes in or out of washer or dryer/packing suitcase limited walking;MET 2.0 capture24-20 unknown unknown
home activity;household chores;washing/ironing/mending clothes;5095 putting away /gathering clothes involving walking;MET 2.3 capture24-21 unknown unknown
home activity;household chores;house cleaning;miscellaneous;5100 making bed/changing linens;MET 3.3 capture24-22 unknown unknown
home activity;miscellaneous;walking;5121 walking with moving and lifting loads such as bikes and furniture;MET 4.0 capture24-23 unknown unknown
home activity;household chores;house cleaning;floors;5131 scrubbing floors on hands and knees scrubbing bathroom bathtub;MET 2.0 capture24-24 unknown unknown
home activity;household chores;house cleaning;floors;5140 sweeping garage sidewalk or outside of house;MET 4.0 capture24-25 unknown unknown
home activity;miscellaneous;standing;5146 standing packing/unpacking household items occasional lifting;MET 3.5 capture24-26 unknown unknown
home activity;miscellaneous;standing;5146 standing packing/unpaking household items occational lifting;MET 3.5 capture24-27 unknown unknown
home activity;miscellaneous;walking;5147 walking moving away light items (pens/papers/keys not included);MET 3.0 capture24-28 unknown unknown
home activity;miscellaneous;walking;5165 (generic) walking non-cleaning task such as closing windows lock door putting away items;MET 3.5 capture24-29 unknown unknown
home activity;leisure;activties for maintenance of a household;with children;5170 sitting playing with child(ren);MET 2.2 capture24-30 unknown unknown
home activity;leisure;activities for maintenance of a household;with children;5170 sitting playing with child(ren);MET 2.2 capture24-31 unknown unknown
home activity;leisure;activties for maintenance of a household;5170 sitting playing with child(ren);MET 2.2 capture24-32 unknown unknown
leisure;recreation;outdoor;5171 standing playing with child(ren);MET 2.8 capture24-33 unknown unknown
leisure;recreation;outdoor;5175 walking/running playing with child(ren);MET 3.5 capture24-34 unknown unknown
home activity;child/elderly/pet care;child care;5181 walking and carrying child;MET 3.0 capture24-35 unknown unknown
home activity;child/elderly/pet care;child care;5183 standing holding child;MET 2.0 capture24-36 unknown unknown
home activity;child/elderly/pet care;child care;5185 child care sitting/kneeling occasional lifting;MET 2.0 capture24-37 unknown unknown
home activity;child/elderly/pet care;child care;5185 child care sitting/kneeling;MET 2.0 capture24-38 unknown unknown
home activity;child/elderly/pet care;child care;5185 child care sitting/kneeling occasional lifting;MET 2.0 capture24-39 unknown unknown
home activity;child/elderly/pet care;child care;5186 child care standing occasional lifting;MET 3.0 capture24-40 unknown unknown
home activity;miscellaneous;sitting;7010 sitting/lying and watching television with TV on as the primary activity;MET 1.0 capture24-41 sitstand sitting
home activity;miscellaneous;sitting;7010 lying and watching television with TV on as the primary activity;MET 1.0 capture24-42 sitstand sitting
transportation;waiting;7021 sitting;MET 1.3 capture24-43 sitstand sitting
home activity;miscellaneous;sitting;7021 sitting without observable actiivties;MET 1.3 capture24-44 sitstand sitting
home activity;miscellaneous;sitting;7021 sitting without observable activities;MET 1.3 capture24-45 sitstand sitting
7030 sleeping;MET 0.95 capture24-46 lying lying
transportation;waiting;7040 standing in a line;MET 1.3 capture24-47 sitstand standing
occupation;interruption;standing;9015 standing scanning documents;MET 1.5 capture24-48 unknown unknown
occupation;interruption;9015 standing scanning documents;MET 1.5 capture24-49 unknown unknown
home activity;miscellaneous;standing;9020 standing writing/drawing/painting;MET 1.8 capture24-50 unknown unknown
occupation;interruption;standing;9020 standing writing/drawing/painting;MET 1.8 capture24-51 unknown unknown
leisure;miscellaneous;standing;9020 standing writing/drawing/painting;MET 1.8 capture24-52 unknown unknown
occupation;interruption;9020 standing writing/drawing/painting;MET 1.8 capture24-53 unknown unknown
home activity;miscellaneous;sitting;9030 sitting desk entertainment/hobby (with or without eating at the same time);MET 1.3 capture24-54 unknown unknown
home activity;miscellaneous;sitting;9030 sitting desk work (with or without eating at the same time);MET 1.3 capture24-55 unknown unknown
home activity;miscellaneous;sitting;9030 sitting desk work (with or without eating at the same time);MET 1.3 capture24-56 unknown unknown
home activity;miscellaneous;standing;9050 standing talking in person/on the phone/computer (skype chatting) or using a mobile phone/smartphone/tablet;MET 1.8 capture24-57 unknown unknown
leisure;miscellaneous;standing;9050 standing talking in person/using a phone/smartphone/tablet;MET 1.8 capture24-58 unknown unknown
occupation;interruption;standing;9050 standing talking in person/using a phone/smartphone/tablet;MET 1.8 capture24-59 unknown unknown
occupation;interruption;9050 standing talking in persone/using a phone/smartphone/tablet;MET 1.8 capture24-60 unknown unknown
transportation;walking;9050 standing miscellaneous (talking to others etc.);MET 1.8 capture24-61 unknown unknown
home activity;miscellaneous;standing;9050 standing talking in person on the phone/computer (skype chatting) or using a mobileo phone/smartphone/tablet;MET 1.8 capture24-62 unknown unknown
occupation;interruption;standing;9050 standing talking in persone/using a phone/smartphone/tablet;MET 1.8 capture24-63 unknown unknown
home activity;miscellaneous;sitting;9055 sitting/lying talking in person/using a mobile phone/smartphone/tablet or talking on the phone/computer (skype chatting);MET 1.5 capture24-64 unknown unknown
leisure;miscellaneous;sitting;9055 sitting talking to person/using the phone;MET 1.5 capture24-65 unknown unknown
occupation;interruption;sitting;9055 sitting using a mobile phone/smartphone/tablet or talking on the phone/computer (skype meeting etc.);MET 1.5 capture24-66 unknown unknown
occupation;interruption;9055 sitting using a mobile phone/smartphone/tablet or talking on the phone/computer (skype meeting etc.);MET 1.5 capture24-67 unknown unknown
home activity;miscellaneous;sitting;9060 sitting/lying reading or without observable/identifiable activities;MET 1.3 capture24-68 sitstand sitting
leisure;miscellaneous;sitting;9060 (generic) sitting/lying reading or without observable/identifiable activities;MET 1.3 capture24-69 sitstand sitting
home activity;miscellaneous;sitting;9060 sitting/lying reading or without observable activities;MET 1.3 capture24-70 sitstand sitting
occupation;interruption;sitting;9060 sitting without observable/identifiable activities;MET 1.3 capture24-71 sitstand sitting
leisure;miscellaneous;sitting;9060 (generic) sitting/lying reading or without observable activities;MET 1.3 capture24-72 sitstand sitting
occupation;interruption;9060 (generic) sitting without observable activities;MET 1.3 capture24-73 sitstand sitting
occupation;interruption;9060 (generic) sitting without observable/identifiable activities;MET 1.3 capture24-74 sitstand sitting
home activity;miscellaneous;sitting;9060 sitting reading or using a mobile phone/smartphone/tablet or talking on the phone/computer (skype chatting);MET 1.3 capture24-75 sitstand sitting
occupation;interruption;9060 sitting using a mobile phone/smartphone/tablet or talking on the phone/computer (skype meeting etc.);MET 1.3 capture24-76 sitstand sitting
home activity;miscellaneous;standing;9070 standing reading or without observable/identifiable activities;MET 1.8 capture24-77 sitstand standing
leisure;miscellaneous;standing;9070 standing reading or without observable/identifiable activities;MET 1.8 capture24-78 sitstand standing
occupation;interruption;standing;9070 standing reading or without observable/identifiable activities;MET 1.8 capture24-79 sitstand standing
home activity;miscellaneous;standing;9070 standing reading or without obvious activities;MET 1.8 capture24-80 sitstand standing
occupation;interruption;9070 standing reading or without observable/identifiable activities;MET 1.8 capture24-81 sitstand standing
leisure;miscellaneous;standing;9070 standing reading or without obvious activities;MET 1.8 capture24-82 sitstand standing
occupation;interruption;9070 standing reading or without obvious activities;MET 1.8 capture24-83 sitstand standing
home activity;miscellaneous;standing;9071 (generic) standing miscellaneous;MET 2.5 capture24-84 sitstand standing
leisure;miscellaneous;standing;9071 (generic) standing miscellaneous;MET 2.5 capture24-85 sitstand standing
occupation;interruption;standing;9071 (generic) standing miscellaneous;MET 2.5 capture24-86 sitstand standing
leisure;miscellaneous;9071 (generic) standing miscellaneous indoor or outdoor;MET 2.5 capture24-87 sitstand standing
transportation;walking;9071 standing miscellaneous (talking to others etc.);MET 2.5 capture24-88 sitstand standing
home activity;leisure;activities for maintenance of a household;miscellaneous;9100 retreat/family reunion activities involving sitting eating relaxing talking with more than one person;MET 1.8 capture24-89 unknown unknown
home activity;leisure;activties for maintenance of a household;miscellaneous;9100 retreat/family reunion activities involving sitting eating relaxing talking with more than one person;MET 1.8 capture24-90 unknown unknown
home activity;leisure;activties for maintenance of a household;9100 retreat/family reunion activities involving sitting eating relaxing talking with more than one person;MET 1.8 capture24-91 unknown unknown
home activity;leisure;activities for maintenance of a household;miscellaneous;9101 retreat/family reunion activities playing games with more than one person;MET 3.0 capture24-92 unknown unknown
occupation;miscellaneous;11475 (generic) manual labour;MET 2.8 capture24-93 unknown unknown
occupation;miscellaneous;11475 (generic) manual or unskilled labour;MET 2.8 capture24-94 unknown unknown
occupation;office and administrative support;11580 office/computer work general;MET 1.5 capture24-95 unknown unknown
occupation;office and administrative support;11580 office wok/computer work general;MET 1.5 capture24-96 unknown unknown
home activity;miscellaneous;sitting;11580 office/computer work general;MET 1.5 capture24-97 unknown unknown
home activity;miscellaneous;sitting;11580 office work such as writing and typing (with or without eating at the same time);MET 1.5 capture24-98 unknown unknown
occupation;office and administrative support;11580 office work/computer work general;MET 1.5 capture24-99 unknown unknown
occupation;interruption;sitting;11585 sitting meeting/talking to colleagues with or without eating;MET 1.5 capture24-100 unknown unknown
occupation;interruption;11585 sitting meeting/talking to colleages with or without eating;MET 1.5 capture24-101 unknown unknown
occupation;interruption;11585 sitting meeting/talking to colleagues with or without eating;MET 1.5 capture24-102 unknown unknown
occupation;office and administrative support;11600 (generic) standing tasks such as store clerk/libarian/packing boxes/repair heavy parts;MET 3.0 capture24-103 unknown unknown
occupation;office and administrative support;11600 (generic) standing tasks such as store clerk/librarian/packing boxes/repair heavy parts;MET 3.0 capture24-104 unknown unknown
occupation;miscellaneous;11615 (generic) standing lifting items continuously with limited walking;MET 4.5 capture24-105 unknown unknown
occupation;interruption;11791 walking on job in office or lab area;MET 2.0 capture24-106 walking walk_slow
occupation;interruption;walking;11791 walking on job in office or lab area;MET 2.0 capture24-107 walking walk_slow
occupation;interruption;walking;11795 walking on job and carrying light objects such as boxes or pushing trolleys;MET 3.5 capture24-108 unknown unknown
occupation;interruption;11795 walking on job and carrying light objects such as boxes or pushing trolleys;MET 3.5 capture24-109 unknown unknown
leisure;sports;gymnasium and athletics;athletics;12150 running;MET 8.0 capture24-110 sports jogging
transportation;walking;12150 running;MET 8.0 capture24-111 sports jogging
home activity;self care;13000 getting ready for bed standing;MET 2.3 capture24-112 unknown unknown
occupation;interruption;miscellaneous;13009 toilet break;MET 1.8 capture24-113 unknown unknown
home activity;self care;13009 toilet eliminating or squatting;MET 1.8 capture24-114 unknown unknown
occupation;interruption;13009 toilet break;MET 1.8 capture24-115 unknown unknown
home activity;self care;13020 dressing/undressing;MET 2.5 capture24-116 unknown unknown
home activity;eating;13030 eating sitting alone or with someone;MET 1.5 capture24-117 unknown unknown
leisure;eating;social;13030 eating sitting indoor/outdoor;MET 1.5 capture24-118 unknown unknown
leisure;eating;13030 eating sitting indoor/outdoor;MET 1.5 capture24-119 unknown unknown
occupation;interruption;13030 eating sitting;MET 1.5 capture24-120 unknown unknown
occupation;interruption;sitting;13030 eating sitting;MET 1.5 capture24-121 unknown unknown
leisure;eating;not-social;13030 eating sitting indoor/outdoor;MET 1.5 capture24-122 unknown unknown
home activity;eating;13035 eating standing alone or with others;MET 2.0 capture24-123 unknown unknown
occupation;interruption;13035 eating standing;MET 2.0 capture24-124 unknown unknown
leisure;eating;social;13035 eating standing indoor/outdoor;MET 2.0 capture24-125 unknown unknown
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Table A.8: LABEL TRANSLATION FOR TEST DATASET CAPTURE 24-2. The second part of the label
translation of Capture 24.

annotation annotation_id label-group label-use
leisure;eating;13035 eating standing indoor/outdoor;MET 2.0 capture24-126 unknown unknown
occupation;interruption;standing;13035 eating standing;MET 2.0 capture24-127 unknown unknown
leisure;eating;not-social;13035 eating standing indoor/outdoor;MET 2.0 capture24-128 unknown unknown
home activity;self care;13040 (generic) self care such as grooming/washing hands/shaving/brushing teeth/putting on make-up not eliminating and bathing (not necessary in the toilet);MET 2.0 capture24-129 unknown unknown
home activity;self care;13045 hairstyling standing;MET 2.5 capture24-130 unknown unknown
transportation;private transportation;16010 driving automobile or light truck (not a semi);MET 2.5 capture24-131 unknown unknown
transportation;private transportation;16015 riding in a car or truck;MET 1.3 capture24-132 unknown unknown
transportation;public transportation;16016 riding in a bus or train;MET 1.3 capture24-133 unknown unknown
leisure;miscellaneous;walking;17031 loading /unloading a car implied walking;MET 3.5 capture24-134 unknown unknown
leisure;miscellaneous;17031 loading /unloading a car implied walking;MET 3.5 capture24-135 unknown unknown
occupation;interruption;walking;17070 walking downstairs;MET 3.5 capture24-136 walking stairs
leisure;miscellaneous;walking;17070 descending stairs;MET 3.5 capture24-137 walking stairs
leisure;sports;miscellaneous;17082 hiking or walking at a normal pace through fields and hillsides;MET 5.0 capture24-138 walking walk_mod
occupation;interruption;17133 walking upstairs;MET 4.0 capture24-139 walking stairs
leisure;miscellaneous;walking;17133 walking upstairs;MET 4.0 capture24-140 walking stairs
occupation;interruption;walking;17133 walking upstairs;MET 4.0 capture24-141 walking stairs
home activity;miscellaneous;walking;17150 walking household without observable loads;MET 2.0 capture24-142 walking walk_slow
transportation;walking;17161 walking not as the single means of transports e.g.from house to transports or vice versa/from car to places or vice versa/between transports;MET 2.5 capture24-143 walking walk_slow
transportation;walking;17250 walking as the single means to a destination not to work or class;MET 3.0 capture24-144 walking walk_mod
transportation;walking;17270 walking as the single means to work or class (not from);MET 3.5 capture24-145 walking walk_mod
leisure;miscellaneous;sitting;21000 sitting meeting;MET 1.5 capture24-146 unknown unknown
leisure;miscellaneous;21000 sitting meeting or talking with others;MET 1.5 capture24-147 unknown unknown
leisure;miscellaneous;sitting;21005 (generic) sitting light office writing typing work;MET 1.5 capture24-148 unknown unknown
leisure;miscellaneous;21005 (generic) sitting light office writing typing work;MET 1.5 capture24-149 unknown unknown
home activity;miscellaneous;sitting;21010 sitting non-desk work (with or without eating at the same time);MET 2.5 capture24-150 unknown unknown
leisure;miscellaneous;21010 sitting non-desk work (with or without eating at the same time);MET 2.5 capture24-151 unknown unknown
leisure;miscellaneous;sitting;21016 sitting child care only active periods;MET 2.0 capture24-152 unknown unknown
leisure;miscellaneous;21016 sitting child care only active periods;MET 2.0 capture24-153 unknown unknown
leisure;miscellaneous;21017 standing child care only active periods;MET 3.0 capture24-154 unknown unknown
leisure;miscellaneous;standing;21017 standing child care only active periods;MET 3.0 capture24-155 unknown unknown
leisure;miscellaneous;walking;21070 (generic) walking and occasional standing (no more than two consecutive images);MET 2.5 capture24-156 walking walk_slow
leisure;miscellaneous;21070 (generic) walking/standing combination indoor;MET 3.0 capture24-157 walking walk_slow
sitting;sitstand+activity;social;MET 1.8 capture24-158 unknown unknown
walking;MET 3.0 capture24-159 walking walk_mod
household-chores;sitstand+activity;MET 2.5 capture24-160 unknown unknown
sitting;sitstand+lowactivity;screen;MET 1.0 capture24-161 sitstand sitting
household-chores;walking+activity;MET 3.0 capture24-162 unknown unknown
manual-work;sitstand+activity;MET 5.0 capture24-163 unknown unknown
sitting;sitstand+activity;MET 1.8 capture24-164 sitstand sitting
household-chores;sitstand+lowactivity;MET 1.3 capture24-165 unknown unknown
mixed-activity;sitstand+activity;MET 2.0 capture24-166 unknown unknown
manual-work;walking+activity;MET 3.5 capture24-167 unknown unknown
mixed-activity;sitstand+activity;MET 2.5 capture24-168 unknown unknown
sports/gym;MET 3.5 capture24-169 unknown unknown
manual-work;sitstand+activity;MET 2.0 capture24-170 unknown unknown
sports/gym;MET 2.5 capture24-171 unknown unknown
manual-work;walking+activity;MET 3.8 capture24-172 unknown unknown
sports/gym;MET 6.0 capture24-173 unknown unknown
manual-work;sitstand+activity;MET 5.5 capture24-174 unknown unknown
sitting;sitstand+lowactivity;MET 1.3 capture24-175 unknown unknown
manual-work;walking+activity;MET 3.0 capture24-176 unknown unknown
sports/gym;MET 5.0 capture24-177 unknown unknown
sports/gym;MET 5.5 capture24-178 unknown unknown
sports/gym;MET 8.0 capture24-179 unknown unknown
manual-work;walking+activity;MET 5.5 capture24-180 unknown unknown
sports/gym;MET 3.0 capture24-181 unknown unknown
household-chores;sitstand+activity;social;MET 4.5 capture24-182 unknown unknown
manual-work;sitstand+activity;MET 3.0 capture24-183 unknown unknown
home activity;child/elderly/pet care;MET 2.3 capture24-184 unknown unknown
sports/gym;MET 8.5 capture24-185 unknown unknown
home activity;leisure;mixed-activity;walking+activity;MET 3.0 capture24-186 unknown unknown
home activity;household chores;house cleaning;MET 2.5 capture24-187 unknown unknown
standing;sitstand+activity;social;MET 2.5 capture24-188 unknown unknown
manual-work;sitstand+activity;MET 1.5 capture24-189 unknown unknown
sports/gym;MET 7.0 capture24-190 unknown unknown
sports/gym;MET 5.3 capture24-191 unknown unknown
vehicle;MET 2.8 capture24-192 unknown unknown
mixed-activity;walking+activity;MET 2.0 capture24-193 unknown unknown
sitting;sitstand+lowactivity;MET 1.5 capture24-194 unknown unknown
home activity;child/elderly/pet care;pet care;MET 2.5 capture24-195 unknown unknown
mixed-activity;MET 4.5 capture24-196 unknown unknown
sports/gym;MET 2.8 capture24-197 unknown unknown
sports/gym;MET 9.0 capture24-198 unknown unknown
household-chores;sitstand+activity;MET 4.0 capture24-199 unknown unknown
standing;sitstand+activity;MET 2.0 capture24-200 unknown unknown
standing;sitstand+activity;social;MET 1.8 capture24-201 unknown unknown
home activity;leisure;sitting;sitstand+activity;MET 2.5 capture24-202 unknown unknown
carrying heavy loads;MET 8.0 capture24-203 unknown unknown
manual-work;MET 8.0 capture24-204 unknown unknown
household-chores;sitstand+lowactivity;MET 2.8 capture24-205 unknown unknown
vehicle;MET 1.3 capture24-206 unknown unknown
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Table A.9: OPTIMAL HYPERPARAMETERS SELECTED DURING CROSS-VALIDATION FOR CONVEN-
TIONAL ML MODELS. The columns "Excl. dataset" and "Excl. transformation" respectively indicate
the training dataset and transformation techniques that were excluded from the experiment. Due to space
constraints, we abbreviate the transformation names to their first word, or "all" for all transformations.

Excl. Excl. RF SVM
dataset transformation max_features max_depth n_estimators C loss
N/A N/A 1.0 64 500 1 squared_hinge
Wisdm N/A 1.0 64 500 1 squared_hinge

(a) Flat ML

Excl. Excl. RF SVM
dataset transformation max_features max_depth n_estimators C loss
N/A N/A sqrt 64 500 100 hinge
Adl_hmp N/A sqrt 64 500 100 hinge
Act_cp N/A sqrt 64 500 100 hinge
Selfback N/A sqrt 64 500 100 hinge
Gotov N/A sqrt 64 500 0.1 hinge
Wisdm N/A sqrt 64 300 100 hinge
Wisdm all sqrt 32 300 100 hinge
Wisdm amplitude sqrt 64 500 100 hinge
Wisdm reverting sqrt 64 500 100 hinge
Wisdm rotation sqrt 64 500 10 hinge
Wisdm swapping sqrt 64 500 10 hinge

(b) Group classifier in hierarchical ML

Excl. Excl. RF SVM
dataset transformation max_features max_depth n_estimators C loss
N/A N/A 1.0 64 500 1 hinge
Adl_hmp N/A 1.0 64 500 10 hinge
Act_cp N/A 1.0 64 500 100 hinge
Selfback N/A 1.0 64 500 1 hinge
Gotov N/A 1.0 64 300 10 hinge
Wisdm N/A 1.0 64 100 10 hinge
Wisdm All sqrt 32 300 100 hinge
Wisdm amplitude 1.0 64 500 0.1 hinge
Wisdm reverting sqrt 64 500 100 hinge
Wisdm rotation 1.0 64 500 0.1 hinge
Wisdm swapping 1.0 64 500 0.1 squared_hinge

(c) Label classifier for "walking" group in hierarchical ML

Excl. Excl. RF SVM
dataset transformation max_features max_depth n_estimators C loss
N/A N/A 1.0 64 500 1 hinge
Adl_hmp N/A 1.0 32 500 0.1 hinge
Act_cp N/A 1.0 32 500 100 hinge
Selfback N/A 1.0 32 500 0.1 hinge
Gotov N/A 1.0 32 500 10 hinge
Wisdm N/A 1.0 64 100 1 hinge
Wisdm All sqrt 16 100 1 hinge
Wisdm amplitude sqrt 32 500 1 hinge
Wisdm reverting sqrt 32 500 100 hinge
Wisdm rotation sqrt 32 500 0.1 hinge
Wisdm swapping sqrt 32 500 100 hinge

(d) Label classifier for "sitstand" group in hierarchical ML
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