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Abstract— We consider the problem of next-best view
selection for volumetric reconstruction of an object by a
mobile robot equipped with a camera. Based on a probabilistic
volumetric map that is built in real time, the robot can
quantify the expected information gain from a set of discrete
candidate views. We propose and evaluate several formula-
tions to quantify this information gain for the volumetric
reconstruction task, including visibility likelihood and the
likelihood of seeing new parts of the object. These metrics are
combined with the cost of robot movement in utility functions.
The next best view is selected by optimizing these functions,
aiming to maximize the likelihood of discovering new parts of
the object. We evaluate the functions with simulated and real
world experiments within a modular software system that
is adaptable to other robotic platforms and reconstruction
problems. We release our implementation open source.

SUPPLEMENTARY MATERIAL

The accompanying video and software package are available at:
http://rpg.ifi.uzh.ch.

I. INTRODUCTION
Object reconstruction in three dimensions is an important

step in robust perception and manipulation tasks. This work
considers the problem of reconstructing an object that is
unknown a priori, but is spatially bounded. We assume
that we obtain dense 3D input data from a camera-based
sensor, but do not restrict to a particular modality (i.e.
stereo, monocular structure-from-motion, structured light,
etc.). A mobile robot positions the sensor for different
views of the volume containing the object, with the goal
of generating a complete volumetric model in as little
time as possible. We take an active vision approach, and
select each next best view (NBV) using feedback from the
current partial reconstruction. In particular, we consider the
information that we expect to gain from a new viewpoint
in choosing an optimal NBV from a set of candidates. To
encourage the progress of the reconstruction, we define
this information to be higher for views that contribute
more to the reconstruction. In other words, a view with
more information is one where more of the previously
unobserved surface becomes visible.

Since we consider an unknown object, the information
that can be gained from a new view is not known a priori
and must be estimated online at the time of the reconstruc-
tion. To do so, the robot must reason about observed and
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unobserved areas of the object as well as about possible
occlusions. The use of a volumetric model facilitates such
visibility considerations. There, the visibility of a surface
from a given camera position can be inferred by casting
rays into the voxel space. To account for sensor uncertain-
ties, modern volumetric models are probabilistic. We define
the information gain (IG) in a probabilistic volumetric map
as the sum of expected information enclosed in smaller vol-
umes (voxels), that are likely to be visible from a particular
view. The information contained in voxels is denoted as
volumetric information (VI). Previous works on this prob-
lem [1], [2] typically combine the IG with additional, often
system-specific terms designed to optimize the process
with regard to constraints such as movement cost or data
registration and quality. In a system-agnostic reconstruction
problem, it is the information gain formulation and the
choice of possible view point candidates that remain as
the two most important factors to the reconstruction. The
possible view point candidates are highly dependent on
the robotic system, since the general 6 DoF search space
is constrained by its kinematics. Information gain, on the
other hand, can be used in arbitrary robotic systems that
maintain a probabilistic volumetric map. This paper focuses
on evaluating possible formulations for information gain
based on variations of the volumetric information.

We approach the autonomous reconstruction task as an
iterative process consisting of the three largely independent
parts (i) 3D model building, (ii) view planning, and (iii) the
camera positioning mechanism, as observed in [3]. The
orthogonality of the involved tasks has inspired us to design
our own autonomous reconstruction system in a modular
manner to allow for fast reconfigurations of the software
for different applications and robotic setups. We utilize the
Robot Operating System (ROS) [4] software framework,
which allows a hardware-agnostic design through the use
of its interprocess communication interfaces. Within this
framework, we use off-the-shelf components for the 3D
model building and camera positioning sub-tasks, and
focus only on view planning based on our proposed IG
formulations.

A. Related Work

Research on the Next-Best-View problem and conceptu-
ally similar problems in Active Vision dates back several
decades [5], [6]. The most frequently referenced surveys of
the field include an overview of early approaches by Scott
et al. [7] and an overview of more recent work by Chen
et al. [8]. We will follow the categorization introduced by



Scott et al. in distinguishing between model-based and non-
model-based reconstruction methods.

Model-based methods assume at least an approximate
a priori model of the scene, e.g. from aerial imagery [9].
They rely on knowledge of the geometry and appearance of
the object, which may not be available in many real world
scenarios.

Non-model based approaches use relaxed assumptions
about the structure of the object, but the required in-
formation for planning the next best view must be es-
timated online based on the gathered data. The method
used to reason about possible next actions depends on
the environment representation in which the sensor data is
registered. Scott et al. distinguished between surface-based
and volumetric approaches, and more recently methods
have been proposed that employ both [1]. In a surface-
based approach, new view positions are evaluated by
examining the boundaries of the estimated surface, e.g.
represented by a triangular mesh [10], [11]. This approach
can be advantageous if the surface representation is also
the output of the algorithm because it permits examination
of the quality of the model while constructing it. The
disadvantage is that visibility operations on surface models
are more complicated than with volumetric ones.

Volumetric approaches have become popular because
they facilitate visibility operations and also allow proba-
bilistic occupancy estimation. Here, the gathered data is
registered within a volumetric map consisting of small
volumes, called voxels, that are marked either with an
occupancy state or an occupancy probability. View posi-
tions are evaluated by casting rays into the model from the
view position and examining the traversed voxels, therefore
simulating the image sampling process of a camera. The
information gain metric that quantifies the expected infor-
mation for a given view is defined on this set of traversed
voxels.

One method to create an IG metric is to count traversed
voxels of a certain type. Connolly et al. [12] and Banta et
al. [13] count the number of unknown voxels. Yamauchi et
al. [14] introduced the concept of frontier voxels, usually
defined as voxels bordering free and unknown space, and
counted those. This approach has found heavy use in the
exploration community where the exploration of an un-
known environment is the goal, rather than reconstruction
of a single object [15].

The research of Vasquez-Gomez et al. [2] is a recent
example where a set of frontier voxels is used for re-
construction. They count what they call occplane voxels
(short for occlusion plane), defined as voxels bordering
free and occluded space. Another method is to employ
the entropy concept from information theory to estimate
expected information, as shown in [1]. This necessitates
the use of occupancy probabilities but has the advantage
that the sensor uncertainty is considered. Potthast et al.
[16] argue that the likelihood that unknown voxels will be
observed decreases as more unknown voxels are traversed
and that this should be considered in the information

gain calculation. They model the observability using a
Hidden Markov Model and introduce empirically found
state transition laws to calculate posterior probabilities in
a Bayesian way.

B. Contributions

In this paper, we propose a set of information gain
formulations (IG) and evaluate them along with recent
formulations in the literature. Our IG formulations are
obtained by integrating novel formulations for volumetric
information (VI):
• Occlusion Aware VI: Quantifies the expected visible

uncertainty by weighting the entropy within each
voxel by its visibility likelihood.

• Unobserved Voxel VI: Restricts the set of voxels
that contribute their VI to voxels that have not been
observed yet.

• Rear Side Voxel VI: Counts the number of voxels
expected to be visible on the back side of already
observed surfaces.

• Rear Side Entropy VI: Quantifies the expected
amount of VI as defined for the Occlusion Aware
VI, but restricted to areas on the rear side of already
observed surfaces.

• Proximity Count VI: This VI is higher the closer an
unobserved voxel lies to already observed surfaces.

We evaluate all of these VIs in real and synthetic ex-
periments, based on following criteria: The amount of
discovered object surface (surface coverage), the reduction
of uncertainty within the map, and the cost of robot motion.

Finally, we release our modular software framework for
active dense reconstruction to the public. The ROS-based,
generic system architecture enables any position controlled
robot equipped with a depth sensor to carry out autonomous
reconstructions.

C. Paper Overview

After introducing our proposed volumetric information
formulations in Section II, we give a short insight into
our generic system architecture in Section III. Experiments
and results are shown in Section IV. In Section V we
summarize and discuss our results.

II. VOLUMETRIC INFORMATION

We define the Volumetric Information (VI) as a formula-
tion for information enclosed in a voxel. In this context, the
Information Gain (IG) is the amount of information (i.e.
VI) that each view candidate is expected to provide for
the 3D reconstruction. IG will be used as a metric to find
the Next Best View (NBV) from a set of candidate sensor
positions, which in object-centric reconstruction tasks are
usually sampled from simple geometries like the cylinder
in [10] or the sphere in [17]. The NBV with respect to the
reconstruction is the view that provides the most gain in
surface coverage and uncertainty reduction.

Let V be the set of sensor positions. A set of points is
sampled from the projection of the 3D object on view v ∈



(a) Occlusion Aware Total VI (b) Unobserved Voxel VI

(c) Rear Side Voxel VI (d) Rear Side Entropy VI

Fig. 1. Visualization of the IG function with different VI formulations in
2D on an exemplary state of the map: The map shows occupied (black),
unknown (grey) and empty (green) regions and a view candidate (white
camera). Additionally frontier voxels (striped white), unknown object
sides (yellow), considered ray sets (red), maximal ray length (dashed blue
circle) and VI weights (opacity of blue triangles) are shown.

V . LetRv be the set of rays cast through the sampled points
on view v. Representing the 3D world as a volumetric cube-
based grid of uniform size, each ray traverses through a set
of voxels X before it hits the object’s surface. We denote
the predicted IG for view v ∈ V as Gv . The cumulative
volumetric information I, collected along all rays, depends
on the VI formulation that is used:

Gv =
∑
∀r∈Rv

∑
∀x∈X

I (1)

Figure 1 visualizes four of the proposed formulations
for an exemplary 2D scenario. The images show a snap-
shot of a possible state in the map during reconstruction
and how IG is estimated: Each voxel has an assigned
occupancy likelihood estimated based on registered point
measurements. Depending on the likelihood, a voxel’s
state is considered to be occupied (black), free (green) or
unknown (gray). Other states like proximity to the frontier
and occplane voxels or the rear side of surfaces can be
identified during the ray casting operation. Using the state
as input we quantify VI and then integrate it to compute
a measure of IG. The following sections present a set
of VI formulations using indicator functions, probabilistic
functions or a combination of both.

A. Occlusion Aware

The volumetric information within a voxel can be de-
fined as its entropy:

Io(x) = −Po(x) lnPo(x)− P o(x) lnP o(x) (2)

where Po(x) is the probability of voxel x being occupied,
and P o denotes the complement probability of Po, i.e.
P o = 1− Po.

We further consider the visibility likelihood Pv of a
voxel and write:

Iv(x) = Pv(x) Io(x) (3)

For a voxel xn we have:

Pv(xn) =

n−1∏
i=1

P o(xi) (4)

where xi, i = 0 . . . n− 1 are all the voxels traversed along
a ray before it hits voxel xn.

Plugging Eq. 3 into Eq. 1, the IG given for a particular
view v ∈ V estimates the entropy within the visible volume
of the map. Refer to Fig. 1a for a visualization. Using
this volumetric information, the next best view is the one
with the highest visible uncertainty. Using Eq. 4, a voxel
further away from the sensor position contributes less to
the IG, accounting for its higher likelihood of occlusion
by unobserved obstacles. One flaw of such a definition for
information is that occupancy and unoccupancy of a voxel
are equally weighted, neglecting that free voxels are not
contributing to the reconstruction task.

B. Unobserved Voxel

Voxel state is commonly defined as a binary variable
[2], [18]. We can set up an indicator function based on the
observation state of the voxels (known or unknown), such
that:

Iu(x) =

{
1 x is unknown
0 x is known

(5)

Including the occupancy likelihood Iv(x), as in Eq. 3, into
Eq. 5 that defines the voxel state we have:

Ik(x) = Iu(x) Iv(x) (6)

Ik(x) measures the hidden information in unobserved
voxels. This is visualized in Fig. 1b.

C. Rear Side Voxel

The volumetric information formulated in Eq. 6 does
not consider if an unobserved voxel is likely occupied or
not. Assuming that the object of interest is bigger than
a single voxel, the voxels traced along a ray at a certain
distance directly behind an occupied voxel are likely to be
occupied. A ray incident on the rear side of an already
observed surface frontier is certain to be incident on an
unobserved part of the object.

Let set So be the set of rear side voxels, defined
as occluded, unknown voxels adjacent on the ray to an
occupied voxel, thus we have:

Ib(x) =

{
1 x ∈ So
0 x /∈ So

(7)

Fig. 1c visualizes this type of VI.



D. Rear Side Entropy
Unlike the rear side voxel count in Eq. 7, we can consider

the occupancy likelihood for all the unknown voxels behind
an occupied voxel. Thus, So in Eq. 7 will be the set of all
unknown voxels behind an occupied voxel instead of the
set of rear side voxels, so we have:

In(x) = Ib(x) Iv(x) (8)

This type of VI is shown in Fig. 1d.

Equations 7 and 8 are computationally efficient because
they allow a search for views that are likely pointed at
unobserved parts of the object without additional evalu-
ations, but only by examining the impact point of rays.
The disadvantage is that these formulations only consider
a ray’s direction towards, and not the proximity to, already
observed surface frontiers of the object. A sensor position
pointing at the object from the side might not feature any
ray that hits a rear side, even though its rays traverse the
previously occluded volume behind observed surfaces in
close proximity to the observed surface and are therefore
likely to hit a surface voxel as well.

E. Proximity Count
To formulate a VI that considers the proximity of oc-

cluded voxels to the surface, we augment our volumetric
map: when new measurements are integrated into the
model, we continue following the rays behind intersected
surface voxels until a distance dmax , and mark each of
these occluded voxels with their distance d(x) to the
surface voxel. If a voxel is already marked, we keep the
smaller distance. We use this distance information to define
the volumetric information as follows:

Ip(x) =

{
dmax − d(x) x is unknown
0 x is known

(9)

The VI is higher if many voxels close to already observed
surfaces are expected to be observed. A disadvantage is
that this may lead to high rated sensor positions pointing
away from the object through regions previously occluded
that failed to be registered as empty space during later data
registrations.

F. Combined
In an attempt to combine properties of different VI

we explore a VI formulation based on the set H of
those defined in the previous subsections, i.e. Icombined =
f(Ih0 , Ih1 , . . . ), where Ih ∈ H. Since the characteristics
of the proposed IGs are varied, there is no derivable for-
mula to consolidate the different formulations. We evaluate
a weighted linear combination, such that:

Ic =
∑
h∈H

wh Ih (10)

where wh is the weight corresponding to Ih. Such weights
could be learned offline and loaded through object recog-
nition from a database using e.g. a visual vocabulary, but
that is beyond the scope of this work.

III. A GENERIC SYSTEM ARCHITECTURE FOR ACTIVE
DENSE RECONSTRUCTION

We evaluate our VI formulations within a flexible soft-
ware system that is adaptable to different robotic platforms
through its modular design. Its structure is an extension of
the abstraction proposed in [3]. We divide the modeling
part into three subtasks, reduce view planning to the NBV
decision only, and divide the camera positioning mecha-
nism into two layers, yielding the following independent
components to take part in the reconstruction, as depicted
in Figure 2:
• The Sensor module is responsible for data acquisition.
• The Reconstruction Module carries out vision algo-

rithms for 3D sensing, e.g. stereo-matching or monoc-
ular depth estimation.

• The Model Representation includes data integration
and IG calculation.

• The View Planner acts as a control module, collecting
data about the reconstruction process and taking the
NBV decision.

• The Robot Interface Layer defines the interface be-
tween View Planner and robot specific code, providing
view feasibility and cost calculations.

• The Robot Driver implements the Robot Interface
and includes all code specific to the hardware plat-
form.

The view planner controls the iterative reconstruction
process, consisting of a cycle of the following steps:
data retrieval, data processing, data integration, viewpoint
generation and evaluation (NBV planning) and acting. It
communicates exclusively with the Robot Interface and the
Model Representation. The exchanged data includes the
proposed and evaluated views along with the IG values
Gv and robot movement costs Cv , which are provided by
the robot and intended to constrain its movement. For NBV
evaluation we combine them in the utility function Uv:

Uv =
Gv∑
V G
− Cv∑

V C
(11)

with
∑
V G and

∑
V C the total IG and cost respectively

predicted to be obtainable at the current reconstruction
step over all view candidates. The NBV v∗ is found by
maximizing U over all views v:

v∗ = argmax
v

Uv (12)

The reconstruction ends when the highest expected infor-
mation gain of a view falls below a user-defined threshold
gthresh , i.e. if

Gv < gthresh ∀v ∈ V (13)

View candidates can be provided either by the Robot
Interface (RI) or the Model Representation (MR). Both
techniques hold advantages: The Robot Interface can use
the robot’s kinematics to build a set of feasible sensor
positions, avoiding the expensive inverse kinematics cal-
culations necessary if the view candidates are generated
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Fig. 2. Framework Overview: Main modules and their communication
interfaces (arrows) are visualized.

by the Model module. The Model representation holds all
knowledge of the world and can use it to create a set of
target-oriented sensor positions. Only the sensor and robot
interfaces need to be implemented for use with a new robot
platform.

In summary, the View Planner iterates through the fol-
lowing steps:

1) Collect data from the sensors.
2) Request a view candidate set from the RI Layer or MR.
3) Optionally prefilter the view candidate set to evaluate IG

and cost only on a subset.
4) Request cost for each view candidate from RI Layer.
5) Request IG for each view candidate from MR.
6) Calculate the utility function combining IGs and costs.
7) Determine NBV.
8) Check if termination criterion is fulfilled.
9) If criterion is not fulfilled: Command RI Layer to move

the sensor to the NBV, then repeat the procedure.

IV. EXPERIMENTS

Information Gain based on VI is a metric used as
an indicator to estimate which next view will be most
informative to the reconstruction. An informative view
maximizes (i) the amount of new object surface discovered
and (ii) the uncertainty reduction in the map. Additionally,
(iii), we are interested in constraining the robotic motion
to facilitate data registration using overlap in the obtained
data and to save energy. We therefore evaluate our VI
formulations on these three criteria.

A. Simulation

The reconstruction scene for the simulation consists of
an object placed on a textured ground within four walls
(Fig. 3). Around the object we generate a set of 48 can-
didate views, distributed uniformly across a cylinder with
a half-sphere on top, such that they face the model from
different poses. We use three models that we texturized,
all of which are available online: the Stanford bunny and
dragon1 as well as a teapot, as visible in Fig. 4. The robot
is a free-flying stereo camera with 6 DoF, with which we
can carry out unconstrained movements. For a simulation
environment, we use Gazebo2, for which stereo processing
can be carried out using ROS3. All reconstructions start

1Available from the Stanford University Computer Graphics Lab.
2http://www.gazebosim.org
3We use the stereo img proc package.

Fig. 3. Simulation reconstruction scene

(a) Stanford bunny (b) Stanford dragon (c) Teapot

Fig. 4. Synthetic model datasets

by placing the stereo camera at a defined initial position,
facing the object. Computed pointclouds are integrated into
a probabilistic volumetric map based on OctoMap [19]. The
map has a resolution of 1 cm and 0.8 is used as the lower
likelihood bound for occupied, 0.2 as the upper likelihood
bound for empty voxels. Views are removed from the can-
didate set once visited to keep the algorithm from getting
stuck in positions for which the IG is overestimated. We do
not use the stopping criterion but instead run 20 iterations
for each trial.

To quantify the reconstruction progress in terms of sur-
face coverage, we compare the pointcloud models obtained
during reconstruction with the pointcloud of the original
model. For each point in the original model the closest
point in the reconstruction is sought. If this point is closer
than a registration distance4 the surface point of the original
model is considered to have been observed. The surface
coverage cs is then the percentage of observed surface
points compared to the total number of surface points of
the model:

Surface coverage cs =
Observed surface points

Surface points in original model (14)

To calculate the total entropy we consider a bounding
cube with 1.28 m side length around the object and define
the total entropy to be

Entropy in map =
∑

Entropy of voxels within cube (15)

The robot motion is defined as the Euclidean distance
between sensor positions, normalized with the maximal

4We chose dreg = 8mm .
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(c) Surface coverage, cs,max = 0.89
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(d) Entropy in map
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(e) Normalized robot motion

(f) Pointcloud (g) Volumetric map
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(h) Surface coverage, cs,max = 0.88
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(i) Entropy in map
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(j) Normalized robot motion

(k) Pointcloud (l) Volumetric map
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(m) Surface coverage, cs,max = 0.93
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(o) Normalized robot motion

Fig. 5. Reconstructions in simulation: Evaluation of the reconstruction results for the Stanford bunny (a-e), Stanford dragon (f-j) and the teapot (k-o)
datasets. We compare our methods to the methods of Kriegel [1] and Vasquez-Gomez [2].

distance moved by the robot in our experiments:

Norm. robot motion =

∑
Euclidean distances moved
Maximal total distance (16)

We compare our formulations to the IG methods of
Kriegel [1] and Vasquez-Gomez [2]. Kriegel neglects pos-
sible occlusions and directly integrates Eq. 2 in Eq. 1 to
obtain the total entropy, which they average over the total
number of traversed voxels n:

Gv,Kriegel(v) =
1

n

∑
∀r∈Rv

∑
∀x∈X

I0(x) (17)

Vasquez-Gomez defines desired percentages αdes,oc =
0.2 and αdes,op = 0.8 of occupied and occplane voxels
in the view, respectively, and bases his IG formulation on
how close the expected percentages αoc and αop are:

Gv,Vasquez (v) = f(αoc , αdes,oc) + f(αop , αdes,op) (18)

with

f(α, αdes) =

{
h1(α, αdes) if α ≤ αdes

h2(α, αdes) if α > αdes

(19)

where

h1(α, αdes) = −
2

α3
des

α3 +
3

α2
des

α2 (20)

and

h2(α, αdes) =−
2

(αdes − 1)3
α3 +

3(αdes + 1)

(αdes − 1)3
α2

− 6αdes

(αdes − 1)3
α+

3αdes − 1

(αdes − 1)3
(21)

f(·) is equal to one if the estimated percentage matches
the desired percentage.

We present the results in Fig. 5. Plots (5c), (5h) and
(5m) show the surface coverage achieved when using the
different metrics on the three models. The surface coverage



cs is calculated on the complete model surface, but not all
parts of a model’s surface are actually observable. This
is in part due to occlusions, for instance on the bottom
side where it touches the ground. But this can also be
due to the block matching algorithm5 failing to estimate
the depth for all areas, e.g. because of lacking texture or
suboptimal lighting conditions. The maximally achievable
surface coverage is shown as a horizontal blue line in
our plots, calculated by having a camera visiting all view
candidates.

When comparing the performance of the different for-
mulations, the Rear Side Voxel, Proximity Count and
Combined VI appear to have a slight advantage in surface
coverage speed if compared over all three experiments. In
the presented results, the Combined VI consists of Kriegel’s
VI with wKriegel = 30 and the Rear Side Entropy VI with
wn = 1. The choice of participating VIs in this combina-
tion is designed to fuse an entropy-based formulation with a
proximity-based one. The weights were found empirically,
however they were set in order to approximately balance
terms with different average magnitudes. While this linear
combination of VIs performs very well, outperforming its
components at times, the determination of the weighting
coefficients is an open problem. Offline learning methods
on large object sets might be a suitable solution, requiring
the addition of an object recognition module and database.

Considering the performance with respect to entropy
reduction, Vasquez-Gomez and perhaps Kriegel appear
to have an advantage over our methods, though entropy
reduction as shown in plots (5d), (5i) and (5n) is less
discriminative than surface coverage; It takes place steadily
at comparable rates for all formulations. Note that entropy
reduction also results from observing unknown but free
space in the map, where no new information about the
object is obtained. More object-oriented VI formulations
such as ours discover more new object surface at the
expense of freeing less space, possibly resulting in less
entropy reduction.

Robot motion cost, as shown in plots (5e), (5j) and
(5o), is not more discriminative than entropy reduction.
Combined VI and Kriegel’s method perform best by a small
margin if we neglect Occlusion Aware and Unobserved
Voxel VI. The latter two appear to be too constrained in
motion, yielding low cost but causing a degradation of their
reconstruction performance.

B. Real World

We show the setup of our real world experiments in
Fig. 6a. We equip a KUKA Youbot6, a mobile robot
with an omnidirectional base and a 5 DoF arm, with a
global shutter RGB camera7 on its end-effector. The vision
pipeline consists of SVO [20], a vision-based, monocular
SLAM algorithm, which estimates the camera motion, and
REMODE [21], an algorithm for real-time, probabilistic

5Refer to opencv.org for specifics about the algorithm.
6http://www.youbot-store.com
7Matrix Vision Bluefox mvBlueFox-IGC200wc.

(a) Reconstruction scene

(b) Pointcloud (c) Pointcloud

(d) Volumetric map (e) Volumetric map
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(f) Occupied voxels over time
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(g) Normalized robot motion

Fig. 6. Real world reconstruction scene and results



monocular dense reconstruction, which is able to estimate
depth for both strongly and weakly textured surfaces. To
retrieve depth information from a given view, the robot
moves the camera around the view that serves as key frame
until REMODE reports successful convergence of depth
estimates. While the vision pipeline and robot driver run on
the on-board NVIDIA Jetson TK1, the map, IG calculations
and NBV decisions are carried out on an Intel i7 desktop
machine, but online in real time.

We present reconstruction results for two different scenes
in Fig. 6. To evaluate the performance of different VI
formulations, we cannot use the surface coverage as there
is no ground truth data available. Instead, we report the
normalized number of occupied voxels, defined as

Norm. nr. of occupied voxels = Occupied voxels
Maximal nr. of occupied voxels (22)

Results are shown in Fig. 6. Comparisons must be carried
out with caution because exact repetition of initial start
positions cannot be guaranteed for different runs. In the
real experiments the Rear Side Entropy and Combined VI
outperformed all of our other formulations by a signif-
icant margin. They also performed well with respect to
movement cost, which we define in these experiments as
a combination of the movements of the base and the arm.
For the Combined VI as defined by Eq. 10, we used the
following weights: wo = 1, wu = 20, wb = 10 and
wn = 10. As in the simulated trials, these values were
chosen empirically to balance VI formulations of different
magnitudes.

V. CONCLUSION

We have proposed and evaluated novel VI formulations
that can be used for next best view decisions in volumetric
reconstruction tasks. They are shown to yield successful
reconstructions efficiently. Our results also show that in-
cluding the visibility likelihood of voxels when estimat-
ing the entropy from view candidates does not improve
performance for object-centric reconstruction tasks if no
other means to focus VI on the object are employed. When
considering particularly cluttered reconstruction scenes,
visibility considerations might offer performance benefits,
but this is left for future work.

Considering the likelihood of rays cast from view candi-
dates to hit part of the object on the other hand yields very
good results. We propose to find rays with a high likelihood
by evaluating if we expect it to hit the backside of an
already observed surface or to quantify the likelihood by
considering the proximity of traversed unobserved voxels to
already observed surfaces. This yields more object-focused
VI formulations and less observations of the space sur-
rounding the reconstruction target. We argue that the task
of finding obstacle free space around the object for robot
movement should be separated from the reconstruction
itself. It is therefore desirable to have the most object-
focused VI formulations possible.

The ROS-based, generic active dense reconstruction sys-
tem used in this work is made available for public use.
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