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Abstract— This paper deals with the problem of deploying a
team of flying robots to perform surveillance coverage missions
over a terrain of arbitrary morphology. In such missions,
a key factor for the successful completion is the knowledge
of the terrain’s morphology. In this paper, we introduce a
two-step centralized procedure to align optimally a swarm
of flying vehicles for the aforementioned task. Initially, a
single robot constructs a map of the area of interest using
a novel monocular-vision-based approach. A state-of-the-art
visual-SLAM algorithm tracks the pose of the camera while,
simultaneously, building an incremental map of the surrounding
environment. The map generated is processed and serves as an
input in an optimization procedure using the cognitive adaptive
methodology initially introduced in [1], [2]. The output of this
procedure is the optimal arrangement of the robot team, which
maximizes the monitored area. The efficiency of our approach
is demonstrated using real data collected from aerial robots in
different outdoor areas.

I. INTRODUCTION

The use of multi-robot teams has gained a lot of attention

in the recent years. This is due to the extended capabilities

that multiple robots offer with respect to a single robot

for the same task. Robot teams can be used in a variety

of missions including: surveillance in hostile environments

(i.e. areas contaminated with biological, chemical or even

nuclear wastes), environmental monitoring (i.e. air quality

monitoring, forest monitoring) and law enforcement missions

(i.e. border patrol), etc. In all the aforementioned tasks there

are several crucial factors that affect the overall behavior of

the robot teams. These include, but are not limited to, the

sensors the robots might have, the size of the robot team,

the type of robots used, etc. In this paper, we introduce a

two-step centralized procedure to align optimally a swarm of

flying vehicles. Initially, a single robot constructs a map of

the area of interest using a monocular-vision-based approach.

A state-of-the-art visual-SLAM algorithm tracks the pose of
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the camera while, simultaneously, building an incremental

map of the surrounding environment. The generated map

is processed and serves as an input in an optimization

procedure using the cognitive, adaptive methodology initially

introduced in [1], [2]. The optimization objectives are the

following:

(O1) The part of the terrain that is “visible” – i.e. that

is monitored – by the robots is maximized;

(O2) The team members are arranged so that for every

point in the terrain, the closest robot is as close as

possible to that point.

The majority of existing approaches for multi-robot surveil-

lance coverage, which concentrate mostly on the 2D case of

ground robots, deal only with one of the objectives (O1) or

(O2); see e.g. [3]-[9] and the references therein. Furthermore,

in most of the existing approaches the terrain morphology is

considered convex and/or known. In such cases the problem

of multi-robot surveillance coverage can be seen to be

equivalent to a standard optimization problem where the

robot trajectories are generated according to a gradient-

descent or gradient-descent-like methodology. However, in

the case where it is required that both of the objectives

(O1) and (O2) are simultaneously addressed and the terrain’s

morphology is non-convex and unknown, standard optimiza-

tion tools are not applicable anymore as these tools require

full knowledge of an objective function that depends on

the unknown terrain’s morphology. To overcome the above-

mentioned shortcomings of the existing approaches for multi-

robot surveillance coverage, we propose a new solution

that is based on the recently introduced Cognitive-based

Adaptive Optimization (CAO) algorithm [11], [12]. The main

advantage of CAO as compared to standard optimization

tools is that it does not require that the objective function to

be optimized is explicitly known; CAO instead requires that

at each time instant a value (measurement) of this objective

function is available. As a result, if it is possible to define

an objective function which may be unknown and depend

on the unknown terrain morphology but is available for

measurement for every given team configuration, the CAO

methodology will be directly applicable to the problem of

surveillance coverage treated in this paper. By introducing

an appropriate objective function, that is defined so that

both objectives (O1) and (O2) are simultaneously fulfilled,

we manage to make the CAO algorithm applicable to the

particular problem of 3D multi-robot surveillance coverage

treated in this paper. This objective function depends on the



unknown terrain’s characteristics and thus its explicit form

is not known. However, for any given team configuration

the value of this objective function can be directly computed

from the robots’ sensor measurements, and thus the CAO

algorithm can be applied to the problem at hand by using

such an objective function. It has to be emphasized that, apart

from rendering the problem of simultaneously addressing

(O1) and (O2) for unknown terrains solvable, the CAO-based

approach preserves additional attributes that make it partic-

ularly tractable: it can easily handle a variety of physical

constraints and limitations and it is fast and scalable. These

further attributes of the proposed CAO-based approach are

detailed in the next section. It is mentioned that CAO does

not create an approximation or estimation of the obstacles

location and geometry; instead, it produces on-line a local

approximation of the (unknown) cost function the robots

are called to optimize. For this reason, it requires simple

and thus scalable approximation schemes to be employed.

A key issue for the successful implementation of the CAO

proposed methodology in the case of a team of Micro

Aerial Vehicles (MAVs), is the accuracy of the input it will

have, which in this case is a 3D map. Since we deal with

MAVs, the choice of sensors to perceive the environment

to be monitored and therefore to construct the 3D maps

is limited. For GPS-denied navigation and mapping, vision

sensors and laser range finders are the only option. However,

laser scanners are too heavy for MAVs and have a limited

field of view. Therefore, cameras and inertial sensors are the

only viable solution for such limited weight and calculation

power budgets. For ground vehicles (cars), 3D occupancy

grids built from stereo vision and GPS data have been shown

to be a valid solution [13]. However, occupancy grids are not

a good option for MAVs because of their limited calculation

power. Lacroix [14] presented an off-line method to map a

large outdoor scenario in fine resolution using low-altitude

aerial stereo-vision images. Because stereo vision loses its

advantage when the baseline is too small compared to the

scene depth, we rely on a monocular solution in which the

appropriate baseline is provided by a keyframe-based visual

SLAM framework [15].

The rest of the paper is organized as follows. In section

2 we describe our visual-SLAM algorithm and how it is

combined with the cognitive based adaptive optimization

approach, while in section 3 we provide experimental results

using data obtained by real aerial robots. Finally in section

4 we raise issues for discussion and future work.

II. PROPOSED METHODOLOGY

In order to apply our methodology a two-step procedure is

applied. Initially, we use a single aerial vehicle to construct

a map of the area of interest using a monocular-vision-

based approach. This map is used as an input to the next

step which is the optimization procedure. In this section we

will initially describe the generation of the real-time 3D-map

using monocular SLAM and then how we use it as an input

into the cognitive optimization algorithm.

A. Real-Time 3D-Map Generation Using Monocular SLAM

To perform optimal surveillance coverage over an arbitrary

terrain, we need to reconstruct the area in 3D. Note that most

works on optimal coverage assume an existing map. In this

work, we use an approach to build this map online and in

real-time. Thus, the MAV has to be able to fly autonomously

in the yet-unknown and later-mapped area. For the vision-

based autonomous navigation, we use the approach described

in our previous work [16]-[17]. For the 3D reconstruction we

apply our meshing approach from [18]. The base for all our

visual approaches, is a monocular SLAM framework ([19] in

this particular case). This allows us to map and navigate in

unknown environments. The SLAM algorithm consecutively

builds a 3D sparse point cloud of the terrain to be observed

and yields also the camera pose for controlling the MAV. We

use a down-looking camera on the MAV and thus we can

easily mesh the point-cloud into a 3D elevation mesh [18].

As described in [18] we first extract the principal plane of the

map. Then we project the 3D point-cloud onto this plane. We

have now a 2D meshing problem which we solve efficiently

using a 2D delaunay approach. We reproject the obtained 2D

mesh information to the 3D points in the map. Note that we

only use points with a certain accuracy level given by the

SLAM algorithm. After median-smoothing the mesh-map we

have a good input for our optimal 3D coverage algorithms.

Note that we can recover the absolute scale factor of the

monocular SLAM by using an inertial sensor as we described

in [20]. This way, we can reconstruct a metric 3D mesh-map

of an arbitrary terrain. Figure 1 shows the initialization of

the visual SLAM algorithm and the reconstruction of our test

terrain.

B. The Cognitive-Based Optimization Approach

The Cognitive-based Adaptive Optimization (CAO) ap-

proach [10]-[12] was originally developed and analyzed for

the optimization of functions for which an explicit form is

unknown but their measurements are available as well as

for the adaptive fine-tuning of large-scale nonlinear control

systems. In this section, we will describe how the CAO

approach can be appropriately adapted and extended so that

it is applicable to the problem of multi-robot coverage. More

explicitly, let us consider the problem where M robots are

involved in a coverage task, attempting to optimize a given

coverage criterion. Apparently, the coverage criterion is a

function of the robots’ positions or poses (positions and

orientations), i.e.

Jk = J
(

x
(1)
k , . . . ,x

(M)
k

)

(1)

where k = 0,1,2, . . . denotes the time-index, Jk denotes

the value of the coverage criterion at the k-th time-step,

x
(1)
k , . . . ,x

(M)
k denote the position/pose vectors of robots

1, . . . ,M, respectively, and J is a nonlinear function which

depends, apart from the robots’ positions/poses, on the

particular environment where the robots live; for instance, in

the 2D case the function J depends on the location of the

various obstacles that are present, while in the 3D case with
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Fig. 1. (a) Initialization of the visual SLAM algorithm (on the left the
tracked features used to initialize the map, on the right the reference frame).
(b) The reference frame is displayed as a grid on the image (left). On
the right, a few reconstructed camera poses are displayed as faint tripods.
The bold tripod is the actual camera pose. This pose is used for the MAV
position controller and yields the metric map scale by fusing it with the IMU
measurements. (c) Generation of the textured map. (d) Sample of a meshed
and also textured (snowy) outdoor environment. For the CAO approach
the generated 3D mesh is sufficient, however, the texture gives the user
intuitive information of where the MAV is positioned at the given time
instance. Even with the texturing, this approach runs in real-time. Note that
the reconstruction precision is not very high. It is, however, largely sufficient
for our optimal-coverage tasks. Aid of the IMU we have a metric map and
estimate here the urban canyon width to be about 10m (error is <10% ).
The map reconstruction runs online while flying.

flying robots monitoring a terrain, the function J depends

on the particular terrain morphology.

Due to the dependence of the function J on the particular

environment characteristics, the explicit form of the function

J is not known in most practical situations; as a result,

standard optimization algorithms (e.g. steepest descent) are

not applicable to the problem in hand. However, in most

practical cases – like the one treated in this paper – the

current value of the coverage criterion can be estimated from

the robots’ sensor measurements. In other words, at each

time-step k, an estimate of Jk is available through robots’

sensor measurements,

Jn
k = J

(

x
(1)
k , . . . ,x

(M)
k

)

+ξk (2)

where Jn
k denotes the estimate of Jk and ξk denotes the noise

introduced in the estimation of Jk due to the presence of noise

in the robots’ sensors. Please note that, although it is natural

to assume that the noise sequence ξk is a stochastic zero-

mean signal, it is not realistic to assume that it satisfies the

typical Additive White Noise Gaussian (AWNG) property

even if the robots’ sensor noise is AWNG: as J is a

nonlinear function of the robots’ positions/poses (and thus

of the robots’ sensor measurements), the AWNG property is

typically lost.

Apart from the problem of dealing with a criterion for

which an explicit form is not known but only its noisy mea-

surements are available at each time, efficient robot coverage

algorithms have additionally to deal with the problem of

restricting the robots’ positions so that obstacle avoidance

as well as robot formation constraints are met. In other

words, at each time-instant k, the vectors x
(i)
k , i = 1, . . . ,M

should satisfy a set of constraints which, in general, can be

represented as follows:

C
(

x
(1)
k , . . . ,x

(M)
k

)

≤ 0 (3)

where C is a set of nonlinear functions of the robots’

positions/poses. As in the case of J , the function C depends

on the particular environment characteristics (e.g. location

of obstacles, terrain morphology) and an explicit form of

this function may be not known in many practical situations;

however, it is natural to assume that the coverage algorithm

is provided with information whether a particular selection

of robots’ positions/poses satisfies or violates the set of

constraints (3).

Given the mathematical description presented above, the

multi-robot coverage problem can be mathematically de-

scribed as the problem of moving x
(1)
k , . . . ,x

(M)
k to a set of

positions/poses that solves the following constrained opti-

mization problem:

minimize (1)

subject to (3) .
(4)

As already noticed, the difficulty in solving in real-time and

in real-life situations the constrained optimization problem

(4) lies in the fact that explicit forms for the functions J
and C are not available. To circumvent this difficulty, the



CAO approach, appropriately modified to be applicable to

the problem in hand, is adopted. This algorithm is capable

of efficiently dealing with optimization problems for which

the explicit forms of the objective function and constraints

are not known, but noisy measurements/estimates of these

functions are available at each time-step. More details about

how the CAO approach is applied to the multi-robot coverage

problem described above can be found in [1]- [21]. In the

specific 3D case studied here the problem can be formulated

as following.

Consider a team of M flying robots that is deployed to

monitor an unknown terrain T . Let z = Φ(x,y) denote the

unknown height of the terrain at the point (x,y) and assume

for simplicity that the terrain T is rectangular along the

(x,y)-axes, i.e. xmin ≤ x ≤ xmax,ymin ≤ y ≤ ymax. Let P =
{x(i)}M

i=1 denote the configuration of the robot team, where

x(i) denotes the position/pose of the i-th robot.

Given a particular team configuration P , let V denote

the visible area of the terrain, i.e. V consists of all points

(x,y,Φ(x,y))∈T that are visible from the robots. Given the

robots’ sensor capabilities, a point (x,y,Φ(x,y)) of the terrain

is said to be visible if there exists at least one robot so that

• the robot and the point (x,y,Φ(x,y)) are connected by

a line-of-sight;

• the robot and the point (x,y,Φ(x,y)) are at a distance

smaller than a given threshold value (defined as the

maximum distance the robot’s sensor can “see”).

Apparently, the main objective for the robot team is to

maximize the visible area V . However, this cannot be the

only objective for the robot team in a coverage task: trying

to maximize the visible area will simply force the robots

to “climb” as high as1 possible. In parallel to maximizing

the visible area, the robot team should make sure that it

minimizes the average distance between each of the robots

and the terrain subarea the particular robot is responsible

for, where the terrain subarea a particular robot is responsible

for, is defined as follows: given a team configuration P ,

the subarea of the terrain the i-th robot is responsible for is

defined as the part of the terrain that (a) is visible by the

i-th robot and (b) each point in this subarea is closer to the

i-th robot than any other robot of the team. This second,

and parallel to maximizing visibility, objective for the robot

team is necessary for two practical reasons: (a) firstly, the

closer is the robot to a point in the terrain the better is,

in general, its sensing ability to monitor this point and (b)

secondly, in many multi-robot coverage applications there is

the necessity of being able to intervene as fast as possible

in any of the points of the terrain with at least one robot.

Having in mind that the robot team has to successfully meet

the two above-described objectives, we define the following

combined objective function the robot team has to minimize:

J(P) =
∫

q∈V
min

i∈{1,...,M}

∣

∣

∣
x(i)−q

∣

∣

∣

2

dq+K

∫

q∈T −V
dq (5)

1Note also that in the case where there are no limits for the robot’s
maximum height and the maximum sensing distance, it suffices to have a
single robot at a very high position to monitor the whole terrain.

where K is a large user-defined positive constant. The first

of the terms in the above equation is related to the second

objective (minimize the average distance between the robots

and the subarea they are responsible for) and the second term

is related to the invisible area in the terrain (
∫

q∈T −V dq is

the total part of the terrain that is not visible by any of the

robots). The positive constant K is used to make sure that

both objectives are met. To see this, consider the case where

K = 0, in which case we will have that the robots, in their

attempt to minimize their average distance to the subarea

they are responsible for, may also seek to minimize the total

visible area. On the other hand, in case where the first of the

terms in (5) is absent, we will have the situation mentioned

above where the robots in their attempt to maximize the

visible area will have to “climb” as high as they are allowed

to.

It has to be emphasized that the positive constant K should

be chosen sufficiently large so that the second term in (5)

dominates the first term unless no or a negligible part of the

terrain remains invisible. In this way, minimization of (5) is

equivalent to firstly making sure that all – or almost all –

of the terrain is visible and then to locate the robots so that

their average distance to the subarea they are responsible for

is minimized.

A large choice for the positive term K plays another crucial

role for the practical implementation of the CAO algorithm

in multi-robot coverage applications: the problem with the

performance index defined in (5) is that its second term
∫

q∈T −V dq cannot be, in general, computed in practice; as

this term involves the part of the terrain that is not currently

visible, its computation requires that the geometry this part is

known or equivalently, as the invisible part changes with the

evolution of the team’s configuration, that the whole terrain

is known. To overcome this problem, instead of minimizing

(5) the following performance index is actually minimized

by the CAO approach:

J̄(P) =
∫

q∈V
min

i∈{1,...,M}

∣

∣

∣
x(i)−q

∣

∣

∣

2

dq

+K

∫

(x,y,φ(x,y))∈T −V
I (x,y)dxdy (6)

where I (q) denotes the indicator function that is equal to

1 if the point (x,y,φ(x,y)) belongs to the invisible area of

the terrain and is zero, otherwise. In other words, in the cost

criterion J̄(P) and for the whole invisible area, the unknown

terrain points (x,y,φ(x,y)) are replaced by (x,y,1), i.e. J̄(P)
assumes that the whole invisible area is a flat subarea.

It is not difficult for someone to see that the replacement

of the cost criterion (5) by the criterion (6) has a negligible

implication in the team’s performance: as a large choice for

K corresponds to firstly making sure that the whole terrain is

visible and then to minimizing the average distance between

the robots and their responsible subareas, minimizing either

of criteria (5) or (6) is essentially the same.

An efficient trajectory generation algorithm for optimal

coverage – i.e. for minimization of the cost criteria (5) or

(6) – must make sure that the physical constraints are also



met throughout the whole multi-robot coverage application.

Such physical constraints include, but are not limited to, the

following ones:

• The robots remain within the terrain’s limits, i.e. they

remain within [xmin,xmax] and [ymin,ymax] in the x− and

y-axes, respectively.

• The robots satisfy a maximum height requirement while

they do not “hit” the terrain, i.e. they remain within

[Φ(x,y) + d,zmax] along the z-axis, where d denotes

the minimum safety distance (along the z-axis) the

robots’ should be from the terrain and zmax denotes the

maximum allowable height for the robots.

• The robots do not come closer on to each other than a

minimum allowable safety distance dr.

It is not difficult for someone to see that all the above

constraints can be easily cast in the form (3) and thus can

be handled by the CAO algorithm.

III. EXPERIMENTAL RESULTS

To validate our approach in a realistic environment, we

have used two different data sets which were collected with

the use of a miniature quadrocopter specially designed for

the needs of the European project sFLY (www.sfly.org).

Our experimental platform is the quadrocopter Pelican [22]

presented in Fig. 2, developed by Ascending Technologies

[23]. The helicopter is driven by four rotors, symmetric to

the center of mass. The control of the quadrocopter is done

only by changing the rotation speed of the propellers and

is described in more detail in [22]. The key features of this

system are the payload of about 500 g, the flexible design

enabling one to easily mount different payloads such as

computer boards or cameras, and a flight autonomy of about

twenty minutes. The helicopter features also a flight control

unit (autopilot) for low-level data fusion and flight control.

In particular, the fused data are body accelerations, body

angular velocities, magnetic compass, and height measured

by an air pressure sensor. As for the sensing, we equipped

the helicopter with a Point-Grey USB Firefly camera with a

resolution of 752x 480 pixels and global shutter. The optics

provides a 150-degree field-of-view. The camera faces down

since we expect the most stable, traceable features coming

from the ground. The camera is used for our visual SLAM

algorithm and provides real-time 6DoF pose estimates of

the helicopter. For the visual SLAM and all computationally

more expensive onboard tasks, we equipped the helicopter

with a 1.6 GHz Intel Atom based embedded computer, also

available from [23]. This computer is equipped with 1 GB

RAM, a MicroSD card slot for the operating system, and

a mini WiFi card (N standard) for remote access to the

helicopter.

The scenarios tested consider a team of four MAVs

and correspond into two different areas. The first area is

Birmensdorf in Switzerland and it’s presented in Fig. 3, while

the second area corresponds to the ETHZ’s hospital area and

it’s presented in Fig. 4. More details about the data and the

methodology used to extract them, are presented in [16] and

[18].

Fig. 2. The Pelican quadrocopter

Fig. 3. Outdoor flight path through the Birmensdorf area.

Fig. 4. Outdoor flight path through the ETHZ’s hospital area.

The main constraints imposed to the robots are that they

remain within the terrain’s limits, i.e. within [xmin,xmax]
and [ymin,ymax] in the x− and y− axes, respectively. At

the same time they have to satisfy a maximum height

requirement while they do not “hit” the terrain, i.e. they

remain within [Φ(x,y) + d,zmax] along the z-axis. Several

initial configurations for each scenario were tested. The

values of the cost function for three different configura-

tions, in the case of the Birmensdorf area are presented

in Fig. 5. Sample trajectories for a robot team with initial

coordinates for Robot 1 (1.34,121.29,22.91), for Robot 2

(2.69,121.29,22.91), for Robot 3 (4.04,121.39,22.91) and

for Robot 4 (5.39,121.29,22.91) (all units are in meters)



are presented in Fig. 6, while in Fig. 7 the final positions

of 3 robot teams starting from different initial positions are

presented in a 3D view. Different marker type corresponds

to different robots, while different color corresponds to a

different team. The values of the cost function for three initial

configurations in the case ETHZ’s hospital area are presented

in Fig. 8. Sample trajectories for a robot team with initial

coordinates for Robot 1 (2.33,95.57,41.95), for Robot 2

(25.64,97.90,41.95), for Robot 3 (48.95,100.23,41.95) and

for Robot 4 (72.26,102.56,41.95) (all units are in meters)

are presented in Fig. 9. In Fig. 10 the final positions of

3 robot teams starting from different initial positions are

presented in a 3D view.
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Fig. 5. Comparative cost functions for different initial robot team
configurations in Birmensdorf area.

Fig. 6. 3D Path followed by a robot team in a coverage scenario in
Birmensdorf area.

IV. CONCLUSIONS AND FUTURE WORK

A two-step centralized procedure to align a swarm of

flying vehicles to perform surveillance coverage has been

presented and formally analyzed. Initially a state-of-the-art

visual-SLAM algorithm tracks the pose of the camera while,

simultaneously, building an incremental map of the surround-

ing environment, which is used as an input in an optimization

procedure. Based in a cognitive based methodology an

optimal alignment is produced, which maximizes the area

Fig. 7. Final configurations of three robot teams starting from different
initial positions for the Birmensdorf area.
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Fig. 8. Comparative cost functions for different initial robot team
configurations in ETHZ’s hospital area.
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Fig. 9. 3D Path followed by a robot team in a coverage scenario in the
ETHZ’s hospital area.

monitored by the aerial robots. The proposed approach has

the following key advantages with respect to previous works:

• it does not require any a priori knowledge on the
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Fig. 10. Final configurations of three robot teams starting from different
initial positions for the ETHZ’s hospital area.

environment;

• it works in any given environment, without the necessity

to make any kind of assumption about its topology;

• it can incorporate any kind of constraints;

• it does not require a knowledge about these constraints

since they are learnt during the task execution;

• its complexity is low allowing real time implementa-

tions;

• it requires low weight and cost sensors, which makes it

ideal for aerial robot applications.

The advantages of the proposed methodology make it

suitable for real implementations and the results obtained

through numerical simulations give us the motivation to

adopt the CAO also in other frameworks. We are interested

into formulating the same problem in a distributed manner by

using different cost functions for each team. This approach

is closer to real world applications since it will not depend

into a centralized scheme with all the known disadvantages.

Apart from that a decentralized approach will allow us to

include communications constraints. We are also interested

in incorporating more realistic constraints including sensor

limitations. Furthermore, we expect that many important

tasks in mobile robotics can be approached by CAO-based

algorithms: for example coordinated exploration, optimal

target tracking, multi-robot localization, etc. This is due to

the fact that the CAO approach does not require an a priori

knowledge of the environment and it has low complexity.

Both these issues are fundamental in mobile robotics.
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