
A Dataset For API Usage
Anand Ashok Sawant
SORCERERS @ SERG

Delft University of Technology
a.a.sawant@student.tudelft.nl

Alberto Bacchelli
SORCERERS @ SERG

Delft University of Technology
a.bacchelli@tudelft.nl

Abstract—An Application Programming Interface (API) pro-
vides a specific set of functionalities to a developer. The main aim
of an API is to encourage the reuse of already existing function-
ality. There has been some work done into API popularity trends,
API evolution and API usage. For all the aforementioned research
avenues there has been a need to mine the usage of an API in
order to perform any kind of analysis. Each one of the approaches
that has been employed in the past involved a certain degree
of inaccuracy as there was no type check that takes place. We
introduce an approach that takes type information into account
while mining API method invocations and annotation usages.
This approach accurately makes a connection between a method
invocation and the class of the API to which the method belongs
to. We try collecting as many usages of an API as possible, this
is achieved by targeting projects hosted on GitHub. Additionally,
we look at the history of every project to collect the usage of an
API from earliest version onwards. By making such a large and
rich dataset public, we hope to stimulate some more research in
the field of APIs with the aid of accurate API usage samples.

I. INTRODUCTION

An Application Programming Interface (API) is a set of
functionalities provided by a third-party component (e.g.,
library and framework) that is made available to software
developers. APIs are extremely popular as they promote reuse
of existing software systems [1].

Researchers have investigated APIs under different angles,
such as API popularity trends [2], API evolution [3], and
API usage [4]. This research has lead to valuable insights
on what the research community currently knows about APIs
and how practitioners use them. For example, Xie et al. have
developed a system called MAPO wherein they have attempted
to mine API usage for the purpose of providing developers API
usage patterns [4]. Based on a developers need MAPO can
recommend various code snippets that have been mined from
other open source projects. This is one of the first systems
wherein API usage recommendation leveraged open source
projects to provide code samples.

One of the major drawbacks of the current approaches to
investigating APIs is that what it is measured as “usage”—
and it used to derive popularity, evolution, and utilization
patterns—is the information that can be gathered from file
imports (e.g., import in Java) and the occurrence of method
names in files. This information can be unreliable as there is
no type checking to verify that a method invocation truly does
belong to the API in question and that imported packages are
used. Another important limitation of previous work is that the
case studies generally include a small number of examples.

With the current work, we try to overcome these issues: We
provide an extensive dataset with detailed and type-checked
API method invocation information. Our dataset includes
information on 5 APIs and how their public methods are used
over the course of their entire lifetime by other 20,263 projects.

To achieve this, we collect data from the open source
software (OSS) repositories on GitHub. GitHub in recent years
has become the most popular platform for OSS developers, as
it offers distributed version control, a pull-based development
model, and features similar to social networks [5]. We consider
Java projects hosted on GitHub that offer APIs and quantify
their popularity among other projects hosted on the same
platform. We select 5 representative projects (from now on, we
call them only APIs to avoid confusion with client projects)
and analyze their entire history to collect information on their
usage. In particular, we get fine-grained information about
method calls using a custom type resolution that does not
require to compile the projects.

We share our dataset and describe our data collection
methods with the hope not only to trigger further research
based on finer-grained and vast information, but also make it
easier to replicate studies and share analyses.

II. DATASET CONSTRUCTION

The dataset has been built through two steps: (1) We collect
data on the usage at project level of APIs across projects
within GitHub and we use it to rank APIs according to their
popularity; (2) we devise a method to gather fine-grained type-
based information on API usages and we collect historical
usage data traversing the history of each file of each API client.

A. Coarse-grained API usage: The most popular APIs

GitHub stores more than 10 million repositories [6] writ-
ten in different languages and using a diverse set of build
automation tools and library management systems. To create
the current dataset, we focus our effort on one programming
language, i.e., Java, and we one specific build automation tool,
i.e., Maven.1 This made the data collection and processing
more manageable, yet relevant. Maven employs the use of a
Project Object Model (POM) files to describe all the dependen-
cies and targets of a certain project. POM files contain artifact
ID and version of each project’s dependency, thus allowing us
to know exactly which APIs (and version) a project uses. The
following is an example of an entry for a POM file:

1Maven is one of the most popular Java build tools [7].



<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>

</dependency>

To determine the popularity of APIs on a coarse-grained
level (i.e., project level), we parsed POM files for all GitHub
projects using Maven (ca. 42,000). Figure 1 shows a partial
view of the results with the 20 most popular APIs in terms of
how many GitHub projects depend on them.

0 5,000 10,000 15,000 20,000 

hibernate-em 
logback-classic 

jcl-over-slf4j 
spring-orm 
spring-web 

commons-lang 
jstl 

mockito-all 
mysql-conn.-java 

spring-core 
guava 

spring-webmvc 
spring-test 

commons-io 
spring-context 

servlet-api 
slf4j-log4j12 

log4j 
slf4j-api 

junit 

NUMBER OF PROJECTS REFERENCING THE API 

API ARTIFACT 
ID 

Figure 1. Popularity of APIs referenced on Github

This is in-line with a previous analysis of this type published
by Primat as a blog post [8]. Interestingly, we note that our
results show that JUnit is by far the most popular and Primat’s
results report that JUnit is just as popular as SLF4J. This
discrepancy can be caused by the differences in sample sizes
(he sampled 10,000 projects, while we sampled about 42,000).

B. Fine-grained API usage

We used our coarse-grained analysis of popularity as a
first step to select API projects to populate our database. To
ensure that the selected API projects offer rich information
on API usage and its evolution, rather than just sporadic use
by a small number of projects, we consider projects with the
following feature: (1) have a broad popularity for their public
APIs (i.e., they are in the top 1% of projects by the number
of client projects), (2) have an established and reasonably
large code base (i.e., they have at least 150 classes in their
history), (3) and are evolved and maintained (i.e., they have at
least 10 commits per week in their lifetime). Based on these
characteristics, we eventually select the five APIs summarized
in Table I, namely Spring, Hibernate, Guava, and Guice and
Easymock. We decide to remove, for example, JUnit as it is

an outlier in popularity and its code base does not respect
our requirements. We decided to keep Easymock, despite its
small number of classes and relatively low amount of activity
in it’s repository (ca. 4 commits per week), to add variety
to our sample. The chosen APIs are to be used by clients in
different ways: e.g., Guice clients use it through annotations,
while Guava clients instantiate an instance of a Guava class
and then interact with it through method invocations.

Table I
SUBJECT APIS

Unique EntitiesAPI & GitHub repo Inception Releases Classes Methods
Guava
google/guava Apr 2010 18 379 2,010

Guice
google/guice Jun 2007 8 192 463

Spring
spring-framework Feb 2007 40 431 1,161

Hibernate
hibernate/hibernate-orm Nov 2008 77 585 1,963

EasyMock
easymock/easymock Feb 2006 14 10 86

The most common approaches to automatically mine hetero-
geneous datasets for API usage are text-matching-based, build-
based and partial-programming-analysis-based. The first, used
for example by Mileva et al. [2], extracts API usage by match-
ing explicit imports and corresponding method invocations
directly in the text of source code files; the second, used
for example by Lämmel et al. [9], extracts API usage by
first compiling the code and then parsing generated files for
precise type-correct method usage information; the third, uses
the partial programming analysis (PPA) tool developed by
Dagenais et al. [10], which can parse incomplete code snippets
and give accurate type information on the code snippet. At first
we tried all three approaches to generate our usage dataset, but
results were not satisfactory to our aim. The text-matching-
based approach proved problematic, for example, in the case
of imported API classes that share method names, because we
could not disambiguate the method invocations without type-
information. Although some analysis tools used in dynamic
languages [11] handle these cases through the notion of candi-
date classes, we considered this approach suboptimal for typed
languages. The build-based approach was also problematic.
Although it provided precise information, to use it we had
to discard ca. 3,000 projects (only considering Guava clients)
and many more revisions since they could not be compiled.
The PPA approach was flawed as the tool that would perform
the analysis works only in the eclipse plugin environment.
This would require all projects that are to be analyzed to be
imported into eclipse. Such a task proved to be infeasible due
to the number of projects that were to be analyzed.

Our final solution was to build a tool based on the JDT
Java AST Parser [12], i.e., the parser used in the Eclipse IDE
for continuous compilation in background. This parser handles
partial compilation: When it receives in input a source code
file and a jar file with possibly imported libraries, it is capable
of resolving the type of methods invocation and annotations

https://github.com/google/guava
https://github.com/google/guice
https://github.com/spring-projects/spring-framework
https://github.com/hibernate/hibernate-orm
https://github.com/easymock/easymock


of everything defined in the code file or in the provided jar.
With our tool based on JDT, we gather the entire history of

usage of API artifacts over different versions. In practice, we
manually downloaded all the jar files corresponding to all the
releases of the five considered API projects, then we used Git
to obtain the history of each client project and we run the JDT
parser on each source code file providing the jar with the ver-
sion of the API that the client project declares in Maven. The
result are accurate type-resolved method invocation references
for the considered projects through their whole history.

C. Results

Table II shows an introductory view on the information
about the collected usage data. We see for example that in
the case of Guava, even though version 18 is the latest (see
Table I), version 14.0.1 is the most popular amongst clients.
APIs such as Spring, Hibernate and Guice predominantly
expose their APIs as annotations, however we see also a
large use of methods from their APIs. The earliest usages of
Easymock and Guice are outliers as GitHub as a platform was
launched in 2008, thus the repositories that refer to these APIs
were moved to GitHub as existing projects.

Table II
INTRODUCTORY USAGE STATISTICS

Most popular Usage across historyAPI release Invocations Annotations
Guava 14.0.1 1,148,412 —
Guice 3.0 59,097 48,945
Spring 3.1.1 19,894 40,525
Hibernate 3.6 196,169 16,259
EasyMock 3.0 38,523 —

III. DATA ORGANIZATION

We stored all the data that was collected from all the client
GitHub projects and API projects in a relational database,
precisely PostresSQL. We have chosen this type of database
because the usage information that we collect can be naturally
expressed in forms of relations among the entities. Also we
can immediately leverage SQL functionalities to perform some
initial analysis and data pruning.

Figure 2 shows the database schema for our dataset. On
the one hand we have information for each client project: The
PROJECTS table is the starting point and stores a project’s
name and its unique ID. Connected to this we have PROJECT-
DEPENDENCY table, which stores information collected from
the Maven POM files about the project’s dependencies. We use
a DATE COMMIT attribute to trace when a project starts in-
cluding a certain dependency in its history. The CLASSES table
contains one row per each uniquely named class in the project;
in the table CLASS HISTORY we store the different versions of
a class (including its textual content, ACTUAL FILE) and con-
nect it to the tables METHOD INVOCATION and ANNOTATION
where information about API usages are stored. On the other
hand, the database stores information about API projects, in
the tables prefixed with API. The starting point is the table
API that stores the project name and it is connected to all its

versions (table API VERSION, which also stores the date of
creation), which are in turn connected classes (API CLASS)
and their methods (API METHOD) that also store information
about deprecation. Note that in the case of annotations we do
not really collect them in a separate table as annotations are
defined as classes in Java.

A coarse-grained connection between a client and an API is
done with a SQL query on the tables PROJECTDEPENDENCY,
API and API VERSION. The finer-grained connection is ob-
tained by also joining METHOD INVOCATION/ANNOTATION
and API CLASS & API METHOD.

The full dataset is available as a PostgreSQL data dump
on FigShare [13], under the CC-BY license. For platform
limitations on the file size the dump has been split in various
tar.gz compressed files, for a total download size of 51.7 GB.
The dataset uncompressed requires 62.3 GB of disk space.

IV. LIMITATIONS

Mining API usages on such a large scale and to this
degree of accuracy is not a trivial task. We report consequent
limitations to our dataset. First, to analyze as many projects as
possible on GitHub, we needed to checkout the correct/latest
version of the project on GitHub. GitHub uses git as a ver-
sioning system which employs branches, thus makes the task
of automatically checking out the right version of the client
challenging. We consider that the latest version of a given
project would be labeled as the ‘master’ branch. Although
this is a common convention, by restricting ourself to only
the master branch there is a non-negligible chance that some
projects are dropped. Second, we target only projects based on
a specific build automation tool on GitHub. This results in data
from just a subset of Java projects on GitHub and not all the
projects. This may in particular affect the representativeness
of the sample of projects. We try to mitigate this effect by
considering one of the most popular building tools in Java:
Maven. Third, even though GitHub is a very popular repository
for open source software projects, this sole focus on GitHub
leads to the oversight of projects that are on other open source
platforms such as Sourceforge and Bitbucket. Moreover, no
studies have yet compared the representativeness of GitHub
projects with respect to industrial ones.

V. RESEARCH OPPORTUNITIES

The data we collected can be used for a number of appli-
cations. We outline some in the following.

Knowing which parts of an API are popular (i.e., used
by most projects) can give an indication as to what kind
of features of an API are most in demand and give API
developers an indication about features of their API that
should be changed with more care to limit the introduction
of breaking changes. In addition, API methods used by more
clients could be considered as “better tested” than methods
sporadically used, this can give a quality indication to someone
deciding which library to adopt or whether to update to a
new version. Moreover, the popularity of APIs can be used to
support program comprehension of the libraries themselves:



ProjectDependency
pd_id INT

name VARCHAR(45)

version VARCHAR(45)

date_commit DATE

pr_id INT

Indexes

Projects
pr_id INT

project_name VARCHAR(45)

Indexes

Classes
cl_id INT

class_name VARCHAR(45)

pr_id INT

Indexes

Class_history
ch_id INT

change_date DATE

author_name VARCHAR(45)

log_message VARCHAR(45)

actual_file LONGTEXT

cl_id INT

Indexes

Method_invocation
mi_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Annotation
an_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Api
api_id INT

api_name VARCHAR(45)

Indexes

Api_version
v_id INT

version VARCHAR(45)

date_created DATE

api_id INT

Indexes

Api_class
c_id INT

package_name VARCHAR(45)

class_name VARCHAR(45)

is_deprecated BOOLEAN

v_id INT

Indexes

Api_method
m_id INT

method_name VARCHAR(45)

is_deprecated VARCHAR(45)

c_id INT

Indexes

Figure 2. Database Schema For The Fine-grained API Usage Dataset

For example, by considering popular API one could find entry
points in a system, as it has been done with emails [14].

The evolution of the features of the API can be mapped to
give an indication as to what has made the API popular. This
can be used to design and carry out studies on understanding
what precisely makes a certain API more popular than other
APIs that offer a similar service. Moreover API evolution
information gives an indication as to exactly at what point
of time the API became popular, thus it can be studied in
coordination with other events occurring to the project.

A large set of API usage examples is a solid base for rec-
ommendation systems: One of the most effective ways to learn
about an API is by seeing samples [15] of the code in actual
use. By having a set of accurate API usages at ones’ disposal,
this task can be simplified and useful recommendations can
be made to the developer; similarly to what has been done,
for example, with Stack Overflow posts [16].

VI. CONCLUSION

We have presented a rich and detailed dataset to allow
researchers and developers alike get insights into trends related
to APIs. A conscious attempt has been made to harvest all
the API usage accurately. A total of 20,263 projects and
accumulated a grand total of 1,482,726 method invocations
and 85,098 annotation usages related to 5 APIs have been
mined. It is our hope that our large database of API method
invocations and annotation usages will trigger even more
precise and reproducible work in relation to software APIs.

REFERENCES

[1] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[2] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” in
Testing–Practice and Research Techniques. Springer, 2010, pp. 173–
180.

[3] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
Journal of software maintenance and evolution: Research and Practice,
vol. 18, no. 2, pp. 83–107, 2006.

[4] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories,” in Proceedings of MSR 2006, pp. 54–57.

[5] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German, and
P. Devanbu, “Cohesive and isolated development with branches,” in
Fundamental Approaches to Software Engineering. Springer, 2012,
pp. 316–331.

[6] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean
GHTorrent: Github data on demand,” in Proceedings of MSR 2014, pp.
384–387.

[7] V. Massol and T. M. O’Brien, Maven: A Developer’s Notebook: A
Developer’s Notebook. O’Reilly, 2005.

[8] O. Primat, “Github’s 10,000 most popular java projects – here are the top
libraries they use,” http://blog.takipi.com/githubs-10000-most-popular-
java-projects-here-are-the-top-libraries-they-use/, nov 2013.

[9] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage
analysis of open-source java projects,” in Proceedings of ACM SAC
2011, pp. 1317–1324.

[10] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” in ACM Sigplan Notices, vol. 43, no. 10. ACM, 2008, pp.
313–328.

[11] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: an extensible language-
independent environment for reengineering object-oriented systems,” in
Proceedings of CoSET 2000.

[12] L. Vogel, “Eclipse JDT-Abstract Syntax Tree (AST) and the java model-
tutorial,” http://www.vogella.com/tutorials/EclipseJDT/article.html.

[13] A. Sawant and A. Bacchelli, “API Usage Databases,” 03 2015.
[Online]. Available: http://dx.doi.org/10.6084/m9.figshare.1320591

[14] A. Bacchelli, M. Lanza, and V. Humpa, “RTFM (Read The Factual
Mails) –augmenting program comprehension with remail,” in Proceed-
ings of CSMR 2011 (15th IEEE European Conference on Software
Maintenance and Reengineering), 2011, pp. 15–24.

[15] M. P. Robillard and R. DeLine, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[16] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow in
the ide,” in Proceedings of ICSE 2013 (35th International Conference
on Software Engineering, Tool Demo Track). IEEE CS Press, 2013,
pp. 1295–1298.

http://blog.takipi.com/githubs-10000-most-popular-java-projects-here-are-the-top-libraries-they-use/
http://blog.takipi.com/githubs-10000-most-popular-java-projects-here-are-the-top-libraries-they-use/
http://www.vogella.com/tutorials/EclipseJDT/article.html
http://dx.doi.org/10.6084/m9.figshare.1320591

