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ABSTRACT 

The human visual system, at the primary cortex, has 
receptive fields that are spatially localized, oriented 
and bandpass. It has been shown that a certain 
learning algorithm to produce sparse codes for natural 
images leads to basis functions with similar properties. 
This learning algorithm optimizes a cost function that 
trades off representation quality for sparseness, and 
searches for sets of natural images, which basis 
functions lead to good sparse approximations. The 
result of the learning algorithm is a dictionary of basis 
functions with localization in space, direction and 
scale. 
In this paper, dictionaries for different set of images 
are showed and their own properties are described 
and verified. It will be showed that the learning 
algorithm leads to overcomplete bases functions that 
“capture” the intrinsic structure of the images. This 
allows efficient coding of the images with good 
representation quality. The results are applied to 
image approximation and denoising. 

1. INTRODUCTION 

In 1962 and ’68, the Nobel prize winning discoveries 
of Hubel and Weisel showed that the mammals primary 
visual cortex  (called V1) consists of cells responsive to 
simple and complex features in the input. For example, 
most cells in the visual cortex respond best to edges at 
some particular angle or the other (thus they are spatially 
oriented, see Fig.1). More generally, it has been proven 
that V1 has receptive fields that are characterized as being 
spatially localized, oriented and bandpass; that is, they are 
selective to structure of the visual input at different spatial 
scales [4]. One approach to understanding such response 
properties of visual neurons has been to consider their 
relationship to the statistical structure of natural images in 
terms of efficient coding. In [1],[2] Olshausen et al. 
showed that by designing an algorithm that attempts to 
find sparse linear codes for natural scenes, develops a 

complete family of localized, oriented and bandpass 
receptive fields, similar to those found in the primary 
visual cortex. 

Fig.1 Orientation columns in a patch of the monkey visual cortex, 
visualized with modern imaging techniques. Colors varying from red to 
violet indicate orientation preference of cells varying from zero to 180 
degrees. The overlaid white lines also show the orientation preference in 
each area. 

2. GENERATIVE IMAGE MODEL 

In [1] the authors propose that the neurons in V1 model 
,the structure of images I ( y x ) in terms of a linear 

superposition of basis functions φ  plus noise ε ( x, y) :i

, ,I ( y x ) =∑i
s φ( y x ) +ε ( y x ) (1)i , 

One can think to these basis functions as a simple 
“features vocabulary” for describing images in terms of 
additive functions. Note also that these bases are not 
necessarily orthogonal. 
The goal of efficient coding is to find a set of φi  that 
forms a complete code (that is, spans the image space) and 
results in the coefficient values being as sparse and 
statistically independent as possible over an ensemble of 
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natural images. Sparseness of coefficients allows for a 
small number of bases to represent an image. This 
resemble what found in V1, where neurons represent data 
using a small number of active units. The statistical 
independence, in terms of coding, obviously reduces the 
redundancy of the code, while, in neurobiological words, 
translates the fact that neurons are thought as independent 
of the activity of their neighbours. 

One line of approach to this problem, accounting for 
sparseness and independence, is based on principal 
component analysis (PCA), in which the goal is to find a 
set of mutually orthogonal bases functions that capture the 
directions of maximum variance in the data and for which 
the coefficients si  are pairwise decorrelated. However, 
the receptive fields (bases) that result from this process 
are not localized as it would be desirable. Moreover, it 
assumes that the original data are well described by a 
Gaussian distribution but natural scenes contain many 
higher order forms of statistical structure. In this case the 
independent component analysis (ICA) would be suitable 
because accounts for non-Gaussian distributions. Two 
limitations common to both of these techniques are that 
they do not allow for noise to be modelled separately from 
the signal structure and that they do not allow for 
overcomplete codes in which there are more basis 
functions than input dimensions.  
Overcompleteness in the representation is important 
because it allows for the joint space of position, 
orientation, and spatial-frequency to be tiled smoothly 
without artefacts. More generally, it allows for a greater 
degree of flexibility in the representation, as there is no 
reason to believe a priori that the number of “causes” for 
images is less than or equal to the number of pixels. 

3. CODEBOOK LEARNING ALGORITHM

     The strategy for inferring the codebook from a set of 
natural scenes is explained in [1],[2]. It applies a Bayesian 
method for deriving an optimal basis that trades off 
reconstruction quality for sparseness.  
Rewriting the (1) in matrix form we get: 

⋅x = s A + ε (2)

where A is a LxM matrix whose columns are the basis 
functions, s is an M-element vector of basis coefficients 
and ε  is an additive Gaussian noise. 
To derive the learning algorithm for finding the basis 
functions it is possible to proceed in two steps: a) finding 
the expansion coefficients si , given the image and the 

basis set; b) learning the bases φi  given a set of training 
images and correspondent coefficients. The above stages 

can be iteratively repeated until A converges towards a 
stable solution. Following is the explanation of 
coefficients extraction and the learning rule to update the 
bases functions. 

a) Finding expansion coefficients 

     To solve this, we assume we are given an image x and 
a general overcomplete basis A. The goal is to infer the 
vector s. This can be done by exploiting Maximum 
Likelihood  Principle, that states the most probable value 
s’ for s is that satisfying the following: 

),|(max' A x s P s 
s 

= )3( 
By means of Bayes’ rule: 

)|(),|(),|( As P s A x P A x s P ∝ )4( 

Because the model is assumed to be Gaussian: 

− 
( x − As )2 

(5)2σ 2( ,x P | s A ) ∝ e 

where σ  is the standard deviation of the additive noise. 
The last term in (4), s P | A ) , is the prior probability ( 
distribution over the basis coefficients. If the prior is 
assumed to be independent of A, then s P | A ) = s P ) .( ( 
At this point observe that, in order to impose sparseness 
of coefficients, the prior probability P(s) has to peak at 
zero. The prior P(s) chosen by the authors is the Laplacian 
distribution (Fig 2): 

−ϑi |s | (6)(s P i ) ∝ e 

)( is P 

Fig.2 The probability distribution of the coefficients is peaked at zero. 
Such a distribution would result from a sparse activity distribution over 
the coefficients. 

And by imposing statistical independence among 
coefficients: 

( −ϑT |s | (7)(s P ) =∏ s P i ) ∝ e 
i 

After substituting (4,5,6,7) in (3) we have: 
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2 +ϑT ⎞ (8)s ' = max A x s P ) = min⎛⎜ 
1( | , x − As s ⎟2s s ⎝ 2σ ⎠ 

Thus, in order to find the coefficients si  for each image 
presentation, (8) has to be minimized with respect to s. 

b) Learning basis functions 

The goal in learning basis vectors is to obtain a good 
model of the distribution of natural images. That means, 
finding a basis matrix which can optimally fit all image 
presentations. In order to do this, what we want is to 
maximize the average probability distribution aver as 
many images as possible. The cost function to be 
maximized is defined with respect to A is: 

(= Γ log x P | A ) (9) 

where the distribution x P | A )  is obtained by 
marginalization: 

( ( , ) ( ) 

( 

x P | A ) ∫ = x P | ds s P s A (10)

The maximization problem can be solved by gradient 
ascent. This leads to the following updating term for the 
basis matrix A: 

while the attenuation at high spatial-frequencies 
eliminates the artifacts of rectangular sampling.  

Fig.3 The 2D Fourier transform of the zero-phase whitening lowpass 
filter used to preprocess the natural pictures. 

After these two necessary steps (random initialization of 
A and preprocessing), I run the algorithm separately on 
different set of pictures. 
Let us suppose to have chosen to learn a complete 
codebook of 64 bases, each one of dimension 8x8 pixel. 
Then, in order to compute the updating rule in (11), the 
algorithm randomly selects a large number (actually 100) 
of 8x8 image patches from the training set. 

⋅∆A ∝ s e T (11)
Where the error e = . Details about the learning x − As 
algorithm can be found in [1],[2] and [5]. 

4. LEARNING CODES FOR NATURAL SCENES 

I applied the learning algorithm proposed by B. A. 
Olshausen to different sets of natural scenes (pictures of 
nature, pictures of buildings in Amsterdam and Lausanne 
and paintings of Van Gogh). I also tested it by varying the 
number of bases (from complete to overcomplete 
representations)  and their dimensions. 
     Before starting the algorithm, the initial values for 
basis functions were generated to random values evenly 
distributed between [-1,1]. 
Then, the training set was preprocessed, following the 

suggestions of Olshausen [1], by filtering all the grey-
scale images with a zero-phase whitening/lowpass filter 
having the following 2D Fourier transform: 

−⎛ 
f ⎞
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⎜ ⎟ 
⋅ ⎝ 200 ⎠( f R ) = e f (12)

where f = fx 2 + fy 2 . See also Fig.3. This is because 
whitening filter is able to counteract the fact that the error 
computed at (11) preferentially weights low frequencies, 

A stable solution arrived after about 10,000 – 40,000 
updates, that is, 1000,000 – 4000,000 image presentations 
(between 1 and 4 hours of computation for each set of 
natural scenes). 

5. RESULTS OF LEARNING

     The learning algorithm was applied to three sets of ten 
512x512 pixel images taken from natural surroundings 
(Fig.4), Van Gogh paintings (Fig.5) and Amsterdam and 
Lausanne buildings (Fig.6). The results of the learned 
codebooks are also shown there. 
I derived different codebooks distinguishable for the 
number of basis functions used (between 64 and 192) and 
for basis dimensions (between 8x8 and 16x16 pixels). 
The results show, as wanted, the basis patches to be well 
oriented and spatially localized. Moreover, they seem to 
“capture” the intrinsic structure of the pictures. For 
instance, in the case of Van Gogh paintings, the extracted 
bases resemble the brushstrokes of the painter, while, in 
the pictures of cities, they capture the basic elements of 
the buildings, mainly composed of vertical and horizontal 
edges and corners. 
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Fig.4 Results from training a system of 192 bases functions on 16x16 image patches extracted from scenes of nature (here only several bases are 
displayed for reasons of space). The red squares are displayed just for explaining the learning procedure, by randomly selecting image patches from the 
training set. The scenes were ten 512x512 images of natural surroundings in the American northwest, preprocessed by the mentioned zero-phase 
whitening/lowpass filter. The results shown were obtained after 40,000 iteration steps (4 hours of computation). Note well that, as desiderated, the learned 
bases result to be oriented along specific directions and spatially well localized. 

a) b) c) 

Fig.5 Results from training a 2x-overcomplete system of 128 bases functions of 8x8 pixels (b) and a system of 192 bases of 16x16 pixels (c) (in the latter 
only several bases are shown). The codebooks were extracted from ten 512x512 pixel images of Van Gogh paintings (a), preprocessed, as usual, by the 
zero-phase whitening/lowpass filter. The results shown were obtained after 20,000 (b) and 40,000 (c) iteration steps (2-4 hours of computation 
respectively). Note also here the learned bases result to be oriented along specific directions and spatially well localized. Moreover the bases seem to 
capture the intrinsic structure of Van Gogh brushstrokes (this is well visible in (c)). 
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Fig.6 Results from training a complete system of 64 bases functions of 8x8 pixels. The codebook was extracted from ten 512x512 pixel images Lausanne 
and Amsterdam buildings. The results shown were obtained after 20,000 iteration steps (2 hours of computation). Note also here the learned bases result 
to be oriented along specific directions and spatially well localized. Moreover the bases seem to capture the intrinsic structure of the building elements, 
that result to be mainly composed of vertical and horizontal edges and corners. 

As mentioned at the beginning, we are also interested in 
verifying the spatial-frequency localization of basis 
functions. This can be easily seen by analyzing the bases 
in the 2D Fourier Transform domain (see Fig.7).  

Fig.7 The Power spectrum of basis functions correspondent to Fig.5. 

Fig.7 shows that bases functions are well localized in the 
frequency domain. Another point of interest, not visible 
in Fig.7, is that the basis functions largest in magnitude 
also have the lowest peak spatial-frequency tuning. The 
latter is just what would be found by using PCA 
technique, which assumes that the data have Gaussian 

structure. This could reflect an attempt of the model to 
capture small-amplitude noise in the images.  To see 
better the frequency localization characteristics, the next 
figures show the polar plots of the peak spatial 
frequency tuning of all bases. 
Figures 8 and 9 show the frequency tiling of basis 
functions for different degrees of completeness. You can 
note that increasing the number of bases results in a 
denser tiling of frequency space (and also in a denser 
tiling of orientations and positions). Moreover, this 
frequency tiling is higher at mid-high frequencies (to see 
this, look at frequency histograms in Fig. 11). 
     One trend that appears immediately evident is that 
the preferred orientation tends to align vertically and 
horizontally, but Olshausen adverts that this is an 
artefact due to having used a rectangular sampling grid 
to digitize the images, rather than a reflection of an 
intrinsic property of the images themselves. 
Conversely, for the bases learned from pictures of 
buildings, basis functions result to be disposed along a 
few preferential directions of frequency space (Fig.10). 
This strongly support the mentioned conjecture that they 
try to capture the intrinsic structure of original images 
they come from, that are mainly composed of vertical, 
horizontal and slanting edges. 
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Fig.12 Histogram of overall 
coefficients and the procedure 

the frequency domain (red lines). These preferential directions are due 
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to the localized orientation of the correspondent bases in the spatial 
0.3 0.3 domain. As seen in Fig.6, they undergo the direction of horizontal, 

vertical  and slanting edges that frequently occur in the pictures. 0.25 0.25 

0.2 0.2 
18 20 

1816 
0.15 0.15 

14 16 

140.1 0.1 
12 

12 
10 

0.05 0.05 
10 

8 

8 
0 0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 6 
6 

4 
4 

2 

a)	 b)
2

Fig.8 Spatial-frequency localization of bases functions in natural 
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     By using the generative model defined in (1), each 
single image may be simply reconstructed as a linear 
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probabilistic nature of the approach, this is not a perfect 
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Fig.9 Spatial-frequency localization of bases functions in Van Gogh searches for those 
1200 paintings (Fig.5). a) Complete system of 64 bases of 8x8 pixels, b) 2x bases that better trade 

overcomplete system of 128 bases of 16x16 pixels, c) 192 bases of off representation 1000 
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0.35 200 the latter is essential 
0for efficient coding. To 
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achieve sparseness, we of thresholding. 
0.25 imposed the probability 

0.2 distribution of expansion coefficients to peak at zero 
(see Fig.12). Thus, to get the best non-linear

0.15 

approximation, we can get the coefficients with higher 
0.1 absolute values, which we interested in, and discard the 

0.05 others (Fig.12). In this way, each image will be 
represented by the smallest number of bases

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 corresponding to the coefficients with higher activity. 

Fig.10 Spatial-frequency localization of bases functions in pictures of 
buildings (Fig.6). Here it is learnt a complete system of 64 bases of 8x8 Then, to have a quantitative measure of the 
pixels. Note that bases are distributed along preferential directions in approximation-reconstruction quality, I compared the 
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Peak-Signal to Noise Ratio (PSNR) among the 
reconstructed images from the learned codebooks 
(Fig.13, 14). 

                a) Original  b) Preprocessed by whitening/lowpass  c) Approximation using 40 bases 

d) Approximation using 10 bases    e) Approximation using 5 bases 

PSNR 64 bases 40 bases 30 bases 20 bases 10 bases 5 bases 2 bases 

Complete 37.06 dB 36.62 dB 35.64 dB 33.49 dB 29.84 dB 27.24 dB 25.00 dB

Fig.13 Approximation of the pictures of buildings by using a decreasing number of basis functions of the complete codebook. The bases are selected by 
taking the correspondent number of higher value coefficients. Note that e) reveals the 8x8 blocks of basis functions. 
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                                         a) Original b) Preprocessed image 

c) Approximation by 5 bases of the complete codebook d) Approximation by 5 bases of the overcomplete codebook 

PSNR 128 bases 64 bases 40 bases 30 bases 20 bases 10 bases 5 bases 2 bases 

Complete - 31.92 dB 31.43 dB 30.42 dB 28.51 dB 25.60 dB 23.62 dB 22.00 dB 

Overcomplete 32.14 dB 31.75 dB 30.61 dB 29.37 dB 27.45 dB 24.77 dB 23.00 dB 21.62 dB

Fig.14 PSNR values computed for different approximations of the original image a). The values are displayed in the case of a complete and overcomplete 
codebook. Note that d) reveals the 8x8 blocks of basis functions. 
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7. IMAGE DENOISING	 two global objectives are placed on a linear coding of 

     To demonstrate the ability of the adapted bases to 
capture typical structures in the data, I applied the 
algorithm to the problem of noise removal in images. 
This task is well suited to the algorithm because 
Gaussian additive noise is incorporated into the 
specification of the image model. A set of bases that 
characterizes the probability distribution of the data well 
should improve noise removal properties, because they 
are better at inferring the most probable image in the 
face of uncertainty. Indeed, there results a good 
improvement in PSNR value between the denoised and 
noisy image (see Fig. 15 and 16). 

Fig.15 Noisy image. PSNR=28.56 dB 

Fig.16 Denoised images. PSNR=30.06 dB 

8. CONCLUSIONS

 Results demonstrate that localized, oriented and 
bandpass receptive fields (as the ones found in the 
simple cells of primary visual cortex) emerge only when 

natural images:  
•	 that information be preserved 
•	 and that the representation be sparse 

That means, an attempt of understanding the response of 
primary visual neurons has been to consider their 
relationship to the statistical structure of natural images 
in terms of efficient coding. 
By using Bayes’ rule and imposing some constraints of 
the probability distributions of data, Olshausen et al. [1] 
derived a learning algorithm that provides a set of basis 
functions minimizing a certain cost function. 
Applying the learning algorithm I verified that the 
learned bases behave as feature detectors able to capture 
the intrinsic structure of natural images (as seen in Van 
Gogh paintings and pictures of buildings). 
Moreover, increasing the degree of completeness results 
in a higher density tiling of frequency space. 
Because of sparseness and statistical independence 
among coefficients it was possible to achieve efficient 
and good quality representations of natural images. 
Actually, decreasing the number of coefficients up to 10 
elements of higher value, still gives a good quality of 
reconstruction. 
Besides, I applied the algorithm to the problem of noise 
removal in images. Because Gaussian noise is already 
incorporated into the specification of the image model, 
the reconstruction stage infers the most probable image 
in the face of uncertainty, carrying to good results. 
     Now, the last question, in neurobiological terms, 
would be: “How close are we to understanding the 
human visual cortex?” 
What we learnt is that: 

•	 Sparseness of coefficients resemble the sparse 
activity of neuronal receptive fields. 

•	 Learned bases from natural scenes reveal the 
intrinsic structure of the training pictures: they 
behave as feature detectors (edges, corners) like 
V1 neurons. 

But: 
•	 The learned bases show higher density in tiling 

the frequency space only at mid-high 
frequencies, while the majority of recorded 
receptive fields appear to reside in the mid to 
low frequency range. 

•	 Receptive field reveal bandwidths of 1 - 1.5 
octaves, while learned bases have bandwidths 
of 1.7 – 1.8 octaves. 

•	 Finally, neurons are not always statistically 
independent of their neighbours, as it is instead 
assumed in our probabilistic model. 
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Moreover, there still remain several challenges that have 
to be won by computational algorithms, that are: 

•	 accounting for non-linearity, as shown by 
neurons at later stages of visual system. 

•	 accounting for forms of statistical dependence. 
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