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Abstract

Quadrotors are the most popular type of micro aerial vehicles. They gained their popu-
larity due to their simple and robust mechanical design, which can be achieved from
cheap off-the-shelf components. Furthermore, they are able to hover as well as takeoff
and land vertically while still being able to perform agile maneuvers. Quadrotors are
deployed in numerous applications, where sensors or payloads need to be moved to
locations that are hard to reach or even unreachable for humans or ground robots.
Among these applications are inspection of various infrastructure, monitoring and
analysis in agriculture, surveillance, transportation, and aerial photography, which,
together, form a multi-billion-dollar market.

Despite the many applications of quadrotors, their full potential, especially in terms of
autonomy and agility, has not been exploited yet. Making quadrotors more autonomous
and more agile brings the benefit of requiring fewer operators and completing tasks
faster, which makes them more useful and increases their profitability. However, mak-
ing quadrotor platforms more agile, e.g. by making them smaller, also makes them
more difficult to control due to faster dynamics. Furthermore, during agile flight with
high speeds and accelerations, aerodynamic effects, which are difficult to model and
incorporate into the control, become relevant for the flight characteristics of quadrotors.
Neglecting these effects does not affect their flight performance in near-hover flight but
significantly reduces it during agile flights.

This thesis focuses on control methods that enable quadrotors to accurately track
high-speed trajectories. The presented control methods comprise both methods for
low-level attitude and body-rate control as well as high-level position control. They
improve the trajectory tracking performance of a quadrotor by considering the dy-
namics of the single motors and considering linear rotor drag effects. Additionally,
this thesis presents algorithms for operating quadrotors safely at their physical limits
and recovering from failures. This thesis also presents contributions in the application
of quadrotors within robot teams deployed in a search-and-rescue scenario as well
as in enabling quadrotors to traverse narrow inclined gaps. The following is a list of
contributions:

• Development of a quadrotor infrastructure for research on vision-based drone
flight including hardware design and control algorithms.

• A method to recover a vision-based quadrotor from a lost state estimate, even
in conditions with arbitrary attitude and high velocities, and re-establish stable
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flight.

• The first proof that the dynamics of a quadrotor subject to linear drag effects are
differentially flat. I propose a position controller that computes feed-forward
control terms based on the differential flatness property, which enable accurate
tracking of high-speed trajectories.

• Novel control method for quadrotor attitude and body-rate control that achieve
more accurate reference tracking by considering the dynamics of the motors.

• Prioritizing input saturation method to achieve stable flight with quadrotors that
are operated close to their physical limits where they reach motor saturations.

• The entire quadrotor control stack and required interfaces developed within this
work is made available as open-source software.

• An algorithm for a quadrotor to efficiently collaborate with a ground robot in a
search-and-rescue scenario.

• A pose estimator based on a monocular camera and infrared LEDs for relative
localization of robot teams. This pose estimator was made available as open-
source software.

• The first method that allows for a quadrotor to fly through narrow inclined gaps
in an agile maneuver based only on onboard sensing and computation.
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Zusammenfassung

Quadrokopter sind die am weitest verbreiteten Mikro-Fluggeräte. Sie erlangten ihre
Popularität durch ihr einfaches aber robustes mechanisches Design, das mit günstigen
Standardkomponenten erziehlt werden kann. Zudem sind sie fähig an Ort zu Schwe-
ben, senkrecht zu starten und landen aber auch sehr agile Manöver durchzuführen.
Quadrokopter werden in zahlreichen Anwendungen, bei denen Sensoren oder Lasten
an Orte die nur schwer oder gar unzugänglich für Menschen oder Bodenroboter sind,
eingesetzt. Solche Anwendungen beinhalten unter Anderem Inspektionen diverser
Infrastruktur, Überwachung and Analyse in der Landwirtschaft, allgemeine Luftüber-
wachung, Transport und Luftfotografie, die zusammen einen Multimillionen Markt
bilden.

Trotz der vielen Anwendungsbereichen von Quadrokoptern ist deren volles Potential
bei weitem noch nicht ausgeschöpft, vor allem bezüglich deren Automomie and Agilität.
Selbstständigere und agilere Quadrokopter bringen die Vorteile das weniger Bediener
benötigt werden und dass Missionen schneller ausgeführt werden können, was sie nütz-
licher und profitabler macht. Agilere Quadrokopter, z.B. solche die kleiner gebaut sind,
sind jedoch aufgrund deren schnellerer Dynamik auch schwieriger zu regeln. Zudem
werden aerodynamische Effekte, die während agilen Manövern mit hohen Geschwindi-
keiten und Beschleunigungen auftreten, für die Flugcharakteristik von Quadrokoptern
relevant. Diese sind jedoch nur schwierig zu modellieren und in die Regelung zu
integrieren. Werden diese Effekte vernachlässigt, wird die Flug-Performance nahe dem
Schwebeflug zwar nur gering, bei schnellen Flügen allerdings signifikant verschlechtert.

Diese Dissertation ist auf Regelungsmethoden, die es Quadrokoptern erlauben schnel-
len Trajektorien genau zu folgen, fokussiert. Die präsentierten Regelungsmethoden
beinhalten Methoden für die low-level Regelung von Orientierung und Rotations-
geschwindigkeiten sowie für die high-level Positionsregelung. Diese verbessern die
Fähigkeit von Quadrokoptern Trajektorien genau zu folgen indem sie die Dynamik
der einzelnen Motoren sowie lineare “rotor drag” Effekte berücksichtigen. Des Weite-
ren beinhaltet diese Dissertation Algorithmen die es Quadrokoptern erlauben sicher
aber nahe ihrer physikalischen Grenzen zu operieren und sich von fehlgeschlagenen
Manövern zu retten. Zudem beinhaltet sie Beiträge zur Anwendung von Quadroko-
ptern innerhalb von Roboterteams die für Such- und Rettungsmissionen eingesetzt
werden oder enge, schiefe Öffnungen traversieren müssen. Diese Dissertation beinhaltet
folgende Beiträge:
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• Entwicklung von Quadrokopterinfrastruktur für Forschung im Bereich kamera-
basierter Drohnen mit Schwerpunkt auf Regelungsalgorithmen.

• Eine Methode um kamerabasierte Quadrokopter aus beliebigen Lagen mit belie-
bigen Geschwindigkeiten zu Restabilisieren.

• Der erste Beweis dass die Dynamik eines Quadrokopters unter linearen “rotor
drag” Effekten “differentially flat” ist. Ich entwickelte einen Positionsregler der
mithilfe dieser Eigenschaft “feed-forward” Regelterme berechnet, die ein genaues
folgen einer Trajektorie mit hohen Geschwindigkeiten ermöglichen.

• Eine neue Regelungsmethode für die Orientierung und Rotationsgeschwindigkei-
ten, die ein genaueres Folgen von Referenzwerten durch die Berücksichtigung
der Motordynamik ermöglicht.

• Eine priorisierende Saturierungsmethode die einen stabilen Flug von Quadroko-
ptern, die nahe an ihren physikalischen Grenzen operieren wo sie Saturierungen
ihrere Motoren erreichen, ermöglicht.

• Das ganze Regel-Framework für Quadrokopter, das während dieser Arbeit ent-
wickelt wurde, ist als Open-Source Software erhältlich.

• Ein Algorithmus der die effiziente Zusammenarbeit eines Quadrokopters mit
einem Bodenroboter im Rahmen einer Such- und Rettungsmission ermöglicht.

• Einen “Pose”-Schätzer der mithilfe einer Kamera und infrarot LEDs die relative
Lokalisierung zwischen Mitglieder eines Roboterteams ermöglicht. Dieser ist als
Open-Source Software erhältlich.

• Die erste Methode die es einem Quadrokopter erlaubt mit einem agilen Manöver
nur mittels onboard Sensoren und Berechnungen durch enge, schiefe Öffnungen
zu fliegen.
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1 Introduction

This thesis presents control algorithms for quadrotors with a focus on enabling agile
maneuvers. It describes the quadrotor system developed as a research platform for
agile autonomous vision-based flight at the Robotics and Perception Group. As a main
focus of this thesis, I developed control algorithms that enable quadrotors to accurately
track high-speed trajectories. These algorithms consist of a high-level control loop that
considers linear rotor drag effects, a low-level control loop that considers the dynamics
of the motors, a thrust mixing scheme that considers a varying drag torque of each
rotor, and a prioritizing saturation that enables stable flight of quadrotors despite of
reaching motor saturations. Additionally, based on the developed quadrotor system,
this thesis presents algorithms for relative localization of a quadrotor and a ground
robot, the collaboration of a quadrotor and a ground robot among movable obstacles,
as well as for letting a quadrotor safely pass a narrow gap.

This thesis is split into three parts: first, it provides details about the developed
quadrotor-research platforms at the Robotics and Perception Group with a focus on their
control. Second, it presents research applications of vision-based quadrotors, mainly
for multi-robot collaboration of a quadrotor and a ground robot. Third, it shows
methods I developed for accurate tracking of high-speed trajectories with quadrotors by
considering rotor-drag effects, motor dynamics, and motor saturations in the controller.

This thesis is structured in the form of a collection of papers. An introductory section
that highlights the concepts and ideas behind the thesis is followed by self-contained
publications in the appendix.

In the next section, the working principle, applications, advantages, and challenges
of quadrotors are discussed. Section 1.2 summarizes the state of the art in quadrotor
control and Section 1.3 motivates and states the research objectives of this dissertation.
The papers in the appendix are summarized in Chapter 2. Finally, Chapter 3 provides
future research directions.
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Chapter 1. Introduction

1.1 Quadrotors in Robotics

Over the past decade, quadrotors have gained a tremendous popularity in the robotics
community, among hobbyists, and in the consumer market. They are aerial platforms
with a simple mechanical design that can be assembled from cheap components suitable
for a wide range of applications. Quadrotors are typically built from four motors with
fixed-pitch propellers arranged in a cross configuration where all the motor axes are
parallel to each other and neighboring propellers spin in opposite directions. The
four generated rotor thrusts can be controlled individually by changing the speed
of the respective motor. This enables the quadrotor to produce a collective thrust
perpendicular to the rotors plane and torques along the three body axes. The four
control inputs that control each motor speed are enough to stabilize the six degrees of
freedom of a quadrotor since only four of them are independent.

This section summarizes the applications of quadrotors as well as advantages and
challenges in the usage of quadrotors and which challenges are tackled by the presented
work.

1.1.1 Applications of Quadrotors

Ever since quadrotors and drones in general became affordable and reliable about a
decade ago, their number of applications has increased very fast and by now covers
essentially every task that involves moving, e.g., sensors or payloads to locations that
are hard to reach or even unreachable for humans or ground vehicles. The biggest
drone markets currently are inspection and agriculture.1 Drones are successfully
deployed for inspections of power lines, bridges, pipelines (e.g. [128]), railways, and
many other infrastructures. In agriculture, among others, drones are used for soil
and field analysis, crop monitoring, planting, and crop spraying (e.g. [32]). Besides
those, drones are used to support search and rescue missions where they are used for
mapping and disaster analysis or even for searching victims [120]. Similarly, drones
are used for security and surveillance (e.g. [130], [129]), where they are deployed for
monitoring events, the environment (e.g. [109]), general infrastructure, or warehouses.
Additionally to these commercial applications, drones are widely used among hobbyists
e.g. for aerial photography, which has also become a big commercial market, as well
as for fun disciplines, such as first-person-view racing. In the work presented here,
we incorporated many of the recent and tremendously fast developments of hardware
and software for first-person-view racing from the past years. In the future, drones are
expected to be used extensively for package delivery, for which, already today, a lot
of investments and research is being done. Furthermore, drones are expected to be
deployed for construction tasks (e.g. [4], [73]).

1http://uk.businessinsider.com/commercial-uav-market-analysis-2017-8?r=US&IR=T
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In summary, most of the applications of quadrotors are for passive tasks, i.e. for
moving a sensor to desired locations in unconstrained 3D space. Such tasks are
hard and expensive to accomplish without drones but are also what quadrotors are
particularly well suited for. Currently, there are many applications for quadrotors and,
all together, they form a multi-billion-dollar market, which is expected to grow much
more in the coming years and, hence, there is a huge need to exploit the potential
of autonomous quadrotors further. To make quadrotors even more useful and more
profitable it is crucial to increase their level of autonomy and the speed at which they
can operate, since this reduces the number of required operators and makes their task
completion faster. Enabling autonomous quadrotors to move faster and more agile is
the main focus of this work.

1.1.2 Advantages

One of the main advantages of quadrotors over other types of small scale aerial vehicles,
and, with that, the reason for their popularity, is their simple and robust mechanical
design. They are built from a rigid, cross-shaped frame, which can be designed
lightweight but very robust against crashes. Compared to other multirotors, where
all the rotor planes are parallel, quadrotors use the minimum number of motors to
control their four independent degrees of freedom and are, therefore, the simplest
configuration of such multirotor types. The motors with propellers are the only moving
parts of the vehicle. Since these propellers mostly have a fixed blade pitch, their thrust
can be controlled by changing the motor speed, which is done by electronic speed
controllers (ESCs). Hence, this setup does not require complex mechanical parts, such
as a swash plate used on helicopters. Furthermore, the required components to build
a quadrotor can be purchased off the shelf in a wide variety and are relatively cheap.
This makes them especially suitable for research purposes since they are cheap and
offer great flexibility in terms of size and weight, which is required to use new sensors
and setups as it is often the case in research experiments.

Besides their simple and robust design, quadrotors have favorable flight capabilities
compared to other types of aerial vehicles. Quadrotors can take-off and land vertically
and, therefore, only require minimal space for start and landing. Also, they can stay
airborne without the requirement to move, which is required in many tasks, such as
aerial inspection, surveillance, or photography. Additionally to static flight, quadrotors
can be designed to have a rigid structure and a very high thrust-to-weight-ratio enabling
them to perform agile maneuvers.

In summary, quadrotors are well suited for research on aerial robotics since they are
simple and cheap to design, robust against crashes, can vertically takeoff and land, and
yet are very agile.

3
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1.1.3 Challenges

Quadrotors are unstable systems, i.e., stable hover flight cannot be achieved by applying
a constant input to all four motors. For stabilizing a quadrotor, its motor inputs have
to be controlled at a sufficiently high frequency, which depends on its dynamical
characteristics. The smaller a quadrotor, the more agile it gets, i.e., as derived in [119],
the maximum angular acceleration scales inversely proportional to the quadrotor size.
This might be exploited for agile flight but also requires higher control frequencies to
cope with the faster dynamics of the vehicle. Furthermore, the smaller a quadrotor
is, the less efficient it gets due to the smaller rotor disk area, which is decreasing
quadratically with the quadrotor size. For these reasons, it is difficult to find the
optimal configuration of a quadrotor for a certain task since it is a trade off between
achievable flight time, agility, and the sensors and computers that can be carried.

Quadrotors are under-actuated systems since they have four control inputs to control
their six degrees of freedom. This is not a problem for free flight since only four
independent degrees of freedom need to be controlled. But it makes quadrotors not
suitable for interactions with their environment since they are not able to exert forces
independently of their orientation. This can lead to problems when, e.g., taking off
from an inclined surface and should be considered in the take-off procedure [166].
Therefore, for interactions with the environment, aerial vehicles that can exert forces
in more than a single axis are typically used, such as helicopters [83] or hexarotors
with tilted propellers [144]. Furthermore, when performing agile flights close to the
physical limits of a quadrotor, motors might saturate, which leads to an inability to
control the four independent degrees of freedom. Therefore, motor saturations can
cause a quadrotor to become unstable. This work proposes a solution to achieve stable
flight with quadrotors despite of motor saturations.

For agile flight with quadrotors, the biggest challenge is that the relevant dynamics get
very complex to describe for maneuvers with hight speeds and accelerations. While
aerodynamic effects can be neglected during hover flight, they become relevant in agile
maneuvers where certain effects are virtually impossible to be modeled accurately, such
as when the rotors enter a so called vortex ring state. Due to this complex modeling
which is required to capture the dynamics of a quadrotor in high-speed flight, it is also
difficult to consider the full model in control algorithms, which leads to control errors.
One goal of this thesis is to incorporate the main aerodynamic effects into the control
algorithm to reduce the resulting control errors during agile maneuvers.

This thesis is tackling the following challenges around quadrotors:

• Design of control algorithms that stabilize quadrotors considering that they are
under-actuated systems.

• Extending existing quadrotor control methods to consider aerodynamic effects
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and motor dynamics to improve trajectory tracking for high-speed trajectories.

• Achieving stable flight when operating quadrotors at their physical limits where
their motors saturate.

1.2 State of the Art on Quadrotor Control

This section summarizes the state of the art in quadrotor control and research on
aerodynamics of quadrotors. It also indicates how the work of this thesis relates to and
extends the state-of-the-art methods.

1.2.1 Quadrotor Systems

Systems for research on quadrotor control and state estimation for drones were de-
veloped in many research groups around the world. Especially the systems in [96]
and [110] designed for research on quadrotor control served as baseline and inspiration
for the development of the quadrotor system at the Robotics and Perception Group, which
was part of this work. The developed system builds up on these two works that aimed
at flying quadrotors in motion capture systems and were adapted and extended to
our specific needs. The system presented in [60] puts a lot of emphasis in flexibility of
using quadrotors with different interfaces for user inputs, different control methods,
and different state estimates. This work also influenced our system architecture which
aims at using quadrotors with either state estimates from a motion capture system or
from visual odometry algorithms.

1.2.2 Quadrotor Control Methods

The most common control architecture for quadrotors consists of two control loops for
position and attitude. Such an architecture is, e.g., found in all the quadrotor systems
mentioned above. The high level position control loop typically implements a PD
control law on position and velocity with feed-forward terms to compensate for gravity
and accelerations from a reference trajectory. The output of this control loop is a desired
acceleration which encodes the desired collective thrust and the desired attitude up to
a heading which can be chosen independently. The desired attitude is then controlled
by a low-level control loop based on the assumption that the attitude dynamics of a
quadrotor are much faster than its position and velocity dynamics. A survey of attitude
representations and their suitability for attitude control of a rigid body is presented
in [28]. In state-of-the-art quadrotor control, the attitude is represented either as a
unit quaternion or a rotation matrix. Based on these representations, almost globally
asymptotically stable attitude controllers can be designed. Quadrotor control methods
consisting of a high-level PD position control loop and a low-level PD attitude control
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loop based on rotation matrices are presented in [106] and [89]. Attitude controllers
with similar properties based on unit quaternions are presented in [52] and [11]. Since
for all these methods asymptotical stability of the high-level position controller and the
low-level attitude controller can be shown, also the interconnected system with both
loops is asymptotically stable (c.f. [80] Lemma 5.6).

Often, attitude control cannot be achieved by a single control loop due to the commonly
used hardware with multiple processing units. Typically, two processing units are
embedded on quadrotors, where an onboard computer does state estimation and
high-level control and a less powerful but real time micro controller is used for low-
level control. Since attitude control requires an estimate of the attitude, which is only
available on the onboard computer, it has to run on the onboard computer. To achieve
accurate body-rate control, fast and low latency inputs to the motors are required,
which can only be achieved by a real time micro controller. Therefore, the attitude
control of a quadrotor is often achieved by two cascaded control loops, e.g. in [86],
and [19] where the first loop controls the attitude at a low frequency and the second
loop controls the body rates at a high frequency. This is not preferable over having
a single control loop but often necessary due to the used hardware setup. Due to
the used hardware for this work, attitude control can also only be achieved by two
cascaded control loops.

In [106], it was shown that the common model of a quadrotor without considering
rotor drag effects is differentially flat when choosing its position and heading as
flat outputs. Furthermore, this work presented a control algorithm that computes
the desired collective thrust and torque inputs from the measured position, velocity,
orientation, and body-rates errors. With this method, agile maneuvers with speeds of
several meters per second were achieved. In [42], the differential flatness property of a
hexarotor that takes the desired collective thrust and its desired orientation as inputs
was exploited to compute feed-forward terms used in an LQR feedback controller. The
desired orientation was then controlled by a separate low-level control loop, which also
enables the execution of flight maneuvers with speeds of several meters per second. The
differential flatness property was proved and used for control also for many different
aerial vehicle configurations such as under actuated aerial vehicles with any number of
different parallel manipulator arms attached to their center of mass [179]. Similarly,
we extend these works by showing that the dynamics of a quadrotor are differentially
flat even when they are subject to linear rotor drag effects. Similarly to [42], we make
use of this property to compute feed-forward terms that are then applied by a position
controller.

Since quadrotors are under-actuated systems, motor saturations or motor failures
can cause them to become unstable when these cases are not considered properly.
In [116] it is demonstrated that a quadrotor’s position can be stabilized despite the
complete loss of up to three propellers. To additionally stabilize the orientation in
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case of rotor failures, vehicles with more propellers need to be considered, such as
hexarotors and potentially tilted propellers which are well suited as safe platforms with
rotor redundancy [112]. In [113] a partial control allocation method that prioritizes the
application of desired body torques over collective thrust is used to handle infeasible
inputs before applying the motor commands. In this work, I present a saturation
scheme that prioritizes control inputs according to their importance for trajectory
tracking in case of motor saturations. The presented saturation scheme enables stable
quadrotor flight despite motor saturations while being able to make use of the full
input range of the individual motors.

Besides the most common control schemes composed of cascaded loops for position
and attitude, several other control methods to control a quadrotor have been proposed
in the literature. Among these methods are linear quadratic regulators (LQR), model
predictive controllers (MPC), and optimal control techniques. LQR based controllers
can be implemented as full state feedback controllers for both position and attitude
control [138]. Additionally, LQR methods were shown to be suitable for controlling
multi body systems such as quadrotors carrying a slung load [30] or balancing an
inverted pendulum [63] and [20]. In [77], a fast model predictive attitude controller is
proposed, that, together with a high-level linear quadratic regulator achieves tracking
of aggressive trajectories. Model predictive controllers were also used as high-level
controllers with a separate attitude control loop in e.g. [137], [117] and [9]. Furthermore,
fast trajectory generation methods can be exploited in a model predictive control
fashion by only applying the first command resulting from a planned trajectory and
then replan a new trajectory for the next control loop iteration [66]. Optimal control
methods were used in [140] and [67] for finding time optimal trajectories to transition
between two states. The structure of a transition maneuver is obtained by Pontryagin’s
minimum principle and then a numerical algorithm is proposed to solve the boundary
value problem induced by the minimum principle to compute maneuvers for arbitrary
initial and final states. Based on a two-dimensional first-principles quadrotor model,
this method finds trajectories that are bang-bang in the thrust command, and bang-
singular in the body rate control. An iterative optimal control algorithm that finds
both a trajectory and a stabilizing controller simultaneously is proposed in [30]. The
capabilities of this algorithm are demonstrated by flying a quadrotor with slung load
through a window not high enough for the load to pass while hanging straight down
as well as by go-to-goal tasks with single and double rotor failures.

1.2.3 Accurate Trajectory Tracking

Following trajectories with a quadrotor accurately becomes increasingly more difficult
with increasing speed due to modeling errors that become more relevant at higher
speeds and accelerations. One way to overcome this limitation is by repeating a given
trajectory and iteratively learn how to control inputs need to be adapted to improve
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trajectory tracking accuracy. In [95], open-loop multi flips and time-optimal translation
maneuvers were learned by repeating them and adapting trajectory parameters. In [64],
an iterative learning scheme in the frequency domain for learning periodic maneuvers
with quadrotors is presented. The proposed learning scheme takes the control errors
as inputs and outputs a setpoint shift that improves trajectory tracking accuracy.
Furthermore, a time scaling method allows the transfer of learnt maneuvers to different
execution speeds through a prediction of the disturbance change. The achieved tracking
errors after learning a figure-eight trajectory were similar to the deviations between
different runs of the trajectory. This approach was also applied for flying fast circles
with a quadrotor while balancing an inverted pendulum in [65]. As opposed to learning
input correction, in [149] the motion parameters of a periodic trajectory are adjusted to
improve temporal and spatial tracking. The motion parameters are either estimated
online or offline prior to flight to avoid initial transients. Similarly, [148] estimates
the disturbances due to modeling errors along a desired trajectory using a Kalman
filter. Based on the estimated disturbances, a more adequate input for the next trial is
computed by solving a constrained optimization problem. To overcome the problem
of not generalizing to different trajectories, [61] shows that the major dynamics of
the iterative learning control process can be captured by a linear map, which can
then be used to improve the initialization of learning unseen trajectories. A different
approach in learning to improve trajectory tracking for unseen trajectories is taken
in [91] and [180] where a deep neural network is used as an add-on block to a classical
feedback controller. The deep neural network is trained offline on recorded data from a
set of training trajectories and achieves a significant reduction of the trajectory tracking
error.

In contrast to learning control inputs that compensate for modeling errors, considering
a more accurate dynamical model in the controller should lead to similar results.
Improving the dynamical model has the advantage that once the model parameters
are identified, any trajectory can be flown more accurately without iteratively learning
it. This is the approach I followed in this thesis by incorporating the motor dynamics
and aerodynamic drag effects into the dynamical model of a quadrotor which is used
for control design. In this work, for improving body-rate control, I considered the
motor dynamics in the low-level controller, which was also done in related work.
In [178], cascaded PID controllers are designed and enhanced with Smith predictors to
incorporate the dynamics of the motors for full quadrotor attitude control on SO(3). An
LQR attitude controller for a single axis, which is extended with first order dynamics
of the motors is presented in [78] and [171]. In contrast, I propose an LQR controller
for the coupled 3D body rates, incorporating the motor dynamics, which also provides
feedback linearization and feed forward on desired angular accelerations. Incorporating
aerodynamic drag effects into the dynamical model of a quadrotor is discussed in the
following section.
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1.2. State of the Art on Quadrotor Control

1.2.4 Quadrotor Aerodynamics

Thanks to the well established theory of full size helicopters, the influence of aerody-
namic effects on quadrotor dynamics were considered since the beginning of quadrotor
research [134], [68]. Since then, modeling of these effects for quadrotors was intensely
studied starting from the well established theory of full sized helicopters. In [12], very
detailed models of aerodynamic forces of rotors used on small scale quadrotors were de-
rived using momentum and blade element theory. This work also studied the influence
of different blade geometries commonly used on quadrotors. Blade flapping and thrust
variation due to translational speed was modeled in [71] based on momentum theory.
Simple methods to improve control performance were proposed by compensating for
the resulting moment due to blade flapping and the thrust variation due to translation.
In [22] and [102], blade flapping was modeled with blade element theory showing that
the main resulting force is linear in the translational speed. These works point out the
influence of the vertical location of a quadrotor’s center of gravity on its stability as
well as implications on controller feedback. Additionally to investigating quadrotor
aerodynamics in vertical and forward flight, [135] also investigates proximity effects
such as ground and wall effects and effects from neighboring vehicles. In [150] and [57],
a tethered quadrotor is used to identify aerodynamic parameters such as linear and
quadratic drag coefficients as well as thrust variations due to speed. Thanks to the
tether, the quadrotor reaches very high velocities on a horizontal circle despite the
limited available space. An estimation framework for identifying model parameters
of a multi rotor vehicle including aerodynamic parameters is proposed in [24]. This
work shows that the quadratic body drag is negligible below speeds of about 5 m s−1

and becomes relevant above in spite of being smaller than the linear rotor drag effects
during the conducted experiments in a wind tunnel with maximum wind speeds of
15 m s−1. The dynamical model of a quadrotor used in this thesis is based on these
works and especially makes use of the model presented in [76] including linear rotor
drag effects, for which we show differential flatness. These rotor drag effects originate
from blade flapping and induced drag of the rotors, which are, as suggested in [100],
combined as linear effects in a lumped parameter dynamical model thanks to their
equivalent mathematical expression.

Already the works in [22], [102], and [12] suggested that the dynamical models
of quadrotors incorporating linear drag effects can be used for velocity estimation,
where [22] and [102] show this experimentally. In [90], a quadrotor model including
linear drag effects is used for improving state estimation with an extended Kalman
filter. This work shows that the attitude and velocity estimation can be improved
even when only using an inertial measurement unit and no position measurements.
Similarly, [25] proposed a model based state estimation scheme for micro aerial vehicles
based on an extended Kalman filter. By only using measurements from an inertial
measurement unit and a barometric pressure sensor, this estimation scheme keeps
the estimated velocity bounded, which is crucial when using this state estimate as
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a backup if no position estimate is available. Additionally to estimating horizontal
velocities, [5] extends estimation to full body-fixed-frame velocity measurement by
exploiting their previous work in aerodynamic modeling of rotor performance and
measurements of mechanical power supplied to the rotor hub. This work proposes a
nonlinear observer to estimate the attitude and body-fixed linear velocity jointly using
an inertial measurement unit and electronic speed controllers that measure the rotor
speed and torque.

There exist several approaches to incorporate aerodynamic effects into the control
design of quadrotors. In [10], accurate thrust control is achieved by electronic speed
controllers through a model of the aerodynamic power generated by a fixed-pitch rotor
under wind disturbances, which reduces the trajectory tracking error of a quadrotor.
However, this method requires specific hardware and long-lasting calibration compared
to other state-of-the-art algorithms [51] that achieve thrust control through fast and
accurate speed control of the motors. Rotor drag effects were considered in control
methods for multi-rotor vehicles in [76] and [127], where the control problem was
simplified by decomposing the rotor drag force into a component that is independent
of the vehicle’s orientation and one along the thrust direction, which leads to an explicit
expression for the desired thrust direction. While [76] models the rotor drag to be
proportional to the square root of the thrust, which is proportional to the rotor speed
and physically the correct relation, [127] models the rotor drag to be proportional to the
thrust. In [161], a refined thrust model and a control scheme that considers rotor drag
in the computation of the thrust command and the desired orientation are presented.
However, this scheme does not use feed-forward terms on body rates and angular
accelerations, which does not allow perfect trajectory tracking. Additionally to the
thrust command and desired orientation, the control scheme in [8] also computes the
desired body rates and angular accelerations by considering rotor drag but requires
estimates of the quadrotor’s acceleration and jerk, which are usually not available.
In this work, I prove that the dynamical model of a quadrotor subject to linear rotor
drag effects as developed in [76] is differentially flat in its position and heading. This
property is then used to compute the exact reference thrust, orientation, body rates,
and angular accelerations directly from a reference trajectory to be tracked, which
are then used as feed-forward terms in the controller. This results in a comparably
simple and intuitive control law that theoretically enables perfect tracking of high-speed
trajectories.

1.3 Research Objectives

This section summarizes the research objectives of this thesis. The objectives consist of,
from scratch, setting up a quadrotor platform capable of agile flight, which will then
be used for developing control algorithms that enable accurate tracking of high-speed
trajectories.
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Vision-Based Quadrotor Research Platform. When this work started, there existed
no common infrastructure for conducting experiments with quadrotors at the Robotics
and Perception Group. Therefore, the first objective of this work was to set up a quadrotor
system to serve as a standard platform for experiments on new control and vision-based
state estimation algorithms. This system has to be flexible enough to connect new
sensors used for state estimation but also has to provide low level access to provide
full control over the applied control algorithms. Since this work focuses on developing
new control algorithms for quadrotors, one goal of building up a quadrotor research
platform is to create a complete custom control architecture to provide access at every
level of control. Furthermore, to be easily used as a platform for other experiments,
the control method should allow to use a quadrotor also without detailed knowledge
about it.

Accurate Tracking of High-Speed Trajectories. The main objective of this work is to
improve tracking accuracy of quadrotors executing high-speed trajectories. This tackles
the entire control method from a low-level controller that can accurately apply desired
high-level control inputs to a high-level controller that considers all relevant dynamics
during high-speed flight. Such dynamics are mostly aerodynamic effects, which only
become relevant at high speeds and, therefore, need to be investigated and integrated
into the high-level control method. An emphasis is put in applying accurate feed-
forward control to the lowest necessary level, which is crucial for achieving accurate
trajectory tracking.

Multi-Robot Collaboration. Apart from developing quadrotor control algorithms,
this work also investigates how quadrotors can be applied in a robot team, where
they collaborate with ground robots. This requires the development of a relative
localization strategy between the quadrotor and the ground robot. Furthermore, it
should investigate how such a team of robots can be deployed most effectively by
exploiting the individual strengths and capabilities of the robots.
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2 Contributions

This chapter summarizes the key contributions of the papers that are reprinted in the
appendix. It further highlights the connections between the individual results and refers
to related video and open-source code contributions. In total, this research has been
published in five peer-reviewed conference publications and four journal publications.
One further journal paper is currently under review at the IEEE Transactions on Robotics
(TRO). These works led to the KUKA Innovation Award 2014, which included prize
money of 20,000 euros. They were also successfully demonstrated live hundreds of
times in multiple countries around the world and served as basis for experiments of
about half of the papers published by the Robotics and Perception Group. The control
algorithms developed within this work are available as open-source code.1

2.1 Quadrotor Control System

Since the Robotics and Perception Group was founded in the same year as the presented
works started, the entire infrastructure for autonomous, vision-based quadrotor flight
had to be set up first. For this, I co-developed a quadrotor system based on off-
the-shelf components around a PixHawk flight controller [105] with custom software
for high- and low-level control. On these quadrotor platforms, the visual-odometry
pipeline SVO [50] was integrated, which was also developed in house, for achieving
autonomous quadrotor flight with only on-board sensors and on-board computation.
To this end, the developed system serves as standard platform for experiments and
robot demonstrations by the Robotics and Perception Group.

1https://github.com/uzh-rpg/rpg_quadrotor_control
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2.1.1 Paper A: Infrastructure for Autonomous, Vision-Based Quadrotor Flight

(P1) M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza. “Au-
tonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor MAV”. in:
J. Field Robot. 33.4 (2016), pp. 431–450. issn: 1556-4967. doi: 10.1002/rob.21581

Quadrotors have a huge potential for autonomous, mapping, monitoring, and inspec-
tion tasks since they can easily overcome obstacles on the ground and reach remote
locations that are hard to access or dangerous for humans. Especially vision-based
quadrotors are suitable for such tasks since they can fly independently of any external
infrastructure or positioning systems such as GPS and are therefore able to e.g. also
enter buildings. We developed a vision-based quadrotor system that is capable of fully
autonomous flights, i.e. it only relies on onboard sensors (a camera and an inertial mea-
surement unit) and computation. The developed control methods run fully onboard
the vehicle and are well integrated with a visual odometry pipeline that was developed
at the Robotics and Perception Group. Together with a ground station computer, which
runs a 3D reconstruction pipeline developed at the Robotics and Perception Group, our
quadrotor can provide a 3D reconstruction of a specified area from an aerial perspective
in real time. Our quadrotors serve as standard robotic platforms at the Robotics and
Perception Group, which are used for experiments on a daily basis. We also performed
hundreds of demonstrations based on this system at our laboratory and in several
countries around the world.

Related Software

(S1) http://rpg.ifi.uzh.ch/software_datasets.html

Related Datasets

(D1) http://rpg.ifi.uzh.ch/software_datasets.html

Related Videos

(V1) https://youtu.be/7-kPiWaFYAc

(V2) https://youtu.be/sdu4w8r_fWc

(V3) https://youtu.be/3mNY9-DSUDk

(V4) https://youtu.be/JbACxNfBI30

(V5) https://youtu.be/LssgKdDz5z0
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2.1. Quadrotor Control System

(a) Quadrotor platform (b) 3D Reconstruction

Figure 2.1: Autonomous, vision-based quadrotor platform capable of generating 3D reconstruc-
tions. (a): A closeup of the developed quadrotor platform: 1) down-looking camera, 2) Odroid
U3 quad-core computer, 3) PixHawk autopilot. (b): A 3D reconstruction captured with one of
our autonomous quadrotors. The reconstruction is computed in real time while the quadrotor
executed the trajectory overlaid in blue.

2.1.2 Paper B: Re-Initialization and Failure Recovery

(P2) M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza. “Automatic Re-Initialization and
Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor”. In:
IEEE Int. Conf. Robot. Autom. (ICRA). 2015, pp. 1722–1729. doi: 10.1109/ICRA.2015.
7139420

Autonomous, vision-based quadrotor flight is widely regarded as a challenging percep-
tion and control problem since the accuracy of a flight maneuver is strongly influenced
by the quality of the on-board state estimate. In addition, any vision-based state
estimator can fail due to the lack of visual information in the scene or due to the loss
of feature tracking after an aggressive maneuver. We propose a system that enables
a monocular-vision–based quadrotor to automatically recover from any unknown,
initial attitude with significant velocity, such as after loss of visual tracking due to an
aggressive maneuver. We present an almost globally stable attitude controller based
on quaternions that is able to bring the quadrotor into an upright position from any
initial attitude. After this, the quadrotor re-initializes its vision-based state estimation
pipeline to regain fully controlled autonomous flight. This procedure is successfully
used for launching a quadrotor by throwing it in the air and for failure recovery during
aggressive flight maneuvers. With this, our recovery system is an important milestone
towards safe agile flight with quadrotors. The developed high- and low-level con-
trollers are used as standard controllers for the quadrotor system used at the Robotics
and Perception Group.

Related Videos

(V6) https://youtu.be/pGU1s6Y55JI
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(a) t = 0 ms (b) t = 80 ms (c) t = 440 ms

(d) t = 1,120 ms (e) t = 1,640 ms (f) t = 2,000 ms

Figure 2.2: Autonomous recovery after throwing the quadrotor by hand: (a) the quadrotor
detects free fall and (b) starts to control its attitude to be horizontal. Once it is horizontal, (c)
it first controls its vertical velocity and then, (d) its vertical position. The quadrotor uses its
horizontal motion to initialize its visual-inertial state estimation and uses it (e) to first break its
horizontal velocity and then (f) lock to the current position.

2.2 Applications of Quadrotor System

In this section, we present applications of our quadrotor platforms for aerial-ground
robot collaborations as well as for flying through inclined narrow gaps.
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2.2.1 Paper C: Pose Estimation for Collaboration

(P3) M. Faessler, E. Mueggler, K. Schwabe, and D. Scaramuzza. “A Monocular Pose Estimation
System based on Infrared LEDs”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2014, pp. 907–
913. doi: 10.1109/ICRA.2014.6906962

For the collaboration of multiple robots, a relative localization among the robots is
necessary for operation in a shared space. To provide such a relative localization,
we propose a monocular pose estimation system based on infrared LEDs. The LEDs
are mounted on one robot and observed by a camera mounted on another robot,
which is equipped with an infrared-pass filter. We find the correspondences between
LEDs and image detections by a combinatorial approach and then track them with a
constant-velocity model. We then compute the pose by first solving a P3P problem and
then refine the pose by minimizing the reprojection error in an optimization. Since
the system works in the infrared spectrum, it is robust to cluttered environments and
illumination changes that systems working in the visible spectrum suffer from. We show
that our system outperforms state-of-the-art approaches in a variety of experiments.
Furthermore, we successfully apply our system to stabilize a quadrotor while it is being
observed by a ground robot. We released the implementation of our monocular pose
estimation system as open-source software.

Related Software

(S2) https://github.com/uzh-rpg/rpg_monocular_pose_estimator

Related Videos

(V7) https://youtu.be/8Ui3MoOxcPQ

(a) Stabilizing a quadrotor above a ground
robot

(b) View from the camera with an infrared-pass
filter on the ground robot

Figure 2.3: A camera with an infrared-pass filter is mounted on a ground robot and used to
stabilize a quadrotor above it (a). The red circles in (b) indicate LED detections. The pose
estimate is illustrated by the projection of the body-fixed coordinate frame of the quadrotor.
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2.2.2 Paper D: Aerial and Ground Robot Collaboration

(P4) E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza. “Aerial-guided Navigation
of a Ground Robot among Movable Obstacles”. In: IEEE Int. Symp. Safety, Security, and
Rescue Robot. (SSRR). 2014, pp. 1–8. doi: 10.1109/SSRR.2014.7017662

When collaborating, a heterogeneous team of robots can make use of the individual
strengths of each robot in the team. Especially for complex tasks where one single
robot does not have all the required capabilities such a collaboration is beneficial. We
demonstrate the fully autonomous collaboration of an aerial and a ground robot in
a mock-up disaster scenario exploiting their individual capabilities. In this scenario,
the aerial robot first maps an area of interest, then it computes the fastest mission for
the ground robot to reach an identified target location and deliver a package. Such a
mission for the ground robot includes driving and removing obstacles in the way while
being constantly monitored and commanded by the aerial robot. Our mission-planning
algorithm distinguishes between movable and fixed obstacles and considers both the
time for driving and removing obstacles. Our system was successfully demonstrated
several dozens of times at a trade fair and during demonstrations in our laboratory. By
demonstrating this system, we won the KUKA Innovation Award 2014, which included
prize money of 20.000e.

Related Videos

(V8) https://youtu.be/C5I190lzDdQ

(V9) https://youtu.be/OFPv3BegbFg

(a) Our robots operating in a mock-up disaster
site

(b) Corresponding mission plan to guide the
ground robot to the target location

Figure 2.4: After mapping the area in (a), the aerial robot is guiding the ground robot to the
goal location by a mission plan illustrated in (b). All paths are blocked by obstacles, some of
which can be removed by the ground robot.
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2.2. Applications of Quadrotor System

2.2.3 Paper E: Aggressive Flight through Narrow Gaps

(P5) D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza. “Aggressive Quadrotor Flight
through Narrow Gaps with Onboard Sensing and Computing”. In: IEEE Int. Conf. Robot.
Autom. (ICRA). May 2017. doi: 10.1109/icra.2017.7989679

We address one of the biggest challenges towards autonomous quadrotor flight in
complex environments, which is flight though narrow gaps. For this, we equipped a
quadrotor with a front-looking camera, an inertial measurement unit, and an onboard
computer to autonomously detect a gap and traverse it by only using onboard sensing
and computing. We estimate the quadrotor’s state by computing its relative pose to
the gap from the captured images and fuse it with measurements from the inertial
measurement unit. We then compute a trajectory that enables the quadrotor to safely
pass narrow, inclined gaps with an agile maneuver. Our method generates a trajectory
that considers geometric, dynamic, and perception constraints: during the approach
maneuver, the quadrotor always faces the gap to allow state estimation, while respecting
the vehicle dynamics; during the traverse through the gap, the distance of the quadrotor
to the edges of the gap is maximized. We replan the trajectory during its execution
to cope with the varying uncertainty of the state estimate. In real experiments, we
demonstrate a success rate of 80 % for gap inclinations of up to 45◦ with out approach.

Related Videos

(V10) https://youtu.be/meSItatXQ7M

(a) The quadrotor passing through the gap (b) View from the onboard camera

Figure 2.5: (a) Sequence of our quadrotor passing through a narrow, 45◦-inclined gap. Our
state estimation fuses gap detection from a single on-board forward-facing camera (b) with an
IMU. All planning, sensing, control run fully on-board a smartphone computer.
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2.3 Accurate Agile Quadrotor Flight

In this section, we present control algorithms that specifically improve the trajectory
tracking accuracy when executing agile maneuvers with quadrotors. With all these
works together we achieved a significant improvement in trajectory tracking when
flying at velocities of several meters per second.

2.3.1 Paper F: Differential Flatness of Quadrotor Dynamics Subject to Rotor
Drag

(P6) M. Faessler, A. Franchi, and D. Scaramuzza. “Differential Flatness of Quadrotor Dynamics
Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories”. In: IEEE Robot.
Autom. Lett. 3.2 (Apr. 2018), pp. 620–626. issn: 2377-3766. doi: 10.1109/LRA.2017.2776353

In most state-of-the-art quadrotor controllers, aerodynamic effects that become sig-
nificant at velocities of several meters per second are neglected and therefore their
trajectory tracking performance suffers at high velocities. To overcome this issue, we
propose a high-level quadrotor control method that computes feed-forward terms
considering linear rotor drag effects, which allows accurate tracking of agile trajectories.
For this we prove that the dynamical model of a quadrotor subject to linear rotor drag
effects is differentially flat in its position and heading. With this property, we can
compute the reference control inputs that compensate for rotor drag effects as algebraic
functions of a reference trajectory. We show that our method reduces the root mean
squared tracking error by 50 % compared to state-of-the-art control methods that do not
consider rotor drag independently of the executed trajectory. Furthermore, we propose
a method based on a gradient-free optimization to identify the rotor drag coefficients
which are required to compute the feed-forward control terms.

Related Videos

(V11) https://youtu.be/VIQILwcM5PA

(V12) https://youtu.be/LmMgx_vKh5s
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2.3. Accurate Agile Quadrotor Flight

(a) First-person-view racing inspired quadrotor
platform used for experiments
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(b) Trajectory tracking performance on a lem-
niscate trajectory

Figure 2.6: (a) Quadrotor platform we used for experimentally evaluating trajectory tracking
improvement when considering rotor drag effects in the controller. (b) Ground truth position
for ten loops on a lemniscate trajectory without considering rotor drag (solid blue), with drag
coefficients estimated on a circle trajectory (solid red), and with drag coefficients estimated on
the lemniscate trajectory (solid yellow) compared to the reference position (dashed black). The
maximum speed on the trajectory is 4.0 m s−1.

2.3.2 Paper G: Low-Level Control and Motor Saturation

(P7) M. Faessler, D. Falanga, and D. Scaramuzza. “Thrust Mixing, Saturation, and Body-Rate
Control for Accurate Aggressive Quadrotor Flight”. In: IEEE Robot. Autom. Lett. 2.2 (Apr.
2017), pp. 476–482. issn: 2377-3766. doi: 10.1109/LRA.2016.2640362

Most control schemes for quadrotors are designed for near hover conditions where
they work well. However, executing fast trajectories with such control schemes leads
to tracking errors that get larger the faster the quadrotor flies. To accurately track a
trajectory, the commands from a high-level position controller must be tracked well.
To achieve this, we propose a low-level body-rate controller, an iterative thrust-mixing
scheme, and a prioritizing motor-saturation scheme. Our body-rate controller uses LQR-
control methods to consider both the body rate and the single motor dynamics, which
reduces the overall trajectory-tracking error while still rejecting external disturbances
well. Our iterative thrust-mixing scheme computes the four rotor thrusts given the
inputs from a position-control pipeline. Through the iterative computation, we are able
to consider a varying ratio of thrust and drag torque of a single propeller over its input
range, which allows applying the desired yaw torque more precisely and hence reduces
the yaw-control error. Our prioritizing motor-saturation scheme improves stability and
robustness of a quadrotor’s flight and may prevent unstable behavior in case of motor
saturations. We successfully demonstrate the improved trajectory tracking, yaw-control,
and robustness in case of motor saturations in real-world experiments with a quadrotor.
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Related Videos

(V13) https://youtu.be/6YEMxFgToyg

(a) Quadrotor performing a step in height and
yaw
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(b) Corresponding ground truth data for ten
runs

Figure 2.7: (a) Comparison of simple thrust clipping and our prioritizing saturation scheme
during a simultaneous step in height and yaw. (b) Response in position and yaw for ten runs
where the quadrotor simultaneously performs a 1 m step in height and a 90◦ step in yaw
starting at t = 0 s using prioritizing saturation (top) and thrust clipping (bottom). The reference
values after the step are: x = 3.0 m, y = 0.0 m, z = 1.8 m, and yaw = ß/2 rad. Solid lines show
ground truth data and dashed lines show desired reference values.
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2.4. Unrelated Contributions

2.4 Unrelated Contributions

During the Ph.D., two papers were co-authored that are not part of the Ph.D. work
itself but made use of the developed quadrotor system. U1 used our quadrotor system
as a test platform for real-time 3D terrain reconstruction and landing-spot detection,
whereas U2 used it to apply a deep neural network to steer a drone autonomously
along forest or mountain trails.

(U1) C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza. “Continuous
On-Board Monocular-Vision–based Aerial Elevation Mapping for Quadrotor Landing”.
In: IEEE Int. Conf. Robot. Autom. (ICRA). 2015, pp. 111–118. url: http://dx.doi.org/10.
1109/ICRA.2015.7138988

(U2) A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, F. Fontana, M. Faessler,
C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and L. M. Gambardella. “A
Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots”.
In: IEEE Robot. Autom. Lett. 1.2 (July 2016), pp. 661–667. issn: 2377-3766. doi:
10.1109/LRA.2015.2509024

Figure 2.8: U1: Real-time 3D terrain reconstruction and autonomous landing-spot detection.
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Figure 2.9: U2: Autonomously following forest or hiking trails with a drone steered by a deep
neural network.

24



3 Future Directions

For over a decade, quadrotors have been used widely in research, hobby, and com-
mercial applications but their potential has not been fully exploited yet. Especially
the agility of quadrotors, which is one of their biggest advantages, has not been ex-
ploited much outside of remote controlled hobby applications. Therefore, especially
in research, we have to push the limits of quadrotors more, keep integrating the latest
available hardware, and further develop control algorithms that enable exploiting the
full potential in terms of agility and autonomy of quadrotors.

Pushing the limits. To this date, flights with quadrotors in research experiments are
almost exclusively conducted with low velocities of up to only a few meters per second
and accelerations that require a thrust to weight ratio of less than two. Quadrotor
platforms can nowadays easily be built with a thrust to weight ratio of five or larger
with maximum reachable speeds of forty meters per second and more. Since these
limits were extended drastically over the past years through fast hardware development,
quadrotors are currently operated far from their limitations. Therefore, it is important
for the research community to push control algorithms for quadrotors to a level where
they can exploit their full potential especially in terms of agility. To achieve this, we
have to reach higher velocities and accelerations in quadrotor experiments to explore
and potentially exploit effects that only then become relevant.

New Integrated Hardware. Recent developments of new integrated hardware such
as the Qualcomm Snapdragon Flight board1 bring a number of advantages and possibil-
ities for agile quadrotor flight. Since such a board contains all the required electronics
for autonomous quadrotor flight, it allows building more compact platforms which is
favorable for agile flight. Furthermore, the physical separation of high- and low-level
control that is typically used on quadrotors by a single board computer and a micro
controller is no longer necessary. This has the advantage that the state estimate is
also available in the low-level controller and, therefore, only two control loops for

1https://developer.qualcomm.com/hardware/snapdragon-flight/board-specs
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position and attitude are required, where the attitude can also be controlled at a hight
frequency in the low level controller. Additionally, running both loops on one device
has the advantage to reduce latencies from measurement to control action, which is very
important for fast and precise quadrotor control, and these latencies can be considered
precisely since only one clock is used for timing both control loops. Finally, such new
platforms with new electronic speed controllers enable to receive feedback about the
speed of all motors, which can then be incorporated into the control algorithms to
enable more precise control of rotor thrusts under various conditions.

Generation of Agile Trajectories. At the moment, the most used type of trajectories
for flying quadrotors are polynomials, such as minimum snap trajectories [106]. Poly-
nomial trajectories have two major drawbacks. The first drawback is that there is no
guarantee of obtaining trajectories without unnecessary curves, i.e., when designing a
polynomial trajectory between two states, the trajectory might temporarily move the
quadrotor away from the goal position. The second drawback is that physical limits are
difficult to enforce and that they can only be enforced at one point on the trajectory,
which might result in operating the quadrotor far from the limits for most of the time
on the trajectory. Therefore, new concepts of designing trajectories for agile flight with
quadrotors are required. A great demonstrator for this is autonomous drone racing
where the full potential in agility of quadrotors should be exploited. This requires
trajectory generation methods used for e.g. car racing in 2D [53] to be extended to 3D.
While for race cars this typically boils down to combinations of trajectory segments of
maximum throttle and maximum friction force [88] with some intermediate segments,
this will relate to maximum thrust segments with some intermediate segments. Such
trajectories may be obtained through classical optimization techniques [67] or model
predictive control strategies. Also, from observing human drone race pilots, such trajec-
tories might contain motion primitives such as fast turns that are executed almost open
loop, i.e., without feedback on position, velocity, or attitude. This was demonstrated to
be feasible for autonomous quadrotors, e.g., for doing multiple flips [95].

Learning Dynamics. Within this work, we realized that the relevant dynamics of a
quadrotor become increasingly more difficult to be captured by a dynamical model with
increasing speeds and acceleration during operation. Already now, many assumptions
need to be made to use these dynamical models in model based control approaches
and we are still operating quadrotors far from their physical limitations. Newly
emerging techniques in machine learning might be key to move away from increasingly
complicated dynamical models and enable accurate capturing of quadrotor dynamics
at high speeds and accelerations. Such techniques could be used to either learn the
dynamics of a quadrotor or, as mentioned above, learn motion primitives, such as
sharp turns (similarly to learning flips in [95]), which can then be connected to full
trajectories. First works in this direction are presented in [91] and [180] where a deep
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neural network is used as an add-on block to a classical feedback controller to improve
trajectory tracking for unseen trajectories. The deep neural network is trained offline
on recorded data from a set of training trajectories to adapt the reference signals to
the feedback control loop. Potentially, this is similar to obtaining a more accurate
dynamical model as I proposed in this work by incorporating rotor drag effects into
the the model and controller. These two approaches reduce the trajectory tracking error
by a similar but significant amount and potentially could reduce it even further when
being combined.

Summary

The potential of quadrotors in terms of agility is far from being exploited with current
platforms and control algorithms. The key towards a full exploitation of agility lies in
recent and current hardware design that enables more compact designs with higher
computational power, lower latency control loops, and more feedback of the quadro-
tor’s state. This will enable to redesign control algorithms incorporating additional
feedback, such as motor speed measurements, and running control loops faster with
less latency for more accurate control. It will also enable new control methods, such as
control policies obtained through machine learning, that do not rely on complicated
dynamical models, which might improve trajectory tracking accuracy at high speeds
and accelerations significantly.
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Autonomous, Vision-based Flight and Live
Dense 3D Mapping with a Quadrotor

Micro Aerial Vehicle

Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia

Pizzoli, and Davide Scaramuzza

Abstract — The use of mobile robots in search-and-rescue and
disaster-response missions has largely increased over the recent years.
However, they are still remotely controlled by expert professionals
on an actuator set-point level and would, therefore, benefit from any
bit of autonomy added. This would allow them to execute high-level
commands, such as “execute this trajectory” or “map this area”. In this
paper, we describe a vision-based quadrotor Micro Aerial Vehicle
(MAV) that can autonomously execute a given trajectory and provide
a live, dense three-dimensional (3D) map of an area. This map is
presented to the operator while the quadrotor is mapping, so that
there are no unnecessary delays in the mission. Our system does not
rely on any external positioning system (e.g., GPS or motion capture
systems) as sensing, computation, and control are performed fully
onboard a smartphone processor. Since we use standard, off-the-shelf
components from the hobbyist and smartphone markets, the total
cost of our system is very low. Due to its low weight (below 450 g),
it is also passively safe and can be deployed close to humans. We
describe both the hardware and the software architecture of our sys-
tem. We detail our visual odometry pipeline, the state estimation and
control, and our live dense 3D mapping, with an overview of how
all the modules work and how they have been integrated into the
final system. We report the results of our experiments both indoors
and outdoors. Our quadrotor was demonstrated over 100 times at
multiple trade fairs, at public events, and to rescue professionals. We
discuss the practical challenges and lessons learned. Code, datasets,
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and videos are publicly available to the robotics community.

Supplementary Material

This paper is accompanied by videos demonstrating the capabilities of our platform in
outdoor and indoor scenarios:

• Indoor evaluation (disturbance and autonomous, vision-based live 3D mapping):
http://youtu.be/sdu4w8r_fWc

• Outdoor autonomous, vision-based flight over disaster zone:
http://youtu.be/3mNY9-DSUDk

• Outdoor autonomous, vision-based flight with live 3D mapping:
http://youtu.be/JbACxNfBI30

More videos can be found on our Youtube channel:
https://www.youtube.com/user/ailabRPG/videos

Our visual odometry code (called SVO) for vision-based navigation has been released
open source and is freely available on the authors’ homepage.

A.1 Introduction

A.1.1 Motivation

For search-and-rescue, disaster response, and surveillance missions, it is crucial for
human rescuers to get an overview of the situation in order to take appropriate
measures. In this paper, we present a vision-based quadrotor that can autonomously
execute a trajectory, build a dense 3D map of an unknown area in real-time, and present
it live to a user during the mission. A live feedback is, indeed, crucial to avoid any
unnecessary delays during a rescue operation.

When robots are deployed in disaster situations, three expert professionals are on aver-
age required for each robot to control them [120]. Additionally, they are teleoperated on
an actuator set-point level, which makes the execution of tasks slow and cumbersome.

At the current state, all Micro Aerial Vehicles (MAVs) used in search-and-rescue
and remote-inspection scenarios are controlled under direct line of sight with the
operator [120]. If wireless communication can be maintained, there is the possibility
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(a) Our quadrotor mapping a mock-up disaster site

(b) Live dense 3D map

Figure A.1: Our system (a) can autonomously build a dense 3D map of an unknown area. The
map is presented to the operator through a graphical user interface on the base station laptop
while the quadrotor is mapping (b, right inset) together with the onboard image (b, bottom left
inset) and a confidence map (b, top left inset).
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to teleoperate the MAV by transmitting video streams from the onboard cameras to
the operator. However, teleoperation from video streams is extremely challenging in
indoor environments.

Since such systems exhibit very limited or no autonomy at all, the stress level on the
operator is very high, which limits the mission time drastically. Operator errors could
harm the robot or, even worse, cause further damage. For these reasons, there is a large
need of flying robots that can navigate autonomously, without any user intervention,
or execute high-level commands, such as “execute this trajectory” or “map this area”. This
would bring several advantages over today’s disaster-response robots. Firstly, the robot
could easily be operated by a single person, who could focus on the actual mission.
Secondly, a single person could operate multiple robots at the same time to speed
up the mission. Finally, rescuers could operate such systems with very little training.
These advantages, in combination with the low-cost of the platform, will soon make
MAVs become standard tools in disaster response operations.

A.1.2 System Overview

Our system consists of a quadrotor and a laptop base station with a graphical user
interface for the operator (see Figure A.1). The quadrotor is equipped with a sin-
gle, down-looking camera, an inertial measurement unit (IMU), and a single-board
computer. All required sensing, computation, and control is performed onboard the
quadrotor. This design allows us to operate safely even when we temporarily lose
wireless connection to the base station. It also allows us to operate the quadrotor
beyond the range of the wireless link as, for instance, inside buildings. We do not
require any external infrastructure such as GPS, which can be unreliable in urban areas
or completely unavailable indoors.

We chose quadrotors because of their high maneuverability, their ability to hover on a
spot, and their simple mechanical design. To make the system self-contained, we rely
only on onboard sensors (i.e., a camera and an IMU).

For operating in areas close to humans, safety is a major concern. We aim at achieving
this passively by making the quadrotor as lightweight as possible (below 450 g). There-
fore, we chose passive sensors, which are typically lighter and consume less power.
However, when using cameras, high computational power is required to process the
huge amount of data. Due to the boost of computational power in mobile devices
(e.g., smartphones, tablets), high-performance processors that are optimized for power
consumption, size, and cost are available today. An additional factor for real-world
applications is the cost of the overall system. The simple mechanical design and the
use of sensors and processors produced millionfold for smartphones makes the overall
platform low cost (1,000 USD).
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A.1.3 Contributions and Differences with other Systems

The main contribution of this paper is a self-contained, robust, low-cost, power-on-and-
go quadrotor MAV that can autonomously execute a given trajectory and provide a
live dense 3D mapping without any user intervention and using only a single camera
and an IMU as the main sensory modality.

The most similar to our system is the one which resulted from the European project
SFLY [174, 145]. However, in SFLY, dense 3D maps were computed offline and were
available only after several minutes after landing.

Another difference with the SFLY project lies in the vision-based motion-estimation
pipeline. Most monocular, visual-odometry algorithms used for MAV navigation (see
Section A.2.2) rely on PTAM [81], which is a feature-based visual SLAM algorithm,
running at 30 Hz, designed for augmented reality applications in small desktop scenes.
In contrast, our quadrotor relies on a novel visual odometry algorithm (called SVO,
which we proposed in [49]) designed specifically for MAV applications. SVO eliminates
the need of costly feature extraction and matching as it operates directly on pixel
intensities. This results in high precision, robustness, and higher frame-rates (at least
twice that of PTAM) than current state-of-the-art methods. Additionally, it uses a
probabilistic mapping method to model outliers and feature-depth uncertainties, which
provide robustness in scenes with repetitive, and high-frequency textures.

In SFLY, a commercially-available platform was used, with limited access to the low-
level controller. Conversely, we have full access to all the control loops, which allows
us to tune the controllers down to the lowest level. Furthermore, we propose a one-
time-per-mission estimation of sensor biases, which allows us to reduce the number of
states in the state estimator. In addition, the estimated biases are also considered in the
low-level controller (body rate controller), while in SFLY, they were only used in the
high-level controller (position controller). Furthermore, we propose a calibration of the
actually-produced thrust, which ensures the same control performance regardless of
environmental conditions such as temperature and air pressure.

A.1.4 Outline

The paper is organized as follows. Section A.2 reviews the related work on autonomous
MAV navigation and real-time 3D dense reconstruction. Section A.3 presents the
hardware and software architecture of our platform. Section A.4 describes our visual
odometry pipeline, while Section A.5 details the state estimation and control of the
quadrotor. Section A.6 describes our live, dense 3D reconstruction pipeline. Finally,
Section A.7 presents and discusses the experimental results and Section A.8 comments
on the lessons learned.
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A.2 Related Work

To date, most autonomous MAVs rely on GPS to navigate outdoors. But, GPS is
not reliable in urban settings and is completely unavailable indoors. Because of this,
most works on autonomous indoor navigation of flying robots have used external
motion-capture systems (e.g., Vicon or OptiTrack). These systems are very appropriate
for testing and evaluation purposes [110, 96], such as prototyping control strategies
or executing fast maneuvers. However, they need pre-installation of the cameras and,
thus, cannot be used in unknown, yet unexplored environments. Therefore, for truly
autonomous navigation in indoor environments, the only viable solution is to use
onboard sensors. The literature on autonomous navigation of MAVs using onboard
sensors includes range (e.g., laser rangefinders or RGB-D sensors) and vision sensors.

A.2.1 Navigation based on Range Sensors

Laser rangefinders have been largely explored for Simultaneous Localization and
Mapping (SLAM) with ground mobile robots [165]. Because of the heavy weight of
3D scanners (see for instance the Velodyne sensor (more than 1 kg)), laser rangefinders
currently used on MAVs are only 2D. Since 2D scanners can only detect objects
that intersect their sensing plane, they have been used for MAVs in environments
characterized by vertical structures [6, 2, 153, 154] and less in more complex scenes.

RGB-D sensors are based upon structured-light techniques, and, thus, share many
properties with stereo cameras. However, the primary differences lie in the range
and spatial density of depth data. Since RGB-D sensors illuminate a scene with a
structured-light pattern, contrary to stereo cameras, they can estimate depth in areas
with poor visual texture but are range-limited by their projectors. RGB-D sensors for
state estimation and mapping with MAVs have been used in [7], as well as in [154, 152],
where a multi-floor autonomous exploration and mapping strategy was presented.

A.2.2 Navigation based on Vision Sensors

Although laser rangefinders and RGB-D sensors are very accurate and robust to
illumination changes, they are too heavy and consume too much power for lightweight
MAVs. In this case, the alternative solution is to use vision sensors. Early works
on vision-based navigation of MAVs focused on biologically-inspired algorithms (like
optical flow) to perform basic maneuvers, such as take-off and landing, reactive obstacle
avoidance, corridor and terrain following [143, 69, 182, 181, 93]. Since optical flow
can only measure the relative velocity of image features, the position estimate of the
MAV will inevitably drift over time. This can be avoided using visual odometry or
visual SLAM methods, in monocular [173, 174, 49, 145] or stereo configurations [2,
155, 147]. Preliminary experiments for MAV localization using a visual EKF-based
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SLAM technique were described in [3]. However, the first use of visual SLAM to
enable autonomous basic maneuvers was done within the framework of the SFLY
European project, where a single camera and an IMU were used for state estimation
and point-to-point navigation over several hundred meters in an outdoor, GPS-denied
environment [174, 145].

Most monocular Visual Odometry (VO) algorithms for MAVs [15, 34, 174, 145] rely
on PTAM [81]. PTAM is a feature-based SLAM algorithm that achieves robustness
through tracking and mapping several hundreds of features. Additionally, it runs in
real-time (at around 30 Hz) by parallelizing the motion estimation and mapping tasks
and by relying on efficient keyframe-based Bundle Adjustment (BA) [158]. However,
PTAM was designed for augmented reality applications in small desktop scenes and
multiple modifications (e.g., limiting the number of keyframes) were necessary to allow
operation in large-scale outdoor environments [174].

A.2.3 Real-time Monocular Dense 3D Mapping

In robotics, a dense reconstruction is needed to interact with the environment—as in
obstacle avoidance, path planning and manipulation. Moreover, the robot must be
aware of the uncertainty affecting the measurements in order to intervene by changing
the vantage point or deploying different sensing modalities [48].

A single moving camera represents the most general setting for stereo vision. Indeed,
in stereo settings a fixed baseline constrains the operating range of the system, while a
single moving camera can be seen as a stereo camera with an adjustable baseline that
can be dynamically re-configured according to the requirements of the task.

Few relevant works have addressed real-time, dense reconstruction from a single mov-
ing camera and they shed light on some important aspects. If, on one hand, estimating
the depth independently for every pixel leads to efficient, parallel implementations, on
the other hand the authors of [55, 159, 125, 175] argued that, similar to other computer
vision problems, such as image de-noising [142] and optical flow estimation [176], a
smoothing step is required in order to deal with noise and spurious measurements.
In [159], smoothness priors were enforced over the reconstructed scene by minimizing
a regularized energy functional based on aggregating a photometric cost over differ-
ent depth hypothesis and penalizing non-smooth surfaces. The authors showed that
the integration of multiple images leads to significantly higher robustness to noise.
A similar argument is put forth in [125], where the advantage of photometric cost
aggregation [162] over a large number of images taken from nearby viewpoints is
demonstrated.

However, despite the ground-breaking results, these approaches present some limita-
tions when addressing tasks in robot perception. Equally weighting measurements
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Component Weight (g) Price (USD)
Frame, Gears, Propellers 119 63

Motors, Motor Controllers 70 214
PX4FMU, PX4IOAR 35 181

Hardkernel Odroid-U3 49 65
Camera, Lens 16 326

1,350 mA h Battery 99 44
Other Parts 54 110

Total 442 1003

Table A.1: Weight and price of the individual components of our quadrotors.

from small and large baselines, in close and far scenes, causes the aggregated cost
to frequently present multiple or no minima. Depending on the depth range and
sampling, these failures are not always recoverable by the subsequent optimization
step. Furthermore, an inadequate number of images can lead to a poorly constrained
initialization for the optimization and erroneous measurements that are hard to detect.
It is not clear how many images should be collected, depending on the motion of the
camera and the scene structure. Finally, the number of depth hypotheses controls the
computational complexity, and the applicability is, thus, limited to scenes bounded in
depth.

Therefore, in [133] we presented the REMODE framework that overcomes these limita-
tions by using a probabilistic approach handling measurement uncertainty. We build
on the Bayesian depth estimation proposed in [170] for per-pixel depth estimation
and introduce an optimization step to enforce spatial regularity over the recovered
depth map. We propose a regularization term based on the weighted Huber norm
but, differently from [125], we use the depth uncertainty to drive the smoothing and
exploit a convex formulation for which a highly parallelizable solution scheme has
been recently introduced [27].

A.3 System Overview

We propose a system consisting of a quadrotor equipped with a monocular camera
and a laptop serving as ground station. The quadrotor is able to navigate fully
autonomously without requiring any communication with the ground station. On the
ground station, we can compute a dense 3D reconstruction from the images taken by
the quadrotor in real time. In the following, we describe the aerial platform and the
software modules.
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Figure A.2: A closeup of our quadrotor: 1) down-looking camera, 2) Odroid U3 quad-core
computer, 3) PIXHAWK autopilot.

A.3.1 Aerial Platform

We built our quadrotor from selected off-the-shelf components and custom 3D printed
parts (see Figure A.2). The components were chosen according to their performance
and their ability to be easily customized.

Our quadrotor relies on the frame of the Parrot AR.Drone 2.01 including their motors,
motor controllers, gears, and propellers. To reduce play and vibrations on the platform,
we replaced the bushings of the propeller axes by ball bearings. The platform is
powered by one 1,350 mA h LiPo battery which allows a flight time of 10 min.

We completely replaced the electronic parts of the AR.Drone by a PX4FMU autopilot
and a PX4IOAR adapter board developed in the PIXHAWK Project [105]. The PX4FMU
consists, among other things, of an IMU and a micro controller to read the sensors, run
a body rate controller, and command the motors. Additionally to the PX4 autopilot,
our quadrotors are equipped with an Odroid-U3 single-board computer.2 It contains
a 1.7 GHz quad-core processor running XUbuntu 13.103 and ROS.4 The PX4 micro
controller communicates with the Odroid board over UART, whereas the Odroid board
communicates with the ground station over 5 GHz WiFi.

1http://ardrone2.parrot.com/
2http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
3http://www.xubuntu.org/
4http://www.ros.org/
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Figure A.3: System overview: the PX4 and Odroid U3 communicate with each other over
a UART interface. Communication to the Laptop is over WiFi. Gray boxes are sensors and
actuators, software modules are depectied as white boxes.

To stabilize the quadrotor, we make use of the gyros and accelerometers of the IMU
on the PX4FMU as well as a downward-looking MatrixVision mvBlueFOX-MLC200w
752× 480-pixel monochrome camera with a 130-degree field-of-view lens.5

Our platform is easily reparable due to off-the-shelf components, inexpensive (1,000 USD,
c.f. Table A.1), lightweight (below 450 g), and, due to its flexible propellers, safe to use.

A.3.2 Software Modules

The software used in our system runs on three different processing units (see Fig-
ure A.3), namely the PX4 micro controller, the Odroid computer, and a laptop, which
serves as ground station. All the computations required to stabilize the quadrotor are
performed onboard. On the ground station (a W530 Lenovo laptop), only the dense 3D
reconstruction is computed using its Graphics Processing Unit (GPU).

The PX4 micro controller reads the IMU and controls the desired body rates and
collective thrust that it receives from the high-level controller running on the Odroid.

The Odroid processes the camera images by means of our Semi-direct visual odometry
(SVO [49]) pipeline (see Section A.4). The visual odometry pipeline outputs an un-
scaled pose which is then fused with the IMU readings in an Extended Kalman Filter
framework (Multi Sensor Fusion (MSF) [98]) to compute a metric state estimate. From
this state estimate and a reference trajectory, we compute the desired body rates and

5http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
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collective thrust, which are then sent to the PX4. Alongside this pipeline, we send the
images from the camera together with the corresponding pose estimate to the ground
station.

On the ground station, we run a dense 3D reconstruction [133] in real time using the
camera images with their corresponding pose estimate (see Section A.6).

A.4 Semi-Direct Visual Odometry (SVO)

Using Visual Odometry with a single downward-looking camera, we can simultane-
ously estimate the motion of the vehicle (up to an unknown scale and rigid-body
transformation) and the local structure of the scene in the form of a sparse point-cloud.
In [49], we proposed a novel VO algorithm called SVO that is two times faster in terms
of processing time compared to previous methods. The motivation to increase the
frame-rate is twofold: first, it allows the MAV to fly faster and more agilely; second, as
we will show in the experimental results, it allows the MAV to localize in environments
of highly repetitive and high-frequency texture (see Figure A.11).

Figure A.4 provides an overview of SVO. The algorithm uses two parallel threads, one
for estimating the camera motion with respect to the local map, and a second one for
extending the map as the environment is being explored. This separation allows fast
and constant-time tracking in one thread, while the second thread extends the map,
decoupled from hard real-time constraints. In the following, we provide an overview
of both motion estimation and mapping. We refer the reader to [49] for more details.

A.4.1 Motion Estimation

Methods that estimate the camera pose with respect to a map (i.e., a set of key-frames
and 3D points) can be divided into two classes:

(A) Feature-based methods extract a sparse set of salient image features in every image;
match them in successive frames using invariant feature descriptors; finally, recover
both camera motion and structure using epipolar geometry [146]. The bottleneck of
this approach is that approximately 50% of the processing time is spent on feature
extraction and matching, which is the reason why most of the VO algorithms still run
at 20-30 fps despite the availability and advantages of high frame-rate cameras.

(B) Direct methods [72], on the other hand, estimate the motion directly from intensity
values in the image. The rigid-body transformation is found through minimizing
the photometric difference between corresponding pixels, where the local intensity
gradient magnitude and direction is used in the optimization. Since this approach starts
directly with an optimization, increasing the frame-rate means that the optimization is
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initialized closer to the optimum, and, thus, it converges much faster. Hence, direct
methods in general benefit from increasing the frame-rate [62] as the processing time
per frame decreases.

In [49] we proposed a Semi-Direct Visual Odometry (SVO) that combines the benefits of
feature-based and direct methods. SVO establishes feature-correspondence by means of
direct methods rather than feature extraction and matching. The advantage is increased
speed (up to 70 fps onboard the MAV and 400 Hz on a consumer laptop) due to the lack
of feature-extraction at every frame and increased accuracy through subpixel feature
correspondence. Once feature correspondences are established, the algorithm continues
using only point-features; hence, the name “semi-direct”. This switch allows us to rely
on fast and established frameworks for bundle adjustment, i.e., joint optimization of
both 3D points and camera poses [168].

A.4.2 Mapping

The mapping thread estimates the depth at new 2D feature positions (we used FAST
corners [141]) by means of a depth filter. Once the depth filter has converged, a new
3D point is inserted in the map at the found depth and immediately used for motion
estimation. The same depth filter formulation is used for dense reconstruction and its
formulation is explained in more detail in Section A.6.1.

New depth-filters are initialized whenever a new keyframe is selected in regions of the
image where few 3D-to-2D correspondences are found. A keyframe is selected when
the distance between the current frame and the previous keyframe exceeds 12% of the
average scene depth. The filters are initialized with a large uncertainty in depth and
with a mean at the current average scene depth.

At every subsequent frame, the epipolar line segment in the new image corresponding
to the current depth confidence interval is searched for an image patch that has highest
correlation with the reference feature patch (see Figure A.6). If a good match is found,
the depth filter is updated in a recursive Bayesian fashion (see Equation (A.31)). Hence,
we use many measurements to verify the position of a 3D point, which results in
considerably less outliers compared to triangulation from two views.

A.4.3 Implementation Details

The source-code of SVO is available open-source at github.com/uzh-rpg/rpg_svo. No
special modifications are required to run SVO onboard the MAV. For all experiments,
we use the fast parameter setting that is available on-line. The fast setting limits the
number of features per frame to 120, maintains always at maximum 10 keyframes in
the map (i.e., older keyframes are removed from the map) and for processing-time
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Figure A.4: SVO system overview. Two concurrent threads are used, one for estimating the
motion of the camera w.r.t. the map and the second one for extending the map.
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Figure A.5: Quadrotor with coordinate system and rotor forces.

reasons no bundle adjustment is performed.

A.5 State Estimation and Control

In this section, we describe the state estimation and control used to stabilize our
quadrotor. Furthermore, we explain how we estimate sensor biases and the actually-
produced thrust. The control and calibration sections are inspired by [96].

A.5.1 Dynamical Model

For state estimation and control we make use of the following dynamical model of our
quadrotor:

ṙ = v, (A.1)

v̇ = g + R · c, (A.2)

Ṙ = R · ω̂, (A.3)

ω̇ = J−1 · (τ −ω× Jω) , (A.4)

where r = [x y z]T and v = [vx vy vz]T are the position and velocity in world
coordinates, R is the orientation of the quadrotor’s body coordinates with respect to
the world coordinates, and ω = [p q r]T denotes the body rates expressed in body
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Parameter Description Value Unit
Jxx x-Axis Moment of Inertia 0.001 kg m2

Jyy y-Axis Moment of Inertia 0.001 kg m2

Jzz z-Axis Moment of Inertia 0.002 kg m2

m Quadrotor Mass 0.45 kg
l Quadrotor Arm Length 0.178 m
κ Rotor Torque Coefficient 0.0195 m

pxy Horizontal Position Control Gain 5.0 s−2

pz Vertical Position Control Gain 15.0 s−2

dxy Horizontal Velocity Control Gain 4.0 s−1

dz Vertical Velocity Control Gain 6.0 s−1

prp Roll/Pitch Attitude Control Gain 16.6 s−1

pyaw Yaw Attitude Control Gain 5 s−1

ppq Roll/Pitch Rate Control Gain 33.3 s−1

pr Yaw Rate Control Gain 6.7 s−1

Table A.2: Parameters and control gains used for the experiments.

coordinates. The skew symmetric matrix ω̂ is defined as

ω̂ =

 0 −r q
r 0 −p
−q p 0

 . (A.5)

We define the gravity vector as g = [0 0 − g]T and J = diag
(

Jxx, Jyy, Jzz
)

is the
second-order moment-of-inertia matrix of the quadrotor. The mass-normalized thrust
vector is c = [0 0 c]T, with

mc = f1 + f2 + f3 + f4, (A.6)

where fi are the four motor thrusts as illustrated in Figure A.5. The torque inputs τ are
composed of the single-rotor thrusts as

τ =


√

2
2 l( f1 − f2 − f3 + f4)√
2

2 l(− f1 − f2 + f3 + f4)

κ( f1 − f2 + f3 − f4)

 , (A.7)

where l is the quadrotor arm length and κ is the rotor-torque coefficient.

The used coordinate systems and rotor numbering are illustrated in Figure A.5, the
used parameter values are listed in Table A.2.
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A.5.2 State Estimation

To stabilize our quadrotor, we need an estimate of the metric pose as well as the linear
and angular velocities. We compute this state estimate by fusing the sensor data from
the IMU and the output of the visual odometry in an Extended Kalman Filter. To do
so, we make use of an open-source multi sensor fusion package [98]. Since we did not
modify this package, we are not describing the sensor fusion in more detail here.

A.5.3 Controller

To follow reference trajectories and stabilize the quadrotor, we use cascaded controllers.
The high-level controller running on the Odroid includes a position controller and an
attitude controller. The low-level controller on the PX4 contains a body rate controller.
The used control gains are listed in Table A.2.

High-Level Control

The high-level controller takes a reference trajectory as input and computes desired
body rates that are sent to the low-level controller. A reference trajectory consists of
a reference position rre f , a reference velocity vre f , a reference acceleration are f , and a
reference yaw angle ψre f . First, the position controller is described followed by the
attitude controller. The two high-level control loops are synchronized and run at 50 Hz.

Position Controller To track a reference trajectory, we implemented a PD controller
with feed-forward terms on velocity and acceleration:

ades = Ppos ·
(
rre f − r̂

)
+ Dpos ·

(
vre f − v̂

)
+ are f , (A.8)

with gain matrices Ppos = diag
(

pxy, pxy, pz
)

and Dpos = diag
(
dxy, dxy, dz

)
. Since a

quadrotor can only accelerate in its body z direction, ades enforces two degrees of the
desired attitude. Now we want to compute the desired normalized thrust such that the
z component of ades is reached with the current orientation. To do so, we make use of
the last row of (A.2) to compute the required normalized thrust cdes as

cdes =
ades,z + g

R3,3
. (A.9)

The output of the position controller is composed of the desired accelerations ades,
which, together with the reference yaw angle ψre f , encodes the desired orientation as
well as a mass normalized thrust cdes.
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Attitude Controller In the previous paragraph, we computed the desired thrust such
that the desired acceleration in the vertical world direction is met. Since a quadrotor
can only produce thrust in the body z direction, the attitude controller has to rotate the
quadrotor in order to achieve the desired accelerations in the world x-y plane with the
given thrust. The translational behavior of the quadrotor is independent of a rotation
around the body z axis. Therefore, we first discuss the attitude controller for roll and
pitch and, second, we present the yaw controller.

For the x-y plane movement, we restate the first two rows of (A.2) and insert the
normalized thrust from (A.9)[

ades,x

ades,y

]
=

[
R1,3

R2,3

]
cdes, (A.10)

where Ri,j denotes the (i, j) element of the orientation matrix R. Solving for the two
entries of R which define the x-y plane movement, we find[

Rdes,1,3

Rdes,2,3

]
=

1
cdes

[
ades,x

ades,y

]
. (A.11)

To track these desired components of R, we use a proportional controller on the attitude
error.[

Ṙdes,1,3

Ṙdes,2,3

]
= prp

[
R1,3 − Rdes,1,3

R2,3 − Rdes,2,3

]
, (A.12)

where prp is the controller gain and Ṙ is the change of the orientation matrix per time
step.

We can write the first two rows of (A.3) as[
Ṙdes,1,3

Ṙdes,2,3

]
=

[
−R1,2 R1,1

−R2,2 R2,1

]
·
[

pdes

qdes

]
. (A.13)

Finally, the desired roll and pitch rate can be computed by plugging (A.12) into (A.13)
and solving for pdes and qdes.

The yaw-angle control does not influence the translational dynamics of the quadrotor
and, thus, can be controlled independently. First, we compute the current yaw angle
ψ from the quadrotor orientation R. Second, we compute the desired angular rate in
world z direction with a proportional controller on the yaw angle error

rWorld = pyaw
(
ψre f − ψ

)
. (A.14)
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The resulting desired rate can then be converted into the quadrotor body frame using
its current orientation

rdes = R3,3 · rWorld. (A.15)

Low-Level Control

The commands sent to the low-level control on the PX4 are the desired body rates
ωdes and the desired mass-normalized thrust cdes. From these, the desired rotor thrusts
are then computed using a feedback linearizing control scheme with the closed-loop
dynamics of a first-oder system. First, the desired torques τdes are computed as

τdes = J

ppq(pdes − p)
ppq(qdes − q)
pr(rdes − r)

+ ω× Jω. (A.16)

Then, we can plug τdes and cdes into Equations (A.7) and (A.6) and solve them for the
desired rotor thrusts which have to be applied.

A.5.4 Calibration

Sensor Bias Calibration

For the state estimation and the control of our quadrotors, we make use of their gyros
and accelerometers. Both these sensor units are prone to have an output bias that
varies over time and that we, therefore, have to estimate. We noticed that the changes
of these biases during one flight are negligible. This allows us to estimate them once
at the beginning of a mission and then keep them constant. Thus, we do not have
to estimate them on-line and can therefore reduce the size of the state in the state
estimation. In the following, we will present a procedure that allows to estimate the
biases during autonomous hover. Note, that the quadrotor can hover autonomously
even with sensor biases. However, removing the biases increases the state estimation
and tracking performance. For the sensor bias calibration, we look at the gyros and the
accelerometers separately.

The gyro measurement equation reads as

ω̃ = ω + bω + nω, (A.17)

where ω̃ denotes the measured angular velocities, ω the real angular velocities, bω the
bias, and nω the noise of the gyros. This, in hover conditions, becomes

ω̃ = bω + nω. (A.18)
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We assume the noise nω to have zero mean and can therefore average the gyro mea-
surements over N samples to estimate the gyro bias bω as

b̂ω =
1
N

N

∑
k=1

ω̃k. (A.19)

The accelerometer measurement equation reads as

ã = c + adist + bacc + nacc, (A.20)

where ã denotes the measured accelerations, c the mass normalized thrust, adist the
accelerations due to external disturbances, bacc the bias, and nacc the noise of the
accelerometer. In hover conditions, c = −g and we assume to have only small and zero
mean disturbances, so the equation simplifies

ã = −g + bacc + nacc. (A.21)

As for the gyro bias, we assume the noise nacc to have zero mean and can therefore
average the accelerometer measurements over N samples to estimate the accelerometer
bias bacc as

b̂acc =
1
N

N

∑
k=1

ãk + g. (A.22)

When performing the sensor bias calibration, we sample the IMU readings over a 5 s
period which is enough to provide an accurate estimate of their biases.

Thrust Calibration

When flying our quadrotors under very different conditions indoors and outdoors, we
noticed that the produced rotor thrust can vary substantially. This can significantly
reduce the control authority and hence the flight performance in situations where the
produced thrust is low. To overcome this limitation, we estimate the actually produced
thrust in flight.

The thrust f of a single rotor can be computed as

f =
1
2
· ρ ·Ω2 · C · A, (A.23)

where ρ is the air density, Ω is the rotor speed, C is the lift coefficient, and A is the
rotor area. The rotor speed Ω is the input parameter, through which we control the
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thrust. We assume that the rotor speed is controlled by the motor controllers such that
we can neglect differences of the battery voltage. However, the density of the air ρ is
not constant as it depends on the air pressure and temperature. Additionally, wear and
possible damages to the rotors might cause unexpected changes in C and A. These
three values are difficult to measure but we can estimate them together in hover flight.
To do so, we first combine the three parameters and write Equation (A.23) as

f = GΩ2. (A.24)

We refer to this equation as thrust mapping, i.e. the mapping of the rotor speed to
the resulting rotor thrust. Under nominal conditions, this thrust mapping can be
estimated (e.g. with a load cell) to obtain the nominal coefficient Ǧ leading to a nominal
thrust mapping f̌ = ǦΩ2. Due to the multiplicative nature of Equation (A.23) and
correspondingly (A.24), we can express the real thrust mapping coefficient as

G = λǦ, (A.25)

and hence the real produced thrust as

f = λ f̌ . (A.26)

This formulation allows us to estimate λ in hover and therefore calibrate the thrust
mapping. For the quadrotor to hover, we know that τ

!
= 0 and c !

= g. Thus, from
Equations (A.7) and (A.6) we obtain the following matrix equation

d −d −d d
−d −d d d
κ −κ κ −κ

1/m 1/m 1/m 1/m




f̌1λ1

f̌2λ2

f̌3λ3

f̌4λ4

 =


0
0
0
g

 , (A.27)

where d =
√

2
2 l. This system of equations can be solved for λ1...4. The nominal thrusts

f̌i are obtained by averaging the applied nominal thrusts over N samples,

f̌i =
1
N

N

∑
k=1

f̌i,k. (A.28)

To perform the thrust calibration, we sample the applied thrust commands over a 5 s
period which is sufficient to get a robust thrust estimation. Note that the nominal
thrust mapping is stored on the vehicle and the nominally-applied rotor thrusts f̌i,k are
computed on the vehicle using the actually-commanded rotor speeds and the nominal
thrust mapping.
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When controlling the vehicle, we first compute the actual desired rotor thrusts, as
described in Section A.5.3, which we then have to convert into the corresponding
nominal rotor thrusts,

f̌i,des =
fi,des

λi
. (A.29)

These nominal rotor thrusts are then converted into motor commands using the nominal
thrust mapping onboard the vehicle.

A.6 Real-time Dense 3D Reconstruction

The MAV streams, through WiFi, the images Ik and corresponding poses Tk,w computed
by SVO to the ground station at a rate of 5 Hz.6 The observations are used to compute
a dense reconstruction in real-time on the GPU. Therefore, we use the REMODE
(“Regularized Monocular Depth”) algorithm that we proposed in [133] and that we
summarize in the following. REMODE computes dense depth maps for automatically-
selected reference frames. New reference frames are selected when the Euclidean
distance to the previous reference frame, normalized by the average depth in the
scene, exceeds a threshold. A depth map is computed by initializing a depth-filter
for every pixel in a reference view r. We use the same depth-filter formulation as
in the SVO algorithm, with the difference that now every pixel of the image has a
depth-filter (rather than only salient features) and that the computation is performed
highly parallelized on the GPU.

Finally, smoothness on the resulting depth map is enforced by minimizing a regularized
energy functional. In the following, we give an overview of the depth-filter formulation
and the smoothing step.

A.6.1 Depth Filter

The depth computation for a single pixel is formalized as Bayesian estimation problem.
Let the rigid body transformation Tw,r ∈ SE(3) describe the pose of a reference frame
relative to the world frame. We initialize a depth-filter at every pixel in the reference
view with high uncertainty in depth and a mean set to the average scene depth of the
previous reference frame. The depth filter is described by a parametric model (A.30)
that is updated on the basis of every subsequent frame k.

Given a new observation {Ik, Tk,w} we project the 95% depth-confidence interval

6Although in our lab, we can transmit uncompressed, full-resolution images at rates of up to 50 Hz,
we observed, during public exhibitions and outdoor experiments with more than 20-meter height, that a
lower bound of 5 Hz can be usually assumed.
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Figure A.6: Probabilistic depth estimate d̂i for feature i in the reference frame r. The point at
the true depth projects to similar image regions in both images (blue squares). Thus, the depth
estimate is updated with the triangulated depth d̃k

i computed from the point u′i of highest
correlation with the reference patch. The point of highest correlation lies always on the epipolar
line in the new image.

[dmin
i , dmax

i ] of the depth filter corresponding to pixel i into the image k and find a
segment of the epipolar line l (see Figure A.6). Using the cross-correlation score on
a 5×5 patch, we search the pixel on the epipolar line segment u′i that has highest
correlation with the reference pixel ui. A depth hypothesis d̃k

i is generated from the
observation by triangulating ui and u′i from the views r and k respectively.

Let the sequence of d̃k
i for k = r, . . . , r + n denote a set of noisy depth measurements.

As proposed in [170], we model the depth filter as a distribution that mixes a good
measurement (normally distributed around the true depth di) and an outlier measure-
ment (uniformly distributed in an interval [dmin

i , dmax
i ] which is known to contain the

depth for the structure of interest):

p(d̃k
i |di, ρi)

= ρiN (d̃k
i |di, τk

i
2
) + (1− ρi)U (d̃k

i |dmin
i , dmax

i ),
(A.30)

where ρi and τk
i

2 are the probability (i.e., inlier ratio) and the variance of a good mea-
surement, respectively. Assuming independent observations, the Bayesian estimation
for di on the basis of the measurements d̃r+1

i , . . . , d̃k
i is given by the posterior

p(di, ρi|d̃r+1
i , . . . , d̃k

i ) ∝ p(di, ρi)∏
k

p(d̃k
i |di, ρi), (A.31)
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with p(di, ρi) being a prior on the true depth and the ratio of good measurements
supporting it. A sequential update is implemented by using the estimation at time step
k− 1 as a prior to combine with the observation at time step k. To this purpose, the
authors of [170] show that the posterior in (A.31) can be approximated by the product
of a Gaussian distribution for the depth and a Beta distribution for the inlier ratio:

q(di, ρi|ak
i , bk

i , µk
i , σk

i
2
)

= Beta(ρi|ak
i , bk

i )N (di|µk
i , σk

i
2
),

(A.32)

where ak
i and bk

i are the parameters controlling the Beta distribution. The choice
is motivated by the fact that the Beta × Gaussian is the approximating distribution
minimizing the Kullback-Leibler divergence from the true posterior (A.31). We refer
to [170] for an in depth discussion and formalization of this Bayesian update step.

A.6.2 Depth Smoothing

In [133], we introduced a fast smoothing step that takes into account the measurement
uncertainty to enforce spatial regularity and mitigates the effect of noisy camera
localization.

We now detail our solution to the problem of smoothing the depth map D(u). For
every pixel ui in the reference image Ir : Ω ⊂ R2 7→ R the depth estimation and its
confidence upon the k-th observation are given, respectively, by µk

i and σk
i in (A.32).

We formulate the problem of computing a de-noised depth map F(u) as the following
minimization:

min
F

∫
Ω
{G(u) ‖∇F(u)‖ε + λ ‖F(u)− D(u)‖1} du, (A.33)

where λ is a free parameter controlling the trade-off between the data term and
the regularizer, and G(u) is a weighting function related to the “G-Weighted Total
Variation”, introduced in [21] in the context of image segmentation. We penalize
non-smooth surfaces by making use of a regularization term based on the Huber norm
of the gradient, defined as:

‖∇F(u)‖ε =

{ ||∇F(u)||22
2ε if ||∇F(u)||2 ≤ ε,

||∇F(u)||1 − ε
2 otherwise .

(A.34)

We chose the Huber norm because it allows smooth reconstruction while preserving
discontinuities at strong depth gradient locations [125]. The weighting function G(u)
influences the strength of the regularization and we propose to compute it on the basis
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of the measure confidence for u:

G(u) = Eρ[q](u)
σ2(u)
σ2

max
+
{

1−Eρ[q](u)
}

, (A.35)

where we have extended the notation for the expected value of the inlier ratio Eρ[q]
and the variance σ2 in (A.32) to account for the specific pixel u. The weighting function
(A.35) affects the strength of the regularization term: for pixels with a high expected
value for the inlier ratio ρ the weight is controlled by the measurement variance σ2;
measurements characterized by a small variance (i.e. reliable measurements) will be
less affected by the regularization; differently, the contribution of the regularization
term will be heavier for measurements characterized by a small expected value for the
inlier ratio or higher measurement variance.

The solution to the minimization problem (A.33) is computed iteratively based on
the work in [27]. The algorithm exploits the primal dual formulation of (A.33) and is
detailed in [133].

A.7 Results

A.7.1 Indoor flight

Our flying arena is equipped with an OptiTrack motion-capture system by Natural-
Point,7 which we only used for ground-truth comparison. Its floor is covered with a
texture-rich carpet and boxes for 3D structure as shown in Figure A.7. The quadrotor
was requested to autonomously execute a closed-loop trajectory specified by waypoints.
The trajectory was 20 meters long and the MAV flew on average at 1.7 meters above
ground. Figures A.8, A.9, and A.10, show the accurate trajectory following as well as the
position and orientation estimation errors, respectively. For ground-truth comparison,
we aligned the first 2 meters of the estimated trajectory to the ground truth [169]. The
maximum recorded position drift was 0.5% of the travelled distance. As observed,
the quadrotor was able to return very close to the start point (with a final absolute
error smaller than 5 cm). This result was confirmed in more than 100 experiments
run at public events, exhibitions, and fairs. These results outperform those achieved
with MAVs based on PTAM. This is due to the higher precision of SVO. Comparisons
between SVO and PTAM are reported in [49].

Apart from its higher precision and frame rate, another main advantage of our SVO
compared to PTAM is its robustness in scenes with repetitive, and high-frequency
textures (e.g., asphalt, grass), c.f. Figure A.11. Figure A.12 shows a comparison of the
map generated with PTAM and SVO in the same scene. While PTAM generates outlier

7http://www.naturalpoint.com/optitrack/
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Figure A.7: Our flying arena equipped with an OptiTrack motion-capture system (for ground-
truth recording), carpets and boxes for 3D structure.
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Figure A.8: Comparison of estimated and ground-truth position to a reference trajectory (a)
flown indoors over a scene as reconstructed in (b). A photograph of a similar scene is shown in
Figure A.7.
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Figure A.11: Successful tracking in scenes of high-frequency texture.

3D points, by contrast SVO has almost no outliers thanks to the use of the depth-filter.

A.7.2 Outdoor flight

An outdoor demonstration was performed at the Zurich firefighter training area in
front of real firemen. This area features a large mock-up disaster site, consisting of two
main towers and several stone blocks gathered on the ground. Due to the unavailability
of a reliable GPS signal in this area, results are not compared to GPS. The quadrotor
was requested to reach a height of 20 m and follow a piece-wise straight trajectory
(c.f., Figure A.13). The overall trajectory length was 140 m. The first 100 meters of
this trajectory were executed fully autonomously and are indicated in blue. After the
autonomous flight, we handed a joypad game controller to a fireman with no pilot
experience. The joypad was connected to the ground station and allowed sending the
quadrotor simple up-down, left-right, forward-backward velocity commands expressed
in the world reference frame. Thanks to the assistance of the vision-based control
running onboard the quadrotor, the firefighter was able to successfully and easily
control the vehicle back to his position.
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Figure A.12: Side-view of a piecewise-planar map created by SVO and PTAM. The proposed
method has fewer outliers due to the depth-filter.

A.7.3 Reconstruction

The laptop that served as a groundstation to run the live, dense 3D reconstruction is a
Lenovo W520 with an Intel i7-3720QM processor, equipped with 16 GB of RAM, and
an NVIDIA Quadro K2000M GPU with 384 CUDA cores.

Figures A.14 and A.15 show the dense reconstruction results from an indoor and
outdoor scene, respectively.

To quantitatively evaluate our approach, we tested REMODE in [133] on a synthetic
dataset provided in [62]. Figure A.16 reports the main results of the reconstruction
performance. The dataset consisted of views generated through ray-tracing from a
three-dimensional synthetic model. The evaluation was based on a comparison with
the ground truth depth map corresponding to the view taken as reference in the
reconstruction process. As an evaluation metrics, we used the percentage of ground
truth depths that have been estimated by the proposed method within a certain error
(see Figure A.17). To show the effectiveness of our approach, we compared our result
with the depth map computed according to the state-of-the-art method introduced
in [170].

Our approach was capable to recover a number of erroneous depth estimations, thus
yielding a sensible improvement in terms of completeness. To verify the robustness
against noisy camera-pose estimation, we corrupted the camera position with Gaussian
noise, with zero mean and one-centimeter standard deviation on each coordinate. The
results show that the completeness drops. This is inevitable due to the smaller number
of converged estimations. However, the computation of the depth map takes advantage
of the de-noising step.
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Figure A.13: Outdoor trajectory of 140 meters. Blue denotes the trajectory executed au-
tonomously, red the one executed manually by a firefighter with no pilot experience assisted by
the onboard vision-based controller.
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(a) Side view.

(b) Side view.

(c) Top view.

Figure A.14: Outdoor, dense 3D reconstruction.

(a) Side view.

(b) Side view.

Figure A.15: Indoor, dense 3D reconstruction
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Figure A.16: Evaluation of dense reconstruction on synthetic dataset. (a): the reference view.
(b): ground truth depth map. (c): depth map based on [170]. (d): depth map computed by
REMODE. (e): map of reliable measurements (white pixels are classified as reliable). (f): error
of REMODE.
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Figure A.17: The completeness of the synthetic experiment, i.e., the percentage of ground truth
measurements that are within a certain error from the converged estimations. For color blind
readers: top line, this paper - exact pose; second line from the top, Vogiatzis and Hernandez
2011 - exact pose; third line from the top, this paper - noisy pose; bottom line, Vogiatzis and
Hernandez 2011 - noisy pose.
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A.8 Discussions and Conclusion

A.8.1 Lessons Learned

System Design

The use of open-source software and hardware components was crucial to adapt them
exactly to our needs. This allowed us to tune all the components such that they could
work together properly and, hence, achieve a very good overall system performance.
Furthermore, since we mostly used off-the-shelf hardware components, our quadrotor
is relatively cheap, easy to upgrade, and fast to repair.

Indoor Experiments

In the proposed setup, the MAV relies on our visual odometry pipeline (i.e., SVO).
However, several factors may disturb visual-odometry pipelines. Examples include
flashlights of photographers, sudden illumination changes (e.g., when moving from a
shadow area to an illuminated area), too rapid motion of the vehicle, or poor texture
on the ground. If the visual odometry cannot recover within a certain amount of time,
it is not possible to continue the mission and the quadrotor has to land. Since this can
happen often in an experimental phase, it is crucial to have a safe landing procedure
such that the quadrotor does not get damaged. To do so, we implemented an open-loop
emergency-landing procedure, where the quadrotor stabilizes its attitude with the IMU
and applies a thrust to slowly descend to the ground. An open-loop procedure is
necessary since, especially in indoor environments, fall-backs, such as GPS, are not
available.

Outdoor Experiments

In outdoor experiments, we noticed that the produced thrust can vary significantly
due to different air temperature and pressure. This can have noticeable effects on the
flight performance. Especially for an open-loop landing maneuver, after losing visual
tracking it is crucial to know what the actually-produced thrust is. For this reason,
we implemented a routine to estimate the produced thrust (see Section A.5.4) in the
beginning of a mission during a short period of hover flight. With this routine we can
account for different air densities and possible damage of the rotors.

In addition, outdoor experiments on partially-cloudy days showed that it is crucial to
have a camera with a high dynamic range. We set the camera settings before every
mission and kept them fixed during the mission due to the weak performance of the
camera-driver’s auto-adjustment that either flickers, overexposes, or underexposes the
scene. This can cause the visual odometry to lose tracking when the quadrotor is
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transitioning between dark and bright scenes.

Dense Reconstruction

In the current reconstruction pipeline, the depthmaps computed by REMODE are
visualized as a point-cloud at the pose computed by SVO. However, as SVO drifts
over time, the depth-maps are not perfectly aligned. Therefore, in future work we will
integrate REMODE in our collaborative mapping optimisation back-end [45] in order
to compute globally-optimized maps. Additionally, in order to minimize the noise, we
will apply a depthmap-fusion stage such as in [46]. Finally, depending on the height,
the structure and the appearance of the scene, different motions are required to perform
the depthmap reconstruction as fast as possible. Therefore, in [48], we proposed an
active mapping formalisation that we will integrate tightly into the current system.

A.8.2 Conclusion

We presented a system for mapping an unknown indoor or outdoor environment from
the air in real time. Our system consists of an autonomous vision-based quadrotor
and a ground station laptop for dense 3D reconstruction. The quadrotor can fly fully
autonomously without relying on any external positioning system, which allows it to
fly in unknown indoor and outdoor environments. This is crucial for search-and-rescue
where one cannot rely on any functional infrastructure. Furthermore, the autonomy of
our quadrotor allows non-expert operators to use our system with no training, as we
demonstrated in the outdoor firefighter training area. From the images streamed by
the quadrotor, we compute a live, dense 3D map on the ground station. Since the 3D
map computation is performed in real time, the operator gets an immediate feedback
without any unnecessary delays in the mission.

In numerous (more than 100) demonstrations, as well as indoor and outdoor experi-
ments, we showed that our system works robustly, is easy to set up, and can easily be
controlled by only one operator.
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Automatic Re-Initialization and Failure
Recovery for Aggressive Flight with a
Monocular Vision-Based Quadrotor

Matthias Faessler, Flavio Fontana, Christian Forster and Davide Scaramuzza

Abstract — Autonomous, vision-based quadrotor flight is widely
regarded as a challenging perception and control problem since the
accuracy of a flight maneuver is strongly influenced by the quality
of the on-board state estimate. In addition, any vision-based state
estimator can fail due to the lack of visual information in the scene
or due to the loss of feature tracking after an aggressive maneuver.
When this happens, the robot should automatically re-initialize the
state estimate to maintain its autonomy and, thus, guarantee the
safety for itself and the environment. In this paper, we present a
system that enables a monocular-vision–based quadrotor to auto-
matically recover from any unknown, initial attitude with significant
velocity, such as after loss of visual tracking due to an aggressive
maneuver. The recovery procedure consists of multiple stages, in
which the quadrotor, first, stabilizes its attitude and altitude, then,
re-initializes its visual state-estimation pipeline before stabilizing
fully autonomously. To experimentally demonstrate the performance
of our system, we aggressively throw the quadrotor in the air by
hand and have it recover and stabilize all by itself. We chose this
example as it simulates conditions similar to failure recovery during
aggressive flight. Our system was able to recover successfully in
several hundred throws in both indoor and outdoor environments.
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B.1 Introduction

B.1.1 Motivation

Autonomous Micro Aerial Vehicles (MAVs) will soon play a major role in remote
inspection and search-and-rescue missions. In these applications, the MAVs will have
to operate in unknown indoor and outdoor environments, which prevents them from
relying on external positioning systems (e.g. GPS or motion-capture systems). A viable
solution to maintain position tracking for lightweight MAVs is to use on-board cameras.
Unfortunately, vision algorithms are prone to lose visual tracking during fast motions,
e.g., when executing aggressive maneuvers, or under strong illumination changes that
can occur when transitioning from dark to bright scenes. When visual tracking is lost,
the vehicle typically has to descend and land in a partially open-loop maneuver, or
a trained pilot has to take over control. To re-initialize the vision pipeline, manual
procedures (by hand or remote control) are required by the operators, which renders
re-initialization during flight very difficult or even impossible.

In this paper, we describe an approach to allow a monocular-vision–based quadrotor
to recover completely autonomously from difficult conditions, where it has lost visual
tracking, and automatically re-initialize its vision pipeline during flight. This enables
the quadrotor to recover in case of a failure of the vision pipeline and continue its
mission without landing. Some snapshots of an autonomous recovery outdoors are
shown in Fig. B.1. When performing aggressive maneuvers, our system allows us to
push the quadrotor to its limits and beyond, while still being able to recover at any time
without resorting to any external pose-estimation fall-back. Along with re-initializing
in flight, our system enables instant launches of the quadrotor by manually throwing it
in the air. This starting procedure is not only very quick, but also enables an untrained
operator to start the quadrotor without remote control.

B.1.2 Related Work

In the recent years, several groups have demonstrated MAVs that can perform im-
pressive aerobatics [1, 97], pass through narrow gaps [107], or recover and stabilize
virtually from any initial condition [1, 107]. However, besides being limited to a set of
learned maneuvers, the platforms used in these demonstrations relied on the accurate
and high-frequency position estimates provided by external cameras (such as Vicon1 or
custom-made motion-capture systems) and off-board computation. Nonetheless, these
systems need pre-installation and calibration of the cameras and, therefore, cannot be
used in unknown and yet-unexplored environments.

To the best of our knowledge, aggressive maneuvers similar to the works mentioned

1www.vicon.com
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(a) t = 0 ms (b) t = 80 ms (c) t = 440 ms

(d) t = 1,120 ms (e) t = 1,640 ms (f) t = 2,000 ms

Figure B.1: Autonomous recovery after throwing the quadrotor by hand: (a) the quadrotor
detects free fall and (b) starts to control its attitude to be horizontal. Once it is horizontal, (c)
it first controls its vertical velocity and then, (d) its vertical position. The quadrotor uses its
horizontal motion to initialize its visual-inertial state estimation and uses it (e) to first break its
horizontal velocity and then (f) lock to the current position.

above have not yet been achieved with autonomous quadrotors that rely on on-board
sensing and on-board computation, since their state estimate is not as precise and
reliable as the one from external positioning systems. To overcome the limitation of
being restricted to the volume of a motion-capture system, on-board sensors, such
as cameras and Inertial Measurement Units (IMU), are the only viable solution for
lightweight MAVs, as demonstrated in [172, 151, 145]. However, current vision-based
quadrotors still operate in near-hover conditions, with only few attempts, such as [155],
to perform more aggressive maneuvers.
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If a quadrotor’s vision pipeline fails, there is typically a small set of options left: (i) a
pilot must take over; (ii) the quadrotor must land immediately; (iii) the quadrotor must
use simple fall backs for stabilization (e.g., based on optical flow algorithms [172]),
which do not allow the continuation of its mission without further actions. In [151], a
linear sliding window formulation for monocular visual-inertial systems was presented
to make a vision-based quadrotor capable of failure recovery and on-the-fly initializa-
tion. However, this work assumed that visual features could be extracted and correctly
tracked right from the beginning of the recovery procedure.

Along with possible failures of their state-estimation pipeline, monocular-vision–based
quadrotors present the drawback that they typically require an initialization phase
before they can fly autonomously. This initialization is usually performed by moving
the quadrotor by hand or through remote control. Since this is time consuming and not
easy to perform, attempts have been made to perform the initialization automatically.
For instance, in [23], the authors presented a system that allows the user to toss a
quadrotor in the air, where it then initializes a visual-odometry pipeline. Nevertheless,
that system still required several seconds for the state estimate to converge before the
toss and several more seconds until the visual-odometry pipeline was initialized. A
closed-form solution for state estimation with a visual-inertial system that does not
require initialization was presented in [103]. However, this approach is not suitable for
systems that rely on noisy sensor data.

B.1.3 Contributions and Outline

We present a system that enables a monocular vision-based quadrotor to autonomously
recover from state-estimation failures quickly, and re-initialize its visual-inertial state es-
timation. The described system allows the quadrotor to recover from any attitude, even
with high linear velocities and body rates. The performance of our recovery strategy
is evaluated in the scenario where a quadrotor is thrown in the air by hand and must
stabilize based only on its on-board sensors. We present an attitude estimator based
on quaternions which fuses measurements from the gyroscopes and accelerometers to
obtain a globally-valid attitude estimate at the time when it is launched. This allows the
user to throw the quadrotor with any initial attitude, and the controller immediately
starts to guide it to horizontal position. In contrast to [151], our system does not require
the observation of visual features at the beginning of the recovery procedure but only
once its attitude is stabilized, which simplifies feature tracking greatly and reduces
computational complexity. In addition to [23], no preparation time before launching
the quadrotor is required and the entire recovery is performed more quickly.

Along with a very quick and easy start by simply throwing the quadrotor in the air, our
system enables more aggressive flight, where a vision-based quadrotor can perform a
maneuver with the expectation that it will lose tracking but still regain control.
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Figure B.2: Control-system overview: the PX4 and Odroid U3 communicate with each other
over a UART interface. Gray boxes are sensors and actuators; white boxes depict software
modules. Green arrows indicate the communication that is required specifically during stage
1, red arrows indicate the communication that is required specifically during stages 2 and 3,
and blue arrows indicate the communication that is required during stages 4 and 5 as well as
for normal vision-based flight. The dashed red arrows indicate measurements that are used
only once for initializing SVO. Black arrows indicate communication that is required in all the
recovery stages as well as for normal vision-based flight. A more detailed description of the
hardware set-up is given in Section B.4.1

The remainder of this paper is organized as follows. Section B.2 describes the imple-
mented high-level and low-level controllers, as well as estimation algorithms used
for recovery. Section B.3 describes the different stages of our recovery procedure.
Section B.4 introduces our quadrotor platform and presents the experimental results.
Finally, Section B.5 concludes the work.

B.2 Control and State Estimation

This section describes our control and state estimation algorithms that are used for
recovery as well as for vision-based flying with our quadrotor. The controller is
split into a high-level part and a low-level part. The high-level controller enables the
quadrotor to track desired positions and velocities, whereas the low-level controller
enables it to track desired attitudes or body rates. The overall state estimation and
control structure with the used sensors is illustrated in Fig. B.2.

B.2.1 Nomenclature

When describing the control and state estimation, we make use of some notation that
we introduce here for clarity. We use a hat (e.g. v̂) and a tilde (e.g. ṽ) to denote an
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estimated and measured value, respectively. To describe the multiplication of two
quaternions q1 and q2 we write q1 ⊗ q2, and we write q� v for the rotation of a vector
v by the quaternion q. Furthermore, we express the basis vectors of a coordinate system
as e.g. eB

x which denotes the x-basis vector of the body coordinate system, as illustrated
in Fig. B.3. A prescript (e.g. Bv) indicates that the vector v is expressed in the body
coordinate system. Vectors without prescripts are expressed in the world coordinate
system with the exception of the body rates ω, which are always expressed in body
coordinates.

B.2.2 Dynamical Model

For state estimation and control, we make use of the following dynamical model for
our quadrotor:

ṙ = v, (B.1)

v̇ = g + q� c, (B.2)

q̇ = Λ(ω) · q, (B.3)

ω̇ = J−1 · (τ −ω× Jω) , (B.4)

where r = [x y z]T and v = [vx vy vz]T are the position and velocity in world
coordinates, q = [qw qx qy qz]T is the orientation of the quadrotor’s body coordinates
with respect to the world coordinates, and ω = [p q r]T denotes the body rates (roll,
pitch and yaw, respectively) expressed in body coordinates. The skew-symmetric matrix
Λ(ω) is defined as

Λ(ω) =
1
2


0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

 . (B.5)

We define the gravity vector as g = [0 0 − g]T with g = 9.81 m s−2 and the second-
order moment-of-inertia matrix of the quadrotor as J = diag

(
Jxx, Jyy, Jzz

)
. The mass-

normalized thrust vector is c = [0 0 c]T, with

mc = f1 + f2 + f3 + f4, (B.6)
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Figure B.3: Quadrotor with coordinate system and rotor forces.

where m is the mass of the quadrotor and fi are the four motor thrusts as illustrated in
Fig. B.3. The torque inputs τ are composed of the single-rotor thrusts as

τ =


√

2
2 l( f1 − f2 − f3 + f4)√
2

2 l(− f1 − f2 + f3 + f4)

κ( f1 − f2 + f3 − f4)

 , (B.7)

where l is the quadrotor arm length and κ is the rotor-torque coefficient.

Our coordinate-system conventions and rotor numbering are illustrated in Fig B.3.

B.2.3 High-Level Controller

The high-level controller takes a reference state and a state estimate as input and
computes the desired attitude or desired body rates, which are then sent to the low-
level controller. A reference state consists of a reference position rre f , a reference velocity
vre f , a reference acceleration are f , and a reference heading ψre f . First, we describe the
position controller, followed by the attitude controller.

Position Controller

To track a reference trajectory, we implemented a PD controller with feed-forward
terms on the reference acceleration from the trajectory and gravity:

ades = Ppos ·
(
rre f − r̂

)
+ Dpos ·

(
vre f − v̂

)
+ are f − g, (B.8)
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with gain matrices Ppos = diag
(

pxy, pxy, pz
)

and Dpos = diag
(
dxy, dxy, dz

)
. To compute

the desired normalized thrust cdes, we project the desired acceleration onto the current

WeB
z axis

cdes = ades · eB
z . (B.9)

The output of the position controller is the desired accelerations ades. The desired
acceleration, together with the reference heading ψre f , encodes the desired orientation
as well as a mass normalized thrust cdes.

Attitude Controller

Since a quadrotor can only accelerate in its body z direction, ades enforces two degrees
of freedom of the desired attitude. The third degree of freedom is enforced by the
reference heading ψre f . Note that the rotation around the body z axis has no influence
on the translational behaviour of the quadrotor. Therefore, we want to align the body z
axis with the desired acceleration ades by rotating around the body x and y axes and
use rotations around the body z axis only to control the heading. Our quadrotors
have much more attitude control authority on the x and y axes than on the z axis
because there, they can make use of thrust differences as opposed to differences in rotor
drag torques. The moment due to the maximum-possible thrust difference is much
larger than the maximum possible difference of rotor drag torques. For this reason, we
separate the attitude control into two parts as described in the following.

Desired Roll and Pitch Rates From the current attitude estimate and the desired
acceleration, we can compute the current and the desired body z axes, respectively, as

êB
z = q̂⊗ [0 0 1]T, eB

z,des =
ades

‖ades‖
. (B.10)

Now, we design an error quaternion that describes the necessary rotation to align these
two vectors. To do so, we compute the angle α between the two vectors and a normal
vector n to both of them:

α = arccos(êB
z · eB

z,des), (B.11)

n =
êB

z × eB
z,des

‖êB
z × eB

z,des‖
. (B.12)

Since we want to apply this rotation with respect to the current body orientation, we
have to transform the rotation axis n into body coordinates using the current attitude
estimate q̂

Bn = q̂−1 � n. (B.13)
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Figure B.4: Coordinate frames used in the attitude controller. We make use of the coordinate
frame C, which is obtained by rotating the world frame (W) by the reference heading ψre f to
construct, together with the desired acceleration ades, the full desired orientation of the body
frame (B).

The error quaternion can then be constructed as

qe,rp =

[
cos( α

2 )

Bn sin( α
2 )

]
. (B.14)

Note that if α = 0, the rotation axis is undetermined and we set the error quaternion
qe,rp to be the identity directly. Also note that by construction, the z component of qe,rp

is always zero, which assures that no rotation around the body z axis is necessary to
align êB

z with eB
z,des. From the error quaternion qe,rp, we can then compute the desired

roll and pitch rates with the following control law:[
p
q

]
des

=

{
2 · prp · q(x,y)

e,rp if q(w)
e,rp ≥ 0

−2 · prp · q(x,y)
e,rp if q(w)

e,rp < 0
. (B.15)

It can be shown that this control law is globally asymptotically stable and its discrete
implementation is robust to measurement noise [19, 104].

Desired Yaw Rate To compute the desired yaw rate rdes, we look at the heading error
that remains after aligning êB

z with eB
z,des with the above control law. To do so, we first

compute the full desired attitude. For this, we make use of an intermediate coordinate
system C, which is the world frame rotated around its z axis by the desired heading
ψre f as illustrated in Fig. B.4. The x and y axes of the coordinate system C are defined
as

eC
x = [cos(ψre f ) sin(ψre f ) 0]T, (B.16)

eC
y = [− sin(ψre f ) cos(ψre f ) 0]T. (B.17)
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The goal of rotating around the quadrotor’s z axis is to align the projection of its x axis
onto the world x− y plane with eC

x . This forces the desired body x axis eB
x,des to lie in a

plane spanned by eC
x and eW

z , which is fulfilled by

eB
x,des =

eC
y × eB

z,des

‖eC
y × eB

z,des‖
. (B.18)

Note that if this cross product is zero, there are infinitely many rotations around the
desired body z axis that achieve the desired heading. Therefore, in that case, we apply
a desired yaw rate rdes = 0.

If the desired body z axis has a negative z component (i.e. eB
z,des is pointing downwards),

the projection of the computed desired body x axis into the horizontal plane will point
in the opposite direction of eC

x , therefore we use the negation of it. From eB
x,des and

eB
z,des, we can then compute eB

y,des as

eB
y,des =

eB
z,des × eB

x,des

‖eB
z,des × eB

x,des‖
. (B.19)

Now, the full desired attitude qdes can be built from the three desired body axes
eB

x,des, eB
y,des and eB

z,des. Our definition of the heading is different than in the controller
presented in [19] and has the advantage of being meaningful for any orientation of the
quadrotor, which is not the case, for instance, when using a definition based on Euler
angles. Now we can compute an error quaternion that describes the necessary rotation
to achieve the full desired attitude after rotating by qe,rp as

qe,y = (q̂⊗ qe,rp)
−1 ⊗ qdes. (B.20)

Note that the x and y components of qe,y are always zero. Similarly to (B.15), we can

now compute the desired yaw rate rdes from q(z)
e,y with a gain pyaw. Splitting the attitude

control into these two parts allows us to have different gains for prp and pyaw, which is
desirable due to different control limits.

B.2.4 Low-Level Controller

The commands sent to the low-level controller on the PX4 are the desired body rates
ωdes and the desired mass-normalized thrust cdes. From the desired body rates ωdes

and the measured body rates ω̃, we can compute desired torques τdes with a feedback
linearizing control scheme:

τdes = J · Patt · (ωdes − ω̂) + ω̂× Jω̂, (B.21)
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where Patt = diag
(

ppq, ppq, pr
)
. Then, we can substitute τdes and cdes into (B.7) and (B.6)

and solve them for the desired rotor thrusts that must be applied.

B.2.5 IMU-Based Attitude Estimation

In recovering after a loss of visual tracking, or when launching a quadrotor by hand, we
need to have an attitude estimate available for controlling the attitude until the vision
pipeline is initialized and running. We achieve this by using a quaternion-based attitude
state estimator that fuses the measurements of the gyroscopes and accelerometers at
500 Hz. The implemented attitude estimator works in a prediction-update scheme
where the prediction is performed based on the gyroscope measurements and the
update step is performed based on the accelerometer measurements.

We predict the attitude estimate at the time of the current IMU measurement from the
previous attitude estimate by integrating the gyroscope measurements over a time ∆t
between the previous and the current IMU measurement. This integration is performed
with a zero-th order quaternion integration, as described in [167], assuming that the
body rates are constant over a time ∆t

q̂pred(k) =
(

I4 · cos
(‖ω̂‖∆t

2

)
+

2
‖ω̂‖ ·Λ(ω̂) · sin

(‖ω̂‖∆t
2

))
· q̂(k− 1), (B.22)

where I4 ∈ R4×4 denotes the identity matrix. We chose a zero-th order integration since
it has a performance similar to a first order integration, but at a lower computational
load. Note that (B.22) can only be evaluated if ‖ω̂‖ 6= 0, otherwise we keep the attitude
estimate prediction constant q̂pred(k) = q̂(k− 1).

As long as the quadrotor is hand held, we assume that the accelerometers are measuring
ã = −g on average, which gives us information about the gravity direction. Therefore,
we correct the predicted attitude estimate such that the corresponding body z direction
êB

z,pred rotates towards the measured acceleration ã. To do so, we compute the angle
and axis of rotation required to align êB

z,pred with ã as

β = arccos
(

BêB
z,pred ·

ã
‖ã‖

)
, (B.23)

Bh =
Bã×B êB

z,pred

‖Bã×B êB
z,pred‖

. (B.24)

Since the measured acceleration is noisy, we weigh the angle β by a gain kcorr < 1 and
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use it to design the following correction quaternion:

qcorr =

[
cos(kcorr · β

2 )

Bh sin(kcorr · β
2 )

]
, (B.25)

which we apply to the predicted attitude estimate to get the corrected attitude estimate
at the current time

q̂(k) = q̂pred(k)⊗ qcorr. (B.26)

Note that the update step is only performed if the measured body rates are small,
i.e. ‖ω̃‖ < 0.5 rad s−1, and the magnitude of the measured acceleration is close to
the magnitude of the gravitational acceleration, i.e. |‖ã‖ − g| < 1.0 m s−2. The first
acceleration measurement that meets these criteria is used to get an initial estimate of
the gravity direction.

Since this attitude estimator is based on quaternions, it is free of singularities, which
is necessary because we want to be able to recover from any initial attitude. It is
furthermore based on the assumption that the accelerometers are measuring ã ≈ −g
on average, which is valid when the quadrotor is hand held but not when it is flying
freely. Still, in near-hover conditions, the attitude estimator does not drift in the roll
and pitch estimates (see Fig. B.8) because of aerodynamic effects as described in [100].

B.2.6 Height Estimation

To estimate the vertical position z and velocity ż of the quadrotor, we use a TeraRanger
One sensor and fuse its measurements with the acceleration measurements in a fixed-
gain Kalman filter. The prediction step is performed as[

zprior

żprior

]
=

[
1 ∆t
0 1

]
·
[

ẑk
ˆ̇zk

]
+

[
1
2 ∆t2

∆t

]
· ˜̈zimu, (B.27)

and the update step is performed using a fixed gain K as[
ẑk+1
ˆ̇zk+1

]
=

[
zprior

żprior

]
+ K ·

(
z̃− ẑprior

)
. (B.28)

B.3 Recovery and Automatic Initialization

In this section, we describe the procedure that our quadrotor executes to recover from
a failure of the state estimation pipeline or a manual throw. The recovery procedure is
divided into five sequential stages. We describe the control algorithm for each stage
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and explain the conditions that must be met before advancing to the next stage. These
conditions are chosen such that the respective controller can also satisfy them during
the following stages. Each stage makes use of the controller described in Section B.2
but with different gains. The duration of each stage depends on how long it takes the
controller to meet the conditions to advance to the next stage. The scheme of five stages
allow to recover from various conditions after a manual throw or after a failure in the
state estimation where stages 1, 2 and 4 might be skipped entirely when the conditions
for the subsequent stage are already satisfied.

For our physical platform, we consider a quadrotor equipped with a monocular visual-
inertial system consisting of a single camera, an IMU, and a down-looking distance
sensor as described further in Section B.4.1. We demonstrate our recovery procedure
on the scenario where the quadrotor is thrown in the air by hand, and automatically
initializes its vision pipeline such that it can control its position purely based on a
vision-based state estimate.

B.3.1 Launch Detection

As a first step to recover after tossing the quadrotor in the air, it needs to detect the
launch for which it uses its accelerometers. Ideally, without disturbances and noise, the
accelerometers measure ã = −g when standing still (e.g. on the ground) and ã = 0
when the quadrotor is in free fall. When in flight, the accelerometers ideally measure
just the accelerations due to the applied rotor thrust, i.e. ã = c. Hence, when the
quadrotor is launched, we can detect a drop in the measured accelerations to a value
corresponding to the currently applied thrust. Therefore, we start recovering when we
measure

‖ã‖mean < ‖cidle‖+ tlaunch, (B.29)

where ‖ã‖mean is the norm of the measured acceleration averaged over the last 50 ms,
cidle is the mass-normalized idle thrust that prevent the rotors from standing still and
tlaunch = 2.0 m s−2 is a threshold parameter.

B.3.2 Recovery and Initialization Steps

Attitude Control

Immediately after a launch is detected, the quadrotor starts to control its orientation
to be horizontal. To do so, we use the attitude controller described in Section B.2.3
together with an IMU based estimate of the attitude as described in Section B.2.5. Since
we have no information on height and vertical velocity at this stage, we apply a fixed
mass-normalized thrust equal to the gravitational acceleration c = g.
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As soon as the distance sensor is oriented towards the ground, i.e. the angle between
the body z axis eB

z and the world z axis eW
z (see Fig. B.3) is smaller than 20◦ and the

roll and pitch rates are small, i.e. ‖ω̂(x,y)‖ < 10 rad s−1, we initialize the height filter
and switch to the next stage.

Attitude and Vertical Velocity Control

Once the distance sensor is pointing towards the ground, we control the horizontal
velocity to zero using our position controller (B.8) but set the proportional gain Ppos

and the vertical velocity gain dxy to zero. The vertical velocity is estimated from the
distance sensor and the IMU as described in Section B.2.6. As soon as the vertical
velocity is small enough, i.e. ‖ż‖ < 0.3 m s−1, we set the current height as the reference
height and switch to the next stage.

Attitude and Height Control

Once the height controller is active, we stabilize the height relative to the ground,
together with the attitude. Again, we make use of our position controller (B.8) but now
only set pxy and dxy to zero. At this stage, due to the lack of horizontal position infor-
mation, the quadrotor drifts in a horizontal plane. We use this horizontal translation to
initialize the vision-based state-estimation pipeline with an initial scale corresponding
to the current height estimate. After it is initialized, we switch to the next stage.

Velocity Control

At this point, the quadrotor can still have large horizontal velocities, which we want
to lower before locking to the current position. In this stage, we use the position
controller (B.8) but set the proportional gain pxy to zero. Once the quadrotor reaches a
small horizontal velocity, i.e. ‖v(x,y)‖ < 0.2 m s−1, we lock to the current position and
heading.

Position Control

In this last stage, we lock the quadrotor to the previously specified reference position
until the quadrotor is given a new mission. For controlling the quadrotor to its reference
position, we use the full control pipeline as described in Section B.2.3.
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Figure B.5: A closeup of our quadrotor during recovery: 1) TeraRanger One distance sensor, 2)
down-looking camera, 3) on-board electronics consisting of an Odroid U3 quad-core computer
and a PX4FMU autopilot.

B.4 Experiments

B.4.1 Quadrotor Platform

We built our quadrotors from selected off-the-shelf components and custom 3D printed
parts (see Fig. B.5). They rely on the frame of the Parrot AR.Drone 2.0 including their
motors, motor controllers, gears, and propellers. The platform is powered by one
1,350 mA h LiPo battery which allows a flight time of approximately 10 min.

We completely replaced the electronic parts of the AR.Drone by a PX4FMU autopilot
and a PX4IOAR adapter board [105]. The PX4FMU consists, among other components,
of an IMU and a micro controller to read the sensors, run the low-level control (B.21),
and command the motors. In addition to the PX4 autopilot, our quadrotors are
equipped with an Odroid-U3 single-board computer. It contains a 1.7 GHz quad-core
processor (used in Samsung smart phones) running Ubuntu 14.04 and ROS. The PX4
micro controller communicates with the Odroid board over UART (see Fig. B.2).

To stabilize the quadrotor, we make use of the gyros and accelerometers of the IMU
on the PX4FMU, a downward-looking MatrixVision mvBlueFOX-MLC200w 752× 480-
pixel monochrome camera as well as a downward-looking TeraRanger One distance
sensor. The TeraRanger One is an infra-red range sensor that uses time of flight to
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measure distances of up to 14 m with up to 2 cm accuracy and a frequency of up to
1 kHz. It works in both indoor and outdoor environments.

The images from the camera are processed on the Odroid by means of our Semi-
Direct Visual Odometry (SVO2) pipeline [49]. The visual-odometry pipeline outputs an
unscaled pose that is then fused with the IMU readings in an Extended Kalman Filter
framework (Multi Sensor Fusion (MSF) [98]) to compute a metric state estimate. More
details about our quadrotor system are given in [36]

B.4.2 Indoor Experiments

To show the performance of the proposed recovery procedure, we throw a quadrotor by
hand in an OptiTrack motion-capture system that we use for ground-truth comparison.
For recovery, the quadrotor only uses its on-board sensors and performs all the neces-
sary computations on board. Fig. B.6, B.7, and B.8 show the on-board state estimates
compared to OptiTrack measurements. The on-board state estimates are aligned to the
OptiTrack data by a single data point each. The vertical dashed lines indicate the start
of the five recovery stages with corresponding numbers as described in Section B.3.2.
The individual state estimates are plotted from the time on where they are used for
feedback control. At the point where a state estimate becomes available, it is directly
used for feedback control.

Fig. B.6 shows the height estimate from fusing TeraRanger and IMU measurements,
as well as the height estimate from the visual pipeline consisting of SVO and MSF
compared to the ground truth height from OptiTrack. The height estimate from fusing
the TeraRanger with the IMU is used in stage 3 and 4 and the height estimate from
MSF is used in stage 5 for feedback control.

Fig. B.7 shows the linear velocity estimates from MSF compared to velocity estimates
from OptiTrack. In the vertical direction, we also show the velocity estimate from fusing
TeraRanger and IMU measurements. This velocity estimate is used during stages 2
and 3. During stages 4 and 5, the velocity estimates from MSF are used for feedback
control.

Fig. B.8 shows the roll and pitch angles from the attitude estimate purely based on
the IMU measurements and from the MSF compared to the orientation measurements
from OptiTrack. The IMU-based attitude estimate is used for control during stages 1,
2, and 3. During stages 4 and 5, the attitude estimate from MSF is used for feedback
control. In the IMU-based attitude estimator, unit quaternions are used to represent the
quadrotor’s attitude and they are only transformed into Euler Angles for visualization.
Note that the roll and pitch estimates from the IMU-based attitude estimator do not

2http://github.com/uzh-rpg/rpg_svo
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Figure B.6: Height estimates from TeraRanger / IMU fusion and the vision pipeline (SVO +
MSF) compared to ground truth from OptiTrack. The vertical lines correspond to the start of
each recovery stage as described in Section B.3.2.
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Figure B.7: Velocity estimates from the vision pipeline (SVO + MSF) and from the TeraRanger
/ IMU fusion compared to ground truth from OptiTrack.
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Figure B.8: Roll and Pitch estimates from the IMU-based attitude estimator (see Section B.2.5)
and the vision pipeline (SVO + MSF) compared to ground truth from OptiTrack.

drift even beyond recovery.

We performed several hundred throws indoors with maximum linear accelerations
above 25 m s−2, maximum body rates above 650 ◦ s−1, and maximum linear velocities
exceeding 3.6 m s−1 with successful recoveries. We reached a success rate of more than
85 %, where failures occurred when the vision pipeline could not initialize properly,
e.g., when flying close to the ground with high velocities. Examples from indoor
recoveries are given in the enclosed video.

B.4.3 Outdoor Experiments

We used the same set-up as for the indoor experiments to throw the quadrotor out-
doors and have it recover. Because of the absence of ground truth outdoors, plots of
state estimates are not shown. In more than 30 throws with successful recovery, the
quadrotor reached maximum linear accelerations above 40 m s−2, maximum body rates
above 800 ◦ s−1, and maximum linear velocities above 6 m s−1. Examples from outdoor
recoveries are given in Fig. B.1 and in the enclosed video. We achieved a similar
success rate as for the indoor experiments where failures are additionally caused by
disturbances of the TeraRanger due to sun light.
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B.5 Conclusion

We developed a system that enables a monocular-vision-based quadrotor to recover
and re-initialize its vision-based state estimation pipeline from any attitude, even with
significant initial linear velocities. The on-board system receives the measurements
from an IMU, a single camera, and a range sensor and fuses this information to
stabilize the quadrotor by means of a cascaded control structure. We designed a
recovery procedure consisting of five sequential stages with several controller types:
purely inertial, range-inertial, and visual-inertial. To demonstrate its capabilities, we
threw the quadrotor in the air by hand and had it recover autonomously. In contrast
to existing work, the proposed system does not need any initialization before the
quadrotor is launched. In indoor experiments, the state estimates obtained by our
system agree well with those measured by a motion capture system. In indoor and
outdoor experiments, we demonstrated that the quadrotor successfully decelerates and
stabilizes within approximately two to three seconds after throwing it aggressively in
the air. Our quadrotor was able to recover successfully in several hundred throws in
both unknown indoor and outdoor environments with a success rate of more than 85 %.
Our system not only allows instant launches but also enables mid-air re-initialization
after aggressive open-loop maneuvers or in case visual tracking is lost.
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A Monocular Pose Estimation System
based on Infrared LEDs

Matthias Faessler, Elias Mueggler, Karl Schwabe and Davide Scaramuzza

Abstract — We present an accurate, efficient, and robust pose es-
timation system based on infrared LEDs. They are mounted on a
target object and are observed by a camera that is equipped with an
infrared-pass filter. The correspondences between LEDs and image
detections are first determined using a combinatorial approach and
then tracked using a constant-velocity model. The pose of the target
object is estimated with a P3P algorithm and optimized by minimiz-
ing the reprojection error. Since the system works in the infrared
spectrum, it is robust to cluttered environments and illumination
changes. In a variety of experiments, we show that our system out-
performs state-of-the-art approaches. Furthermore, we successfully
apply our system to stabilize a quadrotor both indoors and outdoors
under challenging conditions. We release our implementation as
open-source software.

C.1 Introduction

C.1.1 Motivation

Rescue missions in disaster sites are extremely challenging for robots since they have
to deal with unforeseeable and unstructured environments. Furthermore, these robots
need to have many attributes, such as being able to overcome obstacles, being reason-
ably fast, and being able to manipulate their environment. We plan on using a team of
heterogeneous robots (aerial and ground) to collaborate and make use of their individ-
ual strengths to address these challenges. Since mutual localization is one of the most
fundamental parts in controlling a team of mobile robots, a system that can accurately
and reliably estimate the mutual pose of the robots is necessary. For both indoor and
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outdoor operations, it needs to be robust to cluttered environments, dynamic scenes,
and illumination changes. Part of our robot team are quadrotors of approximately
0.5 m in size (see Fig. C.1a). Small quadrotors have fast dynamics and, thus, need
a frequent and precise estimate of their 6 DOF pose to be stabilized. Furthermore,
small quadrotors have limited payload and battery power, as well as limited onboard-
processing power. Hence, the pose estimation system must be lightweight, energy
efficient, and computationally inexpensive. Existing systems lack the combination of
all these requirements.

(a) Stabilizing a quadrotor above a ground robot.

(b) View from the camera on the ground robot.

Figure C.1: A camera with an infrared-pass filter is mounted on a ground robot and used to
stabilize a quadrotor above it. The red circles in (b) indicate LED detections. The pose estimate
is illustrated by the projection of the body-fixed coordinate frame of the quadrotor.
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We propose a pose estimation system that consists of multiple infrared LEDs and a
camera with an infrared-pass filter. The LEDs are attached to the robot that we want
to track, while the observing robot is equipped with the camera. Since this system
operates in the infrared spectrum, the LEDs are easy to detect in the camera image.
This also applies to situations with cluttered backgrounds and illumination changes.
The infrared LEDs can be detected by motion-capture systems and their position on the
target object can, thus, be precisely determined. Furthermore, the camera only requires
a short exposure time, which allows for high frame rates (up to 90 fps in our system).
To track an object, only a few LEDs need to be mounted. However, this is not an issue
in terms of power consumption or payload, even for small quadrotors.

In our experiments, we compare the performance of our system to a previous ap-
proach [18] and pose estimation from AprilTags [126] as well as a motion capture
system (we use OptiTrack1). Furthermore, we show that our system meets all the stated
requirements and can be used to stabilize a quadrotor.

C.1.2 Related Work

Our work is in line with other monocular vision-based pose estimation systems [18,
26], while improving on accuracy, versatility, and performance. Since [18] uses passive
markers or LEDs in the visible spectrum, their performance decreases in cluttered envi-
ronments and in low-light conditions. While their system is restricted to four markers,
our algorithm can handle any number of LEDs to increase robustness. Additionally,
our system is robust to false detections. The setup of [26] uses a special event-based
camera [92] with LEDs that blink at different frequencies. The great advantage of
this camera is that it can track frequencies up to several kilohertz. Therefore, pose
estimation can be performed with very low latencies. Its precision, however, is limited
due to the low sensor resolution (128x128 pixels).

Nowadays, artificial patterns, such as ARTags [43] and AprilTags [126], are often used
for mutual localization. In addition to a pose estimate, they also provide a unique ID of
the tag. Those patterns require a large, flat area on the target object. This makes them
unsuitable for micro-aerial vehicles, since it would interfere with their aerodynamics.

Another popular method for pose estimation are motion-capture systems, such as
OptiTrack and Vicon.2 While these systems yield high precision at high frame rates (up
to 350 Hz), they are proprietary, expensive, and typically require a fixed installation with
many cameras. In single-camera mode, OptiTrack uses the marker size, d, for estimating
its 3D position and can, thus, compute a 6 DOF pose using only three markers. However,
the marker size in the image, d∗, degrades quickly for larger distances to the camera

1http://www.naturalpoint.com/optitrack/
2http://www.vicon.com/
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z. Consequently, also the accuracy of the pose estimate degrades: d∗ ∝ d/z. Large
markers are also not suitable for micro-aerial vehicles. Nonetheless, all findings of this
paper could also be applied for single-camera motion capture systems.

Estimating the camera pose from a set of 3D-to-2D point correspondences is known as
Perspective from n Points (PnP) (or resection) [44]. As shown in [44], the minimal case
involves three 3D-to-2D correspondences. This is called Perspective from 3 Points (P3P)
and returns four solutions that can be disambiguated using one or more additional
point correspondences. To solve the P3P problem, we use the algorithm in [82], which
proved to be accurate while being much faster than any previous implementation. A
comprehensive overview of PnP algorithms can also be found in [82] and references
therein. Furthermore, we use P3P to initialize an optimization step that refines the pose
by minimizing the reprojection error based on all detected LEDs.

A heuristic approach that provides near-optimal marker configurations on the target
object is presented in [132]. Since the geometry of micro-aerial vehicles restricts the
configuration space drastically, we do not apply such algorithms and rely on some
heuristics mentioned in Section C.2.1.

The remainder of the paper is organized as follows. In Section C.2, we describe the
prerequisites of our system. Our algorithm is described in Section C.3 and evaluated in
Section C.4.

C.2 System Prerequisites

C.2.1 Hardware

Our system consists of infrared LEDs at known positions on the target object and an
external camera with an infrared-pass filter. With at least four LEDs on the target object
and the corresponding detections in the camera image, we can compute the 6 DOF
pose of the target object with respect to the camera. However, to increase robustness,
our system can also handle more than four LEDs on the target object. Furthermore, in
case of self-occlusions or false positive detections, e.g. caused by reflections, we are
still able to recover the full pose if at least four LEDs are detected.

The placement of the LEDs on the target object is arbitrary, but must be non-symmetric.
In addition, the LEDs should not lie in a plane to reduce ambiguities of the pose
estimation. To increase precision, they should span a large volume. Robustness can be
increased if the LEDs are visible from as many view points as possible.
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C.2.2 Calibration

As mentioned above, our system requires knowledge of the LED configuration, i.e. the
positions of the LEDs in the reference frame of the target object. Since infrared LEDs
are detectable by a motion capture system, we can use it to determine the positions of
the LEDs with sub-millimeter accuracy. To do so, we first assign the desired coordinate
frame to the target object in the motion capture system (we used OptiTrack) using a
calibration stand (see Fig. C.2). This can be achieved by knowing the exact marker
positions on the calibration stand and mounting the target object on it. Then, we can
track the target object in the motion capture system and read out the positions of
the single LEDs, which can be transformed into the target-object coordinate frame.
Furthermore, we need to know the intrinsic camera parameters, which we obtain using
the camera calibration tools of ROS.3

Figure C.2: Calibration stand 1 to determine the exact location of the LEDs in the reference
frame of a target object using a motion-capture system. The quadrotor, the target object 2 and
the AprilTag 3 were used to perform the experiments in Section C.4.

C.3 Algorithm

C.3.1 Overview

The flowchart of our algorithm is presented in Fig. C.3. The current camera image, the
LED configuration, and previously estimated poses serve as inputs to our algorithm. In
a first step, we detect the LEDs in the image. Then, we determine the correspondences
using prediction or, if that fails, using a combinatorial brute-force approach. Finally,
the pose is optimized such that the reprojection error of all detected LEDs is minimized.

3http://wiki.ros.org/camera_calibration/
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This optimization also returns the covariance of the pose estimate, which is crucial
information in further processing, e.g., in filtering or SLAM applications. All steps are
described in more detail below.

C.3.2 Notation

We denote the LED positions on the target object as li ∈ R3, the number of LEDs as
nL, and the LED configuration as L = {l1, l2, . . . , lnL}. The detections of the LEDs in
the image are denoted as dj ∈ R2, measured in pixels. The number of detections is
nD and the set of detections is D = {d1, d2, . . . , dnD}. Note, while L results from the
calibration, D depends on the current image. A correspondence of an LED li and a
detection dj is denoted as ck = 〈li, dj〉 ∈ C ⊂ L×D. Poses are denoted as P ∈ SE(3).
We use grayscale images I(u, v) : Nw×h → {0, 1, . . . , 255}, where w and h denote the
image width and height, respectively.

Image
LED

detection

Last poses Prediction

Correspond-
ence search

LED configuration

Pose opti-
mization

Pose with
covari-
ance

Figure C.3: Flowchart showing the main steps of our algorithm.

C.3.3 LED Detection

Since we are using infrared LEDs whose wavelength matches the infrared-pass filter
in the camera, they appear very bright in the image compared to their environment.
Thus, a thresholding function is sufficient to detect the LEDs D,

I′(u, v) =

{
I(u, v), if I(u, v) > threshold,

0, otherwise.
(C.1)

This threshold parameter depends on the shutter speed of the camera settings. However,
we found that a large range of parameters works well (80–180). We then apply Gaussian
smoothing and group neighboring pixels to blobs. To estimate the center of these blobs
with sub-pixel accuracy, we weigh the pixels with their intensity. The center is then
calculated using first image moments that are defined as

Mpq = ∑
u

∑
v

upvqI′(u, v). (C.2)
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The weighted center, i.e. the (distorted) LED detection in the image, is then

û = M10/M00, (C.3)

v̂ = M01/M00. (C.4)

In all calculations to come, we assume the standard pinhole camera model. Thus, we
have to correct the detections dj for radial and tangential distortion. We do this using
the OpenCV library [17].

C.3.4 Correspondence Search

Since the different LEDs cannot be distinguished from each other in the image, we need
to find the correspondences between the LED detections, D, in the image and the LEDs,
L, on the target object. To do so, we make use of the P3P algorithm in [82] to compute
four pose candidates for every combination of three detections in the image, D3, and
every permutation of three LEDs on the target object, L3. For every pose candidate,
we then project the LEDs that were not used to compute the pose candidate, L \ L3,
into the camera image. If such a reprojection has a nearest neighbor of the detections
D closer than a threshold λr, we consider the LED to correspond to this detection. For
the reprojection-distance threshold, we typically use λr = 5 pixels. To be robust to
outliers, we form a histogram with bins for every detection-LED pair. A histogram
bin is increased whenever a pair is considered to be a correspondence. This procedure
returns the set of correspondences C and is summarized in Algorithm 1. The procedure
for finding the final correspondences from the histogram is illustrated in Fig. C.5.

For nD detections and nL LEDs on the object, we will obtain N pose candidates,

N = 4 ·
(

nD
3

)
· nL!
(nL − 3)!

. (C.5)

This number grows quickly for a large nD or nL. However, since we use only a few
LEDs (typically four or five) and false-positive detections are rare, this is not an issue.
Numbers of pose candidates computed according to (C.5) are shown in Fig. C.4.

C.3.5 Prediction

Since the brute-force matching in the previous section can become computationally
expensive, we predict the next pose using the current and the previous pose estimates.
A constant-velocity model is used for prediction. The pose P is parametrized by twist
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nL

nD 4 5 6 7 8

4 384 960 1,920 3,360 5,376

5 960 2,400 4,800 8,400 13,440

6 1,920 4,800 9,600 16,800 26,880

Figure C.4: Number of pose candidates N based on the number of detections nD and the
number of LEDs on the target object nL.

Algorithm 1 Correspondence search
for all D3 ∈ Combinations(D, 3) do

for all L3 ∈ Permutations(L, 3) do
Lr ← L \ L3
P ← P3P(D3,L3)
for all P ∈ P do

found← False
for all l ∈ Lr do

p← project(l, P)
for all d ∈ D do

if ‖d− p‖2 < threshold then
inc(histogram(l, d))
found← True

if found then
inc(histogram(L3,D3))

coordinates ξ. We predict the next pose linearly [54, p. 511],

ξ̂k+1 = ξk + ∆T
(
ξk − ξk−1

)
, (C.6)

∆T =

{
0, if nP = 1,

(Tk+1 − Tk)/(Tk − Tk−1), if nP ≥ 2,
(C.7)

where Tk is the time at step k and nP the number of previously estimated poses.

Using the predicted pose, we project the LEDs into the camera image. We then match
each prediction with its closest detection, if they are closer than a threshold. (Note
that this threshold is different from λr). This condition prevents false correspondences,
e.g. if an LED is not detected. We typically use 5 pixels for that threshold. We then
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D
L

l1 l2 l3 l4 l5

d1 1 12 0 1 0

d2 0 3 2 1 8

d3 1 0 1 13 1

d4 1 0 1 4 1

d5 2 1 0 1 1

d6 11 3 0 2 2

Figure C.5: Correspondence histogram. The numbers indicate how often a small reprojection
error of LED li to the detection dj was found. Under ideal conditions, this value is (nL

3 ) for a
correspondence and zero otherwise. In practice, we iteratively search for the highest number
in the histogram, take the respective LED and image point as the correspondence, and then
ignore that column in all subsequent iterations. Note that this allows a detection to correspond
to multiple LEDs, but not vice versa (cf. Section C.4.2). In this example, in the first iteration, we
match l4 and d3, i.e. c1 = 〈l4, d3〉. All further correspondences are also marked in bold. Note
that l3 was not matched since all remaining entries in its column are lower than a threshold
(we chose 0.5(nL

3 )). This LED might be occluded (cf. Section C.4.2) or its detection failed.

check if the predicted correspondences are correct. To do so, we compute the four pose
candidates with the P3P algorithm for every combination of three correspondences.
We then compute the projection of the remaining LEDs and check if at least 75 % of
them are below the reprojection threshold λr. If this is true for one of the four pose
candidates of more than 70 % of the combinations of correspondences, we consider
them as correct. In case we could not find the correct correspondences, we reinitialize
the tracking using the brute-force method from the previous section.

C.3.6 Pose Optimization

To estimate the target-object pose, P∗, we use all correspondences in C and iteratively
refine the reprojection error [163, p. 286f.] starting with a solution from the P3P
algorithm as an initial estimate, that is

P∗ = arg min
P

∑
〈l,d〉∈C

‖π (l, P)− d‖2, (C.8)

where π : R3 × SE(3)→ R2 projects an LED into the camera image. For the optimiza-
tion, we parametrize the pose using the exponential map and apply a Gauss-Newton
minimization scheme.

The covariance of the final pose estimate, ΣP ∈ R6×6, is a byproduct of the Gauss-
Newton scheme, since it requires the computation of the Jacobian matrix, J ∈ R2×6.
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Using the derivation of [33, p. 182ff.], we can compute J in closed-form. The covariance
of the pose, ΣP, is then obtained by [13]

ΣP =
(

J>Σ−1
D J
)−1

, (C.9)

where ΣD ∈ R2×2 is the covariance of the LED detections, which we conservatively set
to ΣD = I2×2 · 1 pixel2.

C.4 Evaluation

C.4.1 Benchmarks

To evaluate our system, we compare it to a previous system [18] and to AprilTags [126].
A MatrixVision mvBlueFOX-MLC200w monochrome camera4 with an infrared-pass
filter, a resolution of 752x480 pixels, and a field of view of 90◦ was used for the
experiments. Furthermore, we added reflective markers to the camera to obtain ground
truth in an OptiTrack motion-capture system. On the target object, we mounted SMD
LEDs (of type Harvatek HT-260IRPJ or similar) since they proved to have a wide
radiation pattern. We used either a configuration of four or five infrared LEDs on the
target object (see Fig. C.2). Both configurations have a circumsphere radius of 10.9 cm.
Since the infrared LEDs are directly visible in the motion capture system, no additional
markers were needed to obtain the ground truth data of the target object. To have a
direct comparison, we attached an AprilTag with edge length of 23.8 cm to the target
object. For pose estimation from the AprilTags, we used a C++ implementation.5

In a first run, the target object is positioned at a fixed location while the camera is
moving. We used nL = 4 LEDs on the target object and performed excitations of the
camera in all six degrees of freedom. Fig. C.6 shows position and orientation as well
as the respective errors. Since our setup is virtually identical to [18] and the trajectory
follows the similar excitations in all six degrees of freedom, we claim that the results
are comparable. In Table C.1, we compare our performance to the system in [18] and
to AprilTags [126]. As an orientation error metric, we used the angle of the angle-axis
representation. Since we cannot measure the precise location of the center of projection
of the camera, we use the first 10 % of the data for hand-eye calibration. We also
estimate the pose of the AprilTag with respect to the target object in the same way. The
dataset consists of 7,273 images. In 2 images (0.03 %), not all 4 LEDs could be detected.
In another 2 images, no solution was found. Thus, in 99.94 % of all images, a good
estimate was found.

In a second experiment, we evaluated the error with respect to the distance between

4http://www.matrix-vision.com/
5http://people.csail.mit.edu/kaess/apriltags/
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Figure C.6: Estimation of position and orientation, as well as the respective errors. Ground
truth is not shown because there is no visible difference to the estimated values at this scale.
The orientation is parametrized with Euler angles, i.e. yaw (α), pitch (β), and roll (γ). The target
object was equipped with nL = 4 LEDs. For four out of a total of 7,273 images, no estimate
could be resolved.

Table C.1: Comparison of pose estimation performance.

April-
Tags [126]

Breitenmoser
et al. [18]

Our system

Mean Position Error 1.41 1.5 0.74 cm

Standard Deviation 1.02 0.7 0.46 cm

Max Position Error 11.2 12.1 3.28 cm

Mean Orientation Error 1.53 1.2 0.79 ◦

Standard Deviation 1.61 0.4 0.41 ◦

Max Orientation Error 19.5 4.5 3.37 ◦

the camera and the target object. We used nL = 5 LEDs on the target object to increase
robustness. The camera was moved from 0.8 m to 5.6 m, while recording a total of
2,651 images. Fig. C.7 shows the boxplots for both position and orientation. For the
orientation error, we used again the axis-angle representation. In 3 images (0.04 %) at
more than 5 m distance, incorrect correspondences lead to pose estimates that were off
by more than 90◦ in orientation. We consider them as outliers and, thus, they are not
shown in Fig. C.7b.
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(b) Orientation error.

Figure C.7: Boxplot of the pose estimation errors with respect to the distance between the target
object and the camera. The target object was equipped with nL = 5 LEDs.
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(a) T1 (b) T2 (c) T3

Figure C.8: Camera images (a) before, (b) during, and (c) after an LED occlusion. The camera
images were inverted for better contrast. The estimation errors for this experiment are shown
in Fig. C.10. The arrow indicates the LED that is occluded.

(a) T1 (b) T2 (c) T3

Figure C.9: Camera images (a) before, (b) during, and (c) after an alignment of two LEDs. The
camera images were inverted for better contrast. The estimation errors for this experiment are
shown in Fig. C.11. The arrow indicates the two LEDs that were aligned.

C.4.2 Occlusions and Alignment of LEDs

Here we take a deeper look at two special cases. First, we evaluate the estimation
error in situations where an occlusion occurs. In Fig. C.8b, we show such a situation.
Since at least four LEDs are always visible for the entire duration of the occlusion, the
estimation error does not change significantly (cf. Fig. C.10).

Secondly, we look at the situations where two LEDs appear as one in the image (e.g. in
Fig. C.9b). In such situations, they cannot be detected separately. Thus, as soon as the
two LEDs are detected as one, there is an immediate increase in the estimation error. As
the LEDs appear closer to each other, the error decreases until the two LEDs are almost
perfectly aligned. It then increases until the two LEDs can again be detected separately,
whereafter it drops to the initial values. This behavior can be seen in Fig. C.11.

C.4.3 Quadrotor Stabilization

To show the applicability of our system in a real-world scenario, we demonstrate
closed-loop control of a quadrotor6 using pose estimates of our system at 40 Hz. We

6A video is included as an attachment to this paper.

98



C.4. Evaluation

0.5 1 1.5 2
0

0.25

0.5

0.75

1

T1 T2 T3

time [s]

p
os
it
io
n
er
ro
r
[c
m
]

0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

Figure C.10: Error plots of position and orientation during an LED occlusion. As an orientation
error metric, we used the angle of the angle-axis representation. The red interval indicates the
duration of the occlusion. The times Ti correspond to the images in Fig. C.8.
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Figure C.11: Error plots of position and orientation when two LEDs appear as one in the camera
image. As an orientation error metric, we used the angle of the angle-axis representation. The
red interval marks the duration of the alignment. The times Ti correspond to the images in
Fig. C.9.

attached nL = 5 LEDs to a quadrotor, which is based on the PIXHAWK platform [105]
(see Fig. C.2), and mounted the camera on a KUKA youBot [14] (see Fig. C.1). We used
a lens with field of view of 120◦. Our system is robust enough to handle illumination
changes from daylight to complete darkness, false detections, occluded LEDs, and
dynamic backgrounds. It is also fast and precise enough to stabilize the quadrotor
when it gets pushed or flies outdoors with unpredictable winds.

C.4.4 Execution Time

The mean and maximum execution times for each step of our algorithm can be found
in Table C.2. They were measured while running our system on a dataset with 2,400
images and LED configurations consisting of 4 and 5 LEDs. For the timing, we enforced
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Table C.2: Execution times of the individual steps of our algorithm (corresponding to subsec-
tions C.3.3 to C.3.6)
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n L
=

4 Mean 2.7 1.1 0.2 31 5.0 3.8

σ 0.9 0.6 0.1 10 1.4 1.1

Maximum 5.1 5.7 0.6 94 10.1 6.5

n L
=

5 Mean 2.7 4.9 0.3 36 9.0 3.8

σ 0.8 2.0 0.1 11 2.5 1.1

Maximum 5.1 14.0 0.7 93 17.6 9.3

a brute-force correspondence search in each step. However, if we use prediction, this
search is required less than 0.2 % of the time. We used a laptop with an Intel i7-3720
(2.60 GHz) processor. Note that on average the LED detection makes up 71 % of the
execution time. This could be drastically reduced by defining a region of interest
around the predicted detections, as is done in [18].

C.5 Conclusions

We presented an accurate, versatile, and robust monocular pose tracking system based
on infrared LEDs. Comprehensive experiments showed its superiority over previous
approaches for pose estimation and its applicability to robots with fast dynamics such
as quadrotors. Our system is available as an open-source ROS [136] package, so that it
can easily be integrated into other robotic platforms.
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C.5. Conclusions

Future work will include the extension to track multiple objects and will integrate the
dynamical model of the target object for prediction and filtering. Furthermore, we plan
to use the system for mutual localization in a team of quadrotors.
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D Aerial and Ground Robot Collabo-
ration

c©2014 IEEE. Reprinted, with permission, from:

E. Mueggler, M. Faessler, F. Fontana, and D. Scaramuzza. “Aerial-guided Navigation
of a Ground Robot among Movable Obstacles”. In: IEEE Int. Symp. Safety, Security, and
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Appendix D. Aerial and Ground Robot Collaboration

Aerial-guided Navigation of a Ground
Robot among Movable Obstacles

Elias Mueggler, Matthias Faessler, Flavio Fontana, and Davide Scaramuzza

Abstract — We demonstrate the fully autonomous collaboration
of an aerial and a ground robot in a mock-up disaster scenario.
Within this collaboration, we make use of the individual capabil-
ities and strengths of both robots. The aerial robot first maps an
area of interest, then it computes the fastest mission for the ground
robot to reach a spotted victim and deliver a first-aid kit. Such a
mission includes driving and removing obstacles in the way while
being constantly monitored and commanded by the aerial robot.
Our mission-planning algorithm distinguishes between movable and
fixed obstacles and considers both the time for driving and removing
obstacles. The entire mission is executed without any human interac-
tion once the aerial robot is launched and requires a minimal amount
of communication between the robots. We describe both the hard-
ware and software of our system and detail our mission-planning
algorithm. We present exhaustive results of both simulation and real
experiments. Our system was successfully demonstrated more than
20 times at a trade fair.

D.1 Introduction

Since 2001, rescue robots have been deployed for disaster response and have been
used at least 29 times to date [120]. For example, after the earthquake and tsunami in
Fukushima, Japan in 2011, ground robots were utilized to explore the situation in the
contaminated reactor building [121].

In all previous disaster response missions, the robots were remote-controlled by trained
professionals. Three operators per robot were required on average and the executed
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(a) Our robots operating in a mock-up disaster site

(b) Corresponding mission plan

Figure D.1: After mapping the area, the aerial robot is guiding the ground robot to the goal
location. All paths are blocked by obstacles, some of which can be removed by the ground
robot.

missions took very long (cf. [120]). Since time is the most critical factor in rescue
missions, we propose to deploy teams of heterogeneous robots, namely ground and aerial
robots, to speed up disaster response. Their sense-act capabilities are complementary:
ground robots can carry high payloads and manipulators. However, their field of view
is limited and they can be blocked by obstacles on the ground. Aerial robots, in contrast,
can overcome obstacles with ease and can provide a bird’s-eye view, which is ideal for
mapping and monitoring tasks.

To reduce the number of required operators and speed up their mission, the robots
must expose a good level of autonomy. Instead of sending low-level commands, they
must be able to autonomously execute high-level tasks such as “grasp that object” or
“fly to location X”. This allows the operator to focus on the mission instead of low-level
robot details. For reliable local navigation, robots must rely only on their onboard
sensors, since the communication infrastructure is likely to be affected during disaster
situations.

In this work, we demonstrate the benefits of a team of heterogeneous robots in a mock-
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up search-and-rescue scenario (see Figure D.1a): a victim in an unknown environment
must be found and provided with a first-aid kit. We first deploy an aerial robot that
maps the environment and searches for the victim. Then, a mission is planned for a
ground robot to reach the victim and provide it with a first-aid kit as fast as possible.
Both the time required for driving and rubble removal are considered to plan the
mission. Finally, the aerial robot guides the ground robot along the computed path to
the victim.

The remainder of this paper is organized as follows. In Section D.2, we review
related work both on collaboration of aerial and ground robots and on Navigation
Among Movable Obstacles (NAMO). Our robots and the mock-up disaster scenario are
introduced in Section D.3. In Sections D.4, D.5, and D.6 we detail the mapping, planning,
and execution of the missions, respectively. Finally, we evaluate the performance of our
mission planning algorithm and the entire system in Section D.7.

D.2 Related Work

We first review related work on collaboration of ground and aerial robots in the search-
and-rescue context. Then we provide a literature overview on Navigation Among
Movable Obstacles (NAMO).

D.2.1 Collaboration of Aerial and Ground Robots

After the 2012 Mirandola earthquake in Italy, aerial and ground robots were deployed
to build 3D maps of the interior of damaged buildings [85]. The robots were remote
controlled and high stress and cognitive overload of both the aerial and ground robot
operators were reported.

In [111], collaborative mapping of a damaged building after the 2011 Tokuhu earthquake
with a ground and an aerial robot was presented. First, the ground robot was manually
controlled through the building creating a 3D voxel grid. Second, locations inaccessible
for the ground robot were mapped by the aerial robot.

Teams of aerial and ground robots for monitoring and tracking tasks were presented
in [70]. Aerial robots search for targets which are then verified and tracked by ground
robots. Only limited, high-level user interaction was required. However, the main focus
was on an ad-hoc wireless network that is maintained during the mission.

In [59], an aerial robot is described to support ground personnel in searching for
victims. Several search strategies are discussed. The system was tested outdoors with
rescue professionals.
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In [56], an aerial robot is described to assist a ground robot to reach a goal location.
However, only local planning was performed and the aerial robot was piloted manually.

Since virtually all robots in today’s missions are remote controlled, human-robot
interaction for these scenarios was investigated by several authors, e.g. [131, 87]. Also,
the recently started European project SHERPA [101] focuses on the interaction and
collaboration of humans with both aerial and ground robots in alpine rescue missions.

Our work differs from those mentioned above in that we do not only map the environ-
ment, but also use these maps for mission planning and environment interaction. In
particular, we make use of the ground robot’s capability to interact with the environ-
ment using its robotic manipulator. In addition, our system is fully autonomous: no
user interaction is required at any point after launching the aerial robot.

D.2.2 Navigation Among Movable Obstacles (NAMO)

Planning in modifiable environments was introduced in [177]. It was shown that,
even for the simplest cases, the problem is NP-hard. A heuristic search algorithm was
presented in [29]. More recently, Navigation Among Movable Obstacles (NAMO) [156,
157] became an active research topic in the field of humanoid robots. While very
similar to our case, there is a difference in how we can manipulate obstacles. In all
above-mentioned papers, the obstacles could be pushed by the robot. Here, contrarily,
we can lift the obstacles and place them again at an arbitrary location.

D.3 System Overview

We propose a system consisting of a quadrotor equipped with a monocular camera (see
Figure D.2) and a ground robot consisting of an omni-directional base and a 5-DOF
manipulator (see Figure D.3). When operating together, the two robots have all the
capabilities we require for the considered search-and-rescue missions. Combining all
the required capabilities in one single robot would render the system impractical and
less flexible.

We use a laptop as ground station to visualize the progress of the mission. On the
ground station, we also run our mission-planning algorithm and send high-level
commands to both robots.1 As soon as the robots have received their high-level
commands, they both navigate fully autonomously while running all the required
algorithms onboard. In the following, we describe the quadrotor platform, the ground
robot, and the mock-up disaster scenario in more detail.

1Note that this could also run onboard one of the robots, rendering the laptop unnecessary.
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1

2

3

Figure D.2: A closeup of our quadrotor: down-looking camera (1), Odroid U3 quad-core
computer (2), and PIXHAWK autopilot (3).

D.3.1 Aerial Robot

We built our quadrotor from selected off-the-shelf components and custom 3D-printed
parts (see Figure D.2). The components were chosen according to their performance
and their ability to be easily customized.

Our quadrotor relies on the frame of the Parrot AR.Drone 2.02 including their motors,
motor controllers, gears, and propellers. The platform is powered by one 1,350 mA h
LiPo battery, which allows a flight time of 10 min.

We completely replaced the electronic parts of the AR.Drone by a PX4FMU autopilot
and a PX4IOAR adapter board developed in the PIXHAWK Project [105]. The PX4FMU
consists, among other parts, of an IMU and a micro controller to read the sensors, run
some low-level control to track desired body rates, and command the motors. Addition-
ally to the PX4 autopilot, our quadrotors are equipped with an Odroid-U3 single-board
computer.3 It contains a 1.7 GHz quad-core processor running XUbuntu 13.104 and
ROS.5 The PX4 micro controller communicates with the Odroid board over UART,
whereas the Odroid board communicates with the ground station over 5 GHz WiFi.

Our platform is easily reparable due to off-the-shelf components, inexpensive (1,000 USD),
lightweight (below 450 g), and therefore safe to use.

To stabilize the quadrotor, we make use of the gyros and accelerometers of the IMU
on the PX4FMU as well as a downward-looking MatrixVision mvBlueFOX-MLC200w
752× 480-pixel monochrome camera.6

2http://ardrone2.parrot.com/
3http://www.hardkernel.com/main/products/prdt_info.php?g_code=G138745696275
4http://www.xubuntu.org/
5http://www.ros.org/
6http://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html
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The images from the downward-looking camera are processed on the Odroid by means
of our Semi-Direct Visual Odometry (SVO7) pipeline [49]. The visual-odometry pipeline
outputs an unscaled pose which is then fused with the IMU readings in an Extended
Kalman Filter framework (Multi Sensor Fusion (MSF) [98]) to compute a metric state
estimate. From this state estimate and a desired trajectory, we compute the desired
body rates and collective thrust, which are then sent to the low-level controller on the
PX4FMU.

D.3.2 Ground Robot

We use a KUKA youBot [14] as ground robot (see Figure D.3). It consist of a mobile
base and a 5-DOF manipulator with a two-finger gripper. The mobile base includes four
omni-directional wheels, which allow the robot to also move sideways and rotate on
the spot. This is a great advantage over standard wheels when navigating in confined
spaces. Furthermore, the base is designed robust enough to carry a payload of 20 kg.
The manipulator is able to lift up to 0.5 kg with its gripper. For controlling the arm
and the base, the youBot comprises a mini ITX PC board with embedded Intel R©Atom
Dual-Core CPU running an Ubuntu operating system and ROS. To grasp objects fast
and reliably, we developed a torque controller for the youBot arm [79], which allows to
precisely track trajectories with its gripper.

To measure the relative position of obstacles in front of the youBot, we mounted a
Hokuyo URG-04LX-UG018 laser scanner in front of its base. Finally, for this rescue
mission, the youBot carries a first-aid kit on the side of its base as shown in Figure D.3.

D.3.3 Mock-up Disaster Site

In this work, we consider a search-and-rescue mission after a disaster where robots are
sent into areas that are too dangerous to be entered by human rescuers.

As a mock-up disaster site for our experiments (see Figure D.4), we consider an area of
known size (in our case 4 m× 6 m) with different types of obstacles: some of them can
be removed by the ground robot (“movable obstacles”) and some can only be avoided
(“fixed obstacles”). Furthermore, there is a goal location that represents a victim, which
has to be provided with a first-aid kit by the ground robot as fast as possible. The
locations of the obstacles and the goal are not known a priori.

All obstacles, the goal, and the ground robot are marked with an AprilTag [126] such
that they can easily be detected in the camera image of the flying robot (see Figure D.2).
We make use of an additional AprilTag as origin tag, which provides a common

7http://github.com/uzh-rpg/rpg_svo
8http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/urg-04lx-ug01/
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1

2
3

Figure D.3: KUKA youBot equipped with an AprilTag (1), a laser scanner (2), and a first-aid
kit (3).

reference frame for both robots. The origin tag is also used as reference point to define
the search area that the aerial robot has to cover.

D.4 Mapping

To map the defined area, we compute a lawn-mower pattern covering the entire area
for the flying robot to take images. Images are only taken at specified locations on
the lawn-mower pattern instead of being streamed continuously in order to minimize
the required communication band with. These images, together with the onboard
pose estimate of the quadrotor, are sent to the ground station while the flying robot is
mapping. The obstacles are then detected in the image by their attached tag. To build a
metrically consistent map, we run a pose-graph optimization over all detected tags of
all images. We initialize the tag poses with the estimate of the quadrotor pose and run
the optimization using iSAM [75].

The detected fixed obstacles are then inserted into a grid map together with the
boundaries of the defined area as illustrated in Figure D.8 in black. In addition to this
grid map, we also provide the planner with the position of the movable obstacles, the
pose of the ground robot, and the goal location.

D.5 Mission Planning

When planning a mission for the ground robot, we consider its position to be the center
point of its base and we represent the map as a grid where we inflate all fixed obstacles
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12

3 4

Figure D.4: Mock-up disaster site elements: fixed obstacle (1), movable obstacle (2), goal (3),
and origin tag (4).

by the radius of the robot base. To grasp an obstacle, the robot’s position must be on a
circle around the obstacle with a radius corresponding to the distance from the gripper
to the base center (see Figure D.5). We denote the points on this circle as possible grasp
locations of that obstacle.

Our planning is based on the A* algorithm with the mission-execution time as cost.
First, for each movable obstacle, we calculate the minimum cost to the goal location
when no other movable obstacle would be present. This gives us a lower bound on
the cost to go from each movable obstacle to the target location and is therefore an
admissible heuristic. Then, we search for every feasible shortest path from the start
location to any of the grasp locations of every movable obstacle or the goal location
directly. For every path to a movable obstacle that we find, we add the cost to remove it
and compute all feasible paths to all other removable obstacles or the goal location. All
the possible missions that are created this way are stored in a priority queue according
to their estimated cost. This process is continued until we find a feasible mission to the
goal location.

Until this point, we do not consider the cost of driving the obstacle to a feasible place
location, which can be necessary as described further in Section D.5.1. Therefore,
all the computed costs are lower bounds and not necessarily the actual costs of the
corresponding mission. When a feasible mission to the goal is found, we compute the
precise cost including possible driving backwards to place obstacles. Note that this can
only increase the cost of the mission. If the actual cost of the considered mission is
now higher than the estimated cost of other missions in the priority queue, we have to
continue the planning steps for these missions as described above. The time-optimal
mission is found if its actual cost is smaller than the estimated cost of every other
mission in the priority queue. This procedure is summarized in Algorithm 2.
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Figure D.5: The movable obstacle (red) can be grasped by the ground robot from positions on
a circle around it. To avoid a collision with the fixed obstacle (black), the robot center cannot
move inside the inflated area (gray). Thus, only the grasp locations marked in green are feasible.

Algorithm 2 Mission Planning

calculate lower bound on cost to go from each obstacle
min_cost← ∞
add empty mission with start pose to Priority Queue (PQ)
while cost(PQ.top()) < min_cost do

current_mission← PQ.top()
add remaining obstacles to map
for all paths to these obstacles do

if lower bound of new mission < min_cost then
new_mission← current_mission + path
add new_mission to PQ

compute path to goal
if path is feasible then

current_mission← current_mission + path
refine mission
if cost(current_mission) < min_cost then

min_cost← mission_cost
best_mission← current_mission
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(a) Drive to first obstacle and
grasp it

(b) Search for possible place
location

(c) Drive backwards to place
first obstacle

(d) Drive to second obstacle
and grasp it

(e) Search for possible place lo-
cation

(f) Drive and place second ob-
stacle

Figure D.6: To illustrate our obstacle-placing algorithm, we consider a narrow corridor with
two movable obstacles inside. Fixed obstacles (black) are inflated to mark the area where the
robot cannot drive (light gray) or cannot place obstacles (dark gray). Green dots indicate the
grasp locations of movable obstacles (red). Since we place obstacles to the side of the robot, we
search along parallel lines of the path (blue) for place locations. First, we search in forward
direction (yellow) up to the next grasp location. If we cannot find a place location there, we
start searching in backward direction (violet). The chosen obstacle place position is indicated
in orange. The time for driving backwards is taken into account by our mission-planning
algorithm which possibly affects the optimal mission (cf. Figures D.9a and D.9b). An example
of a corridor with more movable obstacles is shown in Figure D.10.

D.5.1 Place Positions of Removed Obstacles

When removing an obstacle, we ideally try to place it on the side of the ground robot
while the robot stands still in order to save time. Nonetheless, in narrow passages (e.g.,
in a passage as in Figure D.6), the robot cannot just place the obstacle to the left or right,
but needs to carry it to a feasible place location. To do so, we search for unoccupied
place locations along two lines parallel to the driving path. First, we search in forward
direction up to the next obstacle grasp location. If we cannot find a feasible place
position in that direction, we then also search in backward direction. This happens
for example if two obstacles are in a narrow passage (cf. Figure D.6): the first obstacle
must be carried out of the passage by driving backwards. The second obstacle can be
placed when exiting the passage.

D.5.2 Path Refinement

We search paths on the grid map using single-source Dijkstra’s algorithm. However,
these paths should be smoothed for a ground robot to be executed (see Figure D.7). We
therefore refine these paths using a simple algorithm (see Algorithm 3).

Although there exist more sophisticated planning algorithms on grid maps (such as
Theta? [122]), this is of minor concern in our situation, where the robot is much larger
than the grid resolution.
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Figure D.7: The output of Dijkstra’s algorithm (red) is refined (green) to find a smoother
trajectory for the ground robot.

Algorithm 3 Optimizing Grid Map Paths

add first cell of old path to new path
for all cells in old path do

if no line of sight to last cell in new path then
add previous cell of old path to new path

add last cell of old path to new path
for all cells in new path do

update orientation such that it points to next cell
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D.6 Mission Execution

A feasible mission plan for the ground robot consists of a series of actions such as
driving straight line path segments, removing obstacles, and delivering the first-aid kit.
Each of these actions for the ground robot are commanded by the aerial robot in an
iterative fashion. Once an action is commanded, the ground robot executes it without
any external feedback. The aerial robot is then following the ground robot to command
the next action. Commanding the ground robot in this iterative fashion to perform
open-loop maneuvers eliminates problems with communication delays. Furthermore,
it keeps the required communication at a minimum.

When the ground robot has to drive a straight line path segment, it is first localized
in the map by the aerial robot. It is then commanded to execute a motion relative to
the current location using its wheel odometry without feedback from the aerial robot.
When the ground robot has executed the open-loop motion, it is again localized in the
map by the aerial robot to compensate for accumulated drift of the wheel odometry.
To remove an obstacle, the ground robot is commanded to drive to the chosen grasp
location such that it can reach it with its gripper. When in front of the obstacle, the
ground robot makes use of its laser scanner to measure the relative position of the
obstacle precisely. It then grasps the obstacle and places it to a location that is again
commanded by the aerial robot. After removing all the obstacles in the way, the ground
robot can approach the goal location. Since we want to deliver the first-aid kit directly
onto the goal location, the ground robot stops in front of the goal location such that
it is within the gripper’s reach (cf. Figure D.8). Once it is there, the ground robot is
commanded to place the first-aid kit.

D.7 Results

In this section, we evaluate both our mission planner and the overall system perfor-
mance. We analyze the mission plans for special, engineered cases. Further, we evaluate
the computation time depending on the number of movable obstacles in the scene.
Finally, we present the overall system performance during many demonstrations at a
trade fair.

As parameters for the mission planning, we used 0.2 m s−1 driving speed, 30 ◦ s−1

rotational speed, and 15 s for grasping and placing an obstacle. We set the driving
speeds of the youBot accordingly and measured the required grasp-and-place. For
creating the grid map, we used a cell size of 5 cm.
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D.7.1 Mission Planning

We evaluate our mission-planning algorithm using special and random cases. The
visualization of the output is explained in Figure D.8.

We demonstrate the influence on the optimal mission when driving backwards to place
an obstacle in Figure D.9. Even if the south path in Figure D.9a is shorter, the mission
time would be longer due to the time required for additional driving backwards to
place the first obstacle. However, if the north path is blocked, the mission planner will
choose the other path (see Figure D.9b). If many obstacles are in a small corridor as in
Figure D.10, the ground robot must carry all but one out of it backwards to be able to
traverse the corridor.

In Figure D.11, we demonstrate the influence of the time required to remove an obstacle
on the optimal mission.

Randomly generated scenes and the respective missions are shown in Figure D.12.

12

34 5

6

78

Figure D.8: Explanation of mission planner output: fixed obstacle (1), start location of the
ground robot (2), path to drive (3), grasp location (4) of movable obstacle (5), place location (6),
and goal (7). From the end of the path (8), the first-aid kit is delivered to the goal.

To evaluate the computational performance of our mission planner, we fixed a scene (cf.
Figure D.12a) and varied the number of movable obstacles. For every chosen number of
movable obstacles we run 50 trials with randomly placed movable obstacles to measure
the computation time. The results are shown in Figure D.13. In two out of 250 cases,
the planner could not find a feasible mission.

D.7.2 Overall System Performance

Our system was demonstrated at the AUTOMATICA’14 trade fair in Munich on four
subsequent days, once every hour (see Figure D.14). The entire setup was dismounted
after every demonstration. Both the movable and fixed obstacles were placed randomly
before each run. The mission was accomplished successfully 23 out of 27 times (81%).
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(a) Our mission-planning algorithm computes the fastest mission and not the shortest path.
Therefore, it chooses the north path since it requires no driving backwards to place obstacles.

(b) If the path of Figure D.9a is blocked by an additional fixed obstacle, the south path is chosen.
Note that this mission takes longer than the one above, since the robot has to drive backwards
to place the obstacle.

Figure D.9: Placing movable obstacle might require additional backwards driving and, thus,
increase the mission time. Therefore, the output of our mission-planning algorithm can be
different from the shortest path. Color-coding is explained in Figure D.8.

Reasons for failures were mapping errors and wireless communication issues. In all
these failure cases, our system reacted in a fail-safe way: the robots stopped to move
and the error was reported to the operator.

D.8 Conclusion

In this paper, we demonstrated the autonomous collaboration of an aerial and a ground
robot in a mock-up disaster scenario. We detailed the algorithm for mission planning
for the ground robot and evaluated it for both special and random scenarios. The high
success rate during a trade fair showed the robustness of our system.

Wireless communication is a major concern when dealing with multiple robots. We
tackled this by performing all crucial computations onboard the robots. Thus, we only
need to communicate high-level commands and sparse information, which do not
require low-latency or high-bandwidth communication links.
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Figure D.10: All but one obstacle in a narrow corridor must be carried back to where the robot
entered the corridor. Only the last obstacle is placed at the end of the corridor. Color-coding is
explained in Figure D.8.

(a) Removal time 5 s (b) Removal time 11 s (c) Removal time 15 s

Figure D.11: The time-optimal mission depends on the time required to remove an obstacle.
Color-coding is explained in Figure D.8.

D.8.1 Future Work

In real-world scenarios, two main assumptions of this paper are not valid: first, in
our case, obstacles are marked with tags. Second, we assume the world to be flat
and, therefore, plan missions only in 2D. We plan to overcome these limitations by
building a 3D map using the images from the aerial robot, e.g., using our real-time
dense reconstruction algorithm (REMODE) [133]. The maps from the aerial robot could
also be combined with the ones from the ground robot [46]. Since wheeled robots, such
as the KUKA youBot used here, are limited to flat surfaces, we aim at deploying legged
robots for such missions.

Other directions of research include covering larger areas using fixed-wing aerial robots,
extending the setup to multiple aerial and ground robots, computing and executing
mission plans already while the flying robot is mapping, and adapting the mission
plan when the environment changes during execution.
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(a) 15 movable obstacles (b) 15 movable obstacles (c) 20 movable obstacles

Figure D.12: Movable obstacles are placed randomly in a scene to evaluate the computation
time of our mission-planning algorithm. Results are shown in Figure D.13 and color-coding is
explained in Figure D.8.
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Figure D.13: Computation time of our mission planning algorithm for different numbers of
movable obstacles. For every chosen number of movable obstacles we run 50 trials while placing
the obstacles randomly. Example scenes are shown in Figure D.12.
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Figure D.14: Demonstration of our system at the AUTOMATICA trade fair in Munich, Germany
in June 2014.
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Aggressive Quadrotor Flight through
Narrow Gaps with Onboard Sensing and

Computing using Active Vision

Davide Falanga, Elias Mueggler, Matthias Faessler and Davide Scaramuzza

Abstract — We address one of the main challenges towards au-
tonomous quadrotor flight in complex environments, which is flight
through narrow gaps. While previous works relied on off-board
localization systems or on accurate prior knowledge of the gap po-
sition and orientation in the world reference frame, we rely solely
on onboard sensing and computing and estimate the full state by
fusing gap detection from a single onboard camera with an IMU.
This problem is challenging for two reasons: (i) the quadrotor pose
uncertainty with respect to the gap increases quadratically with the
distance from the gap; (ii) the quadrotor has to actively control its
orientation towards the gap to enable state estimation (i.e., active
vision). We solve this problem by generating a trajectory that con-
siders geometric, dynamic, and perception constraints: during the
approach maneuver, the quadrotor always faces the gap to allow
state estimation, while respecting the vehicle dynamics; during the
traverse through the gap, the distance of the quadrotor to the edges
of the gap is maximized. Furthermore, we replan the trajectory dur-
ing its execution to cope with the varying uncertainty of the state
estimate. We successfully evaluate and demonstrate the proposed
approach in many real experiments, achieving a success rate of 80%
and gap orientations up to 45◦. To the best of our knowledge, this
is the first work that addresses and achieves autonomous, aggres-
sive flight through narrow gaps using only onboard sensing and
computing and without prior knowledge of the pose of the gap.
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Supplementary Material

The accompanying video is available at:
http://rpg.ifi.uzh.ch/aggressive_flight.html

E.1 Introduction

Recent works have demonstrated that micro quadrotors are extremely agile and versatile
vehicles, able to execute very complex maneuvers [115, 31, 107]. These demonstrations
highlight that one day quadrotors could be used in search and rescue applications,
such as in the aftermath of an earthquake, to navigate through buildings, by entering
and exiting through narrow gaps, and to quickly localize victims.

In this paper, we address one of the main challenges towards autonomous quadrotor
flight in complex environments, which is flight through narrow gaps. What makes this
problem challenging is that the gap is very small, such that precise trajectory-following
is required, and can be oriented arbitrarily, such that the quadrotor cannot fly through
it in near-hover conditions. This makes it necessary to execute an aggressive trajectory
(i.e., with high velocity and angular accelerations) in order to align the vehicle to the
gap orientation (cf. Fig. E.1).

Previous works on aggressive flight through narrow gaps have focused solely on the
control and planning problem and therefore relied on accurate state estimation from
external motion-capture systems and/or accurate knowledge of the gap position and
orientation in the world reference frame. Since these systems were not gap-aware, the
trajectory was generated before execution and never replanned. Therefore, errors in
the measure of the pose of the gap in the world frame were not taken into account,
which may lead to a collision with gap. Conversely, we are interested in using only
onboard sensing and computing, without any prior knowledge of the gap pose in the world
frame. More specifically, we address the case where state estimation is done by fusing
gap detection through a single, forward-facing camera with an IMU. We show that this
raises an interesting active-vision problem (i.e, coupled perception and control). Indeed,
for the robot to localize with respect to the gap, a trajectory that guarantees that the
quadrotor always faces the gap must be selected (perception constraint). Additionally,
it must be replanned multiple times during its execution to cope with the varying
uncertainty of the state estimate, which is quadratic with the distance from the gap.
Furthermore, during the traverse, the quadrotor must maximize the distance from the
edges of the gap (geometric constraint) to avoid collisions. At the same time, it must
do so without relying on any visual feedback (when the robot is very close to the gap,
it exits from the field of view of the camera). Finally, the trajectory must be feasible
with respect to the dynamic constraints of the vehicle.
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(a) The quadrotor passing through the gap.

(b) View from the onboard camera

Figure E.1: Sequence of our quadrotor passing through a narrow, 45◦-inclined gap. Our state
estimation fuses gap detection from a single onboard forward-facing camera with an IMU. All
planning, sensing, control run fully onboard on a smartphone computer.

Our proposed trajectory generation approach is independent of the gap-detection
algorithm being used; thus, to simplify the perception task, we use a gap with a
black-and-white rectangular pattern (cf. Fig. E.1) for evaluation and demonstration.

E.1.1 Related Work

A solution for trajectory planning and control for aggressive quadrotor flight was
presented in [107]. The authors demonstrated their results with aggressive flight
through a narrow gap, and by perching on inclined surfaces. The quadrotor state was
obtained using a motion-capture system. To fly through a narrow gap, the vehicle
started by hovering in a pre-computed position, flew a straight line towards a launch
point, and then controlled its orientation to align with the gap. The method was not
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plug-and-play since it needed training through iterative learning in order to refine the
launch position and velocity. This was due to the instantaneous changes in velocity
caused by the choice of a straight line for the approach trajectory. Unlike their method,
we use a technique that computes polynomial trajectories which are guaranteed to be
feasible with respect to the control inputs. The result is a smooth trajectory, compatible
with the quadrotor dynamic constraints, which makes learning unnecessary. Indeed, in
realistic scenarios, such as search-and-rescue missions, we cannot afford training but
must pass on the first attempt.

In [106], the same authors introduced a method to compute trajectories for a quadrotor
solving a Quadratic Program, which minimizes the snap (i.e., the fourth derivative
of position). In their experiments, agile maneuvers, such as passing through a hula-
hoop thrown by hand in the air, were demonstrated using state estimation from a
motion-capture system.

In [164], a technique that lets a quadrotor pass through a narrow gap while carrying
a cable-suspended payload was presented and was experimentally validated using a
motion-capture system for state estimation.

In [124], the authors proposed an unconstrained nonlinear model predictive control
algorithm in which trajectory generation and tracking are treated as a single, unified
problem. The proposed method was validated in a number of experiments, including
a rotorcraft passing through an inclined gap. Like the previous systems, they used a
motion-capture system for state estimation.

In [99], the authors proposed a vision-based method for autonomous flight through
narrow gaps by fusing data from a downward and a forward-looking camera, and
an IMU. Trajectory planning was executed on an external computer. However, the
authors only considered the case of an horizontal gap, therefore no agile maneuver was
necessary.

In [94], the authors proposed methods for onboard vision-based state estimation,
planning, and control for small quadrotors, and validated the approach in a number of
agile maneuvers, among which flying through an inclined gap. Since state estimation
was performed by fusing input from a downward-looking camera and an IMU, rather
than from gap detection, the gap position and orientation in the world reference frame
had to be measured very accurately prior to the execution of the maneuver. The
trajectory was generated before execution and never replanned. Therefore, errors in
the measure of the pose of the gap in the world frame were not taken into account,
which may lead to a collision with gap. To deal with this issue, the authors used a gap
considerably larger than the vehicle size.

All the related works previously mentioned relied on the accurate state estimates
from a motion-capture system or accurate prior knowledge of the gap position and
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orientation in the world reference frame. Additionally, in all these works but [124]
and [94] trajectory generation was performed on an external computer. The advantages
of a motion-capture system over onboard vision are that the state estimate is always
available, at high frequency, accurate to the millimeter, and with almost constant noise
covariance within the tracking volume. Conversely, a state estimate from onboard vision
can be intermittent (e.g., due to misdetections); furthermore, its covariance increases
quadratically with the distance from the scene and is strongly affected by the type of
structure and texture of the scene. Therefore, to execute a complex aggressive maneuver,
like the one tackled in this paper, while using only onboard sensing and gap-aware state
estimation, it becomes necessary to couple perception with the trajectory generation process
(i.e., active vision). Specifically, the desired trajectory has to render the gap always
visible by the onboard camera in order to estimate its relative pose.

E.1.2 Contributions

Our method differs from previous works in the following aspects: (i) we rely solely
on onboard, visual-inertial sensors and computing, (ii) we generate a trajectory that
facilitates the perception task, while satisfying geometric and dynamic constraints, and
(iii) we do not require iterative learning, neither do we need to know a priori the gap
position and orientation in the world frame. To the best of our knowledge, this is the
first work that addresses and achieves aggressive flight through narrow gaps with state
estimation via gap detection from an onboard camera and IMU.

The remainder of this paper is organized as follows. Section E.2 presents the proposed
trajectory-generation algorithm. Section E.3 describes the state-estimation pipeline. Sec-
tion E.4 presents the experimental results. Section E.5 discusses the results and provides
additional insights about the approach. Finally, Section E.6 draws the conclusions.

E.2 Trajectory Planning

We split the trajectory planning into two consecutive stages. First, we compute a
traverse trajectory to pass through the gap. This trajectory maximizes the distance from
the vehicle to the edges of the gap in order to minimize the risk of collision. In a second
stage, we compute an approach trajectory in order to fly the quadrotor from its current
hovering position to the desired state that is required to initiate the traverse trajectory.
While both trajectories need to satisfy dynamic constraints, the approach trajectory also
satisfies perception constraints, i.e., it lets the vehicle-mounted camera always face the
gap. This is necessary to enable state estimation with respect to the gap.
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E.2.1 Traverse Trajectory

During the gap traversal, the quadrotor has to minimize the risk of collision. We
achieve this by forcing the traverse trajectory to intersect the center of the gap while
simultaneously lying in a plane orthogonal to the gap (see Fig. E.2). In the following,
we derive the traverse trajectory in this orthogonal plane and then transform it to the
3D space.

Let W be our world frame. The vector pG and the rotation matrix RG denote the
position of the geometric center of the gap and its orientation with respect to W,
respectively. Let Π be a plane orthogonal to the gap, passing through its center and
parallel to the longest side of the gap (cf. Fig. E.2). Let e1 and e2 be the unit vectors
spanning such a plane Π, whose normal unit vector is e3. The e2 axis is orthogonal to
the gap and e1 = e2 × e3.

e3 gΠ
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pf
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e1

pG

x y

z

g

Figure E.2: An inclined gap and the corresponding plane Π.

Intuitively, a trajectory that lies in the plane Π and passes through the center of the
gap, minimizes the risk of impact with the gap.

To constrain the motion of the vehicle to the plane Π, it is necessary to compensate
the projection of the gravity vector g onto its normal vector e3. Therefore, a constant
thrust of magnitude 〈g, e3〉 needs to be applied orthogonally to Π. By doing this, a
2D description of the quadrotor’s motion in this plane is sufficient. The remaining
components of g in the plane Π are computed as

gΠ = g− 〈g, e3〉 e3. (E.1)

Since this is a constant acceleration, the motion of the vehicle along Π is described by
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Figure E.3: The traverse trajectory in the plane Π.

the following second order polynomial equation:

pi(t) = pi(t0) + vi(t0)t +
1
2

gΠ,it2, (E.2a)

vi(t) = vi(t0) + gΠ,it, (E.2b)

where the subscript i = {1, 2} indicates the component along the ei axis. The quadrotor
enters the traverse trajectory at time t0, t is the current time, and p and v denote its
position and velocity, respectively.

Equation (E.2) describes a ballistic trajectory. When gΠ,2 = 0, it is the composition of
a uniformly accelerated and a uniform-velocity motion. In other words, in these cases
the quadrotor moves on a parabola in space.

Let l and d be the distance between pG and the initial point of the trajectory, p0, along
e1 and e2, respectively (cf. Fig. E.3). These two parameters determine the initial position
and velocity in the plane Π, as well as the time tc necessary to reach pG. The values of d
and l are determined through an optimization problem, as explained later in Sec. E.2.2.

For a generic orientation RG of the gap, (E.2) is characterized by a uniformly accelerated
motion along both the axes e1 and e2. Therefore, it is not possible to guarantee that
the distance traveled along the e2 axis before and after the center of the gap are equal
while also guaranteeing that the initial and final position have the same coordinate
along the e1 axis. For safety reasons, we prefer to constrain the motion along the e2

axes, i.e., orthogonally to the gap, such that the distances traveled before and after the
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gap are equal.

Given the components of the unit vectors e1 and e2 in the world frame, it is now
possible to compute the initial conditions p0 = p(t0) and v0 = v(t0) in 3D space as
follows:

p0 = pG − le1 − de2, (E.3a)

v0 =

(
l
tc
− 1

2
gΠ,1tc

)
e1 +

(
d
tc
− 1

2
gΠ,2tc

)
e2, (E.3b)

where:

tc =

√
−2l
gΠ,1

(E.4)

is the time necessary to reach the center of the gap once the traverse trajectory starts.

Note that this solution holds if gΠ,2 ≥ 0 which applies if e2 is horizontal or pointing
downwards in world coordinates. The case gΠ,2 < 0 leads to similar equations, which
we omit for brevity. The final three-dimensional trajectory then has the following form:

p(t) = p0 + v0t +
1
2

gΠt2, (E.5a)

v(t) = v0 + gΠt, (E.5b)

a(t) = gΠ. (E.5c)

This trajectory is inexpensive to compute since it is solved in closed form. Also, note
that during the traverse the gap is no longer detectable. Nevertheless, since the traverse
trajectory is short and only requires constant control inputs (a thrust of magnitude 〈g, e3〉
and zero angular velocities), it is possible to track it accurately enough to not collide
with the gap, even without any visual feedback.

E.2.2 Optimization of the Traverse Trajectory

To safely pass through the gap, the quadrotor must reach the initial position and velocity
of the traverse trajectory described by (E.3a)-(E.3b) with an acceleration equal to gΠ

at time t0. An error in these initial conditions is propagated through time according
to (E.5a)-(E.5c), and therefore may lead to a collision. The only viable way to reduce
the risk of impact is to reduce the time duration of the traverse. More specifically, (E.4)
shows that one can optimize the value of l to reduce the time of flight of the traverse
trajectory. On the other hand, (E.3b) and (E.4) show that reducing l leads to an increase
in the norm of the initial velocity v0. Intuitively speaking, this is due to the fact that,
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for a given value of d, if the time of flight decreases, the velocity along the e2 axis
has to increase to let the vehicle cover the same distance in a shorter time. The initial
velocity also depends on d, which can be tuned to reduce the velocity at the start of
the traverse. The value of d cannot be chosen arbitrarily small for two reasons: (i) it
is necessary to guarantee a safety margin between the quadrotor and the gap at the
beginning of the traverse; (ii) the gap might not be visible during the final part of the
approach trajectory. For this reason, we compute the values of the traverse trajectory
parameters solving the following optimization problem:

min
d,l

tc s.t. ‖v0‖ ≤ v0,max, d ≥ dmin, (E.6)

where v0,max and dmin are the maximum velocity allowed at the start of the traverse and
the minimum value of d, respectively. We solve the nonlinear optimization problem
described by (E.6) with Sequential Quadratic Programming (SQP [84], using to the
NLopt library [74]. Thanks to the small dimensionality of the problem, it can be solved
onboard in few tens of milliseconds.

E.2.3 Approach Trajectory

Once the traverse trajectory has been computed, its initial conditions (namely, position,
velocity, and acceleration) are known. Now we can compute an approach trajectory
from a suitable start position to these initial conditions. Note that this start position is
not the current hover position but also results from the proposed trajectory generation
method. Our goal in this step is to find a trajectory that not only matches the initial
conditions of the traverse trajectory, but also enables robust perception and state
estimation with respect to the gap.

Robust state estimation with respect to the gap can only be achieved by always keeping
the gap in the field of view of a forward-facing camera onboard the quadrotor. Since it
is difficult to incorporate these constraints into the trajectory generation directly, we
first compute trajectory candidates and then evaluate their suitability for the given
perception task. To do so, we use the approach proposed in [118], where a fast method
to generate feasible trajectories for flying robots is presented. In that paper, the authors
provide both a closed-form solution for motion primitives that minimize the jerk and a
feasibility check on the collective thrust and angular velocities. The benefit of using
such a method is twofold. First, it allows us to obtain a wide variety of candidate
trajectories within a very short amount of time by uniformly sampling the start position
and the execution time within suitable ranges. This way we can quickly evaluate a large
set of candidate trajectories and select the best one according to the optimality criterion
described in Sec. E.2.5. Each of these candidate trajectories consists of the quadrotor’s
3D position and its derivatives. Second, and most importantly, since the computation
and the verification of each trajectory takes on average a two tenths of millisecond, it is
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possible to replan the approach trajectory at each control step, counteracting the effects
of the uncertainty in the pose estimation of the quadrotor when it is far away from the
gap. Each new approach trajectory is computed using the last state estimate available.
In the following, we describe how we plan a yaw-angle trajectory for each candidate
and how we select the best candidate to be executed.

E.2.4 Yaw-Angle Planning

In [106], the authors proved that the dynamic model of a quadrotor is differentially flat.
Among other things, this means that the yaw angle of the quadrotor can be controlled
independently of the position and its derivatives. In this section, we present how to
compute the yaw angle such that a camera mounted on the quadrotor always faces
the gap. Ideally, the camera should be oriented such that the center of the gap is
projected as close as possible to the center of the image, which yields the maximum
robustness for visual state estimation with respect to the gap against disturbances on
the quadrotor.

To compute the desired yaw angle, we first need to compute the ideal orientation of the
camera. Let pG be the coordinates of the center of the gap with respect to the world
frame W. Furthermore, let RWC and pC be the extrinsic parameters of the camera: pC

is the camera’s position and the rotation matrix RWC = (r1, r2, r3) defines the camera
orientation with respect to the world frame, where r3 is the camera’s optical axis.

For a given trajectory point, we can compute the vector from the camera to the center
of the gap d = pG − pC. Ideally, we can now align the camera’s optical axis r3 with d
but since the trajectory constrains the quadrotor’s vertical axis zb, we can generally not
do this. Therefore, we minimize the angle between d and r3 by solving the following
constrained optimization problem:

r∗3 = arg max
x
〈x, d〉 s.t. ‖x‖ = 1, 〈x, zb〉 = k, (E.7)

where the last constraint says that the angle between the quadrotor’s vertical body
axis zb and the camera’s optical axis is constant and depends on how the camera is
mounted on the vehicle. For example, k = 0 if the camera is orthogonal to the zb axis
as it is the case in our setup with a forward-facing camera.

Letting d⊥zb = d− 〈d, zb〉 zb be the component of d perpendicular to zb, the solution
of (E.7) is

r∗3 =
√

1− k2 d⊥zb

‖d⊥zb‖
+ kzb, (E.8)

which is a vector lying in the plane spanned by d and zb, and the minimum angle
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between the ideal and the desired optical axis is arccos(〈r∗3 , d〉 /‖d‖), i.e.,

θmin = arccos
(
(
√

1− k2‖d⊥zb‖+ k 〈d, zb〉) / ‖d‖
)

. (E.9)

Once r∗3 is known, we can compute the yaw angle such that the actual camera optical
axis r3 is aligned with r∗3 .

Observe that in the particular case of a trajectory point that allows to align r3 with d,
we have 〈d, zb〉 = k‖d‖ and the solution of (E.7) reduces to r∗3 = d

‖d‖ , with a minimum
angle θmin = arccos(〈r3, d〉 /‖d‖) = arccos(1) = 0.

E.2.5 Selection of the Approach Trajectory to Execute

In the previous sections, we described how we compute a set of candidate trajectories
in 3D space and yaw for approaching the gap. All the candidate trajectories differ in
their start position and their execution time. From all the computed candidates, we
select the one that provides the most reliable state estimate with respect to the gap. As
a quality criterion for this, we define a cost function J composed of two terms:

• the Root Mean Square (RMS) θrms of (E.9) over every sample along a candidate
trajectory;

• the straight-line distance d0 to the gap at the start of the approach.

More specifically:

J =
θrms

θ̄
+

d0

d̄
, (E.10)

where θ̄ and d̄ are normalization constants that make it possible to sum up quantities
with different units, and render the cost function dimensionless. This way, the quadrotor
executes the candidate approach trajectory that keeps the center of the gap as close
as possible to the center of the image for the entire trajectory, and at the same time
prevents the vehicle from starting too far away from the gap.

E.2.6 Recovery after the Gap

Since we localize the quadrotor with respect to the gap in order to traverse it, the
quadrotor is left with no state estimate after the traversal. Therefore, at this point it
has to recover a vision-based state estimate and then hover in a fixed position without
colliding with the environment. We solve this problem using the automatic recovery
system detailed in [37], where the authors provide a method to let a quadrotor stabilize
automatically after an aggressive maneuver, e.g. after a manual throw in the air.

132



E.3. State Estimation

E.3 State Estimation

E.3.1 State Estimation from Gap Detection

Our proposed trajectory generation approach is independent of the gap-detection
algorithm being used; thus, to simplify the perception task, we use a black-and-white
rectangular pattern to detect the gap (cf. Fig. E.1). A valid alternative to cope with
real-world gaps would be to use monocular dense-reconstruction methods, such as
REMODE [133]; however, they require more computing power (GPUs).

We detect the gap in each image from the forward-facing camera by applying a sequence
of steps: first, we run the Canny edge detector, undistort all edges, and group close
edges [160]; then, we search for quadrangular shapes and run geometrical consistency
checks. Namely, we search for a quadrangle that contains another one and check the
area ratio of these two quadrangles. Finally, we refine the locations of the eight corners
to sub-pixel accuracy using line intersection.

Since the metric size of the gap is known, we estimate the 6-DOF pose by solving a
Perspective-n-Points (PnP) problem (where n = 8 in our case). As a verification step,
we require that the reprojection error is small. We then refine the pose by minimizing
also the reprojection error of all edge pixels. To speed up the computation, we only
search the gap in a region of interest around the last detection. Only when no detection
is found, the entire image is searched. The detector runs with a frequency of more than
30 Hz onboard the quadrotor.

Finally, we fuse the obtained pose with IMU measurements to provide a full state
estimate using the multi-sensor fusion framework of [98].

E.4 Experiments

E.4.1 Experimental Setup

We tested the proposed framework on a custom-made quadrotor, assembled from
off-the-shelf hardware, 3D printed parts, and self-designed electronic components (see
Fig. E.4). The frame of the vehicle is composed of a 3D printed center cross and four
carbon fiber profiles as arms. Actuation is guaranteed by four RCTimer MT2830 motors,
controlled by Afro Slim ESC speed controllers. The motors are tilted by 15◦ to provide
three times more yaw-control action, while only losing 3 % of the collective thrust.

Our quadrotor is equipped with a PX4FMU autopilot that contains an IMU and a micro
controller on which our custom low-level controller runs. Trajectory planning, state
estimation and high-level control run on an Odroid-XU4 single-board computer. Our
algorithms have been implemented in ROS, running on Ubuntu 14.04. Communication
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Appendix E. Aggressive Flight through Narrow Gaps

Figure E.4: The quadrotor platform used in the experiments. (1) Onboard computer. (2)
Forward-facing fisheye camera. (3) TeraRanger One distance sensor and (4) downward-facing
camera, both used solely during the recovery phase. (5) PX4 autopilot. The motors are tilted by 15◦

to provide three times more yaw-control action, while only losing 3 % of the collective thrust.

between the Odroid and the PX4 runs over UART.

Gap-detection is done through a forward-facing fisheye camera (MatrixVision mvBlueFOX-
MLC200w 752× 480-pixel monochrome camera with a 180◦ lens), which ensures that
the gap can be tracked until very close. To allow the robot to execute the recovery
maneuver after traversing the gap, we mounted the same hardware detailed in [37],
which consists of a TeraRanger One distance sensor and a downward-facing camera.
Notice, however, that these are not used for state estimation before passing the gap but
only to recover and switch into stable hovering after the traverse.

The overall weight of the vehicle is 830 g, while its dimension are 55× 12 cm (largest
length measured between propeller tips). The dimensions of the rectangular gap are
80× 28 cm. When the vehicle is at the center of the gap, the tolerances along the
long side and short sides are only 12.5 cm, and 8 cm, respectively (cf. Fig. E.5). This
highlights that the traverse trajectory must be followed with centimeter accuracy to
avoid a collision.

The parameters of the traverse trajectory (Sec. E.2.2) have been set as v0,max = 3 m s−1,
dmin = 0.25 cm. The normalization constants θ̄ and d̄, introduced in Sec. E.2.5, have
been manually tuned to let the quadrotor start the maneuver close enough to render
vision-based pose estimation reliable and, at the same time, keep the gap as close as
possible to the center of the image.

The dynamic model and the control algorithm used in this work are the same presented
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Figure E.5: Our quadrotor during a traverse.

in [37]. We refer the reader to that for further details.

E.4.2 Results

To demonstrate the effectiveness of the proposed method, we flew our quadrotor
through a gap inclined at different orientations. We consider both rotations around
the world x and y axes, and denote them as roll and pitch, respectively. Overall, we
ran 35 experiments with the roll angle ranging between 0◦ and 45◦ and the pitch angle
between 0◦ and 30◦. We discuss the choice of these values in Sec. E.5.3. With the
gap inclined at 45◦, the quadrotor reaches speeds of 3 m s−1 and angular velocities of
400 ◦ s−1.

We define an experiment as successful if the quadrotor passes through the gap without
collision and recovers and locks to a hover position. We achieved a remarkable success
rate of 80%. When failure occurred, we found this to be caused by a persistent absence
of a pose estimate from the gap detector during the approach trajectory. This led to a
large error in matching the initial conditions of the traverse trajectory, which resulted
in a collision with the frame of the gap.

Figure E.6 shows the estimated position, velocity, and orientation against ground truth
for some of the most significant experiments and for different orientations of the gap
(namely: 20◦ roll, 0◦ pitch; 45◦ roll, 0◦ pitch; and 30◦ roll, 30◦ pitch). Ground truth
is recorded from an OptiTrack motion-capture system. It can be observed that the
desired trajectories were tracked remarkably well. Table E.1 reports the statistics of
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Position [m] Velocity [m s−1] Orientation [◦]

x y z x y z roll pitch

µ 0.04 0.04 0.03 0.09 0.15 0.08 6.04 8.89

σ 0.03 0.02 0.03 0.08 0.10 0.06 3.70 5.85

Table E.1: Position, velocity and orientation error statistics at time t = tc. The mean error µ and
the standard deviation σ are computed using ground truth data gathered from 35 experiments
conducted with the gap at different orientations.

the errors when the quadrotor passes through the plane in which the gap lies (i.e., at
t = tc), measured as the distance between actual and desired state. These statistics
include both the successful and the unsuccessful experiments. The average of the norm
of the position error at the center of the gap was 0.06 m, with a standard deviation
of 0.05 m. The average of the norm of the velocity error was below 0.19 m s−1, with a
standard deviation of 0.20 m s−1. We refer the reader to the attached video for further
experiments with different orientations of the gap. Figure E.7 shows a picture of one of
the experiments with the executed approach and traverse trajectories marked in color.

E.5 Discussion

In this section, we discuss our approach and provide more insights into our experi-
ments.

E.5.1 Replanning

The method we use to compute the approach meneuver [118] can fail to verify whether
a trajectory is feasible or not, as also highlighted by the authors. This usually happens
when the time duration of the trajectory is short. In such a case, we skip the replanning
and provide the last available approach trajectory to our controller.

E.5.2 Trajectory Computation Times

The trajectory planning approach we adopt for the approach phase is fast enough to
compute and test 40, 000 trajectories in less then one second, even with the additional
computational load induced by our check on the gap perception. The computation
of each trajectory on the on-board computer takes on average (0.240± 0.106)ms, in-
cluding: (i) generation of the trajectory; (ii) feasibility check; (iii) trajectory sampling
and computation of the yaw angle for each sample; (iv) evaluation of the cost function
described in (E.10); (v) comparison with the current best candidate. It is important to
point out that these values do not apply to the replanning of the approach trajectory
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(a) Gap: 20◦ roll, 0◦ pitch. (b) Gap: 45◦ roll, 0◦ pitch. (c) Gap: 30◦ roll, 30◦ pitch.
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(d) Gap: 20◦ roll, 0◦ pitch.
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(e) Gap: 45◦ roll, 0◦ pitch.
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(f) Gap: 30◦ roll, 30◦ pitch.
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(g) Gap: 20◦ roll, 0◦ pitch.
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(h) Gap: 45◦ roll, 0◦ pitch.

x

y

z

tct0

Time [s]

V
el
oc
it
y
[m

/s
]

Velocity

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

(i) Gap: 30◦ roll, 30◦ pitch.
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(j) Gap: 20◦ roll, 0◦ pitch.
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(k) Gap: 45◦ roll, 0◦ pitch.
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(l) Gap: 30◦ roll, 30◦ pitch.

Figure E.6: Comparison between ground truth and estimated position (top), velocity (center),
and orientation (bottom). Each column depicts the result of an experiment conducted with a
different configuration of the gap: d, g and j 20◦ of roll and 0◦ of pitch; e, h and k 45◦ of roll
and 0◦ of pitch; f, i and l 30◦ of roll and 30◦ of pitch. The approach trajectory starts at t = 0 and
ends at t = t0, when the traverse trajectory is executed. The quadrotor reaches the center of the
gap at t = tc and starts the recovery maneuver at the final time of each plot. We refer the reader
to the accompanying video for further experiments with different orientations of the gap.
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Figure E.7: Our quadrotor executing the whole trajectory split into approach (blue), traverse
(red).

during its execution, since the initial state is constrained by the current state of the
vehicle and there is no cost function to evaluate. In such a case, the computation is
much faster and for each trajectory it only takes (0.018± 0.011)ms on average.

E.5.3 Gap configuration

Our trajectory generation formulation is able to provide feasible trajectories with any
configuration of the gap, e.g., when the gap is perfectly vertical (90◦ roll angle) or
perfectly horizontal (90◦ pitch angle). However, in our experiments we limit the roll
angle of the gap between 0◦ and 45◦ and the pitch angle between 0◦ and 30◦. We do
this for two reasons. First, when the gap is heavily pitched, the quadrotor needs more
space to reach the initial conditions of the traverse from hover. This renders the gap
barely or not visible at the start of the approach, increasing the uncertainty in the pose
estimation. Second, extreme configurations, such as roll angles of the gap up to 90◦,
require high angular velocities in order to let the quadrotor align its orientation with
that of the gap. This makes gap detection difficult, if not impossible, due to motion
blur. Also, our current experimental setup does not allow us to apply the torques
necessary to reach high angular velocities because of the inertia of the platform and
motor saturations.
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E.5.4 Dealing with Missing Gap Detections

The algorithm proposed in Sec. E.3.1 fuses the poses from gap detection with IMU
readings to provide the full state estimate during the approach maneuver. In case
of motion blur, due to high angular velocities, or when the vehicle is too close to
the gap, the gap detection algorithm does not return any pose estimate. However,
these situations do not represent an issue during short periods of time (a few tenths
of a second). In these cases, the state estimate from the sensor fusion module is still
available and reliable through the IMU.

E.6 Conclusion

We developed a system that lets a quadrotor vehicle safely pass through a narrow
inclined gap using only onboard sensing and computing. Full state estimation is
provided by fusing gap detections from a forward-facing onboard camera and an IMU.

To tackle the problems arising from the varying uncertainty from the vision-based state
estimation, we coupled perception and control by computing trajectories that facilitate
state estimation by always keeping the gap in the image of the onboard camera.

We successfully evaluated and demonstrated the approach in many real-world experi-
ments. To the best of our knowledge, this is the first work that addresses and achieves
autonomous, aggressive flight through narrow gaps using only onboard sensing and
computing, and without requiring prior knowledge of the pose of the gap. We believe
that this is a major step forward autonomous quadrotor flight in complex environments
with onboard sensing and computing.
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Differential Flatness of Quadrotor
Dynamics Subject to Rotor Drag for

Accurate Tracking of High-Speed
Trajectories

Matthias Faessler, Antonio Franchi, and Davide Scaramuzza

Abstract — In this paper, we prove that the dynamical model of a
quadrotor subject to linear rotor drag effects is differentially flat in its
position and heading. We use this property to compute feed-forward
control terms directly from a reference trajectory to be tracked. The
obtained feed-forward terms are then used in a cascaded, nonlinear
feedback control law that enables accurate agile flight with quadro-
tors. Compared to state-of-the-art control methods, which treat the
rotor drag as an unknown disturbance, our method reduces the trajec-
tory tracking error significantly. Finally, we present a method based
on a gradient-free optimization to identify the rotor drag coefficients,
which are required to compute the feed-forward control terms. The
new theoretical results are thoroughly validated trough extensive
comparative experiments.

Supplementary Material

Video of the experiments: https://youtu.be/VIQILwcM5PA
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F.1. Introduction

Figure F.1: First-person-view racing inspired quadrotor platform used for the presented experi-
ments.

F.1 Introduction

F.1.1 Motivation

For several years, quadrotors have proven to be suitable aerial platforms for performing
agile flight maneuvers . Nevertheless, quadrotors are typically controlled by neglecting
aerodynamic effects, such as rotor drag, that only become important for non-hover
conditions. These aerodynamic effects are treated as unknown disturbances, which
works well when controlling the quadrotor close to hover conditions but reduces its
trajectory tracking accuracy progressively with increasing speed. For fast obstacle
avoidance it is important to perform accurate agile trajectory tracking. To achieve this,
we require a method for accurate tracking of trajectories that are unknown prior to
flying.

The main aerodynamic effect causing trajectory tracking errors during high-speed
flight is rotor drag, which is a linear effect in the quadrotor’s velocity [24]. In this
work, we aim at developing a control method that improves the trajectory tracking
performance of quadrotors by considering the rotor drag effect. To achieve this, we
first prove that the dynamical model of a quadrotor subject to linear rotor drag effects
is differentially flat with flat outputs chosen to be its position and heading. We then
use this property to compute feed-forward control terms directly from the reference
trajectory to be tracked. The obtained feed-forward terms are then used in a cascaded,
nonlinear feedback control law that enables accurate agile flight with quadrotors on
a priori unknown trajectories. Finally, we present a method based on a gradient-free
optimization to identify the rotor drag coefficients which are required to compute the
feed-forward control terms. We validate our theoretical results through experiments
with a quadrotor shown in Fig. F.1.
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F.1.2 Related Work

In [106], it was shown that the common model of a quadrotor without considering
rotor drag effects is differentially flat when choosing its position and heading as
flat outputs. Furthermore, this work presented a control algorithm that computes
the desired collective thrust and torque inputs from the measured position, velocity,
orientation, and body-rates errors. With this method, agile maneuvers with speeds of
several meters per second were achieved. In [42], the differential flatness property of a
hexarotor that takes the desired collective thrust and its desired orientation as inputs
was exploited to compute feed-forward terms used in an LQR feedback controller. The
desired orientation was then controlled by a separate low-level control loop, which also
enables the execution of flight maneuvers with speeds of several meters per second.
We extend these works by showing that the dynamics of a quadrotor are differentially
flat even when they are subject to linear rotor drag effects. Similarly to [42], we make
use of this property to compute feed-forward terms that are then applied by a position
controller.

Rotor drag effects influencing a quadrotor’s dynamics were investigated in [22]
and [102] where also a control law was presented, which considers these dynam-
ics. Rotor drag effects originate from blade flapping and induced drag of the rotors,
which are, thanks to their equivalent mathematical expression, typically combined as
linear effects in a lumped parameter dynamical model [100]. These rotor drag effects
were then incorporated in dynamical models of multi rotors to improve state estimation
in [90] and [25]. In this work, we make use of the fact that the main aerodynamic effects
are of similar nature and can therefore be described together by lumped parameters in
a dynamical model.

In [10], the authors achieve accurate thrust control by electronic speed controllers
through a model of the aerodynamic power generated by a fixed-pitch rotor under wind
disturbances, which reduces the trajectory tracking error of a quadrotor. Rotor drag was
also considered in control methods for multi-rotor vehicles in [76] and [127], where the
control problem was simplified by decomposing the rotor drag force into a component
that is independent of the vehicle’s orientation and one along the thrust direction,
which leads to an explicit expression for the desired thrust direction. In [161], a refined
thrust model and a control scheme that considers rotor drag in the computation of
the thrust command and the desired orientation are presented. Additionally to the
thrust command and desired orientation, the control scheme in [8] also computes the
desired body rates and angular accelerations by considering rotor drag but requires
estimates of the quadrotor’s acceleration and jerk, which are usually not available. In
contrast, we compute the exact reference thrust, orientation, body rates, and angular
accelerations considering rotor drag only from a reference trajectory, which we then
use as feed-forward terms in the controller.

144



F.2. Nomenclature

xB

yB

zB

Body

xW

yW

zW = zC

World

xC

yC

ψ

−gzW

Figure F.2: Schematics of the considered quadrotor model with the used coordinate systems.

F.2 Nomenclature

In this work, we make use of a world frame W with orthonormal basis {xW, yW, zW} rep-
resented in world coordinates and a body frame B with orthonormal basis {xB, yB, zB}
also represented in world coordinates. The body frame is fixed to the quadrotor with
an origin coinciding with its center of mass as depicted in Fig. F.2. The quadrotor is
subject to a gravitational acceleration g in the −zW direction. We denote the position
of the quadrotor’s center of mass as p, and its derivatives, velocity, acceleration, jerk,
and snap as v, a, j, and s, respectively. We represent the quadrotor’s orientation as
a rotation matrix R =

[
xB yB zB

]
and its body rates (i.e., the angular velocity) as ω

represented in body coordinates. To denote a unit vector along the z-coordinate axis we
write ez. Finally, we denote quantities that can be computed from a reference trajectory
as reference values and quantities that are computed by an outer loop feedback control
law and passed to an inner loop controller as desired values.

F.3 Model

We consider the dynamical model of a quadrotor with rotor drag developed in [76] with
no wind, stiff propellers, and no dependence of the rotor drag on the thrust. According
to this model, the dynamics of the position p, velocity v, orientation R, and body rates
ω can be written as

ṗ = v (F.1)

v̇ = −gzW + czB − RDR>v (F.2)

Ṙ = Rω̂ (F.3)

ω̇ = J−1 (τ −ω× Jω− τg −AR>v− Bω) (F.4)
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where c is the mass-normalized collective thrust, D = diag (dx, dy, dz) is a constant
diagonal matrix formed by the mass-normalized rotor-drag coefficients, ω̂ is a skew-
symmetric matrix formed from ω, J is the quadrotor’s inertia matrix, τ is the three
dimensional torque input, τg are gyroscopic torques from the propellers, and A and B
are constant matrices. For the derivations and more details about these terms, please
refer to [76]. In this work, we adopt the thrust model presented in [161]

c = ccmd + khv2
h (F.5)

where ccmd is the commanded collective thrust input, kh is a constant, and vh = v>(xB + yB).
The term khv2

h acts as a quadratic velocity-dependent input disturbance which adds
up to the input ccmd. The additional linear velocity-dependent disturbance in the zB

direction of the thrust model in [161] is lumped by dz directly in (F.2) by neglecting its
dependency on the rotor speeds. Note that this dynamical model of a quadrotor is a
generalization of the common model found, e.g., in [106], in which the linear rotor drag
components are typically neglected, i.e., D, A and B are considered null matrices.

F.4 Differential Flatness

In this section, we show that the extended dynamical model of a quadrotor subject to
rotor drag (F.1)-(F.4) with four inputs is differentially flat, like the model with neglected
drag [106]. In fact, we shall show that the states [p, v, R, ω] and the inputs [ccmd, τ] can
be written as algebraic functions of four selected flat outputs and a finite number of
their derivatives. Equally to [106], we choose the flat outputs to be the quadrotor’s
position p and its heading ψ.

To show that the orientation R and the collective thrust c are functions of the flat
outputs, we reformulate (F.2) as

czB − (dx x>B v) xB − (dy y>B v) yB − (dz z>B v) zB

− a− gzW = 0. (F.6)

From left-multiplying (F.6) by x>B we get

x>B α = 0, with α = a + gzW + dxv. (F.7)

From left-multiplying (F.6) by y>B we get

y>B β = 0, with β = a + gzW + dyv. (F.8)

To enforce a reference heading ψ, we constrain the projection of the xB axis into the
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xW − yW plane to be collinear with xC (cf. Fig. F.2), where

xC =
[
cos(ψ) sin(ψ) 0

]>
(F.9)

yC =
[
− sin(ψ) cos(ψ) 0

]>
. (F.10)

From this, (F.7) and (F.8), and the constraints that xB, yB, and zB must be orthogonal to
each other and of unit length, we can construct R with

xB =
yC × α

‖yC × α‖ (F.11)

yB =
β× xB

‖β× xB‖
(F.12)

zB = xB × yB. (F.13)

One can verify that these vectors are of unit length, perpendicular to each other, and
satisfy the constraints (F.7) - (F.10). To get the collective thrust, we left-multiply (F.6) by
z>B

c = z>B (a + gzW + dzv) . (F.14)

Then the collective thrust input can be computed as a function of c, R, and the flat
outputs, as

ccmd = c− kh(v>(xB + yB))
2. (F.15)

To show that the body rates ω are functions of the flat outputs and their derivatives,
we take the derivative of (F.2)

j = ċzB + cRω̂ez − R((ω̂D + Dω̂>) R>v + DR>a) . (F.16)

Left-multiplying (F.16) by x>B and rearranging terms, we get

ωy (c− (dz − dx) (z>B v))−ωz (dx − dy) (y>B v)

= x>B j + dx x>B a. (F.17)

Left-multiplying (F.16) by y>B and rearranging terms, we get

ωx (c + (dy − dz) (z>B v)) + ωz (dx − dy) (x>B v)

= −y>B j− dy y>B a. (F.18)

To get a third constraint for the body rates, we project (F.3) along yB

ωz = y>B ẋB. (F.19)
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Since xB is perpendicular to yC and zB, we can write

xB =
x̃B

‖x̃B‖
, with x̃B = yC × zB. (F.20)

Taking its derivative as the general derivative of a normalized vector, we get

ẋB =
˙̃xB

‖x̃B‖
− x̃B

x̃>B ˙̃xB

‖x̃B‖3 (F.21)

and, since x̃B is collinear to xB and therefore perpendicular to yB, we can write (F.19) as

ωz = y>B
˙̃xB

‖x̃B‖
. (F.22)

The derivative of x̃B can be computed as

˙̃xB = ẏC × zB + yC × żB, (F.23)

= (−ψ̇xC)× zB + yC ×
(
ωy xB −ωx yB

)
. (F.24)

From this, (F.20), (F.22), and the vector triple product a>(b× c) = −b>(a× c) we then
get

ωz =
1

‖yC × zB‖
(
ψ̇x>C xB + ωy y>C zB

)
. (F.25)

The body rates can now be obtained by solving the linear system of equations composed
of (F.17), (F.18), and (F.25).

To compute the angular accelerations ω̇ as functions of the flat outputs and their
derivatives, we take the derivative of (F.17), (F.18), and (F.25) to get a similar linear
system of equations as

ω̇y (c− (dz − dx) (z>B v))− ω̇z (dx − dy) (y>B v)

= x>B s− 2ċωy − cωxωz + x>B ξ (F.26)

ω̇x (c + (dy − dz) (z>B v)) + ω̇z (dx − dy) (x>B v)

= −y>B s− 2ċωx + cωyωz − y>B ξ (F.27)

−ω̇y y>C zB + ω̇z‖yC × zB‖
= ψ̈x>C xB + 2ψ̇ωz x>C yB − 2ψ̇ωy x>C zB

−ωxωy y>C yB −ωxωz y>C zB (F.28)
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which we can solve for ω̇ with

ċ = z>B j + ωx (dy − dz) (y>B v)

+ ωy (dz − dx) (x>B v) + dz z>B a (F.29)

ξ = R(ω̂2D + Dω̂2 + 2ω̂Dω̂>) R>v

+ 2R(ω̂D + Dω̂>) R>a + RDR> j. (F.30)

Once we know the angular accelerations, we can solve (F.4) for the torque inputs τ.

Note that, besides quadrotors, this proof also applies to multi-rotor vehicles with
parallel rotor axes in general. More details of this proof can be found in our technical
report [38].

F.5 Control Law

To track a reference trajectory, we use a controller consisting of feedback terms com-
puted from tracking errors as well as feed-forward terms computed from the reference
trajectory using the quadrotor’s differential flatness property. Apart from special cases,
the control architectures of typical quadrotors do not allow to apply the torque inputs
directly. They instead provide a low-level body-rate controller, which accepts desired
body rates. In order to account for this possibility, we designed our control algorithm
with a classical cascaded structure, i.e., consisting of a high-level position controller
and the low-level body-rate controller. The high-level position controller computes the
desired orientation Rdes, the collective thrust input ccmd, the desired body rates ωdes, and
the desired angular accelerations ω̇des, which are then applied in a low-level controller
(e.g. as presented in [35]). As a first step in the position controller, we compute the
desired acceleration of the quadrotor’s body as

ades = afb + aref − ard + gzW (F.31)

where afb are the PD feedback-control terms computed from the position and velocity
control errors as

afb = −Kpos (p− pref)− Kvel (v− vref) (F.32)

where Kpos and Kvel are constant diagonal matrices and ard = −RrefDR>ref vref are the
accelerations due to rotor drag. We compute the desired orientation Rdes such that the
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Appendix F. Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag

desired acceleration ades and the reference heading  ref is respected as

zB,des =
ades

‖ades‖
(F.33)

xB,des =
yC × zB,des

‖yC × zB,des‖
(F.34)

yB,des = zB,des × xB,des. (F.35)

By projecting the desired accelerations onto the actual body z-axis and considering the
thrust model (F.5), we can then compute the collective thrust input as

ccmd = a>des zB − kh(v>(xB + yB))
2. (F.36)

Similarly, we can compute the desired body rates as

ωdes = ωfb + ωref (F.37)

where ωfb are the feedback terms computed from an attitude controller (e.g. as
presented in [37]) and ωref are feed-forward terms from the reference trajectory, which
are computed as described in Section F.4. Finally, the desired angular accelerations are
the reference angular accelerations

ω̇des = ω̇ref (F.38)

which are computed from the reference trajectory as described in Section F.4.

F.6 Drag Coefficients Estimation

To apply the presented control law with inputs [ccmd, ω], we need to identify D, and kh,
which are used to compute the reference inputs and the thrust command. If instead
one is using a platform that is controlled by the inputs [ccmd, τ], A and B also need
to be identified for computing the torque input. While D and kh can be accurately
estimated from measured accelerations and velocities through (F.2) and (F.5), the effects
of A and B on the body-rate dynamics (F.4) are weaker and require to differentiate the
gyro measurements as well as knowing the rotor speeds and rotor inertia to compute τ

and τg. Therefore, we propose to identify D, A, B, and kh by running a Nelder-Mead
gradient free optimization [123] for which the quadrotor repeats a predefined trajectory
in each iteration of the optimization. During this procedure, we control the quadrotor
by the proposed control scheme with different drag coefficients in each iteration during
which we record the absolute trajectory tracking error (F.39) and use it as cost for the
optimization. Once the optimization has converged, we know the coefficients that
reduce the trajectory tracking error the most. We found that the obtained values for
D agree with an estimation through (F.2) when recording IMU measurements and

150



F.7. Experiments

ground truth velocity. This procedure has the advantage that no IMU and rotor speed
measurements are required, which are both unavailable on our quadrotor platform
used for the presented experiments, and the gyro measurements do not need to be
differentiated. This is not the case when performing the identification through (F.2),
(F.4), and (F.5). Also, since our method does not rely explicitly on (F.2), it can also
capture first order approximations of non modeled effects lumped into the identified
coefficients. Furthermore, our implementation allows stopping and restarting the
optimization at any time, which allows changing the battery.

F.7 Experiments

F.7.1 Experimental Setup

Our quadrotor platform is built from off-the-shelf components used for first-person-
view racing (see Fig. F.1). It features a carbon frame with stiff six inch propellers, a
Raceflight Revolt flight controller, an Odroid XU4 single board computer, and a Laird
RM024 radio module for receiving control commands. The platform weights 610 g
and has a thrust-to-weight ratio of 4. To improve its trajectory tracking accuracy we
compensate the thrust commands for the varying battery voltage. All the presented
flight experiments were conducted in an OptiTrack motion capture system to acquire
the ground truth state of the quadrotor which is obtained at 200 Hz and is used for
control and evaluation of the trajectory tracking performance. Note that our control
method and the rotor-drag coefficient identification also work with state estimates that
are obtained differently than with a motion capture system. We compensate for an
average latency of the perception and control pipeline of 32 ms. The high-level control
runs on a laptop computer at 55 Hz, sending collective thrust and body rate commands
to the on-board flight controller where they are tracked by a PD controller running at
4 kHz.

To evaluate the trajectory tracking performance and as cost for estimating the drag
coefficients, we use the absolute trajectory tracking error defined as the root mean
square position error

Ea =

√√√√ 1
N

N

∑
k=1
‖Ek

p‖2, where Ek
p = pk − pk

ref (F.39)

over N control cycles of the high-level controller required to execute a given trajectory.
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F.7.2 Trajectories

For identifying the rotor-drag coefficients and for demonstrating the trajectory tracking
performance of the proposed controller, we let the quadrotor execute a horizontal circle
trajectory and a horizontal Gerono lemniscate trajectory. The circle trajectory has a
radius of 1.8 m with a velocity of 4 m s−1 resulting, for the case of not considering
rotor drag, in a required collective mass-normalized thrust of c = 13.24 m s−2 and a
maximum body rates norm of ‖ω‖ = 85 ◦ s−1. Its maximum nominal velocity in the xB

and yB is 4.0 m s−1 and 0.0 m s−1 in the zB direction. The Gerono lemniscate trajectory
is defined by

[
x(t) = 2 cos

(√
2t
)

; y(t) = 2 sin
(√

2t
)

cos
(√

2t
)]

with a maximum ve-

locity of 4 m s−1, a maximum collective mass-normalized thrust of c = 12.98 m s−2, and
a maximum body rates norm of ‖ω‖ = 136 ◦ s−1. Its maximum nominal velocity in the
xB and yB is 2.8 m s−1 and 1.3 m s−1 in the zB direction for the case of not considering
rotor drag.

F.7.3 Drag Coefficients Identification

To identify the drag coefficients in D, we ran the optimization presented in Section F.6
multiple times on both the circle and lemniscate trajectories until it converged, i.e., until
the changes of each coefficient in one iteration is below a specified threshold. We do not
identify A and B since the quadrotor platform used for the presented experiments takes
[ccmd, ω] as inputs and we therefore do not need to compute the torque inputs involving
A and B according to (F.4). Since we found that dz and kh only have minor effects on
the trajectory tracking performance, we isolate the effects of dx and dy by setting dz = 0
and kh = 0 for the presented experiments. For each iteration of the optimization, the
quadrotor flies two loops of either trajectory. The optimization typically converges after
about 70 iterations, which take around 30 min including multiple battery swaps.

The evolution of the best performing drag coefficients is shown in Fig. F.3 for every iter-
ation of the proposed optimization. On the circle trajectory, we obtained dx = 0.544 s−1

and dy = 0.386 s−1, whereas on the lemniscate trajectory we obtained dx = 0.491 s−1 and
dy = 0.236 s−1. For both trajectories, dx is larger than dy, which is expected because we
use a quadrotor that is wider than long. The obtained drag coefficients identified on
the circle are different than the ones identified on the lemniscate, which is due to the
fact that the circle trajectory excites velocities in the xB and yB more than the lemniscate
trajectory. We could verify this claim by running the identification on the circle trajec-
tory with a speed of 2.8 m s−1, which corresponds to the maximum speeds reached in
xB and yB on the lemniscate trajectory. For this speed, we obtained dx = 0.425 s−1, and
dy = 0.256 s−1 on the circle trajectory, which are close to the coefficients identified on
the lemniscate trajectory. Additionally, in our dynamical model, we assume the rotor
drag to be independent of the thrust. This is not true in reality and therefore leads
to different results of the drag coefficient estimation on different trajectories where

152



F.7. Experiments

Iteration [-]

D
ra
g
C
o
effi

ci
en
t
[s

−
1
]

0 10 20 30 40 50 60 70 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure F.3: The best performing drag coefficients dx and dy for every iteration of the identification
on both the circle and the lemniscate trajectory.

different thrusts are applied. These reasons suggest to carefully select a trajectory for
the identification, which goes towards the problem of finding the optimal trajectory for
parameter estimation, which is outside the scope of this paper. In all the conducted
experiments, we found that a non zero drag coefficient in the z-direction dz does not
improve the trajectory tracking performance. We found this to be true even for purely
vertical trajectories with velocities of up to 2.5 m s−1. Furthermore, we found that an
estimated kh = 0.009 m−1 improves the trajectory tracking performance further but by
about one order of magnitude less than dx and dy on the considered trajectories.

F.7.4 Trajectory Tracking Performance

To demonstrate the trajectory tracking performance of the proposed control scheme,
we compare the position error of our quadrotor flying the circle and the lemniscate
trajectory described above for three conditions: (i) without considering rotor drag, (ii)
with the drag coefficients estimated on the circle trajectory, and (iii) with the drag
coefficients estimated on the lemniscate trajectory.1 Fig. F.4 shows the ground truth and
reference position when flying the circle trajectory under these three conditions. Equally,
Fig. F.5 shows the ground truth and reference position when flying the lemniscate
trajectory under the same three conditions. The tracking performance statistics for both
trajectories are summarized in Table F.1. From these statistics, we see that the trajectory
tracking performance has improved significantly when considering rotor drag on both

1Video of the experiments: https://youtu.be/VIQILwcM5PA
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Figure F.4: Ground truth position for ten loops on the circle trajectory without considering
rotor drag (solid blue), with drag coefficients estimated on the circle trajectory (solid red), and
with drag coefficients estimated on the lemniscate trajectory (solid yellow) compared to the
reference position (dashed black).

trajectories independently of which trajectory the rotor-drag coefficients were estimated
on. This confirms that our approach is applicable to any feasible trajectory once the
drag coefficients are identified, which is an advantage over methods that improve
tracking performance for a specific trajectory only (e.g. [64]). With the rotor-drag
coefficients estimated on the circle trajectory, we achieve almost the same performance
in terms of absolute trajectory tracking error on the lemniscate trajectory as with the
coefficients identified on the lemniscate trajectory but not vice versa. As discussed
above, this is due to a higher excitation in body velocities on the circle trajectory which
results in a better identification of the rotor-drag coefficients. This suggests to perform
the rotor-drag coefficients identification on a trajectory that maximally excites the body
velocities.

Since the rotor drag is a function of the velocity of the quadrotor, we show the benefits
of our control approach by linearly ramping up the maximum speed on both trajectories
from 0 m s−1 to 5 m s−1 in 30 s. Fig. F.6, and Fig. F.7 show the position error norm and
the reference speed over time until the desired maximum speed of 5 m s−1 is reached for
the circle and the lemniscate trajectory, respectively. Both figures show that considering
rotor drag does not improve trajectory tracking for small speeds below 0.5 m s−1 but
noticeably does so for higher speeds.

An analysis of the remaining position error for the case where rotor drag is considered
reveals that it strongly correlates to the applied collective thrust. In the used dynamical
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Figure F.5: Ground truth position for ten loops on the lemniscate trajectory without considering
rotor drag (solid blue), with drag coefficients estimated on the circle trajectory (solid red), and
with drag coefficients estimated on the lemniscate trajectory (solid yellow) compared to the
reference position (dashed black).

model of a quadrotor, we assume the rotor drag to be independent of the thrust
[c.f. (F.2)], which is not true in reality. For the experiment in Fig. F.6, the commanded
mass-normalized collective thrust varies between 10 m s−2 and 18 m s−2 which clearly
violates the constant thrust assumption. By considering a dependency of the rotor drag
on the thrust might improve trajectory tracking even further and is subject of future
work.

F.8 Comparison to Other Control Methods

In this section, we present a qualitative comparison to other quadrotor controllers that
consider rotor drag effects as presented in [76], [127], [161], and [8].

None of these works show or exploit the differential flatness property of quadrotor
dynamics subject to rotor drag effects. They also do not consider asymmetric vehicles
where dx 6= dy and they omit the computation of ωz and ω̇z.

In [76] and [127], the presented position controller decomposes the rotor drag force
into a component that is independent of the vehicle’s orientation and one along the
thrust direction, which leads to an explicit expression for the desired thrust direction.
They both neglect feed-forward on angular accelerations, which does not allow perfect
trajectory tracking. As in our work, [76] models the rotor drag to be proportional to the
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Figure F.6: Position error norm ‖Ep‖ when ramping the speed on the circle trajectory from
0 m s−1 up to 5 m s−1 in 30 s without considering rotor drag (solid blue), with drag coefficients
estimated on the circle trajectory (solid red), and with drag coefficients estimated on the
lemniscate trajectory (solid yellow). The reference speed on the trajectory is shown in dashed
purple.
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Figure F.7: Position error norm ‖Ep‖ when ramping the maximum speed on the lemniscate
trajectory from 0 m s−1 up to 5 m s−1 in 30 s without considering rotor drag (solid blue), with
drag coefficients estimated on the circle trajectory (solid red), and with drag coefficients
estimated on the lemniscate trajectory (solid yellow). The reference speed on the trajectory is
shown in dashed purple.
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square root of the thrust, which is proportional to the rotor speed, but then assumes
the thrust to be constant for the computation of the rotor drag, whereas [127] models
the rotor drag to be proportional to the thrust. Simulation results are presented in [76]
while real experiments with speeds of up to 2.5 m s−1 were conducted in [127].

The controller in [161] considers rotor drag in the computation of the thrust command
and the desired orientation but it does not use feed-forward terms on body rates and
angular accelerations, which does not allow perfect trajectory tracking. In our work, we
use the same thrust model but neglect its dependency on the rotor speed. In [161], also
the rotor drag is modeled to depend on the rotor speed, which is physically correct
but requires the rotor speeds to be measured for it to be considered in the controller.
They present real experiments with speeds of up to 4.0 m s−1 and unlike us also show
trajectory tracking improvements in vertical flight.

As in our work, [8] considers rotor drag for the computation of the desired thrust,
orientation, body rates, and angular accelerations. However, their computations rely on
a model where the rotor drag is proportional to the rotor thrust. Also, they neglect the
snap of the trajectory and instead require the estimated acceleration and jerk, which are
typically not available, for computing the desired body rates and angular accelerations.
The presented results in [8] stem from real experiments with speeds of up to 1.0 m s−1.

F.9 Conclusion

We proved that the dynamical model of a quadrotor subject to linear rotor drag effects
is differentially flat. This property was exploited to compute feed-forward control
terms as algebraic functions of a reference trajectory to be tracked. We presented a
control policy that uses these feed-forward terms, which compensates for rotor drag
effects, and therefore improves the trajectory tracking performance of a quadrotor

Table F.1: Maximum and standard deviation of the position error Ep as well as the absolute
trajectory tracking error Ea (F.39) over ten loops on both the circle and the lemniscate trajectory.
For each trajectory, we perform the experiment without considering drag, with the drag
coefficients identified on the circle trajectory, and with the drag coefficients identified on the
lemniscate trajectory.

Trajectory Params ID
max

(
‖Ep‖

)
σ
(
‖Ep‖

)
Ea

[cm] [cm] [cm]

Circle
Not Cons. Drag 21.08 2.11 17.53

Circle 14.54 2.63 6.54
Lemniscate 12.39 2.53 8.16

Lemniscate
Not Cons. Drag 16.79 3.19 11.27

Circle 10.25 2.30 5.56
Lemniscate 10.02 2.23 5.51
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already from speeds of 0.5 m s−1 onwards. The proposed control method reduces the
root mean squared tracking error by 50 % independently of the executed trajectory,
which we showed by evaluating the tracking performance of a circle and a lemniscate
trajectory. In future work, we want to consider the dependency of the rotor drag on the
applied thrust to further improve the trajectory tracking performance of quadrotors.
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Thrust Mixing, Saturation, and Body-Rate
Control for Accurate Aggressive Quadrotor

Flight

Matthias Faessler, Davide Falanga, and Davide Scaramuzza

Abstract — Quadrotors are well suited for executing fast maneuvers
with high accelerations but they are still unable to follow a fast
trajectory with centimeter accuracy without iteratively learning it
beforehand. In this paper, we present a novel body-rate controller
and an iterative thrust-mixing scheme, which improve the trajectory-
tracking performance without requiring learning and reduce the
yaw control error of a quadrotor, respectively. Furthermore, to the
best of our knowledge, we present the first algorithm to cope with
motor saturations smartly by prioritizing control inputs which are
relevant for stabilization and trajectory tracking. The presented
body-rate controller uses LQR-control methods to consider both the
body rate and the single motor dynamics, which reduces the overall
trajectory-tracking error while still rejecting external disturbances
well. Our iterative thrust-mixing scheme computes the four rotor
thrusts given the inputs from a position-control pipeline. Through the
iterative computation, we are able to consider a varying ratio of thrust
and drag torque of a single propeller over its input range, which
allows applying the desired yaw torque more precisely and hence
reduces the yaw-control error. Our prioritizing motor-saturation
scheme improves stability and robustness of a quadrotor’s flight
and may prevent unstable behavior in case of motor saturations.
We demonstrate the improved trajectory tracking, yaw-control, and
robustness in case of motor saturations in real-world experiments
with a quadrotor.
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Supplementary Material

A video showing the conducted experiments with a quadrotor is available at:
https://youtu.be/6YEMxFgToyg

G.1 Introduction

G.1.1 Motivation

In recent years, autonomous quadrotors became very popular due to their agility, allow-
ing them to execute aggressive maneuvers. We consider a trajectory to be aggressive
if at least one of the quadrotor’s motors gets close to saturation during its execution,
which is the case if large linear or angular accelerations are required. Even today,
when executing such an aggressive trajectory with a quadrotor, the tracking errors
without replanning or iteratively learning the maneuver beforehand can be large. For
state of the art quadrotor control methods, trajectory tracking errors of up to several
body lengths during execution of a fast trajectory (without learning) are reported in
e.g. [64] and [108]. Such errors are too large for e.g. fast obstacle avoidance in cluttered
environments where iterative learning cannot be applied due to non repetitive motions.

At the heart of precise trajectory tracking with a quadrotor is a body-rate controller that
tracks the desired body rates which are typically computed from a high-level control
pipeline (e.g. [37], [96]). Only when tracking the desired body rates well, the quadrotor
can apply its desired attitude and with that the desired thrust direction precisely, which
in turn enables precise translations. To achieve good body-rate tracking, it is crucial
to apply the single rotor thrusts precisely, such that the desired body torques and
collective thrust can be applied correctly.

To fully exploit the agility of quadrotors, it is desirable to design aggressive trajectories.
However, during trajectory design, it is difficult to ensure feasibility while trying to
exploit the entire range of feasible motor inputs. And even a trajectory that is feasible
with respect to motor saturations cannot guarantee that the tracking controller does
not compute motor inputs exceeding its limits due to deviations from the reference
trajectory. If such a saturation of one or several motors occurs, the quadrotor may
deviate substantially from its reference trajectory or even get unstable if it is not handled
correctly.

G.1.2 Contribution

The contribution of this work is threefold. First, we design a novel body-rate controller
using LQR methods, which takes the dynamics of the single motors with propellers into
account. Compared to previously applied controllers, it improves trajectory tracking
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Figure G.1: Our quadrotor used for the experiments of this work.

while maintaining the same disturbance-rejection performance. Second, we improve
the computation of the single rotor thrusts such that the desired yaw torque on the
quadrotor body, given by a feedback controller, is reached more precisely than with
state-of-the-art methods. To do so, we consider that the ratio of thrust and drag torque
of a single propeller is not constant over the entire input range, as it is instead assumed
in the literature ([37], [96], [110]). Third, we increase the quadrotor’s stability and its
robustness in case of motor-input saturations. We tackle this by applying a saturation
scheme for the single rotor thrusts, which prioritizes between the desired collective
thrust and body torques according to their relevance for stabilizing the quadrotor and
following a trajectory.

G.1.3 Related Work

Many state-of-the-art quadrotor-control pipelines are making use of a two-level archi-
tecture with a high-level position controller and a proportional low-level body-rate
controller ([37], [96], [36]), which we also consider in this paper. Besides such cascaded
loops of proportional controllers, LQR [16] and nonlinear model predictive control tech-
niques on SO(3) [77] were successfully applied to control the full attitude of quadrotors.
In [178], cascaded PID controllers are designed and enhanced with Smith predictors to
incorporate the dynamics of the motors for full quadrotor attitude control on SO(3). An
LQR attitude controller for a single axis, which is extended with first order dynamics
of the motors is presented in [78] and [171]. In contrast, we design an LQR controller
for the coupled 3D body rates, incorporating the motor dynamics, which also provides
feedback linearization and feed forward on desired angular accelerations.

In both [37] and [96], the low-level control part outputs a desired collective thrust and
body torques that need to be applied to the quadrotor’s body by the four single rotor
thrusts. In other state-of-the-art quadrotor controllers [89], [106], the high-level part
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directly outputs the desired collective thrust and body torques. In all these works, the
desired collective thrust and body torques need to be converted into four single rotor
thrusts which can then be applied by knowing the mapping from motor commands to
rotor thrusts, denoted as thrust mapping. This is commonly done by solving a system of
four equations for the four rotor thrusts, assuming that the ratio of thrust and drag
torque of a rotor is constant over its entire motor-input spectrum. We refer to the
process of computing the four single rotor thrusts as thrust mixing. In this paper, we
propose an iterative thrust-mixing scheme that does not require the assumption that
the ratio of thrust and drag torque of a rotor is constant, which then allows applying
the desired yaw torque more accurately.

Commonly, polynomial trajectories are designed for quadrotors since they are easy
to handle mathematically and are dynamically feasible if they are continuous up to
a sufficient order of derivatives. They can be generated with a global optimization in
which they can be constrained at the start, end, and intermediate waypoints ([106],
[139]). Between the waypoints, their feasibility with respect to input limitations cannot
be guaranteed. Methods for checking the feasibility of the entire trajectory after
generation are proposed in [118] and [66] by simplifying the problem with conservative
approximations which do not allow using the full range of feasible inputs. Also, during
trajectory execution, it is not guaranteed that the controller does not compute any
infeasible inputs since the quadrotor may deviate from a feasible trajectory. Model
predictive control methods [117] are able to incorporate input feasibility constraints but
are computationally not suitable a low-level controllers running on a micro controller
while it is also difficult for them to make use of the entire available range of inputs.
Instead of considering feasibility constraints during trajectory generation, in [113] a
partial control allocation method that prioritizes the application of desired body torques
over collective thrust is used to handle infeasible inputs before applying the motor
commands. In this work, we present a saturation scheme that prioritizes control inputs
according to their importance for trajectory tracking in case of motor saturations. The
presented saturation scheme is able to make use of the full input range of the individual
motors.

G.2 System Overview

We consider a quadrotor that is modeled as a rigid body which is controlled by four
single rotor thrusts fi as illustrated in Fig. G.2. By changing these four single rotor
thrusts, a three axis torque η and a mass normalized collective thrust c can be applied
on the quadrotor’s body. The relation of the single rotor thrusts to the collective thrust
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Figure G.2: Quadrotor with coordinate system and single rotor forces.

and the body torques can be formulated using the coordinate system of Fig. G.2 as

η =


√

2
2 l( f1 − f2 − f3 + f4)√
2

2 l(− f1 − f2 + f3 + f4)

κ1 f1 − κ2 f2 + κ3 f3 − κ4 f4

 , (G.1)

mc = f1 + f2 + f3 + f4, (G.2)

where l is the quadrotor’s arm length, κi = κ( fi) is a coefficient relating the drag torque
and the thrust of a single rotor, and m is the quadrotor’s mass. Note that unlike in [96]
and [36], we consider the rotor drag torque coefficient κ to be a function of the rotor
thrust (cf. Fig G.4) and not a constant.

We model the single rotor thrust f and drag torque τ as quadratic polynomials of the
motor input u as

f(u) = k f
2u2 + k f

1u + k f
0 , (G.3)

τ(u) = kτ
2u2 + kτ

1u + kτ
0 , (G.4)

where the coefficients k f
j and kτ

j are identified by running a single motor with a propeller
on a load cell and measuring the resulting forces and moments. The motor input u
corresponds to the command we can send to our electronic speed controllers in the
range [−1, 1]. We chose to have three coefficients since it approximates the measured
values better than modeling the rotor thrust and drag torque with only a quadratic
term, as proposed in e.g. [110]. Figure G.3 compares the two methods for fitting the
thrust mapping. From (G.3) and (G.4), we can compute the rotor drag torque coefficient
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Figure G.3: To approximate the thrust mapping for a single motor with propeller, we fit a
second order polynomial into raw thrust measurements obtained by running the motor on
a load cell. The polynomial fit approximates the measurements much better than a purely
quadratic fit of the form f(u) = k f
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1
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. (G.5)

Figure G.4 shows the identified values for the rotor drag torque coefficient and how it
varies by about 10 % over the entire range of available motor inputs.

As in [96] and [36], we consider that the thrust mapping (G.3) can be refined with
rotor-fitness factors γi that relate the true thrust fi and the thrust identified with a load
cell f̌i for a certain motor input as fi = γi f̌i. The rotor fitness factors can be estimated
by averaging the applied rotor thrust commands during hover flight.

G.3 Body Rate Control

Due to a hardware architecture with two processing units for high-level and low-level
control on our quadrotors, we split the controllers such that the high-level controller
computes desired body rates and the low-level controller tracks them. In this section, we
present a novel body-rate controller that improves the body-rate-tracking performance
by also considering the dynamics of the motors. We achieve this by designing an LQR
controller for a dynamical system containing the body rates and body torques as state.
The inputs to this controller are the desired body rates ωdes and the desired mass
normalized collective thrust cdes, which we assume are given from a high-level position
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Figure G.4: Values for κ estimated from load cell data obtained by dividing drag torque and
thrust values for a motor and propeller as described in Section G.6.1. The fitted curve is the
ratio of the fitted quadratic functions for measured thrust and drag torque in (G.3) and (G.4).
The range of motor commands is normalized to [-1, 1].

controller (e.g. from [37]).

The dynamics of the quadrotor’s body rates ω are

ω̇ = J−1 · (η−ω× Jω) , (G.6)

where J is the moment of inertia of the quadrotor. Additionally, we model the dynamics
of the single rotor thrusts as first order systems

ḟ =

 1
αup

( fdes − f) if fdes ≥ f
1

αdwn
( fdes − f) if fdes < f

, (G.7)

where the time constants αup and αdwn are identified from applying step inputs to a
single motor with propeller on a load cell. From these load-cell experiments we found
that the single rotor thrust dynamics are considerably different when spinning a motor
up or down. Now we can use (G.6) and (G.7) to establish a dynamical system with
state s = [ωT ηT]T and input u = ηdes. To create a simplified model for the dynamics of
the body torques from (G.1) and (G.7), we approximate αup = αdwn = α. In practice, we
found α = (αup + αdwn)/2 to be a good approximation which stems from the fact that
for changing a body torque, we make use of opposite rotors where one spins up and
the other one down. Additionally, we simplify the dynamics of ηz by approximating
κ to be constant and not depend on the rotor thrust, which leads to the following
dynamics of the body torques:

η̇ =
1
α
(ηdes − η) . (G.8)

Note that the introduced simplifications of these dynamics are necessary for the
following feedback-controller design. Linearizing (G.6) and (G.8) around ω = 0 and
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η = 0 leads to the system[
ω̇

η̇

]
=

[
0 J−1

0 − 1
α I3

] [
ω

η

]
+

[
0

1
α I3

]
ηdes, (G.9)

which we can use to design an infinite-horizon LQR control law u = −Klqrs that
minimizes the cost function∫

sTQs + uTRu dt, (G.10)

where Q is a diagonal weight matrix and R is the identity matrix. The solution to the
formulated LQR problem is a gain matrix of the form

Klqr =

kωxy 0 0 kηxy 0 0
0 kωxy 0 0 kηxy 0
0 0 kωz 0 0 kηz

 , (G.11)

which corresponds to a PD controller of the body rates. Additionally, we add feed
forward terms such that ωdes is reached with ω̇ = ω̇des, resulting in the control policy

ηdes = Klqr

[
ωdes − ω̂

ηre f − η̂

]
+ ω̂× Jω̂ + Jω̇des, (G.12)

with ηre f = ωdes × Jωdes + Jω̇des computed from (G.6). The vector ω̂ are the estimated
body rates measured by the onboard gyroscopes, and η̂ are the estimated body torques
obtained by estimating the single rotor thrusts with (G.7) and using (G.1) to transform
them into body torques. Note that this estimation makes use of the non-symmetric
model (G.7) of the rotor thrusts, i.e., αup 6= αdwn, while for the control design we
assumed αup = αdwn. Also note that this estimation can be improved if feedback of the
rotor speeds is available. In the controller (G.12), the term ω̂× Jω̂ provides feedback
linearization, compensating for the coupling terms in the body-rate dynamics, and the
term Jω̇des can be used as feed forward on desired angular accelerations that can be
computed from a trajectory to be tracked due to the quadrotor’s differential flatness
property [106].

G.4 Iterative Thrust Mixing

To compute the single rotor thrusts that achieve the desired body torques ηdes and
collective thrust cdes, which we denote as mixer inputs, we have to solve (G.1) and (G.2)
for fi. Since we consider the rotor drag torque coefficients to be a function of the rotor
thrust, we cannot solve this system of equations directly, but we can do so iteratively.

To initialize the iteration, we start by setting the single rotor thrusts equal such that
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they achieve the desired collective thrust:

fi =
mcdes

4
. (G.13)

Note that these values are only used to compute the rotor drag torque coefficients in the
first iteration. Then, we start the iteration with the following two steps: i) solve (G.5) to
get κi, and ii) solve (G.1) and (G.2) with ηdes and cdes for fi. Additionally to quadrotors,
this iterative scheme can also be applied to other multirotors.

G.5 Saturation with Input Priorities

Once we have computed the desired single rotor thrusts, we have to make sure that
they lie within the feasible range [ fmin, fmax] for each single motor. Naively, this can be
done by clipping each rotor thrust if its desired value is outside this range. This is a
simple and fast procedure with the drawback that none of the desired mixer inputs
ηdes and cdes is achieved exactly if one of the rotor thrusts is clipped. Nonetheless,
not all these mixer inputs are equally important in terms of the quadrotor’s ability to
stabilize and track a trajectory. Since a quadrotor can only produce a collective thrust
in its body upwards direction, it has to be aligned with the desired acceleration for
following a trajectory in 3D space. The rotation around the thrust direction is irrelevant
for the translational motion of the quadrotor. Therefore, we want to give least priority
to achieve the desired yaw torque in case of an input saturation. On the other hand,
the quadrotor uses roll and pitch torques to change its thrust direction which enables
stabilization and therefore makes them the most important inputs. Furthermore, state
of the art control methods for quadrotors (e.g. [37], [96]) are based on the assumption
that the orientation of the thrust vector can be changed quickly. For these reasons, in
case of an input saturation, we want to give highest priority to applying the desired
roll and pitch torques, second highest priority to applying the desired collective thrust,
and lowest priority to applying the desired yaw torque.

G.5.1 Yaw-Torque Saturation

We achieve this prioritization by a saturation scheme as summarized in Algorithm 4.
First, the single rotor thrusts are computed according to Section G.4. If one of the
single rotor thrusts exceeds its limits, we try to change the applied yaw torque to avoid
saturation, given that the desired yaw torque is above a certain minimum ηz,assured,
which we can optionally impose. Such an assured yaw torque might be desired for
applications where we want to guarantee that we always have some control on the
heading of a quadrotor. In case of saturation, we do not apply the iterative mixer in
order to save time since we are unable to apply the desired yaw torque anyways. To
do the yaw-torque saturation, we find the rotor that violates the input limit the most,
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Algorithm 4 Rotor Thrust Saturation

Compute fi as detailed in Section G.4
Perform yaw-torque saturation:
if Motor saturated AND |ηz,des| > ηz,assured then

Find rotor j that violates thrust limits the most
f j ← γj · flimit
Solve (G.1) and (G.2) for firj and ηz
if sign(ηz,des) · ηz < ηz,assured then

ηz ← sign(ηz,des) · ηz,assured
Solve (G.1) and (G.2) for fi

Perform collective-thrust saturation:
if Motor saturated then

if NOT(upper AND lower saturation reached) then
Find rotor j that violates thrust limits the most
Shift fi equally s.t. f j = γj · flimit

Enforce single rotor thrust limits by thrust clipping

set it to the corresponding limit and then solve (G.1) and (G.2) for the remaining rotor
thrusts and the yaw torque. If the resulting yaw torque is still above the value we
want to assure, we successfully enforced all the rotor-thrust limits by only changing
the applied yaw torque. In other words, in this case, Algorithm 4 guarantees that the
quadrotor applies the desired roll and pitch torques and the desired collective thrust,
but not the desired yaw torque. If the resulting yaw torque is below the value we want
to assure, we set it to the assured value ηz,assured and recompute the rotor thrusts.

G.5.2 Collective-Thrust Saturation

If one of the rotor-thrust limits is still violated, we try to change the applied collective
thrust to avoid saturation. This is only possible if two rotors do not violate the upper
and the lower limit simultaneously, in which case it is impossible to achieve the desired
roll and pitch torques by changing the applied collective thrust. If only one limit is
violated, we find the rotor that violates the input limit the most, set it to its limit
and shift the remaining rotor thrusts by the same amount. In this case, Algorithm 4
ensures that the quadrotor applies the desired roll and pitch torques but not the desired
collective thrust and not the desired yaw torque.

G.5.3 Thrust Clipping

At this point, if a rotor still violates its input limits, we have to apply thrust clipping
and can therefore not achieve any of the desired mixer inputs precisely. Note that
the presented procedure uses the full range of available thrusts for each rotor also
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considering individual rotor fitness factors.

G.6 Experiments

G.6.1 Experimental Setup

We built our quadrotor from selected off-the-shelf components and custom 3D printed
parts (see Fig. G.1) with a total weight of 503 g. It is based on the frame of the Parrot
AR.Drone 2.0 including their motors, motor controllers, gears, and propellers. On this
frame, we use a PX4IOAR adapter board and a PX4FMU autopilot that runs all the
presented algorithms of this paper. All the details about our drone can be found in [36].

We identified the thrust mapping (G.3) and the torque mapping (G.4) by putting one
single motor with propeller on a ATI Mini40 load cell. The first order time constants
αup = 11 ms and αdwn = 27 ms were estimated by applying step inputs to a motor on
the load cell.

The following three subsections provide results of experiments that show the effects
of applying our LQR body-rate controller, iterative mixer, and prioritizing satura-
tion, respectively, as isolated as possible. All the flight experiments were conducted
in an OptiTrack motion capture system to acquire a ground truth state measure-
ment of the quadrotor. A video of the conducted experiments can be found on
https://youtu.be/6YEMxFgToyg.

G.6.2 Body-Rate Controller

We compare the proposed LQR body-rate controller to a proportional controller from
our previous work [37] (identical to [96]) in its disturbance rejection and trajectory-
tracking performance. Our goal for the LQR controller is to maintain the disturbance-
rejection performance of the previously used proportional controller but achieve better
trajectory tracking. Note that when neglecting the motor dynamics in the LQR design,
we obtain a proportional controller and hence compare a similar controller which
either considers motor dynamics or not. We conduct all experiments for a low gain
proportional controller (a), as used in [37], a high gain proportional controller (b), and
the proposed LQR controller (c) with a proportional gain corresponding to the one of
(b).

We measure the disturbance-rejection performance by hitting one of the quadrotor’s
arms upwards during hover flight and measuring the time it takes it to settle again.1This
is illustrated in Fig. G.5, where the low gain proportional and the LQR controller
have almost identical settling times and the high gain proportional controller has a
significantly higher one. We measure the trajectory-tracking performance by flying a
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Figure G.5: Disturbance-rejection performance measured by the time it takes the quadrotor to
settle after disturbing it by hitting one of the arms upwards (averaged over 10 disturbances).
The experiments (a) and (b) are conducted with different gains using the body-rate controller
from [37] or [96] and (c) is conducted with the proposed LQR controller. The vertical black lines
indicate the standard deviation of the settling time.

quadrotor back and forth in the x-direction with a maximum acceleration of 12 m s−2

and a maximum velocity of 5.7 m s−1 on a trajectory composed of multiple polynomial
segments1 that are continuous in snap (cf. Fig. G.6) and measuring the tracking errors
illustrated in Fig. G.7. It shows that increasing the gain of the proportional controller
improves trajectory tracking significantly. Our proposed LQR controller shows a
slightly larger position error than the high gain proportional controller but still reduces
it noticeably by more than 25 % compared to the low gain proportional controller. To
provide a fair comparison of the two controllers, we apply the proposed iterative mixer
and prioritizing saturation (only shortly active) in all the experiments.

Table G.1 summarizes the results of the disturbance rejection and trajectory-tracking ex-
periments to compare the three different controllers. It especially shows that increasing
the gain of the proportional controller improves trajectory tracking but also reduces its
disturbance-rejection performance significantly [from (a) to (c)]. On the other hand, the
LQR controller (c) with equivalent gains to (b) can almost improve trajectory tracking
as much but maintains the same disturbance-rejection performance of the low gain
proportional controller (a).

G.6.3 Iterative Mixer

Figure G.8 compares the performance of the proposed iterative mixer and a one-shot
mixer in a three minute hover flight. The corresponding statistics in Table G.2 show
that the iterative mixer reduces the maximum, mean, and standard deviation of the
yaw error by more than 35 %. In this comparison, both methods make use of the same
polynomial model for the thrust and torque mapping (G.3), (G.4), respectively. We
conducted this experiment in hover flight to suppress non modeled dynamics and
motor saturations in order to isolate the effect of the iterative mixer. Note that in
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Figure G.6: Position and body-rate-tracking performance for a back-and-forth motion in the
x-direction. The trajectory is composed of multiple polynomial segments with maximum
acceleration of 12 m s−2 and maximum velocity of 5.7 m s−1. The experiments (a) and (b)
are conducted with different gains using the body-rate controller from [37] or [96] and (c)
is conducted with the proposed LQR controller. The corresponding errors are illustrated in
Fig. G.7.
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Figure G.7: Tracking errors for the trajectory in Fig. G.6. The corresponding error statistics
are presented in Table G.1, where we also compare the trajectory tracking and the disturbance-
rejection performance of each controller.
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Table G.1: Position error in x-direction (ex), thrust-direction error angle (θ), and pitch-rate
error (eωy ) statistics for the experiments illustrated in Fig. G.6 and averaged over twelve
back-and-forth motions, as well as settle time (tsettle) statistics for the experiment illustrated
in Fig. G.5.

(a) (b) (c)

µ(ex) [cm] 14.50 9.39 10.35

σ(ex) [cm] 23.05 15.60 17.19

µ(θ) [◦] 5.55 3.84 4.14

σ(θ) [◦] 7.33 5.00 5.22

µ(eωy) [◦ s−1] 42.28 14.88 21.52

σ(eωy) [◦ s−1] 72.38 23.65 32.41

µ(tsettle) [s] 0.42 0.79 0.41

σ(tsettle) [s] 0.05 0.09 0.08

Table G.2: Yaw error statistics comparison between a standard one-shot mixer and the proposed
iterative mixer in hover flight.

One-Shot Iterative

Max Yaw Error 8.371 5.209 [◦]

Mean Yaw Error 2.667 1.462 [◦]

Yaw Error Standard Deviation 2.549 1.593 [◦]

non-hover flight, where larger roll and pitch torques are required, the iterative mixer
becomes more advantageous due to larger commanded rotor-thrust differences. In
practice, after the third mixer iteration, the error between the desired and achieved yaw
torque becomes negligible (� 1 %) for different tested motor types. The error made by
a one-shot mixer can be more than 5 % of the desired yaw torque. Note that this error
depends on the differences of the commanded single rotor thrusts and vanishes when
the four commanded thrusts are equal.

G.6.4 Prioritizing Saturation

The performance of the prioritizing saturation compared to thrust clipping is shown in
Fig. G.9 with an experiment1 where a quadrotor is commanded to do a simultaneous
step in height by 1 m and yaw by 90◦. In this experiment, the minimum and maximum
single rotor thrust were artificially set to 0.8 N and 1.6 N respectively (hover thrust:
1.25 N) to force the saturation scheme to become active without requiring an aggressive

1See video on: https://youtu.be/6YEMxFgToyg
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Figure G.8: Comparison of the actual and desired yaw angle during hover flight using the
proposed iterative mixer (top) and a one-shot mixer (bottom). Statistics of the yaw error are
depicted in Table G.2.

maneuver. It can be seen that with the prioritizing saturation, the x and y position stay
close to their constant desired values, whereas they deflect a lot from the desired value
in case of thrust clipping. This even causes the quadrotor to crash into the ground
for one run when thrust clipping is applied. On the other hand, with the prioritizing
saturation, compared to thrust clipping, it takes longer for the yaw angle to settle on
the desired value since its priority is the smallest. Note that when a saturation occurs,
we do not make use of the iterative mixer since we are unable to reach the desired
yaw torque due to the saturation. The computation times of the different steps in the
presented saturation scheme are summarized in Table G.3.

Table G.3: Iterative mixing and saturation computation times. As comparison, the thrust
mixing with a one-shot mixer takes 1.4 µs with 0.3 µs standard deviation.

Mean [µs] Standard Deviation [µs]

Thrust Mixing (3 iter.) 243.7 5.8

Yaw Saturation 166.6 4.1

Thrust Saturation 1.3 0.3

Thrust Clipping 1.5 0.4

Total 413.1 7.1
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Figure G.9: Response in position and yaw for ten runs where the quadrotor simultaneously
performs a 1 m step in height and a 90◦ step in yaw starting at t = 0 s using prioritizing
saturation (top) and thrust clipping (bottom). The reference values after the step are: x = 3.0 m,
y = 0.0 m, z = 1.8 m, and yaw = ß/2 rad, and the assured yaw torque is ηz,assured = 0.01 N m.
Solid lines show ground truth data and dashed lines show desired reference values.

G.7 Conclusion

We presented an LQR based body-rate controller, an iterative mixer to compute the
desired single rotor thrusts, and a prioritizing motor-saturation scheme which we all
evaluated in real experiments with a quadrotor in a motion capture system. Compared
to the state-of-the-art proportional controllers, the proposed body-rate controller almost
halved the body-rate tracking error and reduced the position error by more than
25 % during a fast trajectory while preserving its damping properties against external
disturbances. The iterative mixer reduces the yaw error by considering a non constant
ratio of thrust and drag torque of a single rotor by more than 35 % in hover flight.
The presented motor saturation scheme prioritizes roll and pitch, which are most
important for stabilization and trajectory tracking, before collective thrust and yaw.
We demonstrated that through this prioritization, the stability and robustness of a
quadrotor is increased in case of motor-input saturations.
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