
D
a

S
T

Data (Systems+Theory)
DaST
DEPARTMENT OF INFORMATICS, UNIVERSITY OF ZURICH

Real-time Analytics

over Continuously Evolving Databases

Dan Olteanu
March 8, 2023

IfI Research Talk Series



Real-Time Analytics

• Datasets continuously evolve over time
• E.g.: data streams from sensors, social networks, apps

• Real-time analytics over streaming data
• Users want fresh up-to-date computation results, e.g., models

Web Analytics Sensor Networks

DECISION 
SUPPORT

RUNTIME
ENGINE

Continuously 
arriving data

Continuously 
evaluated views

EVENTS ACTIONS

Cloud Monitoring



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

DELTA

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

DELTA

Dataset

Result

Analytics



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time

enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate record #1

enumeration

delay

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
enumeration

delay

. . .
record #n

EOS
enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
enumeration

delay

EOS
enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update

maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Incremental Maintenance: Refined Formal Analysis

Query Dataset
Data

Structure

preprocess

preprocessing
time enumerate

record #1

record #2
. . .

record #n
EOS

enumeration

delay

Answer

access

request
User

update
maintain

m
ai

n
ta

in

update time

u
p
d
at
e
ti
m
e



Fundamental Questions

• Can we trade off update time for enumeration delay?

• What is the best possible (worst-case optimal) maintenance

strategy for the answer of a given query?

• How can we maintain efficiently

models trained over changing relational data?



Fundamental Questions

• Can we trade off update time for enumeration delay?

• What is the best possible (worst-case optimal) maintenance

strategy for the answer of a given query?

• How can we maintain efficiently

models trained over changing relational data?



Fundamental Questions

• Can we trade off update time for enumeration delay?

• What is the best possible (worst-case optimal) maintenance

strategy for the answer of a given query?

• How can we maintain efficiently

models trained over changing relational data?



Update - Enumeration Trade-Off & Optimality



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumerationLazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumerationLazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumerationLazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumeration

Lazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumeration

Lazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)

delay

preprocessing time

update time

delay

preprocessing time

update time

(N,N, 1)

(N, 1,N)

N
N

N

N0.5

N0.5

optimal∗ (N,N0.5,N0.5)

Eager approach: Expensive update, fast enumerationLazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture



Maintaining Machine Learning Models

over

Evolving Relational Data



Example: Learning Polynomial Regression Models

Goal: Find model parameters Θ best satisfying

RatingPrice (CHF)

33,450,000

22,750,000

46,000,000

14,600,000

23,250,000

Region 1Year#bedsSize (m2)

119257403

119486189

019358568

019084420

119285246

X
Input

Y
Output

𝝷
Params

≈

• Features X and labels Y are given by database joins

• Solved using iterative gradient computation:

Θi+1 = Θi − αXT(XΘi − Y) (repeat until convergence)

• Approach considered here: Compute once for all iterations

the Covariance Matrix [X Y]T [X Y]



Example: Learning Polynomial Regression Models

Goal: Find model parameters Θ best satisfying

RatingPrice (CHF)

33,450,000

22,750,000

46,000,000

14,600,000

23,250,000

Region 1Year#bedsSize (m2)

119257403

119486189

019358568

019084420

119285246

X
Input

Y
Output

𝝷
Params

≈

• Features X and labels Y are given by database joins

• Solved using iterative gradient computation:

Θi+1 = Θi − αXT(XΘi − Y) (repeat until convergence)

• Approach considered here: Compute once for all iterations

the Covariance Matrix [X Y]T [X Y]



Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT SUM(1 *1), SUM(1 *X1), ... SUM(1 *Xn), SUM(1 *Y),
Q = SELECT SUM(X1*1), SUM(X1 *X1), ... SUM(X1*Xn), SUM(X1*Y),
Q = SELECT ...
Q = SELECT SUM(Xn*1), SUM(Xn*X1), ... SUM(Xn*Xn), SUM(Xn*Y)
Q = SELECT SUM(Y *1), SUM(Y *X1), ... SUM(Y *Xn), SUM(Y *Y)

FROM R1 JOIN R2 JOIN ... JOIN Rn



Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT   SUM(1 *1), SUM(1 *X1), ... SUM(1 *Xn), SUM(1 *Y),
Q = SELECT   SUM(X1*1), SUM(X1*X1), ... SUM(X1*Xn), SUM(X1*Y),
Q = SELECT   ...
Q = SELECT   SUM(Xn*1), SUM(Xn*X1), ... SUM(Xn*Xn), SUM(Xn*Y),
Q = SELECT   SUM(Y *1), SUM(Y *X1), ... SUM(Y *Xn), SUM(Y *Y)

FROM R1 JOIN R2 JOIN ... JOIN Rn

We compute and maintain under data updates:

• COUNT = SUM(1) = database join size

• vector of SUM(Xi ) for feature/label Xi

• matrix of SUM(Xi · Xj) for features/label Xi and Xj



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the support:

• Set of triples (Z,Rm,Rm×m)(
COUNT, vector of SUM(Xi ), matrix of SUM(Xi · Xj)

)
• Neutral elements for sum and product operations:

0 = (0, 0m×1, 0m×m)

1 = (1, 0m×1, 0m×m)



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

𝑎 =	( ), , 𝑏 =	( ), ,

𝑎 + 𝑏 = +( ), ,

𝑎 ∗ 𝑏 =	

&&

&

&

& &&( ), ,



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

𝑎 =	( ), , 𝑏 =	( ), ,

𝑎 + 𝑏 = +( ), ,

𝑎 ∗ 𝑏 =	

&&

&

&

& &&( ), ,



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

𝑎 =	( ), , 𝑏 =	( ), ,

𝑎 + 𝑏 = +( ), ,

𝑎 ∗ 𝑏 =	

&&

&

&

& &&( ), ,



Does the

Theory

Make Any Difference in

Practice

?



Refresh Rate for a Linear Regression Model

64

256

1024

4096

16384

65536

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Al
lo

ca
te

d 
M

em
or

y 
(M

B)

Fraction of Stream Trace Processed

1E+03

1E+04

1E+05

1E+06

1E+07

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

 F-IVM (CONT)  DBT (CONT)  1-IVM (CONT)
 F-IVM (MIXED)  DBT (MIXED)  1-IVM (MIXED)

Systems:

* F-IVM (ours)

* DBToaster

* Classical IVM

Features:

* CONTinuous

* MIXED:

continuous

and categorical

125M inserts in

batches of 1K

records at a time



Knowledge Transfer to Industry



Acknowledgments

DaST IVM team

Ahmet Haozhe Milos

RelationalAI IVM team

ElSeidy Henrik Niko



References

• Incremental View Maintenance with Triple Lock Factorization Benefits.

ACM SIGMOD 2018

• Counting Triangles under Updates in Worst-Case Optimal Time.

ICDT 2019 (Best paper award)

• F-IVM: Learning over Fast-Evolving Relational Data.

ACM SIGMOD 2020

• Trade-offs in Static and Dynamic Evaluation of Hierarchical Queries.

ACM PODS 2020 & LMCS 2023 (to appear)

• Maintaining Triangle Queries under Updates.

ACM Trans. Database Syst. 2020

• Machine learning over static and dynamic relational data.

DEBS 2021

• Conjunctive Queries with Output Access Patterns under Updates.

ICDT 2023

• Evaluation Trade-Offs for Acyclic Conjunctive Queries. CSL 2023



Thank you!


	Introduction

