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Real-Time Analytics

• Datasets continuously evolve over time
• E.g.: data streams from sensors, social networks, apps

• Real-time analytics over streaming data
• Users want fresh up-to-date computation results, e.g., models
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Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

DELTA

Dataset

Result

Analytics



Real-Time Analytics via Incremental Maintenance

DELTA

Dataset

Result

Analytics



Incremental Maintenance: Refined Formal Analysis
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Fundamental Questions

• Can we trade off update time for enumeration delay?

• What is the best possible (worst-case optimal) maintenance

strategy for the answer of a given query?

• How can we maintain efficiently

models trained over changing relational data?
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Update - Enumeration Trade-Off & Optimality



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A,B) ∧ S(B)
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Eager approach: Expensive update, fast enumerationLazy approach: Fast update, expensive enumeration

For this query, there is no algorithm that admits

preprocessing time update time enumeration delay

arbitrary O(N0.5−γ) O(N0.5−γ)

for any γ > 0, unless the OMv Conjecture fails

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(Nε) Delay: O(N1−ε)

for any ε ∈ [0, 1]

(∗): ε = 0.5 is weakly Pareto optimal by OMv Conjecture
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Maintaining Machine Learning Models

over

Evolving Relational Data



Example: Learning Polynomial Regression Models

Goal: Find model parameters Θ best satisfying

RatingPrice (CHF)
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X
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Y
Output

𝝷
Params

≈

• Features X and labels Y are given by database joins

• Solved using iterative gradient computation:

Θi+1 = Θi − αXT(XΘi − Y) (repeat until convergence)

• Approach considered here: Compute once for all iterations

the Covariance Matrix [X Y]T [X Y]
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Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT SUM(1 *1), SUM(1 *X1), ... SUM(1 *Xn), SUM(1 *Y),
Q = SELECT SUM(X1*1), SUM(X1 *X1), ... SUM(X1*Xn), SUM(X1*Y),
Q = SELECT ...
Q = SELECT SUM(Xn*1), SUM(Xn*X1), ... SUM(Xn*Xn), SUM(Xn*Y)
Q = SELECT SUM(Y *1), SUM(Y *X1), ... SUM(Y *Xn), SUM(Y *Y)

FROM R1 JOIN R2 JOIN ... JOIN Rn



Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT   SUM(1 *1), SUM(1 *X1), ... SUM(1 *Xn), SUM(1 *Y),
Q = SELECT   SUM(X1*1), SUM(X1*X1), ... SUM(X1*Xn), SUM(X1*Y),
Q = SELECT   ...
Q = SELECT   SUM(Xn*1), SUM(Xn*X1), ... SUM(Xn*Xn), SUM(Xn*Y),
Q = SELECT   SUM(Y *1), SUM(Y *X1), ... SUM(Y *Xn), SUM(Y *Y)

FROM R1 JOIN R2 JOIN ... JOIN Rn

We compute and maintain under data updates:

• COUNT = SUM(1) = database join size

• vector of SUM(Xi ) for feature/label Xi

• matrix of SUM(Xi · Xj) for features/label Xi and Xj



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the support:

• Set of triples (Z,Rm,Rm×m)(
COUNT, vector of SUM(Xi ), matrix of SUM(Xi · Xj)

)
• Neutral elements for sum and product operations:

0 = (0, 0m×1, 0m×m)

1 = (1, 0m×1, 0m×m)



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

𝑎 =	( ), , 𝑏 =	( ), ,

𝑎 + 𝑏 = +( ), ,

𝑎 ∗ 𝑏 =	
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Refresh Rate for a Linear Regression Model
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Knowledge Transfer to Industry
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