DaST-~

Data-(Systems+Theory)

DEPARTMENT OF INFORMATICS, UNIVERSITY OF ZURICH

Real-time Analytics
over Continuously Evolving Databases

Dan Olteanu
March 8, 2023

Ifl Research Talk Series

Real-Time Analytics

e Datasets continuously evolve over time
e E.g.: data streams from sensors, social networks, apps

e Real-time analytics over streaming data
e Users want fresh up-to-date computation results, e.g., models

Q

\r‘/‘/\’\/\w " I
Web Analytics Sensor Networks Cloud Monitoring
EVENTS P ACTIONS
| RUNTIME | DECISION |
ENGINE SUPPORT
Continuously Continuously

arriving data evaluated views

Real-Time Analytics via Incremental Maintenance

Dataset

Analytics

««(@

Result

Real-Time Analytics via Incremental Maintenance

—@—

Dataset

Analytics

Result

Real-Time Analytics via Incremental Maintenance

Dataset

—@—

Analytics

Result

Real-Time Analytics via Incremental Maintenance

Dataset

Analytics

Result

—@—

EXPENSIVE

-

Real-Time Analytics via Incremental Maintenance

@) m—

Dataset

Analytics

EXPENSIVE

2

-

Result

Real-Time Analytics via Incremental Maintenance

Dataset

Analytics

EXPENSIVE

-

3
I

Result

| /1

Incremental Maintenance: Refined Formal Analysis

preprocess

Dataset _)

preprocessing
time

Data
Structure

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess User
Dataset ——— DEE)
preprocessing Structure =essssa=s)
enumerate

time

Answer

Incremental Maintenance: Refined Formal Analysis

preprocess

Dataset ———

preprocessing
time

access
request
Data
Structure ooooooooc
enumerate

User

enumeration
record #1
delay

Answer

Incremental Maintenance: Refined Formal Analysis

preprocess

Dataset _)

preprocessing
time

access

request
User
Data

Structure mmmmammma) o4 #1

enumerate enumeration
record #?2

delay

Answer

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess User
Dataset —ee—— Data
preprocessing Structure =s==a==--=) record #1
time enumerate o ord #2

Answer

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess Data User
Dataset —ee——
preprocessing Structure =s==a==--=) record #1
time enumerate o ord #2
recc;r.d. n enumeration

delay

Answer

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess User
Dataset —ee—— Data
preprocessing Structure =s==a==--=) record #1
time enumerate o ord #2
record #n enumeration
EOS

delay

Answer

Incremental Maintenance: Refined Formal Analysis

preprocess

Dataset _)

preprocessing
time

update

Data
Structure

access
request

enumerate

User

record #1
record #2

record #n

EOS

Answer

enumeration

delay

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess Data User
Dataset —ee——
preprocessing Structure ==a--=a--) record #1
time enumerate o4 42
c . e
£ y
£ reCErOS#n enumeration
1= delay
o Answer
maintain

update

Incremental Maintenance: Refined Formal Analysis

access
request
preprocess Data User
Dataset —ee——
preprocessing Structure =s==a==--=) record #1
v time enumerate o ord #2
c].c .
2] e record #n ;
s :§ EOS enumeration
1= s delay
maintain Answer

update

update time

Fundamental Questions

e Can we trade off update time for enumeration delay?

Fundamental Questions

e Can we trade off update time for enumeration delay?

e What is the best possible (worst-case optimal) maintenance
strategy for the answer of a given query?

Fundamental Questions

e Can we trade off update time for enumeration delay?

e What is the best possible (worst-case optimal) maintenance
strategy for the answer of a given query?

e How can we maintain efficiently

models trained over changing relational data?

Update - Enumeration Trade-Off & Optimality

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

preprocessing time

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

preprocessing time

For this query, there is no algorithm that admits
preprocessing time update time enumeration delay
arbitrary O(NO3-7) O(NO5-7)

for any v > 0, unless the OMv Conjecture fails

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

N N
nos| ®(N, N, 1)

preprocessing time

Eager approach: Expensive update, fast enumeration

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

N N
nos| ®(N, N, 1)

preprocessing time

Lazy approach: Fast update, expensive enumeration

Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

wEw

optimal® (N, N®° N°-2))]
preprocessing time

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(N€) Delay: O(N'~¢)
for any € € [0, 1]

(%): € = 0.5 is weakly Pareto optimal by OMv Conjecture

Maintaining Machine Learning Models
over

Evolving Relational Data

Example: Learning Polynomial Regression Models

Goal: Find model parameters © best satisfying

Region 1

X 0-| Y

Input Params Output

e Features X and labels Y are given by database joins

Example: Learning Polynomial Regression Models

Goal: Find model parameters © best satisfying

Size (m?) | #beds Region 1

X 0-| Y

Input Params Output

e Features X and labels Y are given by database joins

e Solved using iterative gradient computation:
©; 11 =0; —aXT(XO; —Y) (repeat until convergence)

e Approach considered here: Compute once for all iterations

the Covariance Matrix [X Y]T [X Y]

Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT SUM(1 *1), SUM(1 *X,), ... SUM(1 %X,), SUM(1 *Y),
SUM(X;*1), SUMCX, *X;), ... SUM(X,*X,), SUM(X,*Y),
SUM(X,* 1), SUM(X *X,), ... SUM(X,*X.), SUM(X *Y)
SUMCY *1), SUMCY *X,), ... SUMCY *X.,), SUMCY *Y)
FROM R1 JOIN R2 JOIN ... JOIN Rn

Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT | SUM(1 %1), SUM(T xX,), ... SUM(T *X)), SUM(1 *Y),
SUM(X, *X,), ... SUM(X;*X), SUM(X,*Y),

SUM(X, *X,), SUM(X,*Y),
), SUMCY *Y)
FROM R1 JOIN R2 JOIN ... JOIN Rn

We compute and maintain under data updates:
e COUNT = SUM(1) = database join size
e vector of SUM(X;) for feature/label X;
e matrix of SUM(X; - X;) for features/label X; and X;

Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the support:
e Set of triples (Z,R™,R™*™)

(COUNT, vector of SUM(X;), matrix of SUM(X; - X)))

e Neutral elements for sum and product operations:

0= (070m><1a0m><m)
1= (1>0m><1-,0m><m)

Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

N IIIZ= |
NN Ll
NNNOO 0
(is|lsuns) (O)
a=\ N, |O], |00 b=\ O, |O|,

Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

IIE

N[]
N[]
a=

NNZ7Z)%)

A

g

U

U

|

DI DI

NN NN
NYNEN
NN NN
[DDE

o0
=
o

Q

Q

c

(v}
‘=

v}

>

(=]
®)

Q
=
)

o0
=

(2]

=]

bal
=
pran)
s

Q

Q

c
o

-

[}

>

(=]
@)

Q
<
=)

o0
=
=

[}
-
=
s

Covariance Ring has the sum and product operations:

—

—_— ——~
CICICIEIE
EEENN
==t

>~ A

OOOEY zeaw

N7/am
|
[-
L)
27D
—
I
LICC]

271"
271
YZZmn

Z)z)7/ il

Vi

=

a+b

—_——

0 O
0 0O
770 2
7777
0 OO
A7 L
0 @
C]

v

N

Il

e

*

S

Does the
Theory

Make Any Difference in

Practice

Refresh Rate for a Linear Regression Model

— F-IVM (CONT) — DBT (CONT) 1-IVM (CONT)
<<« F-IVM (MIXED) - DBT (MIXED) 1-IVM (MIXED)

1E+07 4
DR TRY CF P
.

1E+06 +°&°

1E+05

1E+04 - °

Throughput (tuples/sec)

1E+03 T T T T T T T T

00 01 02 03 04 05 06 07 08 09
65536 4

csoocco0000e
.

Allocated Memory (MB)

64 T T T T

00 01 02 03 04 05 06 07 08 09
Fraction of Stream Trace Processed

1.0

Systems:
* F-IVM (ours)
* DBToaster
* Classical IVM

Features:
* CONTinuous

* MIXED:
continuous
and categorical

125M inserts in
batches of 1K
records at a time

Knowledge Transfer to Industry

Relational AI

Rk-means: Fast Clustering for
Relational Data

Conventional machine learning algorithms cannot
be applied until a data matrix is available to
process. When the data matrix needs to be
obtained from a relational database via a feature
extraction query, the computation cost can be
prohibitive, as the data matrix may be (much)
larger than the total input relation size. This paper
introduces Rk-means, or relationalk-means
algorithm, for clustering relational data tuples
without having to access the full data matrix.

Relational AT

Learning Models over Relational
Data using Sparse Tensors and
Functional Dependencies

Integrated solutions for analytics over relational
databases are of great practical importance as
they avoid the costly repeated loop data scientists
have to deal with on a daily basis: select features
from data residing in relational databases using
feature extraction queries involving joins,
projections, and aggregations; export the training
dataset defined by such queries; convert this
dataset into the format of an external learning tool;
and train the desired model using this tool. These
integrated solutions are also a fertile ground of
theoretically fundamental and challenging
problems at the intersection of relational and
statistical data models.

Relational AT

Maintaining Triangle Queries
under Updates

We consider the problem of incrementally
maintaining the triangle queries with arbitrary free
variables under single-tuple updates to the input
relations. We introduce an approach called IVM
that exhibits a trade-off between the update time,
the space, and the delay for the enumeration of
the query result, such that the update time ranges
from the square root to linear in the database size
while the delay ranges from constant to linear
time. IVM achieves Pareto worst-case optimality
in the update-delay space conditioned on the
Online Matrix-Vector Multiplication conjecture.

Acknowledgments

DaST IVM team

Ahmet Haozhe

Relational Al IVM team

ElSeidy Henrik Niko

References

e Incremental View Maintenance with Triple Lock Factorization Benefits.
ACM SIGMOD 2018

e Counting Triangles under Updates in Worst-Case Optimal Time.
ICDT 2019 (Best paper award)

e F-IVM: Learning over Fast-Evolving Relational Data.
ACM SIGMOD 2020

e Trade-offs in Static and Dynamic Evaluation of Hierarchical Queries.
ACM PODS 2020 & LMCS 2023 (to appear)

e Maintaining Triangle Queries under Updates.
ACM Trans. Database Syst. 2020

e Machine learning over static and dynamic relational data.
DEBS 2021

e Conjunctive Queries with Output Access Patterns under Updates.
ICDT 2023

e Evaluation Trade-Offs for Acyclic Conjunctive Queries. CSL 2023

Thank you!

	Introduction

