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Real-Time Analytics

e Datasets continuously evolve over time
e E.g.: data streams from sensors, social networks, apps

e Real-time analytics over streaming data
e Users want fresh up-to-date computation results, e.g., models
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Incremental Maintenance: Refined Formal Analysis
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Fundamental Questions

e Can we trade off update time for enumeration delay?

e What is the best possible (worst-case optimal) maintenance
strategy for the answer of a given query?

e How can we maintain efficiently

models trained over changing relational data?



Update - Enumeration Trade-Off & Optimality
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Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

preprocessing time

For this query, there is no algorithm that admits
preprocessing time update time enumeration delay
arbitrary O(NO3-7) O(NO5-7)

for any v > 0, unless the OMv Conjecture fails
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Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

N N
nos| ®(N, N, 1)

preprocessing time

Lazy approach: Fast update, expensive enumeration



Incremental Maintenance for a Simple Query

Matrix-vector multiplication query: Q(A) = R(A, B) A S(B)

update time

wEw

optimal® (N, N®° N°-2) ) ]
preprocessing time

Our approach: Any update-enumeration trade-off on the red line

Preprocessing time: O(N) Update time: O(N€) Delay: O(N'~¢)
for any € € [0, 1]

(%): € = 0.5 is weakly Pareto optimal by OMv Conjecture



Maintaining Machine Learning Models
over

Evolving Relational Data
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Example: Learning Polynomial Regression Models

Goal: Find model parameters © best satisfying

Size (m?) | #beds Region 1

X 0-| Y

Input Params Output

e Features X and labels Y are given by database joins

e Solved using iterative gradient computation:
©; 11 =0; —aXT(XO; —Y) (repeat until convergence)

e Approach considered here: Compute once for all iterations

the Covariance Matrix [X Y]T [X Y]



Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT SUM(1 *1), SUM(1 *X,), ... SUM(1 %X, ), SUM(1 *Y),
SUM(X;*1), SUMCX, *X;), ... SUM(X,*X,), SUM(X,*Y),
SUM(X,* 1), SUM(X *X,), ... SUM(X,*X.), SUM(X *Y)
SUMCY *1), SUMCY *X,), ... SUMCY *X.,), SUMCY *Y)
FROM R1 JOIN R2 JOIN ... JOIN Rn




Covariance Matrix Defined by Queries

Covariance matrix [X Y]T [X Y] can be expressed in SQL

Q = SELECT | SUM(1 %1), SUM(T xX,), ... SUM(T *X)), SUM(1 *Y),
SUM(X, *X,), ... SUM(X;*X ), SUM(X,*Y),

SUM(X, *X,), SUM(X,*Y),
), SUMCY *Y)
FROM R1 JOIN R2 JOIN ... JOIN Rn

We compute and maintain under data updates:
e COUNT = SUM(1) = database join size
e vector of SUM(X;) for feature/label X;
e matrix of SUM(X; - X;) for features/label X; and X;



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the support:
e Set of triples (Z,R™,R™*™)

( COUNT, vector of SUM(X;), matrix of SUM(X; - X)) )

e Neutral elements for sum and product operations:

0= (070m><1a0m><m)
1= (1>0m><1-,0m><m)



Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:
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Maintaining the Covariance Matrix using the Covariance Ring

Covariance Ring has the sum and product operations:

IIE

N[ ]
N[ ]
a=

NNZ7Z)%)

A

g

U

U

|

DI DI

NN NN
NYNEN
NN NN
[ DDE




o0
=
o

Q

Q

c

(v}
‘=

v}

>

(=]
®)

Q
=
)

o0
=

(2]

=]

bal
=
pran)
s

Q

Q

c
o

-

[}

>

(=]
@)

Q
<
=)

o0
=
=

[}
-
=
s

Covariance Ring has the sum and product operations:
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Does the
Theory

Make Any Difference in

Practice



Refresh Rate for a Linear Regression Model
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Systems:
* F-IVM (ours)
* DBToaster
* Classical IVM

Features:
* CONTinuous

* MIXED:
continuous
and categorical

125M inserts in
batches of 1K
records at a time



Knowledge Transfer to Industry

Relational AI

Rk-means: Fast Clustering for
Relational Data

Conventional machine learning algorithms cannot
be applied until a data matrix is available to
process. When the data matrix needs to be
obtained from a relational database via a feature
extraction query, the computation cost can be
prohibitive, as the data matrix may be (much)
larger than the total input relation size. This paper
introduces Rk-means, or relationalk-means
algorithm, for clustering relational data tuples
without having to access the full data matrix.

Relational AT

Learning Models over Relational
Data using Sparse Tensors and
Functional Dependencies

Integrated solutions for analytics over relational
databases are of great practical importance as
they avoid the costly repeated loop data scientists
have to deal with on a daily basis: select features
from data residing in relational databases using
feature extraction queries involving joins,
projections, and aggregations; export the training
dataset defined by such queries; convert this
dataset into the format of an external learning tool;
and train the desired model using this tool. These
integrated solutions are also a fertile ground of
theoretically fundamental and challenging
problems at the intersection of relational and
statistical data models.

Relational AT

Maintaining Triangle Queries
under Updates

We consider the problem of incrementally
maintaining the triangle queries with arbitrary free
variables under single-tuple updates to the input
relations. We introduce an approach called IVM
that exhibits a trade-off between the update time,
the space, and the delay for the enumeration of
the query result, such that the update time ranges
from the square root to linear in the database size
while the delay ranges from constant to linear
time. IVM achieves Pareto worst-case optimality
in the update-delay space conditioned on the
Online Matrix-Vector Multiplication conjecture.
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