
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 65

Part I: The Fundamentals

Part II: Requirements Engineering Practices

Part III: Enablers and Stumbling Blocks

Conclusions

References

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 66

5 Documenting requirements

The need:
● Communicating requirements
● Having a basis for contracts and acceptance decisions

The means: Documented requirements

Stakeholders System builders

Photo © Lise Aserud / DPA

Bridging the gap:

5.1 Requirements Engineering work products

DEFINITION. Work product – A recorded, intermediate or final
result of information generated in a work process.
Synonym: artifact

Work products are characterized by their
l Purpose
l Representation (free text, structured text, lists, graphics,

drawings,...)
l Size (single requirements, sets of requirements, documents

(or document-like structures)
l Lifespan (temporary, evolving, durable)

Note that a work product may contain other work products

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 67

Work products and their purposes

Single requirements
m Sentence in natural language – expressing an individual

requirement

m User story – specifying a function or behavior from a
stakeholder’s perspective

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 68

Work products and their purposes – 2

Sets of requirements
m Use case – specifying a system function from a

stakeholder’s perspective
m Graphic model – specifying various aspects, e.g., context,

activity, behavior
m Task description – specifying a task to perform
m External interface – specifying the information exchanged

between a system and an actor in the system context
m Epic – providing a high-level view of a stakeholder need
m Feature – A distinguishing characteristic of a system that

provides value for stakeholders
Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 69

Work products and their purposes – 3

Documents and document-like structures
m System requirements specification,

business requirements specification,
stakeholder or user requirements specification
– providing a baselined or released requirements document

m Product and sprint backlog – managing a list of work items,
including requirements

m Story map – visual arrangement of user stories

m Vision – a conceptual imagination of a future system or
product

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 70

Work products and their purposes – 4

Other RE-related work products
m Glossary – providing an unambiguous and agreed common

terminology

m Textual note or graphic sketch – serving for communication
and understanding

m Prototype – understanding or validating requirements

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 71

5.2 Classic requirements specifications

Full-fledged requirements specifications are typically needed

m When customers want contractually fixed requirements,
costs and deadlines

m When systems are built by an external contractor based on
a set of given requirements (tendering, outsourcing)

m In regulated environments where regulators check
compliance of developed systems to their requirements

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 72

Document types

m Stakeholder requirements specification (also called
customer requirements specification)
What the stakeholders want (independent of any system
providing it)

m System requirements specification
The system or product to be developed and its context

m Software requirements specification
If the system is a pure software system

m Business requirements specification
High-level specification of business needs or goals

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 73

[ISO/IEC/IEEE 2018]

Stakeholder requirements specification

m Written when stakeholder needs shall be documented
before any system development considerations are made

m Typically written by domain experts on the customer side
(maybe with help of RE consultants)

m If a stakeholder requirements specification is written, it
precedes and informs system or software requirements
specifications

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 74

System/software requirements specification

m The classic form of a requirements specification

m No methodological difference between system
requirements specification and software requirements
specification

m Typically written by requirements engineers on the supplier
side

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 75

5.3 Requirements in agile development

No classic requirements specification document (unless
mandated by regulators)

Various work products that ...

m ... specify requirements: vision, stories, epics, use cases,...

m ... have requirements-related content: Prototypes, mock-
ups, storyboards, roadmap, early product versions
(e.g., MVP – minimum viable product)

Value-driven creation of work products

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 76

Agile requirements work products

m Requirements primarily captured as a collection of user
stories, organized in a product backlog

m A system vision provides an abstract overview of the system
to be developed

m On an intermediate level of abstraction, epics and features
can serve to group user stories

m Stories may be sub-divided into tasks

m Use cases/scenarios and other models may be used to
provide structure and context

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 77

5.4 Glossary

RE typically is a multi-person endeavor
à Danger of missing shared understanding in terminology

DEFINITION. Glossary – A collection of definitions of terms that
are relevant in some domain.

A glossary defines
l Context-specific terms
l Everyday terms that have a special meaning in the given

context
l Abbreviations and acronyms

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 78

Rules for creating and maintaining a glossary

m Consistently structured

m Centrally managed

m Defined responsibilities for creation and maintenance

m Maintained over the entire course of a project

m Usage of terms as defined in the glossary is mandatory

m Stakeholders must agree upon the glossary

m Synonyms and Homonyms properly treated
l Synonyms (different terms denoting the same thing) marked
l Homonyms (same term for different things) avoided or marked

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 79

5.5 Prototypes

DEFINITION. Prototype – In software and systems engineering:
A preliminary, partial realization of certain characteristics of a
system.

Serves for exploring, communicating or validating concepts and
requirements.

The realization may be in any physical form, from paper and
sticky notes over clickable pages to executable source code.

In RE, a prototype is a means for
l specifying requirements by example
l validating requirements
l supporting stakeholder communication and shared understanding

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 80

Forms of Prototypes in RE

m Exploratory prototype:
l Creating shared understanding
l Clarifying requirements
l Validating requirements on different levels of fidelity
l Thrown away after use

m Evolutionary prototype:
l Pilot system forming the nucleus of a system to be developed
l Final system evolves by incrementally extending and improving

the prototype

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 81

[Lichter et al. 1994]

Exploratory prototypes

m Wireframe
l Low-fidelity prototype
l Built with paper or other simple materials
l Primarily serves for discussing and validating design ideas

and user interface concepts

m Mock-up
l Medium-fidelity prototype
l Demonstrates characteristics of a user interface without

implementing any real functionality
l Real screens and click flows, but without functionality behind
l Primarily serves for specifying and validating user interfaces

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 82

Exploratory prototypes – 2

m Native prototype
l High-fidelity prototype
l Implements critical parts of a system to an extent that

stakeholders can work with the prototype
l Primarily serves for validating that the prototyped part of the

system will work and behave as expected

Exploratory prototypes can be expensive work products
l Choose proper level of fidelity
l Trade-off between cost and value gained

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 83

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 84

5.6 Aspects to be documented

Independently of any language, method, and documentation
style, four aspects need to be documented:

m Functionality
l Structure and Data: Static structure, (persistent) data
l Function and Flow: Functions (results, preconditions,

processing), flow of control and data
l State and Behavior: State-dependent dynamic system

behavior as observable by users
l Both normal and abnormal cases must be specified

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 85

Aspects to be documented – 2

m Quality

Performance
l Data volume
l Reaction time
l Processing speed
l Specify measurable values if possible
l Specify more than just average values

Specific Qualities
l “-ilities” such as Usability, Reliability, Availability, etc.

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 86

Aspects to be documented – 3

m Constraints
Restrictions that must be obeyed / satisfied
l Technical: given interfaces or protocols, etc.
l Legal: laws, standards, regulations
l Organizational: given structures, policies, processes
l Cultural: culturally shaped user habits and expectations
l Environmental: e.g., energy consumption, heat dissipation
l Physical: laws of physics, properties of materials
l Solutions / restrictions demanded by important stakeholders

Aspects to be documented – 4

m Context and Boundary
l Domain requirements and domain assumptions in the context

of a system
l Embedding of a system in its context
l Interaction between a system and the actors in the context

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 87

Requirements Engineering I – Part II: RE Practices © 2020Martin Glinz 88

5.7 How to document

Sample standards for classic requirements documents
IEEE Std 830-1998 (outdated, but still in use)

VOLERE
● 27 chapters
● System and project requirements

IREB
● Simple template for system/software requirements

specifications

Enterprise-specific standards
● Imposed by customer or given by supplier

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 89

IEEE Std 830-1998

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms,

and abbreviations
1.4 References
1.5 Overview

2. Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and

dependencies

3. Specific requirements

Appendixes

Index

Variants:
Organize by
• Mode
• User class
• Object
• Feature
• Stimulus
• Function

[IEEE 1998]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 90

VOLERE

Project Drivers
1. The Purpose of the Project
2. The Stakeholders

Project Constraints
3. Mandated Constraints
4. Naming Conventions and Terminology
5. Relevant Facts and Assumptions

Context and Functionality
6. The Scope of the Work
7. Business Data Model & Data Dictionary
8. The Scope of the Product
9. Functional Requirements

Non-Functional Requirements
10. Look and Feel Requirements
11. Usability and Humanity Requirements
12. Performance Requirements
13. Operational & Environmental

Requirements

14. Maintainability and Support
Requirements

15. Security Requirements
16. Cultural Requirements
17. Compliance Requirements

Project & Product Issues
18. Open Issues
19. Off-the-Shelf Solutions
20. New Problems
21. Tasks
22. Migration to the New Product
23. Risks
24. Costs
25. User Documentation and Training
26. Waiting Room
27. Ideas for Solutions

Subtitles added by MG, inspired by an earlier version of the template

[Robertson and Robertson 2012]
[https://www.volere.org/templates/]

A simple document template

Part I: Introduction
1. System purpose
2. Scope of system development
3. Stakeholders

Part II: System Overview
4. System vision and goals
5. System context and boundary
6. Overall system structure
7. User Characteristics

Part III: System requirements
Organized hierarchically
according to system structure

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 91

Per sub-system/component:
• Functional requirements

(structure and data – function
and flow – state and behavior)

• Quality requirements
• Constraints
• Interfaces

References
Appendices

• Glossary
• Assumptions and

dependencies

[Glinz et al. 2020]

Guidelines for agile requirements

m Standard template for writing user stories (cf. Chapter 8)

m Organizing stories in a product backlog

m Artifact / work product structures provided by textbooks

General guideline: do things only if they add value

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 92

[Leffingwell 2011]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 93

How to document – language options

Informally

m Plain natural language (narrative text)

Semi-formally

m Structured natural language (using templates or forms)

m Graphic models Typically as diagrams which are
enriched with natural language text

Formally

m Formal models, typically based on mathematical logic and
set theory

General rules for requirements documentation

m Specify requirements as small, identifiable units whenever
possible

m Record metadata such as source, author, date, status

m Use structure templates

m Adapt the degree of detail to the risk associated with a
requirement

m Specify normal and exceptional cases

m Don’t forget quality requirements
and constraints

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 94

© UFS, Inc.

Precision – Detail – Depth

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 95

How precise?

How much detail?

How deep, i.e., how many layers?

Three dimensions:

Dimensions influence each other:
• More precision à more detail
• More detail à more depth

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 96

Precision: reduce ambiguity

Restrict your language

Use a glossary

Define acceptance test cases

Quantify where appropriate

Formalize

Snoopy quantifies ... unfortunately, I have it only in German

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 97

Detail

It depends.
l Degree of implicit shared understanding of problem
l Degree of freedom left to designers and programmers
l Cost vs. value of detailed specification
l The risk you are willing to take

What’s better?
“The participant entry form has fields for name, first name, sex, ...”

“The participant entry form has the following fields (in this order):
Name (40 characters, required), First Name (40 characters,
required), Sex (two radio buttons labeled male and female,
selections exclude each other, no default, required),...”

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 98

Depth

The more precise, the more information is needed

➔ Preserve readability with a hierarchical structure

“...
4.3 Administration of participants

4.3.1 Entering a new participant
4.3.1.1 New participant entry form
4.3.1.2 New participant confirmation

4.3.2 Updating a participant record
...”

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 99

5.8 Quality of documented requirements

Two aspects of requirements quality
❍ Quality of individual requirements

❍ Quality of requirements work products, for example, a
requirements specification

Hint: Don’t confuse quality of requirements with quality
requirements

✓

Quality of individual requirements

For individual requirements, strive for requirements that are...

l Adequate True and agreed stakeholder needs
l Understandable Prerequisite for shared understanding
l Verifiable Conformance of implementation can be checked
l Unambiguous True shared understanding
l Complete No missing parts
l Necessary Part of the relevant system scope
l Feasible Non-feasible requirements are a waste of effort

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 100

Quality of requirements work products

When creating a requirements work product,
strive for a work product that is
l Consistent No contradictions
l Complete Contains the relevant requirements
l Conformant Conforms to prescribed work product

structure, format or style
l Modifiable Because change will happen
l Non-redundant Requirements do not overlap
l Structured Improves readability of work product
l Traceable Linked to related artifacts

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 101

Quality criteria are in the eye of the beholder

m No general consensus

m Different, overlapping sets of quality criteria used in
l this course
l RE textbooks
l RE standards (e.g., ISO/IEC/IEEE 29148:2018)
l Quasi-standards such as the IREB Certified Professional for

Requirements Engineering (see http://www.ireb.org)

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 102

Not all qualities are equally important

m Adequacy and understandability are key

m Verifiability and Consistency are very important

m Achieving total completeness and unambiguity is neither
possible nor economically feasible in most cases

m The importance of feasibility, traceability, conformance,
etc. of requirements depends on the concrete
project/situation

☞ Strive for value, not for blind satisfaction of requirements
quality criteria!

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 103

6 Requirements Engineering processes

DEFINITION. Process – A set of interrelated activities performed
in a given order to process information or materials.

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 104

[Armour 2004, Reinertsen 1997, 2009]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 105

The principal tasks

Requirements Specification
l Elicitation & Analysis
l Documentation
l Validation

Requirements Management
l Identification and metadata
l Requirements prioritization
l Change and release management
l Traceability

An RE process organizes how to carry out RE tasks, using
appropriate practices and producing needed work products

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 106

No ‘one size fits all’ process

Some influencing factors
● Overall process fit
● Development context
● Stakeholder availability and capability
● Shared understanding
● Complexity and criticality
● Constraints
● Time and budget available
● Volatility of requirements
● Experience of requirements engineers

❍ Tailor the process from some principal configuration
options and a rich set of RE practices

Process facets

There are three process facets, from which an RE process
can be configured
m Time facet: Linear vs. Iterative

m Purpose facet: Prescriptive vs. Explorative vs. COTS-
Driven

m Target facet: Customer-Specific vs. Market-Oriented

m Selection criteria indicate how to configure the process in
each facet

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 107

Time facet: Process structure

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 108

Plan project

Specify
requirements

Implement
system

Deploy results

Design system

Linear

Specify goals

Develop
system vision

Create initial
requirements
specification

Prioritize and select require-
ments for current iteration

Design
increment

Implement
and integrate
increment

Deploy results

Iterative Iteration: Develop increment

Update re-
quirements
specification:
Add new and
changed
requirements

[Done][Not done]

Design prelim-
inary system
architecture

Time facet: Linear

Requirements are specified up front in a single phase of the
process

Selection criteria:
l System development process is plan-driven and mostly linear
l Stakeholders can specify their requirements up front
l Comprehensive requirements specification required as a

contractual basis for outsourcing design and implementation
l Regulatory authorities require a requirements specification

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 109

Time facet: Iterative

Requirements are specified incrementally, starting with
general goals and then adding or modifying requirements in
every iteration

Selection criteria:
l System development process is iterative and agile
l Evolving requirements – not known up front
l Stakeholders are available such that short feedback loops

established for mitigating risk
l Duration of project allows for more than 1-2 iterations
l Ability to change requirements easily is important

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 110

Purpose facet: Prescriptive

Requirements specification is a contract: All requirements are
binding and must be implemented

Selection criteria:
l Customer requires fixed-price contract
l Functionality determines cost and deadlines
l Design and implementation tendered or outsourced

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 111

Purpose facet: Explorative

Only goals known, concrete requirements have to be explored

Selection criteria:
l Stakeholders only have a vague idea about their requirements
l Stakeholders strongly involved, provide continuous feedback
l Deadlines and cost take precedence over functionality
l Customer is satisfied with a framework contract
l Not a priori clear which requirements actually shall be

implemented and in which order à Prioritization needed

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 112

COTS (Commercial Off The Shelf) –
A system or component that is not
developed, but bought as a standard
product from an external supplier

Purpose facet: COTS-Driven

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 113

COTS-Driven
Requirements must reflect functionality of chosen COTS solution

Selection Criteria:
l System will be implemented with COTS software
l Only requirements not covered by the COTS solution shall be

specified

Target facet: Customer-Specific

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 114

System is ordered by a customer and developed by a
supplier for this customer

Selection criteria:
l The system will be mainly used by the organization that has

ordered the system and pays for its development.
l The important stakeholders are mainly associated with the

customer’s organization.
l Individual persons can be identified for the stakeholder roles.
l The customer wants a requirements specification that can serve

as a contract.

Target facet: Market-Oriented

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 115

System is developed as a product or service for a market

Selection criteria:
l Developing organization (or one of its clients) intends to sell the

system as a product or service in some market segment
l Prospective users not individually identifiable
l Requirements engineers have to design the requirements so that

they match the envisaged needs of the targeted users
l Product owners, marketing people, digital designers and system

architects are primary stakeholders

Hints and caveats

m Linear RE processes only work if a sophisticated process
for changing requirements is in place

m Linear RE processes imply long feedback loops: intensive
validation of requirements must be performed

m Market-oriented RE processes crucially depend on fast
feedback from pilot users for validating whether the product
will actually satisfy needs of the targeted user segment

m In an agile setting, an iterative and explorative RE process
fits best

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 116

Facet combinations

m Linear and prescriptive are frequently chosen together

m Explorative processes are typically also iterative

m Market-Oriented does not combine well with Linear and
Prescriptive

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 117

How to configure an RE process

1 Analyze the influencing factors

2 Assess the facet criteria

3 Configure
l Select one of the subsequent typical configurations where

appropriate
l Otherwise choose what is most appropriate with respect to

value and risk

4 Determine main work products to be produced
5 Select appropriate practices for the tasks to be performed

according to the chosen process

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 118

Typical RE process configurations

Participatory: Iterative & Explorative & Customer-Specific

l Main application case
Supplier and customer closely collaborate; customer
stakeholders strongly involved both in specification and
development processes

l Typical work products
Product backlog with user stories and/or task descriptions,
vision, prototypes

l Typical information flow
Continuous interaction between stakeholders, product owners,
requirements engineers, and developers

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 119

Typical RE process configurations – 2

Contractual: Typically Linear (sometimes Iterative) &
Prescriptive & Customer-Specific

l Main application case
Specification constitutes contractual basis for development of a

system by people not involved in the specification and with little
stakeholder interaction after the requirements phase

l Typical work products
Classic system requirements specification, consisting of textual
requirements and models.

l Typical information flow
Primarily from stakeholders to requirements engineers

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 120

Typical RE process configurations – 3

Product-oriented: Iterative & Explorative & Market-Oriented

l Main application case
An organization specifies and develops software in order to
sell/distribute it as a product or service

l Typical work products
Product backlog with user stories and/or task descriptions,
vision, prototypes, user feedback

l Typical information flow
Interaction between product owner, marketing, requirements
engineers, digital designers, and developers plus feedback from
customers/users

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 121

Typical RE process configurations – 4

COTS-Aware: [Iterative | Linear] & COTS-Driven & Customer-
Specific

l Main application case:
The requirements specification is part of a project where the
solution is mainly implemented by buying and configuring COTS

l Typical work products:
Process models describing the alignment of business processes
and the COTS solution, partial requirements specification,
covering what is not provided by the COTS solution

l Typical information flow:
Primarily from stakeholders and COTS solution experts to
requirements engineers

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 122

Agile requirements process

Pushes incrementality and exploration to the extreme

m Fixed-length iterations of 1-6 weeks
m Product owner or customer representative always available and

has power to make immediate decisions
m Only goals and vision established upfront
m Requirements loosely specified as stories (with details captured in

acceptance criteria)
m Use cases or other means used for providing structure & context
m At the beginning of each iteration

l Customer/product owner prioritizes requirements
l Developers select what to implement in that iteration

m Short feedback cycle from requirements to deployed system
Requirements Engineering I – Part II: RE Practices © 2018 Martin Glinz 123

Characteristics of an “ideal” RE process

m Strongly interactive
m Close and intensive collaboration between

l Stakeholders (know the domain and the problem)
l Requirements engineers (know how to specify)

m Very short feedback cycles
m Risk-aware and feasibility-aware

l Technical risks/feasibility
l Deadline risks/feasibility

m Careful negotiation / resolution of conflicting requirements
m Focus on establishing shared understanding
m Strives for innovation
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 124

7 Requirements elicitation

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 125

Definition and principles

DEFINITION. Requirements elicitation – The process of
seeking, capturing and consolidating requirements from
available sources, potentially including the re-construction or
creation of requirements.

m Determine the stakeholders’ desires and needs
m Elicit information from all available sources and consolidate

it into well-documented requirements
m Make stakeholders happy, not just satisfy them
m Every elicited and documented requirement must be

validated and managed
m Work value-oriented and risk-driven
Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 126

Information sources

m Stakeholders

m Context

m Observation
m Documents

m Existing systems

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 127

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 128

Stakeholder analysis

Identify stakeholder roles
End user, customer, operator,
project manager, regulator,...

In complex cases: Build model of stake-
holder goals, dependencies and rationale

Classify stakeholders
l Critical
l Major
l Minor

Identify/determine concrete persons for each stakeholder role

[Yu 1997]
[van Lamsweerde 2001]

[Glinz and Wieringa 2007]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 129

Context analysis

Determine the system’s context
and the context boundary

Identify context constraints
l Physical, legal, cultural,

environmental
l Embedding, interfaces

Identify assumptions about the context of your system and
make them explicit

Map real world phenomena adequately on the required
system properties and capabilities (and vice-versa)

Determine the system scope (cf. Chapter 2.4)

Photo © Universitätsklinikum Halle (Saale)

Goal analysis

Knowing your destination is more important than the details of
the timetable.

Before eliciting detailed requirements, the general goals and
vision for the system to be built must be clear

m What are the main goals?

m How do they relate to each other?

m Are there goal conflicts?

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 130

Mini-Exercise

Consider the chairlift access control case study.

(a) Perform a stakeholder analysis.

(b) How can you map the context property that a skier
passes an unlocked turnstile to a system property which
can be sensed and controlled by the system?

(c) Identify some business goals.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 131

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 132

Elicitation techniques

Ask
m Interview stakeholders
m Use questionnaires and polls
m Reply/follow-up to user feedback

Collaborate
m Hold requirements workshops
m Provide community platforms

Build and play
m Build, explore and discuss prototypes (cf. Chapter 5.5)
m Perform role playing

[Zowghi and Coulin 2005]
[Dieste, Juristo, Shull 2008]
[Gottesdiener 2002]
[Hickey and Davis 2003]
Kolpondinos and Glinz 2019]
[Goguen and Linde 1993]

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 133

Elicitation techniques – 2

Observe
m Observe stakeholders in their work context

Analyze
m Analyze work products
m Analyze user feedback

l Direct feedback: problem/bug reports, app reviews, tweets,
explicit feedback channels, ...

l Indirect feedback: user forums, system usage monitoring, ...
m Conduct market studies
m Perform benchmarking

Which technique for what?

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 134

Interviews
Questionnaires and polls
Workshops, Community platforms
Explorative prototypes
Role play
Stakeholder observation
Work product analysis
User feedback analysis
Market studies
Benchmarking

Express
needs

+
o
+
o
+
o
o
+
–
o

Demonstrate
opportunities

–
–
o
+
o
–
–
–
–
+

Analyze
system as is

+
+
o
–
o
+
+
–
o
–

Explore market
potential

o
+
o
o
–
o
–
o
+
+

Technique Suitability for

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 135

Typical problems

Inconsistencies among stakeholders in
● needs and expectations
● terminology

Stakeholders who know their needs, but can’t express them

Stakeholders who don’t know their needs

Stakeholders with a hidden agenda

Stakeholders thinking in solutions instead of problems

Stakeholders frequently neglect quality requirements and
constraints

➔ Elicit them explicitly

Who should elicit requirements?

m Stakeholders must be involved

m Domain knowledge is essential
l Stakeholders need to have it (of course)
l Requirements engineers need to know the main domain

concepts
l A “smart ignoramus” can be helpful

m Don’t let stakeholders specify themselves without
professional support

m Best results are achieved when stakeholders and
requirements engineers collaborate

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 136

[Berry 2002, Sect. 7]

Eliciting functional requirements

m Who wants to achieve what with the system?

m For every identified function
l What’s the desired result and who needs it?
l Which transformations and which inputs are needed?
l In which state(s) shall this function be available?
l Is this function dependent on other functions?

m For every identified behavior
l In which state(s) shall the system have this behavior?
l Which event(s) lead(s) to this behavior?
l Which event(s) terminate(s) this behavior?
l Which functions are involved?

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 137

Eliciting functional requirements – 2

m For every identified data item
l What are the required structure and the properties of this

item?
l Is it static data or a data flow?
l If it’s static, must the system keep it persistently?

m Analyze mappings
l How do real world functions/behavior/data map to system

functions/behavior/data and vice-versa?

m Specify normal and exceptional cases

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 138

Eliciting quality requirements

Stakeholders frequently state quality requirements in qualitative
form:
“The system shall be fast.”
“We need a secure system.”

Problem: Such requirements are
l Ambiguous
l Difficult to achieve and verify

m Classic approach:
l Quantification è ⊕ measurable ⊖ maybe too expensive
l Operationalization è ⊕ testable ⊖ implies premature

design decisions
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 139

New approach to eliciting quality requirements

Represent quality requirements such that they deliver optimum
value

Value of a requirement = benefit of development risk reduction
minus cost for its specification

m Assess the criticality of a quality requirement

m Represent it accordingly

m Broad range of possible representations

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 140

[Glinz 2008]

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 141

The range of adequate representations

Situation Representation Verification

1. Implicit shared understanding Omission Implicit

2. Need to state general direction Qualitative Inspection
Customer trusts supplier

3. Sufficient shared understanding By example Inspection,
to generalize from examples (Measurement)

4. High risk of not meeting stake- Quantitative Measurement
holders’ desires and needs in full

5. Somewhere between 2 and 4 Qualitative with Inspection, partial
partial quantification measurement

Eliciting performance requirements

Things to elicit

m Time for performing a task or producing a reaction

m Volume of data

m Throughput (data transmission rates, transaction rates)

m Frequency of usage of a function

m Resource consumption (CPU, storage, bandwidth, battery)

m Accuracy (of computation)

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 142

Eliciting performance requirements – 2

m What’s the meaning of a performance value:
l Minimum?
l Maximum?
l On average?
l Within a given interval?
l According to some probability distribution?

m How much deviation can be tolerated?

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 143

Eliciting specific quality requirements

m Ask stakeholders explicitly

m A quality model such as ISO/IEC 25010:2011(formerly
ISO/IEC 9126) can be used as a checklist

m Quality models also help when a specific quality
requirement needs to be quantified

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 144

Eliciting constraints

m Ask about restrictions of the potential solution space
l Technical, e.g., given interfaces to neighboring systems
l Legal, e.g., restrictions imposed by law, standards or

regulations
l Organizational, e.g. organizational structures or processes

that must not be changed by the system
l Cultural, environmental, ...

m Check if a requirement is concealed behind a constraint
l Constraint stated by a stakeholder: “When in exploration

mode, the print button must be grey.”
l Actual requirement: “When the system is used without a valid

license, the system shall disable printing.”
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 145

Mini-Exercise

Consider the chairlift access control case study.

(a) Which technique(s) would you select to elicit
requirements from the chairlift ticket office clerks?

(b) How, for example, can you achieve consensus among
the ski resort management, the technical director of
chairlifts, the ticket office clerks, and the service
employees?

(c) Identify some constraints for the chairlift access control
system.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 146

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 147

Analysis of elicited information

Note: requirements are about a future state of affairs; analyze the current
state only when necessary

Problem
Analyze business
and data objects
Build object and
class models

Analyze terminology /
domain properties
Build glossary

Analyze processes /
workflows
Build activity /
process models

Analyze dynamic
system behavior
Build behavior
model

Analyze actor-system interaction
Build scenarios / use cases

Decompose problem
Build hierarchical structure

✁

Structure-oriented Process-oriented

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 148

Documenting elicited requirements

Build specification incrementally and continuously

Document requirements in small units

End over means: Result ® Function ® Input

Consider the unexpected: specify non-normal cases

Quantify critical attributes

Document critical assumptions explicitly

Avoid redundancy

Build a glossary and stick to terminology defined in the glossary

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 149

8 Specifying with natural language

The oldest...
...and most widely used way
l taught at school
l extremely expressive

But not necessarily the best
l Ambiguous
l Imprecise
l Error-prone
l Verification primarily by careful reading

The system shall ...

Michelangelo’s Moses (San Pietro in Vincoli, Rome)
Moses holds the Ten Commandments in his hand:
written in natural language

150

Problems with natural language requirements

Read the subsequent requirements. Any findings?
“For every turnstile, the total number of turns shall be read and archived
once per day.”

“The system shall produce lift usage statistics.”

“Never shall an unauthorized skier pass a turnstile.”

“By using RFID technology, ticket validation shall become faster.”

“In the sales transaction, the system shall record the buyer’s data and
timestamp the sold access card.”

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz

Some rules for specifying in natural language

m Use active voice and defined subjects

m Build phrases with complete verbal structure

m Use terms as defined in the glossary

m Define precise meanings for auxiliary verbs (shall, should,
must, may,...) as well as for process verbs (for example,
“produce”, “generate”, “create”)

m Check for nouns with unspecific semantics (“the data”, “the
customer”, “the display”,...) and replace where appropriate

m When using adjectives in comparative form, specify a
reference point: “better” ➜ “better than”

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 151

[Rupp et al. 2009]
[Goetz&Rupp 2003]

Requirements Engineering I – Part II: RE Practices © 2020 Martin Glinz 152

More rules

m Scrutinize all-quantifications: “every”, “always”, “never”, etc.
seldom hold without any exceptions

m Scrutinize nominalizations (“authentication”, “termination”...):
they may conceal incomplete process specifications

m State every requirement in a main clause. Use subordinate
clauses only for making the requirement more precise

m Attach a unique identifier to every requirement

m Structure natural language requirements by ordering them in
sections and sub-sections

m Avoid redundancy where possible

Phrase templates

Use templates for creating well-formed natural language
requirements

Typical template:

[<Condition>] <Subject> <Action> <Objects> [<Restriction>]

Example:
When a valid card is sensed, the system shall send
the command ‘unlock_for_a_single_turn’ to the turnstile
within 100 ms.

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 153

[Mavin et al. 2009]
[Rupp et al. 2009]
[ISO/IEC/IEEE 2018]

Agile stories

m A single sentence about a requirement

m Written from a stakeholder’s perspective

m Optionally including the expected benefit
m Accompanied by acceptance criteria for requirement

m Acceptance criteria make the story more precise

Standard template:

As a <role> I want to <my requirement> so that <benefit>

Requirements Engineering I – Part II: RE Practices © 2019 Martin Glinz 154

[Cohn 2004]

A sample story

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 155

As a skier, I want to pass the chairlift gate so that I get
access without presenting, scanning or inserting a
ticket at the gate.

Author: Dan Downhill Date: 2013-09-20 ID: S-18

Sample acceptance criteria

Acceptance criteria:
l Recognizes cards worn anywhere in a pocket on the left

side of the body in the range of 50 cm to 150 cm above
ground

l If card is valid: unlocks turnstile and flashes a green light
for five seconds or until the turnstile is moved

l If card is invalid: doesn’t unlock gate and flashes a red
light for five seconds

l Time from card entering the sensor range until unlock
and flash red or green is less than 1.5 s (avg) & 3 s (max)

l The same card is not accepted twice within an interval of
200 s

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 156

Mini-Exercise: Writing a user story

Consider the chairlift access control case study.

Write a story from a skier’s perspective about buying a day
card.

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 157

All-quantification and exclusion

m Specifications in natural language frequently use all-
quantifying or excluding statements without much reflection:

“When operating the coffee vending machine, the user shall
always be able to terminate the running transaction by
pressing the cancel key.”

➪ Scrutinize all-quantifications (“every”, “all”, “always”...) and
exclusions (“never”, “nobody”, “either – or”,...) for potential
exceptions

➪ Specify found exceptions as requirements
Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 158

Also when the coffee is already
being brewed or dispensed?

Dealing with redundancy

m Natural language is frequently (and deliberately) redundant

à Secures communication success in case of some
information loss

m In requirements specifications, redundancy is a problem
l Requirements are specified more than once
l In case of modifications, all redundant information must be

changed consistently

m Make redundant statements only when needed for
abstraction purposes

m Avoid local redundancy: “never ever” à “never”

Requirements Engineering I – Part II: RE Practices © 2017 Martin Glinz 159

