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Monocular visual odometry is the process of computing the egomotion of a vehicle purely from images of a
single camera. This process involves extracting salient points from consecutive image pairs, matching them,
and computing the motion using standard algorithms. This paper analyzes one of the most important steps
toward accurate motion computation, which is outlier removal. The random sample consensus (RANSAC)
has been established as the standard method for model estimation in the presence of outliers. RANSAC is
an iterative method, and the number of iterations necessary to find a correct solution is exponential in the
minimum number of data points needed to estimate the model. It is therefore of utmost importance to find
the minimal parameterization of the model to estimate. For unconstrained motion [six degrees of freedom
(DoF)] of a calibrated camera, this would be five correspondences. In the case of planar motion, the motion
model complexity is reduced (three DoF) and can be parameterized with two points. In this paper we show
that when the camera is installed on a nonholonomic wheeled vehicle, the model complexity reduces to two
DoF and therefore the motion can be parameterized with a single-point correspondence. Using a single-feature
correspondence for motion estimation is the lowest model parameterization possible and results in the most
efficient algorithm for removing outliers, which we call 1-point RANSAC. To support our method, we run many
experiments on both synthetic and real data and compare the performance with state-of-the-art approaches and

with different vehicles, both indoors and outdoors. © 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

Visual odometry is the problem of estimating the ego-
motion of a vehicle from onboard-camera images. Sev-
eral works have been recently produced using both stereo
and monocular cameras (Goecke, Asthana, Pettersson,
& Petersson, 2007; Maimone, Cheng, & Matthies, 2007;
Milford & Wyeth, 2008; Nister, Naroditsky, & Bergen, 2006;
Scaramuzza & Siegwart, 2008; Tardif, Pavlidis, & Daniilidis,
2008). Basically, visual odometry operates by incremen-
tally computing the motion between consecutive frames.
This is done by extracting salient points (such as Harris,
FAST, SIFT) from both images and matching them accord-
ing to some similarity measure. However, matched points
are usually contaminated by outliers, that is, wrong data as-
sociations. Outliers must be carefully removed so that the
motion can be estimated accurately (Figure 1).

The 5-point random sample consensus (RANSAC)
(Nister, 2003) has been established as the standard method
for motion estimation in the presence of outliers. The draw-
back of this algorithm is that the number of iterations nec-
essary to find a correct solution grows exponentially with
the number of outliers. In some cases, the 5-point RANSAC
can require up to 1,000 iterations for data collected from a
vehicle in an urban environment. Because of this, several
works have been produced in an endeavor to reduce the
number of iterations (Chum & Matas, 2005; Nister, 2005;
Raguram, Frahm, & Pollefeys, 2009).

In this paper, we show that there exists a class of vehi-
cles (e.g., cars, bicycles, differential-drive robots) for which
the motion can be parameterized with a single-feature cor-
respondence. This is made possible by exploiting the non-
holonomic constraints of the vehicle. The main advantages
and consequences of this parameterization are that motion
can be estimated in the presence of very few features—
where standard algorithms would fail—and that two very
efficient methods for removing the outliers can be devised,
which are 1-point RANSAC and histogram voting. Once
the outliers are removed, the motion can be computed in
six degrees of freedom (DoF) using all the inliers.

The structure of the paper is the following. In Section 2,
we review the related work. In Section 3, we give a short
description of the RANSAC paradigm. In Section 4, we ex-
plain how the nonholomic constraints of wheeled vehicles
allow us to parameterize the motion with a single-point cor-
respondence. In Section 5, we describe two efficient meth-
ods for removing the outliers by taking advantage of the
proposed motion model. Finally, in Sections 6 and 7 we
present our experimental results and conclusions.

2. RELATED WORK ON VISUAL ODOMETRY

Most of the work in estimating vehicle motion using vi-
sion (also called visual odometry) has been produced us-
ing stereo cameras (Jung & Lacroix, 2005; Lacroix, Mallet,
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Figure 1. Comparison between visual odometry trajectories
estimated before and after removing the outliers.

Chatila, & Gallo, 1999; Maimone et al., 2007; Moravec, 1980;
Nister et al., 2006). Nevertheless, visual odometry methods
for outdoor applications that use a single camera have also
been produced. The problem of recovering relative cam-
era poses and three-dimensional (3D) structure from a set
of monocular images has been studied for many years and
is known in the computer vision community as “structure
from motion” (SFM) (Hartley & Zisserman, 2004). Success-
ful results with a single camera and over long distances
(from hundreds of meters up to kilometers) have been ob-
tained in the past decade using both perspective and om-
nidirectional cameras (see Corke, Strelow, & Singh, 2005;
Goecke et al., 2007; Lhuillier, 2005; Milford & Wyeth, 2008;
Nister et al., 2006; Scaramuzza & Siegwart, 2008; Tardif
et al., 2008). Here, we review some of these works.

Related works can be divided into three categories:
feature-based methods, appearance-based methods, and
hybrid methods. Feature-based methods are based on
salient and repetitive features that are tracked over the
frames; appearance-based methods use the intensity infor-
mation of all the pixels in the image or of subregions of it;
hybrid methods use a combination of these two.

In the first category are the works of Corke et al.
(2005), Lhuillier (2005), Nister et al. (2006), Ortin and
Montiel (2001), and Tardif et al. (2008). In Nister et al. (2006),
the authors dealt with the case of a stereo camera, but they
also provided a monocular solution. For removing the out-
liers, they used the 5-point RANSAC algorithm from one
of the same authors (Nister, 2003). In Corke et al. (2005), the
authors provided an approach for monocular visual odom-
etry based on omnidirectional imagery from a catadiop-
tric camera. Because the motion baseline was very small,
outliers were removed if the pixel distance between the
observed features and the predicted features was larger
than a given threshold. However, this technique is not a
good option when the motion baseline is large, as for gen-
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eral ground vehicles. In Lhuillier (2005), the author pre-
sented an approach-based bundle adjustment to recover
both the motion and the 3D map. Again, they used the
5-point RANSAC in Nister (2003) for removing the outliers.
In Tardif et al. (2008), the authors presented an approach
for incremental and accurate SFM from a car over a very
long run (2.5 km) without bundle adjustment. To achieve
it, they decoupled the rotation and translation estimation.
In particular, they estimated the rotation using points at in-
finity and the translation from the recovered 3D map. Bad
correspondences were removed with preemptive 5-point
RANSAC (Nister, 2005). In Ortin and Montiel (2001), the
authors described an approach for planar-motion estima-
tion that is based on a 2-point RANSAC. This 2-point pa-
rameterization was made possible by the fact that for pla-
nar motion correspondences of as few as two points are re-
quired to estimate the motion. Given the complexity of the
equations, the authors determined the solution iteratively
with the Newton-Raphson method.

Among the appearance-based or hybrid approaches
are the works of Goecke et al. (2007), Milford and Wyeth
(2008), and Scaramuzza and Siegwart (2008). In Goecke
et al. (2007), the authors used the Fourier-Mellin trans-
form for registering perspective images of the ground plane
taken from a car. In Milford and Wyeth (2008), the authors
presented a method to extract approximate rotational and
translational velocity information from a single-perspective
camera mounted on a car, which was then used in a Rat-
SLAM scheme (Milford, Wyeth, & Prasser, 2004). How-
ever, appearance-based approaches alone are not very ro-
bust to occlusions. For this reason, in our previous works
(Scaramuzza, Fraundorfer, Pollefeys, & Siegwart, 2008;
Scaramuzza & Siegwart, 2008), we used appearance to es-
timate the rotation of the car and features from the ground
plane to estimate the translation and the absolute scale. The
feature-based approach was also used as a firewall to detect
failure of the appearance-based method.

Closely related to SFM is what is known in the
robotics community as simultaneous localization and map-
ping (SLAM), which aims at estimating the motion of the
robot while simultaneously building and updating a co-
herent environment map. In recent years successful results
have been obtained also using single cameras (see Civera,
Grasa, Davison, & Montiel, 2010; Clemente, Davison, Reid,
Neira, & Tardos, 2007; Davison, 2003; Deans, 2002; Eade &
Drummond, 2007; Handa, Chli, Strasdat, & Davison, 2010;
Klein & Murray, 2008; Lemaire & Lacroix, 2007). In partic-
ular, in Handa et al. (2010) the authors propose an active
matching technique based on a probabilistic framework. In
Civera et al. (2010) the authors propose a combination of
1-point RANSAC within an extended Kalman filter (EKF)
that uses the available prior probabilistic information from
the EKF in the RANSAC model hypothesis stage. How-
ever, our work is completely different as we do not use any
prior probabilistic information. Our approach relies only on
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the use of the vehicle nonholonomic constraints. The basic
idea behind the current paper was already presented in our
previous work in Scaramuzza, Fraundorfer, and Siegwart
(2009) and in Scaramuzza (2011). Our previous work was,
however, based on the assumption that the camera is posi-
tioned on the rear-wheel axis. In this paper, we provide a
complete and deep evaluation of the influence of the cam-
era position on the estimate of the relative motion and we
compare our approach with standard algorithms such as
the 2-point and the 5-point RANSAC. Furthermore, we test
the algorithm on additional data sets and vehicles, in both
indoor and outdoor environments.

3. MINIMAL MOTION MODELS

For unconstrained motion (six DoF) of a calibrated camera,
the minimum number of point correspondences required
for solving the relative pose problem is five [see the 5-
point algorithm in Nister (2003) and Stewenius, Engels, and
Nister (2006)]. This can be intuitively understood by notic-
ing that of the six parameters that we need to estimate
(three for the rotation and three for the translation) only five
are actually required. Indeed, the relative pose between two
cameras is always valid up to a scale.

The first solution to the 5-point relative pose problem
was proven in Kruppa (1913) to have at most 11 solutions.
This was later improved by Faugeras and Maybank (1990),
showing that there are at most 10 solutions, but the method
found only in 2006 its efficient implementation in the al-
gorithm of Nister (2003) and Stewenius et al. (2006). Be-
fore this efficient version of the 5-point algorithm, the most
common methods used to solve the relative pose problem
were the 8-point, 7-point, and 6-point algorithms, which are
all still widely used. The 8- and 7-point methods relaxed
the requirements of having calibrated cameras and hence
led to very efficient and easy-to-implement algorithms. The
8-point algorithm (Longuet-Higgins, 1981) has a linear
solver for a unique solution, whereas the 7-point method
(Hartley and Zisserman, 2004) leads to up to three solu-
tions. The 6-point method (Philip, 1996; Pizarro, Eustice, &
Singh, 2003) works for calibrated cameras and yields up to
six solutions.

An interesting review and comparison of all these
methods can be found in Stewenius et al. (2006). There, it is
shown that the new implementation of the 5-point method
provides superior pose estimates with respect to all the
other algorithms.

In every situation in which a model has to be esti-
mated from given data, we have to deal with outliers. The
RANSAC (Fischler & Bolles, 1981) has been established
as the standard method for model estimation in the pres-
ence of outliers. SFM is one application of the RANSAC
scheme. The estimated model is the motion (R,T) and is
estimated from feature correspondences. Outliers are fea-
ture points with wrong data associations. The idea behind
RANSAC is to compute model hypotheses from randomly

Table I. Number of RANSAC iterations.

Minimal number of data points (s) Number of iterations (N)

1,177
587
292
145

16
7

= N U1\

sampled minimal sets of data points and then to verify
these hypotheses on the other data points. The hypothesis
that shows the highest consensus with the other data is se-
lected as the solution. The number of subsets (iterations)
N that is necessary to guarantee that a correct solution is
found can be computed by

N~ logd—p) , )

log[1 — (1 —€)*]

where s is the number of minimal data points, € is the per-
centage of outliers in the data points, and p is the requested
probability of success (Fischler & Bolles, 1981). N is expo-
nential in the number of data points necessary for estimat-
ing the model, so there is a high interest in finding the min-
imal parameterization of the model. For unconstrained mo-
tion (six DoF) of a calibrated camera, this would be five cor-
respondences. Using the 6-, 7-, or 8-point method would
increase the number of necessary iterations and therefore
slow the motion estimation algorithm. It is therefore of ut-
most importance to find the minimal parameterization of
the model to estimate. In the case of planar motion, the mo-
tion model complexity is reduced (three DoF) and can be
parameterized with two points as described in Ortin and
Montiel (2001).

For wheeled vehicles we will show in Section 4 that an
even more restrictive motion model can be chosen that al-
lows us to parameterize the motion with only one feature
correspondence. Using a single-feature correspondence for
motion estimation is the lowest model parameterization
possible and results in the most efficient RANSAC algo-
rithm. We will also show that an even more efficient algo-
rithm that requires no iteration can be devised.

A summary of the number of RANSAC iterations
needed as a function of the number of model parameters
s is shown in Table I. These values were obtained assum-
ing a probability of success p = 99% and a percentage of
outliers ¢ = 50%.

4. PARAMETERIZING THE MOTION WITH
ONE-POINT CORRESPONDENCE

For a wheeled vehicle to exhibit rolling motion, a point
must exist around which each wheel of the vehicle follows
a circular course (Siegwart, Nourbakhsh, & Scaramuzza,
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Figure 2. General Ackermann steering principle.

2004). This point is known as the instantaneous center of
rotation (ICR) and can be computed by intersecting all the
roll axes of the wheels (Figure 2). This property holds for
any robot, in particular for car-like and differential-drive
robots. For cars the existence of the ICR is ensured by the
Ackermann steering principle (Siegwart et al., 2004). This
principle ensures a smooth movement of the vehicle by ap-
plying different steering angles to the inner and outer front
wheel while turning (see Figure 2).

As the reader can perceive, the motion of a camera
fixed on the vehicle can then be locally described with cir-
cular motion (note that rectilinear motion can be repre-
sented along a circle with an infinite radius of curvature).
This constraint reduces the DoF of motion to two, namely
the rotation angle and the radius of curvature. Therefore,
only one-feature correspondence suffices for computing the
relative pose up to a scale. As we will see in the next section,
this is, however, theoretically valid under the assumption
that the camera is positioned above the rear-wheel axis of
the vehicle. In Section 6 we will evaluate under which con-
ditions this approximation can still be adopted if the cam-
era has an offset to the rear axis.

Now we will see how the circular motion constraint re-
flects on the rotation and translation of the camera and on
the parameterization of the essential matrix. In the follow-
ing we will assume locally planar motion.

4.1. Parameterizing the Camera Motion

To understand the influence of the vehicle’s nonholonomic
constraints on the camera motion, we need to take into ac-
count two transformations: that between the camera and
the vehicle and that between the two vehicle positions.

Let us assume that the camera is fixed somewhere on
the vehicle (with the origin in Oc; Figure 3) with the axis z¢
orthogonal to the plane of motion and xc oriented perpen-
dicularly to the rear-wheel axis. Observe that once the cam-
era is installed on the vehicle, the axes can be rearranged in
the above way with a simple transformation of coordinates.
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Figure 3. Relation between camera axes in circular motion.

The origin Oy of the vehicle reference frame can be
chosen arbitrarily. For convenience, we set Oy at the inter-
section of xc with the rear-wheel axis and xy aligned with
xc (Figure 3). We observed that by this choice the equations
are notably simplified.

Following these considerations, the transformation
Ag = (RS, TS,) from the camera to the vehicle reference
system can be written as Rg, =1I3.3 and TS = [-L, 0,017,
where L is the distance between the camera and the back-
wheel axis (Figure 3).

If the vehicle undergoes perfect circular motion with
rotation angle 6, then the direction of translation ¢ of the ve-
hicle must satisfy the “circular motion constraint” ¢ = 6/2,
which can be easily verified by goniometrics. Accordingly,
the transformation between the first and second vehicle po-
sition Ag, =(RY, Tz,) can be written as

0
cos ( 2)

cos(@) —sin(@) 0
Rx, = |sin(@) cos(®) O], Tx/ =P gn ANE
0 0 1 2

@

where p is the vehicle displacement (Figure 3). Follow-
ing these considerations, the overall transformation Ag, =
(RS, Tg/) between the first and second camera positions
can be computed as a composition of three transformations,
that is,

’ -1
AL = A 0 Ay, 0 AL = A§ 0 Ay, 0 AS T, 3)
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, -1 . .
where we used A g, = A‘C, . And from this, we obtain

(%
L cos(9) + p cos <§> - L

RS =Ry, and TS, =

pin(2) - sy |

0

4,2. Computing the Essential Matrix

Before going on, we would like to recall some knowledge
about computer vision. Let p = (x, y, z) and p’ = (x', y', Z)
be the image coordinates of a scene point seen from the two
camera positions. Note that to make our approach indepen-
dent of the camera model, we use spherical image coordi-
nates; therefore p and p’ are the image points backprojected
onto a unit sphere (i.e., [[pll = [Ip’ll = 1). This is always pos-
sible when the camera is calibrated.

As is known in computer vision (Hartley & Zisserman,
2004), the two unknown camera positions and the image
coordinates must verify the epipolar constraint

p Ep=0, )

where E (called essential matrix) is defined as E = [T]«R,
where [T]« denotes the skew symmetric matrix

0 -7, Ty
[T] X = Tz 0 =Ty (6)
-7y T, 0

and R and T = [T, Ty, T;] describe the relative pose be-
tween the camera positions (for our case R = Rg, and T =
TS).

The epipolar constraint (5) is very important because
it allows us to estimate the relative camera pose from a set
of image correspondences. Indeed, given the image points
p and p’ we can compute E from Eq. (5) and finally decom-
pose E into R and T (Hartley & Zisserman, 2004).

That said, we can now compute the essential matrix for
our case using E = [TC,]X Rg,, that is,

and therefore this problem becomes equivalent to that of es-
timating the essential matrix under general planar motion
(Hartley & Zisserman, 2004). However, we observe that E
gets notably simplified if we pose L = 0, that is, when the
camera is above the rear-wheel axis.? Indeed, by substitut-
ing L = 0 into (7) we obtain
. 6
sin ( 5 )

cos <§> . 8)
sin (g) — Cos (g) 0

We can observe that E now depends only on 6, since p ap-
pears to be just a multiplicative factor. This implies that we
need just one point correspondence to estimate E. Indeed,
if we now impose the epipolar constraint (5), we obtain the
following homogeneous equation that needs to be satisfied
by every pair of point correspondences p, p’:

E=p- 0 0

sin (%) (x'z +7'x) + cos (g) -O'z=2Zy)=0. 9
Again, we can see that this equation depends only on the
single parameter 6, showing that the relative camera mo-
tion can be recovered using a single-feature correspon-
dence.

From now on we will assume that the camera is posi-
tioned above the rear-wheel axis and therefore L = 0. In the
experimental section (Section 6) we will investigate under
which conditions this approximation can still be adopted if
the camera has an offset to the rear axis (i.e., L # 0).

4.3. Recovering 0

Given one-point correspondence, the rotation angle 6 can
then be obtained from Eq. (9) as

/ /
_1(yzZ—z2Yy
o=z (L557). a0

0 0 sin (g) _L sin(6)
2 P
E= 0 0 cos <€> + £[1 —cos(@)] | . ()
2 P
L sin(f) + sin <€> E[l — cos(f)] — cos <€> 0
0 2 0 2

As can be observed, E depends on two parameters, namely
6 and the ratio L/p.! Because L/p is unknown, E needs a
minimum of two point correspondences to be computed,

!We can consider the ratio L/p instead of L and p individually be-
cause the essential matrix is defined up to a scale factor.

Conversely, given m image points, 6 can be computed indi-
rectly by solving linearly for the vector [sin(6/2), cos(6/2)]

ZNote that the camera does not necessarily have to be on the axis
of symmetry of the vehicle.

Journal of Field Robotics DOI 10.1002/rob



using singular value decomposition (SVD). To this end, we
first form a m x 2 data matrix D, where each row is formed
by the two coefficients of Eq. (9), that is,

[(x'z+2'x), 'z = 2'y)]. (11)
The matrix D is then decomposed using SVD:

Dyyx2 = Upnx2MA2x2Vax2, (12)

where the columns of V> contain the eigenvectors e; of
DT D. The eigenvector * = [sin(8/2), cos(d/2)] correspond-
ing to the minimum eigenvalue minimizes the sum of
squares of the residuals, subject to ||e*|| = 1. Finally, # can
be computed from e*.

4.4. Discussion

To recap, we have shown that by fixing the camera in
the optimal position L = 0 and under circular motion con-
straint, the relative camera motion can be parameterized
through a single-feature correspondence.

In the next section we will see how this can be used
for efficiently removing the outliers of the feature matching
process. Then we will investigate up to which limit we can
actually push L so that our restrictive model is still usable.
Indeed, as observed in the expression of the essential ma-
trix (7), when L # 0, the model is described by two parame-
ters (9 and L/p), that is, at least two point correspondences
are required to estimate the camera motion.3 However, as
we will point out in Section 6, our 1-point parameteriza-
tion continues still to be a very good approximation in those
cases in which 6 is small (6 < 10 deg).

Also, observe that the planar assumption and the cir-
cular motion constraint hold only locally, but because of the
smooth motion of cars we found that this assumption actu-
ally still holds very well also in the real situations; the per-
formance will be analyzed in Section 6.

5. OUTLIER REMOVAL

Outlier removal is the most delicate process in camera pose
estimation. The presence of outliers in the data may af-
fect negatively the accuracy of the final motion estimate.
Here we describe two approaches for removing the out-
liers, which take advantage of our 1-point parameteriza-
tion. Once the outliers are identified, the unconstrained
motion estimate (six DoF) can be computed from all
the remaining inliers using standard methods (Hartley &
Zisserman, 2004; Stewenius et al., 2006).

The two approaches explained here are based on
RANSAC and histogram voting.

*Note that because p does not appear as a multiplicative fac-
tor in Eq. (7), this means that we can actually determine the
absolute scale analytically from just two point correspondences.
This result was presented in our previous work (Scaramuzza,
Fraundorfer, Pollefeys, & Siegwart, 2009).
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5.1. 1-Point RANSAC

The first step of our 1-point RANSAC consists of comput-
ing the relative motion out of one randomly chosen cor-
respondence. To do this, we first use Eq. (10). The motion
hypothesis is then generated using Eq. (2) (note that p can
be arbitrarily set to 1). The second step is counting the in-
lier rate in each iteration, that is, the number of correspon-
dences that satisfy the hypothesis. This can be done using
the reprojection error.* We used an error threshold of one
pixel. Note that for an efficient computation of the repro-
jection error, some approximation exists, e.g., the Sampson
distance (Hartley & Zisserman, 2004) or the directional error
(Oliensis, 2002).

5.2. Histogram Voting

The possibility of estimating the motion using only one
feature correspondence allows us to implement another al-
gorithm for outlier removal, which is much more efficient
than the 1-point RANSAC as it requires no iterations. The
algorithm is based on histogram voting: first, 6 is computed
from each feature correspondence using Eq. (10); then a
histogram H can be built in which each bin contains the
number of features that count for the same 6. A sample his-
togram built from real data is shown in Figure 4. When the
circular motion model is well satisfied, the histogram has
a very narrow peak centered on the best motion estimate
0%, that is, 0* = argmax{H}. We then generate our motion
hypothesis by substituting 6* into Eq. (2) and use the re-
projection error to identify all the inliers.

To make the algorithm even more efficient, we should
avoid the computation of the histogram. Therefore, instead
of computing 6* as the argmax of the histogram, we set
0* equal to the median of the distribution, that is, 6* =
median {6;}. The inliers are then found by using again the
reprojection error. We found the median giving as good re-
sults as the argmax and therefore we used this in our final
implementation. A comparison between the median and
ground-truth data is shown in Figure 16 later in the paper.
Notice that using the median we are completely avoiding
the computation of the histogram. However, for the sake of
clarity we will still refer to this approach as the histogram
voting method.

Compared to the 5-point RANSAC, the 1-point
RANSAC and histogram voting method are the most ef-
ficient algorithms for removing the outliers. In all the tests,
the computational time required to detect the inliers us-
ing the histogram voting method was on average 20 us
when the average number of putative matches between
the two images was about 3,000 image points. The 1-point
RANSAC found a successful solution in fewer than seven

*To compute the reprojection error, we used the gold-standard
method in Hartley and Zisserman (2004).
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Figure 5. Our synthetic scenario: (a) top view and (b) 3D view.

iterations, requiring at most 2 ms. These tests were done
with an Intel 2-GHz Dual-Core laptop.

6. EXPERIMENTS

In this section, we validate our motion model. The 1-point
method and the histogram voting method are compared
with the 5-point algorithm by Nister (2003) and Stewenius
et al. (2006), which is considered the standard in visual
odometry (Lhuillier, 2005; Nister et al., 2006; Tardif et al.,
2008). In particular, we investigate within which constraints
our motion model is able to find as many (or more) corre-
spondences as the 5-point method and when it becomes too
restrictive.

As discussed in Section 4.4, in order to use our 1-point
parameterization the camera needs to be installed above
the rear-wheel axis, thus satisfying the requirement L = 0.
In this section, we evaluate also under which motion con-
ditions we can arbitrarily fix the camera on the vehicle. The
position of the camera is in fact of utmost importance in

commercial automotive applications, in which the camera
is usually under the vehicle windscreen.

We also evaluate the performance when the planarity
constraint is not perfectly satisfied. For the 5-point method,
we use the implementation of the algorithm available at the
authors” website (Nister, 2003). We first compare the three
algorithms on synthetic data and finally on real data.

6.1.
6.1.1.

We investigate the performance of the algorithms in ge-
ometrically realistic conditions. In particular, we simulate
a vehicle moving in urban canyons. Our scenario is de-
picted in Figure 5. We set the first camera at the origin
and randomize scene points uniformly inside several dif-
ferent planes, which stand for the facades of urban build-
ings. We used overall 1,600 scene points, namely 400 on
each plane. The second camera is positioned according to
the motion direction of the vehicle, which moves along

Experiments on Synthetic Data

Generation of Synthetic Data
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circular trajectories about the instantaneous center of rota-
tion. Therefore, the position of the second camera depends
on the rotation angle 8, on the vehicle displacement p, and
on the distance L of the camera from the center of the rear
wheels. These parameters are the same as introduced in the
preceding sections.

To make our analysis more realistic, we assume that
the car can drive at a maximum speed of 50 km/h and that
the camera frame rate is 15 Hz (actually the one of our real
camera). Accordingly, the maximum vehicle displacement
between two frames is about 1 m. Therefore, as a default
condition we set p = 1 m in all tests. The minimal distance
of the scene to the camera was set at 10 m.

We also simulate feature location errors by introduc-
ing a noise parameter into the image data. We include a
Gaussian perturbation in each image point with a standard
deviation of 0.5 pixel in a 640 x 480 pixel image.

6.1.2. Comparison with 5-Point RANSAC

In this section, we evaluate the performance of our 1-point
RANSAC and histogram voting with the standard 5-point
algorithm (Nister, 2003; Stewenius et al., 2006). For com-
pleteness, we also added the comparison with the 2-point
RANSAC (Ortin & Montiel, 2001). The performance is done
by comparing the percentage of inliers found by all the
methods, that is, the ratio between the found matches and
the true number of inliers.

We evaluated the performance with respect to the ro-
tation angle # and the camera offset L. Because this would
require us to do the test for all the possible combinations
of 6 and L, we chose to show here only two extreme cases,
that is, the optimal case L = 0 m and the case L =1 m. In
fact, these two cases are those we tested also on our plat-
form, and therefore we decided to replicate them in simula-
tion. For larger L we found that the performance decreases
linearly.

The average results, over 1,000 trials, are shown in
Figure 6 for planar and non—perfectly planar motion, re-
spectively. For simulating a nonplanar motion, we intro-
duced a 0.1-m-high step and a tilt angle of 1 deg. Note
that we limited the range of 6 in the simulations to be be-
tween 0 and 20 deg as this is what we experienced with
the real data from our platform (see Figure 7). Note that
each plot in Figure 6 corresponds to a different combi-
nation of motion (planar/nonplanar) and camera settings
(L =0/L =1). For each combination, we generated 1,000
trials; each trial consists of perturbing the image points
with 0.5-pixel, standard-deviation Gaussian noise. Every
dot in the plot shows the median over these 1,000 trials for
a given 6 angle.

As observed in Figure 6(a), for planar motion and L =
0, the performance of the algorithms stays constant with 6
as expected. However, when L =1 [Figure 6(b)], the frac-
tion of inliers found by the 1-point and histogram-voting
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methods decreases with 6 and becomes lower than with the
5-point RANSAC at 6 = 10 deg. When 6 = 20 deg, the two
algorithms find 75% of the true inliers. The performance
of the 5-point method stays conversely constant with 6 re-
gardless of L. The 5-point method indeed does not assume
motion constraints.

For non—perfectly planar motion [Figures 6(c) and
6(d)], the performance of the 1-point and histogram-voting
methods decreases notably, with only 50% of the inliers de-
tected.

For the 2-point RANSAC, the number of found inliers
in general stays constant independently of L. The perfor-
mance drops remarkably when the motion becomes non-
planar.

6.1.3. Number of RANSAC Iterations

We repeated the experiments presented in the preceding
section by varying also the percentage of outliers in the
data points from 10% up to 90%. The results were the
same as in Figure 6 regardless of the number of outliers in
the data points. However, the number of RANSAC itera-
tions needed to find the largest set of inliers increased ex-
ponentially with the percentage of outliers.® For instance,
when the outliers were 70% of the data points, the 5-point
RANSAC needed more than 1,500 iterations. A comparison
of the number of iterations needed to find the largest set of
inliers as a function of the percentage of outliers is shown
in Figure 8. These results are the average over different tri-
als. Note that here we also added a comparison with the
2-point RANSAC.

As predicted by Eq. (1), the number of iterations of
the 1-point and 5-point RANSAC increases exponentially
with the fraction of outliers. But the number of iterations
of the 1-point is greatly smaller than that of the 5-point.
For instance, in the worse case, with 90% of outliers, the
5-point needed more than 2,000 iterations, whereas the 1-
point method required only 90 iterations. The histogram
voting method does not require iterations but is shown here
just for comparison.

6.2. Experiments on Real Data

Note that the equations and results derived in this paper are
valid for both perspective and omnidirectional cameras. To
show the generality of the approach, we decided to use an
omnidirectional camera.

®As a stopping criterion, here we used the method proposed in
Hartley and Zisserman (2004), which adaptively estimates the frac-
tion of outliers in the data and computes accordingly the number
of iterations required using Eq. (1).
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versus 6.
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Figure 7. Steering angle 6 (deg) versus traveled distance (m)
read from our car. It is the angle the vehicle rotated between

two consecutive frames.

6.2.1.

The method described in this paper has been successfully
tested on real vehicles, both indoors and outdoors. We first
present results on the outdoor vehicle in our lab. Additional
results with different vehicles are given in Section 6.2.6.
The first vehicle used in our experiments is depicted in
Figure 9. Our omnidirectional camera is composed of a hy-
perbolic mirror (KAIDAN 360 One VR) and a digital color
camera (SONY XCD-5X910, image size 640 x 480 pixels).
For the purpose of this paper, we tested the algorithms
with the camera in two different positions: camera above
the rear-wheel axis (L = 0) and camera above the wind-
screen (L =1 m) (Figure 9). To do this, we collected two
data sets with the camera at different positions. We used
the maximum frame rate of this camera, which is 15 Hz,
but sometimes we noticed that the frame rate decreased

Data Acquisition
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below 10 Hz because of the memory sharing on the
onboard computers. For calibrating the camera we used the
toolbox described in Scaramuzza, Martinelli, and Siegwart
(2006) and available from the authors” website. The vehicle
speed ranged between 0 and 45 km/h.

The data set was taken in normal traffic in the city cen-
ter of Zurich during a 3-km trajectory (Figure 10). There-
fore, many pedestrians, moving trams, buses, and cars were
also present. Point correspondences were extracted using
the Harris detector (Harris & Stephens, 1988).

6.2.2. Inlier Ratio

To evaluate the performance on real data, we compare the

percentage of inliers found by the three methods under dif-
ferent conditions, which are L = 0, L = 1 m, flat road, non—
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Figure 10. Comparison between visual odometry (red dashed
line) and ground truth (black solid line). The entire trajectory is
3 km long. The numbers correspond to the sequences analyzed
in Figure 11. Blue lines mark starting and ending points of each
sequence.

perfectly flat road, straight and curving path, low frame
rate. Because we cannot show the results for all 4,000 im-
ages in our data set, we decided to show them only for
some selected paths. The results of the comparison are pre-
sented in Figure 11, and the paths they refer to are shown
in Figure 10. As observed in Figure 11, the performance of
the 1-point and histogram voting methods compare very
well with that of the 5-point method for the first four cases
(a—d). The performance of the two algorithms is slightly mi-
nor in the fifth path [Figure 11(e)], where the camera frame
rate drops to 2.5 Hz. We can justify this by observing that
our restrictive motion model holds only locally and it is
therefore important that the displacement of the vehicle be-
tween two consecutive frames be small. The performance
drastically decreases at some point in the sixth path where
the car is going downbhill on a slightly twisting road. Also

{a)

(b)

Figure 9. Our vehicle equipped with an omnidirectional camera. The two different settings L =0 m and L =1 m used in the

experiments are shown.

Journal of Field Robotics DOI 10.1002/rob



802

Journal of Field Robotics—2011

g 0.7t 2 o7t ]
g o6r 1 ; 0.6 d
€ o5l 1 Eo4 ]
£ 04l . 1 % L 1
€ —J— 1-point e o4 ——— 1-point
€931 | —p— Histogram voting | €9 | —f>— Histogram voting ]
0.2y 2-point 1 02r | —f—}— 2-point 1
011 | —¥— 5-point 1 01 | —k— 5-point 1
o é 15 1‘5 50 55 36 % 5 10 15 20 25 30
Frame index Frame index
(a) Path 1 (b) Path 2
2o7p 1 Zorf |
g 06l 1 g osf 1
% 05F 1 % 05f 1
é 5 1-point | ; %4 —— 1-point |
£ 03| —— Histogram voting 1 E&03 —pP— Histogram voting 1
021 | —— 2-point 1 02r| —f— 2-point 1
o1r | —k— 5-point 1 01| —*K— 5-point 1
o 5 10 15 20 2 % 5 10 15 20 2 3
Frame index Frame index
(c) Path 3 (d) Path 4
Zort 1 Z
g 06f 1 g
% 0.5 i %
£ ——— 1-point € —(5— 1-point 1
z 0.3F . . 1 c 03[ . . 7
= —>— Histogram voting = —P>— Histogram voting
02| [ 2-point ] *2l [ 2-point |
011 | —k— 5-point 1 011 —— 5-point |
o 5 10 15 20 2 i % 5 10 15 20 2 30
Frame index Frame index
(e) Path 5 (f) Path 6
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1-point method differs from that of the 5-point method by less than 10% in 80% of the cases. The histogram voting method gave

the same performance, and therefore it is not shown here.

notice that, overall, the performance of the 2-point
RANSAC is very similar to that of the 1-point and his-
togram voting methods. Therefore, in the following we will
concentrate our comparison mainly with respect to the 5-
point RANSAC.

By inspecting the performance for the entire data set,
we found that the percentage of inliers of the 1-point and
histogram voting methods differed from that of the 5-point
by less than 10% in 80% of the cases. This is clearly quanti-
fied in Figure 12, which shows the histogram of the relative
difference (percent) between the inlier count of the 1-point
and the 5-point algorithm over all images. When the differ-
ence was larger than 10%, we found that this was due to
sudden jumps of the frame rate or to nonperfect planarity
of the road. To verify the last statement quantitatively, we
measured the planarity of the motion estimated by the 5-
point algorithm. The planarity of the motion was charac-
terized both in terms of the estimated tilt angle © and in
terms of the estimated camera displacement Z along z. For
every pair of consecutive images, we computed both Q and
Z and measured the ratio #inliers; , /Hinlierss, - The relation be-
tween the nonplanarity of the estimated motion and the in-
lier ratio is shown in Figures 13 and 14. These plots depict
the mean and standard deviation of the inlier ratio com-
puted within predefined intervals of Q and Z, respectively.
As observed, a reduced number of inliers in the 1-point al-
gorithm occurs when the planar motion assumption is vio-
lated. Furthermore, the less planar the motion, the smaller
the number of inliers. This result is perfectly in line with
what we predicted in simulation in Section 6.1.2.
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Despite this, from Figure 12 we can see that our restric-
tive motion model is a good approximation of the motion of
the car. Furthermore, in all the experiments we found that
the 1-point and the histogram voting methods performed
the same. However, we also observed that in the presence of
low frame rate or nonplanar motion the performance of the
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histogram voting was slightly lower. Regarding the compu-
tational cost, during all the experiments we found that the
1-point RANSAC required at most 7 iterations, the 2-point
needed about 300 iterations, and the 5-point needed from
500 up to 2,000 iterations.

6.2.3. Visual Odometry

To evaluate the quality of point correspondences output by
our proposed methods, we implemented a motion estima-
tion algorithm and we ran it on the entire 3-km data set.
For this experiment, we implemented a very simple, in-
cremental motion estimation algorithm, which means that
we computed the motion only between consecutive frames
(e.g., two-view SEM). Note that we did not use the previous
poses and structure to refine the current estimate. Further-
more, we did not use bundle adjustment.

For feature detection we used the Harris detector
(Harris & Stephens, 1988), whereas for feature matching we
used the sum of squared differences. The maximum initial
number of features was about 3,000—before removing the
inliers—and between 1,000 and 2,000 after removing the
outliers.

For removing the outliers, we used one of our pro-
posed methods. From the remaining inliers, the relative
pose was then estimated using the 5-point algorithm® from

®Note that the 5-point algorithm is not the 5-point RANSAC. The
5-point algorithm optimizes the five-DoF pose of the vehicle in the
least-squares sense. It is called “5-point” because it requires a min-
imum of five points to work, although it can actually be applied to
n points.

----- Histogram voting
1-point RANSAC
2-point RANSAC
5-point RANSAC

Figure 15. Comparison between visual odometry trajecto-
ries using the three different methods for outlier removal:
histogram voting (red dashed line), 1-point RANSAC (cyan
solid line), 2-point RANSAC (green solid line), and 5-point
RANSAC (black solid line).

Stewenius et al. (2006), which provides unconstrained five-
DoF motion estimates.” The absolute scale between consec-
utive poses was measured by simply reading the speed of
the car from the vehicle CAN bus and multiplying it by the
time interval between the two frames. The recovered trajec-
tory using the histogram-voting method for outlier removal
is shown in Figure 10 overlaid on a satellite image. Note
that this algorithm runs at 400 frames per second (fps).®

Figure 15 shows instead the comparison among the
visual odometry paths computed with histogram voting
and 1-point, 2-point, and 5-point RANSAC. As the reader
can see, the trajectory estimated by the histogram voting
method differs very little from that estimated with the 1-
point RANSAC. Furthermore, both methods outperform
both the 2-point and the 5-point RANSAC. This result
should not surprise the reader. Indeed, let us recall that
we did not use bundle adjustment, which obviously would
largely reduce the accumulated drift.” However, it is also
important to point out that sometimes the found inliers
are not the largest RANSAC, meaning that more iterations
would have actually been necessary. Additionally, this re-
sult points out that even though for most of the frames the
2-point and the 5-point RANSAC find a few more inliers
than the 1-point RANSAC, the 1-point RANSAC and the
histogram voting methods output “better” inliers in that
they favor the underlying motion model.

"Because translation is recovered up to scale, we have five DoF.
8Please note that a demonstrative video of the resulting online tra-
jectory estimation can be watched at http://www.youtube.com/
watch?v=t7uKWZtUjCE.

The accumulated drift in this 3-km data set was about 30 m in
x—yand 1l minz.
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Figure 16. Comparison between the yaw angle (6) and
ground truth. In this case the yaw angle was computed with
the histogram voting method (that is, the median of the distri-
bution). The ground truth was recorded from an IMU and an
optical gyroscope.

6.2.4. Orientation Error: Comparison with
Ground-Truth Data

For ground-truth data acquisition, the vehicle was
equipped with an inertial measurement unit (IMU) and an
optical gyroscope. The fusion of the orientation from these
two sources was done by means of an EKF as described in
Lamon, Kolski, and Siegwart (2006).

A comparison between the yaw angle (9) and the
ground truth for the first 1,600 frames is depicted in
Figure 16.

In Figure 17, we compare the error in orientation be-
tween the histogram voting and the 5-point RANSAC with
respect to the ground truth for the first 1,000 frames . The
error is calculated for the roll, pitch, and yaw angles. First,
we can notice that the errors of the two algorithms are
very well correlated. Additionally, they look very similar.
However, notice that the yaw error introduced by the 5-
point RANSAC is larger than that of the histogram voting
method on a few occasions. As we mentioned at the end of
the preceding section, this can be explained by the fact that
the 1-point motion parameterization captures the domi-
nant components of the motion, which is mostly planar and
circular.

6.2.5. Coping with Few Features and Occlusions

Notice that this is a very challenging data set. Sometimes
features appeared only in some spots of the image (e.g., on
the road when crossing the bridge), and therefore in these
situations the result of the 5-point algorithm introduced
large errors that depend on the position of the features in
the image. Conversely, the 1-point algorithm can cope with
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Figure 17. Comparison between estimated orientations: Blue,
Histogram voting; red, 5-point RANSAC. The arrows indicate
spots where the error of the 5-point RANSAC was larger than
that of the histogram voting. This happened, however, only a
few times over 1,000 frames.
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Figure 18. Top, Trajectory estimated by the 5-point RANSAC with highlighted spots where the 5-point RANSAC failed. (a—d)
Some sample images taken at some of those spots with overlaid feature matches.
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Figure 19. Large occlusion by a passing tram. The arrows
show the inliers found by either algorithm: Blue, 5-point
RANSAG; red, 1-point RANSAC. The two ends of each arrow
indicate the positions of the feature in the first and in the sec-
ond image.

very few features due to the implicit motion constraint. In
Figure 18 we replotted the trajectory estimated by the 5-
point RANSAC. The six circles identify spots where only a
few inliers were found. In these cases the motion estimate
of the 5-point algorithm was completely wrong, with errors
in rotation estimation about 20 deg off. This was caused by
the fact that we had only very few feature points and that
they were concentrated in small spots of the image [see Fig-
ures 18(a)-18(d)]. To overcome these problems, when they
happened we replaced the motion estimate of the 5-point

Scaramuzza: 1-Point RANSAC Visual Odometry « 807

algorithm with that of the 1-point algorithm [expression
(11) and Eq. (12)]. These situations were easy to detect: we
just checked that the difference of the rotation estimate out-
put by the 5-point and 1-point algorithms did not exceed 10
deg.

Another interesting situation that sometimes occurred
was the occlusion of large parts of the camera field of view
by other moving vehicles. In Figure 19 we show an inter-
esting situation in which a tram is driving on the opposite
side of the road. As the reader can observe, about half of
the left side of the camera image remains occluded by the
tram. The inliers found by the 5-point RANSAC and by the
1-point RANSAC are drawn in blue and red, respectively.
Notice that the inliers output by the 1-point RANSAC come
from static objects, whereas those output by the 5-point
RANSAC come from the moving tram. The reason is the
following. The relative motion of the tram with respect to
the center of our vehicle is of course locally planar and cir-
cular, but the instantaneous center of rotation of this com-
bined motion does not lie along the axis of the rear wheels
as the 1-point RANSAC would expect it to be in the ideal
case. This huge difference makes our 1-point RANSAC be-
lieve that the inliers are those coming from the static objects.
Conversely, the 5-point RANSAC—which does not use a
motion model—selects the largest set of inliers, which in
this case are the feature points on the tram. This fact is very
remarkable and should convince the reader of the impor-
tance of exploiting motion models in visual odometry.

6.2.6. Visual Odometry Results on Different Data Sets

We ran our visual odometry approach on other data sets ac-
quired with different vehicles, both outdoors and indoors.
The first data set was collected with the vehicle depicted

Figure 20. The vehicle and camera used to capture the Padua data set kindly provided by A. Pretto (Pretto et al., 2011).

Journal of Field Robotics DOI 10.1002/rob
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Comparison between visual odometry trajectories for the Padua data set (Pretto et al., 2011) using the three different

methods for outlier removal: Histogram voting (red dashed line), 1-point RANSAC (cyan solid line), 2-point RANSAC (green solid
line), and 5-point RANSAC (black solid line). The length of the trajectory was 1.4 km. Notice that the trajectory estimated by the
2-point RANSAC is not visible because it coincides almost perfectly with that of the 1-point and histogram voting methods.

in Figure 20. The data set was kindly provided by Pretto,
Menegatti, and Pagello (2011). The camera was a Basler
Scout—resolution of 1,032 x 778 pixels—equipped with a
hyperbolic mirror. The data set was collected in the city
of Padua. The reconstructed trajectories using the methods
described in the preceding sections are shown in Figure 21.
As can be observed, again the performance of the 1-point
RANSALC is slightly better than that of the 2-point and the
5-point RANSAC.

For the indoor experiment, we used the differential-
drive robot depicted in Figure 22. The resulting trajectories
estimated by the different methods are shown in Figure 23.
As can be observed, they overlay almost perfectly on each
other. This is because the different algorithms output prac-
tically the same inliers.

7. CONCLUSION

In this paper, we have shown that by exploiting the non-
holonomic constraints of a wheeled vehicle it is possible to
parameterize the motion with a single-feature correspon-

dence. This parameterization is the smallest possible and
results in the two most efficient algorithms for removing
outliers.

We have seen that for car-like and differential-drive
robots this 1-point parameterization is satisfied only when
the camera is positioned above the rear-wheel axis (L = 0).
However, in the experimental section we have shown that
also for the case L # 0 our restrictive model is still usable
under the condition that the rotation angle § between two
camera poses is small (or alternatively that the frame rate is
high). In particular we have shown that in most cases our
1-point RANSAC and histogram voting method perform as
well as or even better than the standard 5-point RANSAC,
finding almost the same number of inliers. The better per-
formance with respect to the 5-point RANSAC can be ex-
plained by the fact that the 1-point RANSAC and histogram
voting methods find “better” inliers in that they capture the
dominant component of the motion of the vehicle, which
is mostly planar and circular. Finally, we showed the qual-
ity of the output correspondences by comparing the esti-
mated motion and orientation of the car with ground-truth
data.
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Figure 22. The differential-drive robot and the camera used to
capture the indoor data set. Notice that the camera was placed
intentionally above the wheel axis to make the 1-point motion
parameterization valid.

Both the simulated and real experiments have pointed
out that our restrictive model is a suitable approximation
of the real motion of the vehicle provided that the road
is nearly flat and the frame rate is high (e.g., >10 Hz at
50 km/h). This is because the circular motion model holds
only locally. When the conditions for the validity of the
model are not satisfied, this is reflected in a reduced num-
ber of inliers found by the 1-point RANSAC and histogram
voting method. However, when this happens the problem
can be easily overcome by switching back to the standard 5-
point RANSAC. Failure modes in the 1-point methods can
be easily detected by looking at the histogram distribution.
In fact, when the local circular planar motion is well ver-
ified, this reflects in a narrow histogram with a very dis-
tinguishable peak. Conversely, when our motion assump-
tion does not hold, the resulting histogram appears wider.
In these cases, looking at the kurtosis of the distribution
provides an easy way to switch between the 1-point and
5-point approaches.
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Figure 23. Comparison between visual odometry trajectories
for the indoor data set. Because the ground truth was not avail-
able, we just compare the trajectories output by the different al-
gorithms. Notice that the estimated trajectories overlay almost
perfectly. This is because the different algorithms output prac-
tically the same inliers.
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