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Simultaneous State Initialization and Gyroscope Bias
Calibration in Visual Inertial Aided Navigation

Jacques Kaiser, Agostino Martinelli, Flavio Fontana, and Davide Scaramuzza

Abstract—State of the art approaches for visual-inertial sensor
fusion use filter-based or optimization-based algorithms. Due to
the nonlinearity of the system, a poor initialization can have a
dramatic impact on the performance of these estimation methods.
Recently, a closed-form solution providing such an initialization
was derived in [1]. That solution determines the velocity (angu-
lar and linear) of a monocular camera in metric units by only
using inertial measurements and image features acquired in a
short time interval. In this letter, we study the impact of noisy sen-
sors on the performance of this closed-form solution. We show that
the gyroscope bias, not accounted for in [1], significantly affects
the performance of the method. Therefore, we introduce a new
method to automatically estimate this bias. Compared to the orig-
inal method, the new approach now models the gyroscope bias
and is robust to it. The performance of the proposed approach is
successfully demonstrated on real data from a quadrotor MAV.

Index Terms—Sensor fusion, localization, visual-based
navigation.

I. INTRODUCTION

A UTONOMOUS mobile robots navigating in unknown
environments have an intrinsic need to perform local-

ization and mapping using only on-board sensors. Concerning
Micro Aerial Vehicles (MAV), a critical issue is to limit the
number of on-board sensors to reduce weight and power con-
sumption. Therefore, a common setup is to combine a monoc-
ular camera with an inertial measurements unit (IMU). On top
of being cheap, these sensors have very interesting complemen-
tarities. Additionally, they can operate in indoor environments,
where Global Positioning System (GPS) signals are shadowed.
An open question is how to optimally fuse the information
provided by these sensors.

Currently, most sensor-fusion algorithms are either filter-
based or iterative. That is, given a current state and measure-
ments, they return an updated state. While working well in
practice, these algorithms need to be provided with an initial
state. The initialization of these methods is critical. Due to non-
linearities of the system, a poor initialization can result into
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converging towards local minima and providing faulty states
with high confidence.

In this letter, we demonstrate the efficiency of a recent
closed-form solution introduced in [1], [2], which fuses visual
and inertial data to obtain the structure of the environment at
the global scale along with the attitude and the speed of the
robot. By nature, a closed-form solution is deterministic and,
thus, does not require any initialization.

The method introduced in [1], [2] was only described in
theory and demonstrated with simulations on generic Gaussian
motions, not plausible for an MAV. In this letter, we perform
simulations with plausible MAV motions and synthetic noisy
sensor data. Our simulations are therefore closer to the real
dynamics of an MAV. This allows us to identify limitations
of the method and bring modifications to overcome them.
Specifically, we investigate the impact of biased inertial
measurements. Although the case of biased accelerometer was
originally studied in [1], here we show that a large bias on the
accelerometer does not significantly worsen the performance.
One major limitation of [1] is the impact of biased gyroscope
measurements. In other words, the performance becomes very
poor in presence of a bias on the gyroscope and, in practice,
the overall method can only be successfully used with a very
precise - and expensive - gyroscope. Here, we introduce a
simple method that automatically estimates this bias. By
adding this new method for the bias estimation to the original
method [1], we obtain results that are equivalent to the ones
in absence of bias. This method is suitable for dynamic take
off and on-the-fly re-initialisation since it does not require a
calibration step with the MAV sitting stationary. Compared to
[1], the new method is now robust to the gyroscope bias and
automatically calibrates the gyroscope.

II. RELATED WORK

The problem of fusing visual and inertial data has been
extensively investigated in the past. However, most of the pro-
posed methods require a state initialization. Because of the
system nonlinearities, lack of precise initialization can irrepara-
bly damage the entire estimation process. In literature, this
initialization is often guessed or assumed to be known [3]–
[6]. Recently, this sensor fusion problem has been successfully
addressed by enforcing observability constraints [7], [8] and
by using optimization-based approaches [9]–[15]. These opti-
mization methods outperform filter-based algorithms in terms
of accuracy due to their capability of relinearizing past states.
On the other hand, the optimization process can be affected by
the presence of local minima. We are therefore interested in
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a deterministic solution that analytically expresses the state in
terms of the measurements provided by the sensors during a
short time-interval.

In computer vision, several deterministic solutions have
been introduced. These techniques, known as Structure from
Motion, can recover the relative rotation and translation up to
an unknown scale factor between two camera poses [16]. Such
methods are currently used in state-of-the-art visual navigation
methods for MAVs to initialize maps [6], [17], [18]. However,
the knowledge of the absolute scale, and, at least, of the abso-
lute roll and pitch angles, is essential for many applications
ranging from autonomous navigation in GPS-denied environ-
ments to 3D reconstruction and augmented reality. For these
applications, it is crucial to take the inertial measurements into
consideration to compute these values deterministically.

A procedure to quickly re-initialize an MAV after a fail-
ure was presented in [19]. However, this method requires an
altimeter to initialize the scale.

Recently, a closed-form solution has been introduced in [2].
From integrating inertial and visual measurements over a short
time-interval, this solution provides the absolute scale, roll
and pitch angles, initial velocity, and distance to 3D features.
Specifically, all the physical quantities are obtained by simply
inverting a linear system. The solution of the linear system can
be refined with a quadratic equation assuming the knowledge of
the gravity magnitude. This closed-form was improved in [20]
to work with unknown camera-IMU calibration; however, since
in this case the problem cannot be solved by simply inverting
a linear system, a method to determine the six parameters that
characterize the camera-IMU transformation was proposed. As
a result, this method is independent of external camera-IMU
calibration, hence, suitable for power-on-and-go systems.

A more intuitive expression of this closed-form solution was
derived in [1]. While being mathematically sound, this closed-
form solution is not robust to noisy sensor data. For this reason,
to the best of our knowledge, it has never been used in an actual
application. In this letter, we perform an analysis to find out its
limitations. We start by reminding the reader the basic equa-
tions that characterize this solution section III. In section IV,
we show that this solution is resilient to the accelerometer bias
but strongly affected by the gyroscope bias. We then introduce a
simple method that automatically estimates the gyroscope bias
(section V). By adding this new method for the bias estimation
to the original method, we obtain results that are equivalent to
the ones obtained in absence of bias. Compared to the original
method, the new method is now robust to the gyroscope bias
and also calibrates the gyroscope. In section VI, we validate
our new method against real world data from a flying quadrotor
MAV to prove its robustness against noisy sensors during actual
navigation. Finally, we provide the conclusions in section VII.

III. CLOSED-FORM SOLUTION

In this section, we provide the basic equations that charac-
terize the closed-form solution proposed in [1]1. Let us refer
to a short interval of time (e.g., of the order of 3 seconds).
We assume that during this interval of time the camera

1Note that in this letter we do not provide a new derivation of this solution
for which the reader is addressed to [1], section 3.

Fig. 1. Visual representation of Equation (1). The unknowns of the equation
are colored in purple.

observes simultaneously N point-features and we denote by
t1, t2, · · · , tni

the times of this interval at which the camera
provides an image of these points. Without loss of generality,
we can assume that t1 = 0. The following equation holds (see
[1] for its derivation):

Sj = λi
1μ

i
1 − V tj −G

t2j
2
− λi

jμ
i
j (1)

with:
• μi

j the normalized bearing of point feature i at time tj in
the local frame at time t1;

• λi
j the distance to the point feature i at time tj ;

• V the velocity in the local frame at time t1;
• G the gravity in the local frame at time t1;
• Sj the integration in the interval [t1, tj ] of the rotated lin-

ear acceleration data (i.e., the integration of the inertial
measurements).

A visual representation of Equation (1) is provided in Fig. 1.
The local frame refers to a frame of reference common to the
IMU and the camera. In a real application, we would work in the
IMU frame and have some additional constant terms accounting
for the camera-IMU transformation. We do not express these
constant calibration terms explicitly here for clarity reasons.

The unknowns of Equation (1) are the scalars λi
j and the vec-

tors V and G. Note that the knowledge of G is equivalent to
the knowledge of the roll and pitch angles. The vectors μi

j are
fully determined by visual and gyroscope measurements2, and
the vectors Sj are determined by accelerometer and gyroscope
measurements.

Equation (1) provides three scalar equations for each point
feature i = 1, . . . , N and each frame starting from the second
one j = 2, . . .ni. We therefore have a linear system consisting
of 3(ni − 1)N equations in 6 +Nni unknowns. Indeed, note
that, when the first frame is taken at t1 = 0, Equation (1) is
always satisfied; thus does not provide information. We can
write our system using matrix formulation. Solving the sys-
tem is equivalent to inverting a matrix of 3(ni − 1)N rows and
6 +Nni columns.

2The gyroscope measurements in the interval [t1, tj ] are needed to express
the bearing at time tj in the frame at time t1
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In [1], the author proceeded to one more step before express-
ing the underlying linear system. For a given frame j, the
equation of the first point feature i = 1 is subtracted from all
other point feature equations 1 < i ≤ N (Equation (7) in [1]).
This additional step, very useful to detect system singularities,
has the effect to corrupt all measurements with the first mea-
surement, hence worsening the performance of the closed-form
solution. Therefore, in this letter we discard this additional step.

The linear system in Equation (1) can be written in the
following compact form:

ΞX = S. (2)

Matrix Ξ and vector S are fully determined by the measure-
ments, while X is the unknown vector. We have:

S ≡ [ST
2 , . . . , S

T
2 , S

T
3 , . . . , S

T
3 , . . . , S

T
ni
, . . . , ST

ni
]T

X ≡ [GT , V T , λ1
1, . . . , λ

N
1 , . . . , λ1

ni
, . . . , λN

ni
]T

Ξ ≡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T2 S2 μ1
1 03 03 −μ1

2 03 03 03 03 03
T2 S2 03 μ2

1 03 03 −μ2
2 03 03 03 03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T2 S2 03 03 μN

1 03 03 −μN
2 03 03 03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ni
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Tni
Sni

03 μ2
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ni
03

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tni

Sni
03 03 μN

1 03 03 03 03 03 −μN
ni

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Tj ≡ − t2j
2 I3, Sj ≡ −tjI3 and I3 is the identity 3× 3

matrix, 03 is the 3× 1 zero matrix. Note that matrix Ξ and vec-
tor S are slightly different from the ones proposed in [1]. This
is due to the additional step that, as we explained in the pre-
vious paragraph, we discarded for numerical stability reasons
(see [1], section 3 for further details).

The sensor information is completely contained in the above
linear system. Additionally, in [1], the author added a quadratic
equation assuming the gravitational acceleration is a priori
known. Let us denote the gravitational magnitude by g. We
have the extra constraint |G| = g that we can express in matrix
formulation:

|ΠX|2 = g2, (3)

with Π ≡ [I3, 03, . . . , 03]. We can therefore recover the initial
velocity, the roll and pitch angles, and the distances to the point
features by finding the vector X satisfying (2) and (3).

In the next sections, we will evaluate the performance of this
method on simulated noisy sensor data. This will allow us to
identify its weaknesses and bring modifications to overcome
them.

IV. LIMITATIONS OF [1]

The goal of this section is to find out the limitations of the
solution proposed in [1] when it is adopted in a real scenario.

In particular, special attention will be devoted to the case of an
MAV equipped with low-cost camera and IMU sensors. For this
reason, we perform simulations that significantly differ from
the ones performed in [1] (section 5.2). Specifically, they differ
because of the following two reasons:

• The simulated motion is the one of an MAV;
• The values of the biases are significantly larger than the

ones in [1].
This will allow us to evaluate the impact of the bias on the

performance.

A. Simulation Setup

We simulate an MAV as a point particle executing a circu-
lar trajectory of about 1m radius. We measure our error on the
absolute scale by computing the mean error over all estimated
distances to point features λi

j . We define the relative error as the
euclidean distance between the estimation and the ground truth,
normalized by the ground truth.

Synthetic gyroscope and accelerometer data are affected by
a statistical error of 0.5 deg/s and 0.5 cm/s2, respectively and
they are also corrupted by a constant bias.

We set 7 simulated 3D point-features about 3m away from
the MAV, which flies at a speed of around 2 ms−1. We
found that setting the frame rate of the simulated camera at
10 Hz provides a sufficient pixel disparity with the follow-
ing setup. In practice, increasing the frame rate above 30 Hz
decreases the pixel disparity and introduces numerical instabil-
ity for this setup. The theoretical cases in which our system
admits singularities are provided in [1], [2]. Reducing the num-
ber of considered frames also reduces the size of the matrices
and, thus, speeds up the computations. As an example, over
a time interval of 3 seconds, we obtain 31 distinct frames.
When observing 7 features, solving the closed-form solution
is equivalent to inverting a linear system of 3× 30× 7 = 630
equations and 6 + 7× 31 = 223 unknowns (see section III).

The method we use to solve the overconstrained linear sys-
tem ΞX = S is a Singular Value Decomposition (SVD) since
it yields numerically robust solutions.

In the next section, we will present the results obtained
with the original closed-form solution on the simulated data
mentioned, with different sensor bias settings. Our goal is to
identify its performance limitations and introduce modifications
to overcome them.

B. Performance Without Bias

The original closed-form solution described in Equation (2)
will be used as a basis for our work. Moreover, we can also use
the knowledge of the gravity magnitude to refine our results
(Equation (3)). In this case, we are minimizing a linear objec-
tive function with a quadratic constraint. In Fig. 2, we display
the performance of the original Closed-Form (CF) solution in
estimating speed, gravity in the local frame, and distances to
the features with and without this additional constraint.

Note how the evaluations get better as we increase the inte-
gration time. Indeed, our equations come from an extended
triangulation [2]. Therefore, it requires a significant difference
in the measurements over time to robustly estimate the state.
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Fig. 2. Original closed-form solution estimations with and without using the
knowledge of the gravity (3). We are observing 7 features over a variable
duration of integration.

Without sensor bias, the original closed-form robustly esti-
mates all the properties (below 0.1% error) after 2 seconds of
integration. Note that a robust estimation of the gravity requires
a shorter duration of integration than the speed and the dis-
tance to the features. In general, we found that the gravity is
well estimated with the original closed-form solution due to its
strong weight in the equations (see section IV-C). Therefore,
constraining its magnitude does not improve the performance
much. In the following sections, we remove this constraint.

C. Impact of Accelerometer Bias on the Performance

In order to visualize the impact of the accelerometer bias on
the performance, we corrupt the accelerometer measurements
by a bias (Fig. 3).

Despite a high accelerometer bias, the closed-form solution
still provides robust results. As seen in Fig. 3, neither the esti-
mation of the gravity, the velocity or the lambdas is impacted
by the accelerometer bias. To explain this behavior we ran
many simulations by also considering trajectories that are not
plausible for an MAV and by changing the magnitude of the
gravity.

We found the following conclusions. When the rotations are
small, the effect of a bias is negligible even if its value is
larger than the inertial acceleration. This is easily explained by
remarking that, in the case of negligible rotations, a bias on the
accelerometer acts as the gravity. Hence, its impact depends on
the ratio between its magnitude and the magnitude of the grav-
ity. If the rotations are important, the effect of a bias on the
accelerometer is negligible when its magnitude is smaller than
both the gravity and the inertial acceleration. Note that, for an
MAV that accomplishes a loop of radius 1m and speed 2m s−1,
the inertial acceleration is 4m s−2.

In [1], the author provides an alternative formulation of the
closed-form solution including the accelerometer bias as an
observable unknown of the system. However, the estimation of

Fig. 3. Impact of the accelerometer bias on the performance of the closed-form
solution. We are observing 7 features over a variable duration of integration.

Fig. 4. Impact of the gyroscope bias on the performance of the closed-form
solution. We are observing 7 features over a variable duration of integration.

the accelerometer bias with that method is not robust since our
system is only slightly affected by it3.

D. Impact of Gyroscope Bias on the Performance

To visualize the impact of the gyroscope bias on the perfor-
mance, we corrupt the gyroscope measurements by an artificial
bias (Fig. 4).

3Additionally, in [1] property 12, we prove that rotations must occur around
at least two independent axes to determine the bias. In general, for a motion of
a few seconds, an MAV accomplishes rotations around a single axis.
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As seen in Fig. 4, the performance becomes very poor in
presence of a bias on the gyroscope and, in practice, the
overall method could only be successfully used with a very
precise—and expensive—gyroscope.

Note that, in [1], the author evaluates the performance of the
closed-form solution with a simulated gyroscope bias of magni-
tude 0.5deg/s ≈ 0.0087rad/s. In Fig. 4, this bias would yield
a curve between the green and the blue ones, with relative error
below 10%.

V. ESTIMATING THE GYROSCOPE BIAS

Previous work has shown that the gyroscope bias is an
observable mode when using an IMU and a camera, which
means that it can be estimated [2]. In this section, we propose
an optimization approach to estimate the gyroscope bias using
the closed-form solution.

A. Nonlinear Minimization of the Residual

Since our system of equations (1) is overconstrained, invert-
ing it is equivalent to finding the vector X that minimizes the
residual ||ΞX − S||2. We define the following cost function:

cost(B) = ||ΞX − S||2, (4)

with:
• B the gyroscope bias;
• Ξ and S computed by replacing the angular velocity

provided by the gyroscope ω by ω −B.
By minimizing this cost function, we recover the gyroscope

bias B and the unknown vector X . Since our cost function
requires an initialization and is non-convex (see Fig. 7), the
optimization process can be stuck in local minima. However,
by running extensive simulations we found that the cost func-
tion is convex around the true value of the bias. Hence, we can
initialize the optimization process with B = 03 since the bias is
usually rather small.

As seen in Fig. 6, this method can robustly estimate high
values of the gyroscope bias (relative error of final bias esti-
mate is below 2%). Fig. 5 displays the performance of the
proposed method in estimating speed, gravity in the local frame,
and distances to the features in presence of the same artifi-
cial gyroscope bias from Fig. 4. As seen in Fig. 5, after 1s
of integration duration, the estimations agree no matter how
high the bias is. In other words, given that the integration dura-
tion is long enough, this method is unaffected by the gyroscope
bias. Using Levenberg-Marquardt algorithm, the optimization
process reaches its optimal value after around 4 iterations and
20 evaluations of the cost function. Evaluating the cost func-
tion is equivalent to solving the linear system described in
Equation (2).

For very short time of integration (< 1 second), the cost func-
tion loses its local convexity and the proposed method can fail
by providing a gyroscope bias much larger than the correct one.
To understand this misestimation, in Fig. 7 we plot the residual
with respect to the bias, which is the cost function we are mini-
mizing. We highlight a misestimation of the gyroscope bias by

Fig. 5. Impact of the gyroscope bias on the performance of the optimized
closed-form solution. We are observing 7 features over a variable duration of
integration.

Fig. 6. Gyroscope bias estimation from nonlinear minimization of the residual.
We are observing 7 features over a variable duration of integration. The true
bias is B = [−0.0170,−0.0695, 0.0698] with magnitude ||B|| = 0.1 and the
final bias estimate is [−0.0183,−0.0697, 0.0708].

setting the duration of integration to 1 second while observing
7 features. We refer to the components of the gyroscope bias by
B = [Bx, By, Bz]. As we can see in Fig. 7, the cost function
admits a symmetry with respect to Bz (and consequently it is
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Fig. 7. Cost function (residual) with respect to the gyroscope bias for a small
amount of available measurements (integration of 1 second while observing 7
features).

not convex). This symmetry replicates the minima of the true
gyroscope bias along Bz . The optimization process can there-
fore diverge from the true gyroscope bias. In the next section,
we present a method to use a priori knowledge to guide the
optimization process.

B. Removing the Symmetry in the Cost Function

The symmetry in the cost function is induced by the strong
weight of the gravity in the Equation (1). In general, the residual
is almost constant with respect to the component of the gyro-
scope bias along the direction �u when �u is collinear with the
gravity throughout the motion. Since an MAV normally oper-
ates in near-hover conditions, �u is approximated to the vector
pointing upward in the gyroscope frame when the MAV is hov-
ering. If the MAV rotates such that �u becomes noncollinear with
the gravity, the cost function does not exhibit this symmetry
anymore. In this case, the gyroscope bias is well estimated. A
simple solution to avoid having that symmetry in our system
would be to enforce that there is no such �u by forcing our MAV
to perform rotations while it is operating. Another way to artifi-
cially get rid of this symmetry is to tweak the cost function.
Specifically, we can add a regularization term that penalizes
high estimations of the component of the bias along �u:

cost(B) = ||ΞX − S||2 + λ(�u ·B)2, (5)

Fig. 8. Experimental setup for identifying the limitations of the performance.
The drone is equipped with an IMU and a down-looking camera.

with �u the direction collinear with the gravity throughout the
motion and λ the coefficient given to how much we want to
penalize this bias component.

For small values of λ, our cost function is similar to the previ-
ous one and the bias can grow arbitrarily high. Note that, instead
of forcing this gyroscope bias component to be close to 0, we
can easily force it to be close to any value. Therefore, we can
use the a priori knowledge of a gyroscope bias approximation:

cost(B) = ||ΞX − S||2 + λ(�u · (B −Bapprox))2,

with Bapprox being the known approximate gyroscope bias.
This methods allows us to reuse previously-computed gyro-
scope bias since it is known to slowly vary over time. The value
of λ should be set starting from the knowledge about the range
of change of the gyroscope bias. We can obtain this variation
with previously-computed gyroscope bias.

VI. EXPERIMENTS ON REAL DATA

We validate our method on a real dataset containing IMU
and camera measurements from a flying quadrotor along with
ground truth.

A. Experimental Setup

For our evaluation, we consider an MAV flying in a room
equipped with a motion-capture system. This allows us to com-
pare the estimations of the velocity along with the roll and pitch
angles against ground truth.

We use the same MAV used in [18], Section 3.4. Specifically,
our quadrotor relies on the frame of the Parrot AR.Drone 2.0
including their motors, motor controllers, gears, and propellers.
It is equipped with a PX4FMU autopilot and a PX4IOAR
adapter board. The PX4FMU includes a 200 Hz IMU. The
MAV is also equipped with a downward-looking MatrixVision
mvBlueFOX-MLC200w (752× 480-pixel) monochrome cam-
era with a 130-degree field-of-view lens Fig. 8a. The data
are recorded using an Odroid-U3 single-board computer. The
MAV flies indoors at low altitude (1.5m) Fig. 8b. The fea-
ture extraction and matching is done via the FAST corners
[21], [22].
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Fig. 9. Estimation error of the optimized closed-form solution against the orig-
inal closed-form solution [1] and SVO [18]. The duration of integration is set
to 2.8 seconds, and 10 point features are observed throughout the whole opera-
tion. In Fig. 9b and Fig. 9b, we corrupted the gyroscope measurements with an
artificial bias.

B. Results

We compare the performance on the estimations of the
gravity and velocity obtained with three methods:

• The original closed-form solution [1] (Eq. (2));
• Our modified closed-form solution (Eq. (4));
• The loosely-coupled visual-inertial algorithm (MSF) [23]

using pose estimates from the Semi-direct Visual
Odometry (SVO) package [6] (how to combine MSF with
SVO can be found in [18]).

The reason we included SVO+MSF in the validation is
to have a reference state-of-the-art pose estimation method.
However, MSF requires to be initialized with a rough absolute
scale, whereas our method works without initialization. We set
the integration duration for the closed-form solution to 2.8 sec-
onds, since it is sufficient to obtain robust results (see Fig. 6.
The camera provides 60fps, but we discard most of the frames
and consider only 10 Hz (this is discussed in section IV-A).

As seen in Fig. 9a, the performance obtained by our method
is similar than the performance obtained by a well-initialized
MSF. We remind the reader that unlike MSF, the closed-form
solution does not require the knowledge of the absolute scale to
be provided. Moreover, the original closed-form solution and
the optimized closed-form solution have similar performance.
Indeed, for this dataset the gyroscope bias was estimated
to B = [0.0003, 0.009, 0.001], which is very small (||B|| =
0.0091).

To prove the robustness of our method compared to the
original closed-form, we corrupt the gyroscope measurements
provided by the dataset with an artificial bias in Fig. 9b and
Fig. 9c.

As seen in these figures, our method is robust against gyro-
scope bias whereas the original closed-form is not.

VII. CONCLUSION

In this letter, we studied the recent closed-form solution pro-
posed by [1] which performs visual-inertial sensor fusion with-
out requiring an initialization. We implemented this method
in order to test it with plausible MAV motions and synthetic
noisy sensor data. This allowed us to identify its performance
limitations and bring modifications to overcome them.

We investigated the impact of biased inertial measurements.
Although the case of biased accelerometer was originally stud-
ied in [1], we showed that the accelerometer bias does not
significantly worsen the performance. One major performance
limitation of this method was due to the impact of biased gyro-
scope measurements. In other words, the performance becomes
very poor in presence of a bias on the gyroscope and, in prac-
tice, the overall method could only be successfully used with a
very precise (and expensive) gyroscope. We then introduced a
simple method that automatically estimates this bias.

We validated this method by comparing its performance
against state-of-the-art pose estimation approach for MAV.
For future work, we see this optimized closed-form solution
being used on an MAV to provide accurate state initialization.
This would allow aggressive take-off maneuvers, such as hand
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throwing the MAV in the air, as already demonstrated in [19]
with a range sensor. With our technique, we could get rid of the
range sensor.
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