

Department of Informatics

Martin Glinz Software Quality Chapter 1

Introduction

© 2014-2017 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material for any commercial purposes and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties.

1.1 About this Course

1.2 Quality Principles1.3 Quality management

Software quality matters

Contents

- This is an advanced course about software quality
- It covers selected aspects of software quality, in particular
 - Model Checking
 - Advanced testing
 - Debugging
 - Process quality
 - External and internal product quality
 - Dependability
 - Quality in agile development
- Familiarity with the basics of software quality is a prerequisite (see next slide)

Prerequisites

- Familiarity with the basics of software quality, as covered in a course or textbook in Software Engineering is expected
- From the Software Engineering course at UZH, we expect that you are familiar with these chapters:
 - Kapitel 2: Ziele und Qualität
 - Kapitel 7: Validierung und Verifikation
 - Kapitel 8: Testen von Software
 - Kapitel 9: Reviews
 - Kapitel 10: Messen von Software
 - Kapitel 11: Statische Analyse
 - Kapitel 16: Software-Qualitätsmanagement
 - Kapitel 17: Bewertung und Verbesserung von Prozessen und Qualität

Learning Goals

- Students acquire knowledge and skills in advanced topics of software quality, thus enabling them to
 - analyze, assess and improve software quality
 - develop high-quality software
- Students deepen and extend their knowledge in
 - Advanced testing techniques
 - Quality management
 - Product and process quality
- Students learn about
 - Model Checking as an important verification procedure
 - Systematic debugging as a means for locating causes of errors

Tentative Schedule

- 2017-02-20 Introduction
- 2017-02-27 Model Checking
- 2017-03-06 Advanced Testing Techniques
- 2017-03-13 Debugging; Discussion of assignment 1
- 2017-03-20 Process Quality
- 2017-03-27 Product Quality; Quality in Agile Development,
- 2017-04-03 Discussion of assignment 2

2017-05-08 Final exam

Homework assignment (exercise) schedule

2017-02-27 Introduction to assignment 1

2017-03-06 Deadline for submission

2017-03-13 Discussion of assignment 1, Introduction to assignment 2

2017-03-20 Deadline for submission2017-04-03 Discussion of assignment 2

Passing the course

Pass the two assignments (pass/fail)

and

Pass the final exam (graded)

The course grade will be the grade achieved in the final exam

1.1 About this Course

1.2 Quality Principles

1.3 Quality management

What's your personal intuitive notion of quality?

Intuitively, quality is typically associated with

- High-grade products or services
- Durable products, carefully made according to highest standards

Quality – The degree to which a set of inherent characteristics of an entity fulfills requirements. [ISO 9000:2005]

Inherent characteristic – A characteristic that forms a constituent part of an entity, as opposed to assigned characteristics

Entity – A product, service, process, system, organization, ...

Example: A drug

- Inherent characteristic: Ingredients
- Explicitly assigned: Price

- The industrial notion of quality does not fully match the intuitive one.
- Quality means satisfying requirements. Requirements may be explicitly stated or implicitly given by a shared notion.
- Quality is no absolute degree of goodness.
- Considering quality merely as fitness for purpose or customer satisfaction falls short of the full meaning.
- Quality does not emerge by itself. Quality must be defined and explicitly created.

Software quality

- The entity (that the inherent characteristics of which shall fulfill requirements) is a software system or component
- Software is different:
 - not tangible
 - manifests only in effects and documentation, especially the source code

External vs. internal software quality

The pragmatic view

- External quality is quality as perceived by stakeholders
- Internal quality is the quality of the software, particularly of the source code that eventually delivers external quality

1. Introduction

External vs. internal software quality – 2

[ISO/IEC 25010:2011]

The ISO standards' view

The ISO software quality standards distinguish quality from a measurement viewpoint (cf. Chapter 6)

- Internal measures: internal quality
- External measures: external quality
- Usage measures: quality in use

- 1.1 About this Course
- 1.2 Quality Principles
- 1.3 Quality management

Principles of modern quality management

[ISO 9000:2005]

- Involvement of people: everybody takes full responsibility
- Customer focus
- Process-oriented, systemic approach

Quality management terminology

[ISO 9000:2005]

Quality management – Coordinated activities to direct and control an organization with regard to quality

Quality planning – Part of quality management focused on setting quality objectives and specifying necessary operational processes and related resources to fulfill the quality objectives

Quality control – Part of quality management focused on fulfilling quality requirements

Quality management terminology – 2

[ISO 9000:2005]

Quality assurance – Part of quality management focused on providing confidence that quality requirements will be fulfilled

Quality improvement – Part of quality management focused on increasing the ability to fulfill quality requirements

Procedures of quality management

Quality planning

Definition of requirements: We want to achieve this!

Quality control

constructive: this is how we need to work.

analytic: did we work correctly? (quality checking)

Quality improvement

What works how well? Where can we spot weaknesses?

We want to improve this!

Constructive quality control

- Using processes that prevent/avoid faults
- Rigorous and early quality checking
- Continuous improvement of quality and processes

Analytic quality control

Analytic techniques: a quiz

○ Testing

- Why do we test?
- What are the ingredients of a systematic test?
- Which forms of testing do you know?
- Reviewing
 - What is a review?
 - Which forms of reviews do you know?
 - What are the rules for systematic reviewing?
- Static analysis
 - What is static analysis?
 - What are typical things one can check with static analysis?

Analytic techniques: a quiz – 2

○ Prototyping

- What is a software prototype?
- Which forms of prototyping do you know and what do they serve for?
- Throw-away prototypes vs. evolutionary prototyping?
- Auditing
 - What is an audit?
 - What does auditing mean in the context of software quality?
 - Which forms of software quality audits do you know?
 - How is an audit carried out?

Quality improvement

Just fixing quality defects is not enough

- Necessary for achieving product quality in software
- However: frequently fixes symptoms only

→ Systemic approach needed

A systemic approach to quality improvement

- Modify quality related processes and/or
 - the quality management system
- Based on
- Systematic evaluation of
 - Observed errors/failures and their causes
 - Findings in reviews
- Product and process measurement
- Findings in audits
- Process improvement

Software Quality

Process improvement

The Deming cycle: Plan-Do-Check-Act (Deming 1986)

References

W.E. Deming (1986). Out of the Crisis. Cambridge, Mass.: M.I.T. Press.

M. Glinz, T. Fritz (2015). Software Engineering. Course Slides. University of Zurich.

ISO (2005). *Quality management systems – Fundamentals and vocabulary.* International standard ISO 9000:2005.

ISO (2008). Quality management systems – Requirements. International standard ISO 9001:2008.

ISO (2011). *Managing for the sustained success of an organization – A quality management approach.* International Standard ISO 9004:2011.

ISO/IEC (2011). Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System and software quality models. International Standard ISO/IEC 25010:2011

B. Kitchenham, S.L. Pfleeger (1996). Software Quality: The Elusive Target. *IEEE Software* 13(1):12–21.

P. Liggesmeyer (2002). *Software-Qualität: Testen, Analysieren und Verifizieren von Software*. Heidelberg; Berlin: Spektrum Akademischer Verlag.

K. Schneider (2012). Abenteuer Softwarequalität. 2. Auflage. Heidelberg: dpunkt.

M. Wieczorek, D. Meyerhoff (eds.) (2001). *Software Quality: State of the Art in Management, Testing, and Tools*. Berlin: Springer.