Efficient Algorithms for Frequently Asked Questions
7. Worst-Case Optimal Size Bounds for Joins

Prof. Dan Olteanu

Data•(Systems+Theory)

May 2, 2022

Agenda for This Lecture

Worst-case optimal size bounds for joins

- Key parameter: The fractional edge cover number ρ^{*}
- Mentioned it several times in the previous lectures

Upper bound via an information-theoretic argument

- Warm-up: Triangle join
- General Case using Shearer's Lemma

Lower bound

- Warm-up: Triangle join
- General case via dual linear program for fractional edge cover number

The effect of the size of input factors: Same size vs different sizes

The Upper Bound Argument

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

$$
\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)
$$

with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes $\left|\psi_{S}\right|=N_{S}$ for $S \in \mathcal{E}$

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

$$
\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)
$$

with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes $\left|\psi_{S}\right|=N_{S}$ for $S \in \mathcal{E}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}} N_{s}^{w_{s}}$
- We will show that the output size $|\Phi|$ is upper-bounded by $\prod_{S \in \mathcal{E}} N_{S}^{w_{S}}$

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

$$
\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)
$$

with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes $\left|\psi_{S}\right|=N_{S}$ for $S \in \mathcal{E}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}} N_{s}^{w_{s}}$
- We will show that the output size $|\Phi|$ is upper-bounded by $\prod_{S \in \mathcal{E}} N_{S}^{w_{S}}$
- By choosing $N=\max _{S \in \mathcal{E}} N_{S}$, this implies

$$
|\Phi| \leq \prod_{S \in \mathcal{E}} N_{S}^{w_{S}} \leq \prod_{S \in \mathcal{E}} N^{w_{S}}=N^{\sum_{s \in \mathcal{E}} w_{S}}=N^{\rho^{*}(\mathcal{H})}
$$

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

$$
\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)
$$

with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes $\left|\psi_{S}\right|=N_{S}$ for $S \in \mathcal{E}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{S \in \mathcal{E}} N_{S}^{w_{S}}$
- We will show that the output size $|\Phi|$ is upper-bounded by $\prod_{S \in \mathcal{E}} N_{S}^{w_{S}}$
- By choosing $N=\max _{S \in \mathcal{E}} N_{S}$, this implies

$$
|\Phi| \leq \prod_{s \in \mathcal{E}} N_{s}^{w_{s}} \leq \prod_{S \in \mathcal{E}} N^{w_{s}}=N^{\sum_{s \in \mathcal{E}} w_{s}}=N^{\rho^{*}(\mathcal{H})}
$$

- We will sketch a proof based on information theory
- Warm-up first: Triangle join with input factor sizes N

Warm-Up: Size Bound for Triangle Join

Upper Bound on Triangle Join Output Size

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

with input factor sizes $\left|\psi_{12}\right|=\left|\psi_{23}\right|=\left|\psi_{13}\right|=N$

Upper Bound on Triangle Join Output Size

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

with input factor sizes $\left|\psi_{12}\right|=\left|\psi_{23}\right|=\left|\psi_{13}\right|=N$
Hypergraph \mathcal{H}
Linear program computing $\rho^{*}(\mathcal{H})$
minimise $w_{12}+w_{23}+w_{13}$

subject to

$1:$	$w_{12}+w_{23}$		≥ 1	
$2:$	w_{12}		+	w_{13}
$3:$				
		$w_{23} \quad+\quad w_{13}$	≥ 1	
	$w_{12} \geq 0$	$w_{23} \geq 0$	$w_{13} \geq 0$	

Upper Bound on Triangle Join Output Size

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

with input factor sizes $\left|\psi_{12}\right|=\left|\psi_{23}\right|=\left|\psi_{13}\right|=N$

- The optimal solution to the above program is $w_{12}=w_{23}=w_{13}=\frac{1}{2}$
- We will show that $|\Phi| \leq N^{\frac{3}{2}}$

A Two-Player Game

Consider a two-player game between Ahmet and Haozhe

- Both players know the output of the triangle query
- Ahmet picks an arbitrary tuple from the output and transmits it to Haozhe

A Two-Player Game

Consider a two-player game between Ahmet and Haozhe

- Both players know the output of the triangle query
- Ahmet picks an arbitrary tuple from the output and transmits it to Haozhe

- Assume that the players have agreed on a binary coding system

How many bits does Ahmet need on avg to inform Haozhe which tuple he picked?

Two-Player Game Example

Two-Player Game Example

The best Ahmet and Haozhe can do is:

- Assign to each of the N tuples an index from 0 to $N-1$
- Ahmet transmits to Haozhe the index of the picked tuple in binary

In the above example: $\log |\Phi|=\log 6$ bits are needed

Information Theoretic Perspective

- Ahmet picking an arbitrary tuple can be considered an experiment with random variable O
- The values of O are the output tuples in Φ
- The avg number of bits needed to transmit tuples depends on the uncertainty about O

Information Theoretic Perspective

- Ahmet picking an arbitrary tuple can be considered an experiment with random variable O
- The values of O are the output tuples in Φ
- The avg number of bits needed to transmit tuples depends on the uncertainty about O

Special cases:

- If O takes on a tuple with probability 1 (there is only one tuple), then there is no uncertainty and the avg number of needed bits is 0
- If the tuples are uniformly distributed, then the uncertainty is maximal and the avg number of needed bits is $\log |\Phi|$

Information Theoretic Perspective

- Ahmet picking an arbitrary tuple can be considered an experiment with random variable O
- The values of O are the output tuples in Φ
- The avg number of bits needed to transmit tuples depends on the uncertainty about O

Special cases:

- If O takes on a tuple with probability 1 (there is only one tuple), then there is no uncertainty and the avg number of needed bits is 0
- If the tuples are uniformly distributed, then the uncertainty is maximal and the avg number of needed bits is $\log |\Phi|$

$$
\text { The avg number of needed bits is the entropy } H(O) \text { of } O
$$

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v_{1}, \ldots, v_{n} :

$$
H(O)=-\sum_{i \in[n]} \mathrm{P}\left(v_{i}\right) \cdot \log \mathrm{P}\left(v_{i}\right)
$$

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v_{1}, \ldots, v_{n} :

$$
H(O)=-\sum_{i \in[n]} \mathrm{P}\left(v_{i}\right) \cdot \log \mathrm{P}\left(v_{i}\right)
$$

- Special case 1: If O takes on a tuple with probability 1 (there is only one tuple), then there is no uncertainty and the avg number of needed bits is 0

Only one outcome means $n=1$. Then,

$$
H(O)=-P\left(v_{1}\right) \cdot \log P\left(v_{1}\right)=-1 \cdot \log 1=0
$$

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v_{1}, \ldots, v_{n} :

$$
H(O)=-\sum_{i \in[n]} \mathrm{P}\left(v_{i}\right) \cdot \log \mathrm{P}\left(v_{i}\right)
$$

- Special case 1: If O takes on a tuple with probability 1 (there is only one tuple), then there is no uncertainty and the avg number of needed bits is 0

Only one outcome means $n=1$. Then,

$$
H(O)=-P\left(v_{1}\right) \cdot \log P\left(v_{1}\right)=-1 \cdot \log 1=0
$$

- Special case 2: If the tuples are uniformly distributed, then the uncertainty is maximal and the avg number of needed bits is $\log |\Phi|$

Uniform distribution means $P\left(v_{i}\right)=\frac{1}{n}, \forall i \in[n]$. Then,

$$
H(O)=-\sum_{i \in[n]} \mathrm{P}\left(v_{i}\right) \cdot \log \mathrm{P}\left(v_{i}\right)=-n \cdot\left(\frac{1}{n} \cdot \log \frac{1}{n}\right)=-\log \frac{1}{n}=-(\log 1-\log n)=\log n
$$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random
$\Longrightarrow H(O)=\log |\Phi|$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random
$\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random
$\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N$
Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random

$$
\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N
$$

Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$
This implies:

$$
\begin{aligned}
2 \log |\Phi| & \leq \log N+\log N+\log N \\
\Longrightarrow 2 \log |\Phi| & \leq 3 \log N
\end{aligned}
$$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, l_{23}, and I_{13} are random variables where each $l_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random

$$
\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N
$$

Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$
This implies:

$$
\begin{aligned}
& 2 \log |\Phi| \leq \log N+\log N+\log N \\
\Longrightarrow & 2 \log |\Phi| \leq 3 \log N \\
\Longrightarrow & \log |\Phi| \leq \frac{3}{2} \log N
\end{aligned}
$$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random

$$
\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N
$$

Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$
This implies:

$$
\begin{aligned}
& 2 \log |\Phi| \leq \log N+\log N+\log N \\
\Longrightarrow & 2 \log |\Phi| \leq 3 \log N \\
\Longrightarrow & \log |\Phi| \leq \frac{3}{2} \log N \\
\Longrightarrow & \log |\Phi| \leq \log N^{\frac{3}{2}}
\end{aligned}
$$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random

$$
\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N
$$

Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$
This implies:

$$
\begin{aligned}
& 2 \log |\Phi| \leq \log N+\log N+\log N \\
\Longrightarrow & 2 \log |\Phi| \leq 3 \log N \\
\Longrightarrow & \log |\Phi| \leq \frac{3}{2} \log N \\
\Longrightarrow & \log |\Phi| \leq \log N^{\frac{3}{2}} \\
\Longrightarrow & |\Phi| \leq N^{\frac{3}{2}}
\end{aligned}
$$

Our Goal

- We assume that Ahmet picks a tuple from the output uniformly at random $\Longrightarrow H(O)=\log |\Phi|$
- Assume that I_{12}, I_{23}, and I_{13} are random variables where each $I_{i j}$ takes on a tuple from $\psi_{i j}$ uniformly at random

$$
\Longrightarrow H\left(\iota_{i j}\right)=\log \left|\psi_{i j}\right|=\log N
$$

Our goal is to show: $2 H(O) \leq H\left(l_{12}\right)+H\left(l_{23}\right)+H\left(l_{13}\right)$
This implies:

$$
\begin{aligned}
& 2 \log |\Phi| \leq \log N+\log N+\log N \\
\Longrightarrow & 2 \log |\Phi| \leq 3 \log N \\
\Longrightarrow & \log |\Phi| \leq \frac{3}{2} \log N \\
\Longrightarrow & \log |\Phi| \leq \log N^{\frac{3}{2}} \\
\Longrightarrow & |\Phi| \leq N^{\frac{3}{2}}
\end{aligned}
$$

Next: a strategy for Ahmet that helps to express $H(O)$ in terms of $H\left(l_{12}\right), H\left(l_{23}\right)$, and $H\left(I_{13}\right)$

Alternative Strategy

Ahmet transmits the picked tuple in three steps

Alternative Strategy

Ahmet transmits the picked tuple in three steps

- In each step, Ahmet uses an optimal encoding given that Haozhe knows the values transmitted before

How many bits does Ahmet need on avg at each step?

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting x_{1}
$H\left(O_{1}\right)$

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting $x_{1} \quad$ transmitting x_{2} given x_{1}
$H\left(O_{1}\right)$
$H\left(O_{2} \mid O_{1}\right)$

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting x_{1} transmitting x_{2} given x_{1} transmitting x_{3} given x_{1} and x_{2}

$$
H\left(O_{1}\right)
$$

$$
H\left(O_{2} \mid O_{1}\right)
$$

$$
H\left(O_{3} \mid O_{1}, O_{2}\right)
$$

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting $x_{1} \quad$ transmitting x_{2} given x_{1} transmitting x_{3} given x_{1} and x_{2}

$$
\begin{array}{cc}
H\left(O_{1}\right) & H\left(O_{2} \mid O_{1}\right)
\end{array} H\left(O_{3} \mid O_{1}, O_{2}\right), ~ ب H\left(O_{1}, O_{2}, O_{3}\right)=H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)=H
$$

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting $x_{1} \quad$ transmitting x_{2} given x_{1} transmitting x_{3} given x_{1} and x_{2}

$$
\begin{array}{cc}
H\left(O_{1}\right) & H\left(O_{2} \mid O_{1}\right)
\end{array} H\left(O_{3} \mid O_{1}, O_{2}\right), ~ ب H\left(O_{1}, O_{2}, O_{3}\right)=H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)=H
$$

- Conditional entropy $H\left(O_{2} \mid O_{1}\right)$ gives the avg number of bits needed to transmit x_{2} given that x_{1} has been already transmitted
- Conditional entropy $H\left(O_{3} \mid O_{1}, O_{2}\right)$ gives the avg number of bits needed to transmit x_{3} given that x_{1} and x_{2} have been already transmitted

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting x_{1} transmitting x_{2} given x_{1} transmitting x_{3} given x_{1} and x_{2}

$$
\begin{array}{cc}
H\left(O_{1}\right) & H\left(O_{2} \mid O_{1}\right)
\end{array} H\left(O_{3} \mid O_{1}, O_{2}\right), ~ ب H\left(O_{1}, O_{2}, O_{3}\right)=H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)=H
$$

- Conditional entropy $H\left(O_{2} \mid O_{1}\right)$ gives the avg number of bits needed to transmit x_{2} given that x_{1} has been already transmitted
- Conditional entropy $H\left(O_{3} \mid O_{1}, O_{2}\right)$ gives the avg number of bits needed to transmit x_{3} given that x_{1} and x_{2} have been already transmitted
- We have $H\left(O_{i}, O_{j}\right)=H\left(O_{i}\right)+H\left(O_{j} \mid O_{i}\right)$

Information Theoretic Perspective

We write O as a triple $O=\left(O_{1}, O_{2}, O_{3}\right)$ where each O_{i} is a random variable that takes on an X_{i} value

- O_{1}, O_{2}, and O_{3} are not uniformly distributed and are not independent!
transmitting x_{1} transmitting x_{2} given x_{1} transmitting x_{3} given x_{1} and x_{2}

$$
\begin{array}{cc}
H\left(O_{1}\right) & H\left(O_{2} \mid O_{1}\right)
\end{array} H\left(O_{3} \mid O_{1}, O_{2}\right), ~ ب H\left(O_{1}, O_{2}, O_{3}\right)=H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)=H
$$

- Conditional entropy $H\left(O_{2} \mid O_{1}\right)$ gives the avg number of bits needed to transmit x_{2} given that x_{1} has been already transmitted
- Conditional entropy $H\left(O_{3} \mid O_{1}, O_{2}\right)$ gives the avg number of bits needed to transmit x_{3} given that x_{1} and x_{2} have been already transmitted
- We have $H\left(O_{i}, O_{j}\right)=H\left(O_{i}\right)+H\left(O_{j} \mid O_{i}\right)$

Next, we look closer at the relationship between $H\left(O_{i}, O_{j}\right)$ and $H\left(l_{i j}\right)$

Observation 1

Transmitting $\left(x_{1}, x_{2}\right)$ such that there is an x_{3} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{1}, x_{2}\right) \in \psi_{12}$ chosen uniformly at random

$$
H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)=H\left(O_{1}, O_{2}\right) \leq H\left(I_{12}\right)
$$

Observation 1

Transmitting $\left(x_{1}, x_{2}\right)$ such that there is an x_{3} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{1}, x_{2}\right) \in \psi_{12}$ chosen uniformly at random

$$
H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)=H\left(O_{1}, O_{2}\right) \leq H\left(I_{12}\right)
$$

Example

input ψ_{12}	input ψ_{23}	input ψ_{13}	output Φ
$X_{1} \quad X_{2}$	$X_{2} \quad X_{3}$	$X_{1} \quad X_{3}$	$\begin{array}{llll}X_{1} & X_{2} & X_{3}\end{array}$
11	11	11	111
12	12	12	112
22	21	21	121
25	22	22	122
26	31	15	221
			222

Observation 1

Transmitting $\left(x_{1}, x_{2}\right)$ such that there is an x_{3} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{1}, x_{2}\right) \in \psi_{12}$ chosen uniformly at random

$$
H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)=H\left(O_{1}, O_{2}\right) \leq H\left(I_{12}\right)
$$

Example

input $\psi_{12}$$X_{1} \quad X_{2}$	input ψ_{23}	input ψ_{13}	output ${ }^{\text {¢ }}$				marginalised output $\bigoplus_{X_{3}}{ }^{\Phi}$		
	$X_{2} \quad X_{3}$	$X_{1} X_{3}$	X_{1}	X					
$111 / 5$	11	11	1	1	1	1/6	1	1	1/3
$121 / 5$	12	12	1	1	2	1/6	1	2	1/3
$221 / 5$	21	21	1	2	1	1/6	2	2	1/3
$251 / 5$	22	22	1	2	2	1/6			
2 6 1/5	31	15	2	2	1	1/6			
			2	2	2	1/6			

$$
H\left(O_{1}, O_{2}\right)=\log 3 \leq \log 5=H\left(I_{12}\right)
$$

Observation 2

Transmitting $\left(x_{2}, x_{3}\right)$ such that there is an x_{1} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{2}, x_{3}\right) \in \psi_{23}$ chosen uniformly at random

$$
H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)=H\left(O_{2}, O_{3}\right) \leq H\left(I_{23}\right)
$$

Observation 2

Transmitting $\left(x_{2}, x_{3}\right)$ such that there is an x_{1} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{2}, x_{3}\right) \in \psi_{23}$ chosen uniformly at random

$$
H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)=H\left(O_{2}, O_{3}\right) \leq H\left(I_{23}\right)
$$

Example

input ψ_{12}	input ψ_{23}	input ψ_{13}	output Φ		
$X_{1} X_{2}$	$X_{2} X_{3}$	$X_{1} X_{3}$	X_{1}		X_{3}
11	11	11	1	1	1
12	12	12	1	1	2
22	21	21	1	2	1
25	22	22	1	2	2
26	31	15	2	2	1
			2	2	2

Observation 2

Transmitting $\left(x_{2}, x_{3}\right)$ such that there is an x_{1} with $\left(x_{1}, x_{2}, x_{3}\right) \in \Phi$ does not require more bits than transmitting $\left(x_{2}, x_{3}\right) \in \psi_{23}$ chosen uniformly at random

$$
H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)=H\left(O_{2}, O_{3}\right) \leq H\left(I_{23}\right)
$$

Example

input ψ_{12}	input ψ_{23}			input ψ_{13}		output ${ }^{\text {¢ }}$				marginalised output $\bigoplus_{X_{1}} \Phi$		
						X_{1}	X2	X				
11	1	1	1/5	1	1	1	1	1	1/6	1	1	1/6
12	1	2	1/5	1	2	1	1	2	1/6	1	2	1/6
22	2	1	1/5	2	1	1	2	1	1/6	2	1	1/3
25	2	2	1/5	2	2	1	2	2	1/6	2	2	1/3
26	3	1	1/5	1	5	2	2	1	1/6			
						2	2	2	1/6			

$$
H\left(O_{2}, O_{3}\right)=\frac{2}{6} \log 6+\frac{2}{3} \log 3 \leq \log 5=H\left(I_{23}\right)
$$

Observation 3

Similar to the other Observations

$$
H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)=H\left(O_{1}, O_{3}\right) \leq H\left(I_{13}\right)
$$

Observation 3

Similar to the other Observations

$$
H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)=H\left(O_{1}, O_{3}\right) \leq H\left(I_{13}\right)
$$

Example

input	ψ_{12}
X_{1}	X_{2}
1	1
1	2
2	2
2	5
2	6

input	ψ_{23}
X_{2}	X_{3}
1	1
1	2
2	1
2	2
3	1

input	ψ_{13}
X_{1}	X_{3}
1	1
1	2
2	1
2	2
1	5

output Φ		
X_{1}	X_{2}	X_{3}
1	1	1
1	1	2
1	2	1
1	2	2
2	2	1
2	2	2

Observation 3

Similar to the other Observations

$$
H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)=H\left(O_{1}, O_{3}\right) \leq H\left(I_{13}\right)
$$

Example

input ψ_{12}	input ψ_{23}	input ψ_{13}			output ${ }^{\text {¢ }}$				marginalised output $\bigoplus_{X_{2}}{ }^{\Phi}$		
$X_{1} \quad X_{2}$	$\chi_{2} \quad X_{3}$	X_{1}			X_{1}	X	X_{3}		X_{1}		
11	11	1	1	1/5	1	1	1	1/6	1	1	1/3
12	12	1	2	1/5	1	1	2	1/6	1	2	1/3
22	21	2	1	1/5	1	2	1	1/6	2	1	1/6
25	22	2	2	1/5	1	2	2	1/6	2	2	1/6
26	31	1	5	1/5	2	2	1	1/6			
					2	2	2	1/6			

$$
H\left(O_{1}, O_{3}\right)=\frac{2}{3} \log 3+\frac{2}{6} \log 6 \leq \log 5=H\left(I_{13}\right)
$$

Putting Things Together

$2 \log |\Phi|=2 H(O)$
output tuples uniformly distributed

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
= & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] }
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
= & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
\leq & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } }
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
= & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
\leq & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } } \\
= & H\left(O_{1}, O_{2}\right)+H\left(O_{2}, O_{3}\right)+H\left(O_{1}, O_{3}\right) \quad \text { conditional entropies }
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
= & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
\leq & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } } \\
= & H\left(O_{1}, O_{2}\right)+H\left(O_{2}, O_{3}\right)+H\left(O_{1}, O_{3}\right) \quad \text { conditional entropies } \\
\leq & H\left(I_{12}\right)+H\left(I_{23}\right)+H\left(I_{13}\right) \quad \text { Observations 1, 2, and } 3
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
= & 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
= & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
\leq & {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } } \\
= & H\left(O_{1}, O_{2}\right)+H\left(O_{2}, O_{3}\right)+H\left(O_{1}, O_{3}\right) \quad \text { conditional entropies } \\
\leq & H\left(I_{12}\right)+H\left(I_{23}\right)+H\left(I_{13}\right) \quad \text { Observations 1, 2, and } 3 \\
= & \log N+\log N+\log N \quad \text { input tuples uniformly distributed }
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
&= 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
&= {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
& \leq {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } } \\
&= H\left(O_{1}, O_{2}\right)+H\left(O_{2}, O_{3}\right)+H\left(O_{1}, O_{3}\right) \\
& \leq H\left(I_{12}\right)+H\left(I_{23}\right)+H\left(I_{13}\right) \\
&= \log N+\log N+\log N \quad \text { Conditional entropies } \\
& \Longrightarrow|\Phi| \leq N^{\frac{3}{2}} \quad \text { Observations 1, 2, and 3 } \\
& \hline
\end{aligned}
$$

Putting Things Together

$$
\begin{aligned}
& 2 \log |\Phi|=2 H(O) \quad \text { output tuples uniformly distributed } \\
&= 2\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] \\
&= {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2} \mid O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}, O_{2}\right)\right] } \\
& \leq {\left[H\left(O_{1}\right)+H\left(O_{2} \mid O_{1}\right)\right]+\left[H\left(O_{2}\right)+H\left(O_{3} \mid O_{2}\right)\right]+} \\
& {\left[H\left(O_{1}\right)+H\left(O_{3} \mid O_{1}\right)\right] \quad \text { dropping information cannot decrease entropy } } \\
&= H\left(O_{1}, O_{2}\right)+H\left(O_{2}, O_{3}\right)+H\left(O_{1}, O_{3}\right) \\
& \leq H\left(I_{12}\right)+H\left(I_{23}\right)+H\left(I_{13}\right) \quad \text { conditional entropies } \\
&= \log N+\log N+\log N \quad \text { Observations 1, 2, and 3 } \\
& \Longrightarrow|\Phi| \leq N^{\frac{3}{2}} \quad \text { input tuples uniformly distributed } \\
& \quad \text { as explained before }
\end{aligned}
$$

We next generalise the approach taken in this example to arbitrary joins

General Case: Size Bound for Any Join

Quick Recap on Random Variables over Discrete Domains

- $\operatorname{Dom}(X)$ is the domain of variable X
- For each $x \in \operatorname{Dom}(X)$, we have a probability $P(X=x)$
- Joint Probability of random variables X and Y :

Let $x \in \operatorname{Dom}(X), y \in \operatorname{Dom}(Y)$.
$P(X=x, Y=y)$ gives the joint probability of $X=x$ and $Y=y$

Quick Recap on Random Variables over Discrete Domains

- $\operatorname{Dom}(X)$ is the domain of variable X
- For each $x \in \operatorname{Dom}(X)$, we have a probability $P(X=x)$
- Joint Probability of random variables X and Y :

Let $x \in \operatorname{Dom}(X), y \in \operatorname{Dom}(Y)$.
$P(X=x, Y=y)$ gives the joint probability of $X=x$ and $Y=y$

- Marginalised probability:

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

- Conditional probability: Assuming $P(Y=y) \neq 0$,

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Entropy of Random Variable

- Entropy of a random variable X :

$$
H(X)=-\sum_{x} P(X=x) \cdot \log P(X=x)
$$

Intuitively: $H(X)$ measures the uncertainty about X

Entropy of Random Variable

- Entropy of a random variable X :

$$
H(X)=-\sum_{x} P(X=x) \cdot \log P(X=x)
$$

Intuitively: $H(X)$ measures the uncertainty about X

- Joint entropy:

$$
H(X, Y)=-\sum_{x, y} P(X=x, Y=y) \cdot \log P(X=x, Y=y)
$$

- Conditional entropy: Assuming $P(Y=y) \neq 0$,

$$
\begin{aligned}
H(X \mid Y=y) & =-\sum_{x} P(X=x \mid Y=y) \cdot \log P(X=x \mid Y=y) \\
H(X \mid Y) & =\sum_{y} P(Y=y) \cdot H(X \mid Y=y)
\end{aligned}
$$

Observations

Observation 1: The joint entropy of $\mathbf{X}_{[n]}=\left(X_{1}, \ldots, X_{n}\right)$ can be expressed as the sum of the entropies of each X_{i} conditioned on $\mathbf{X}_{[i-1]}=\left(X_{1}, \ldots, X_{i-1}\right)$

$$
H\left(\mathbf{x}_{[n]}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
$$

Observations

Observation 1: The joint entropy of $\mathbf{X}_{[n]}=\left(X_{1}, \ldots, X_{n}\right)$ can be expressed as the sum of the entropies of each X_{i} conditioned on $\mathbf{X}_{[i-1]}=\left(X_{1}, \ldots, X_{i-1}\right)$

$$
H\left(\mathbf{X}_{[n]}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
$$

Observation 2: The entropy of X conditioned on $\mathbf{X}_{[n]}=\left(X_{1}, \ldots, X_{n}\right)$ is not larger than the entropy of X conditioned on a subset \mathbf{X}_{J} of $\mathbf{X}_{[n]}$

$$
H\left(X \mid \mathbf{X}_{[n]}\right) \leq H\left(X \mid \mathbf{X}_{J}\right) \text { for all } J \subseteq[n]
$$

Shearer's Lemma

Let

- $\mathbf{X}_{[n]}=\left(X_{1}, \ldots, X_{n}\right)$ are random variables
- $\mathcal{J} \subseteq 2^{[n]}$ is multiset such that each $i \in[n]$ is in at least q members of \mathcal{J}
- $2^{[n]}$ is the set of all possible subsets of $[n]=\{1, \ldots, n\}$
- \mathcal{J} is a subset of $2^{[n]}$, but possibly with repetitions (hence, multiset)
- \mathcal{J} is like the set of hyperedges of a multi-hypergraph whose set of nodes is [$n]$

Then,

$$
q \cdot H\left(\mathbf{X}_{[n]}\right) \leq \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right)
$$

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:
output Φ

X_{1}	X_{2}	X_{3}
1	1	1
1	1	2
1	2	1
1	2	2
2	2	1
2	2	2

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:
output Φ

X_{1}	X_{2}	X_{3}
1	1	1
1	1	2
1	2	1
1	2	2
2	2	1
2	2	2

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:

output Φ			
X_{1}	X_{2}	X_{3}	
1	1	1	$1 / 6$
1	1	2	$1 / 6$
1	2	1	$1 / 6$
1	2	2	$1 / 6$
2	2	1	$1 / 6$
2	2	2	$1 / 6$

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}
$2 H(O)=2 \log 6 \approx 1.56$

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:

output Φ				marginalised		
X_{1}	X_{2}			output	$\mathrm{t} \oplus$	$\chi{ }^{\text {a }}$
1	1	1	1/6	X_{1}		
1	1	2	1/6	1	1	1/3
1	2	1	1/6		2	
1	2	2	1/6	2	2	
2	2	1	1/6			
2	2	2	1/6			

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}
$2 H(O)=2 \log 6 \approx 1.56$ $\log 3$

$$
H\left(O_{1}, O_{2}\right)
$$

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:

output Φ			
X_{1}	X_{2}	X_{3}	
1	1	1	$1 / 6$
1	1	2	$1 / 6$
1	2	1	$1 / 6$
1	2	2	$1 / 6$
2	2	1	$1 / 6$
2	2	2	$1 / 6$

marginalised
output
$\bigoplus_{x_{3}} \Phi$

X_{1}	X_{2}	
1	1	$1 / 3$
1	2	$1 / 3$
2	2	$1 / 3$

marginalised
output

X_{2}	X_{3}	
1	1	$1 / 6$
1	2	$1 / 6$
2	1	$1 / 3$
2	2	$1 / 3$

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}

$$
\begin{gathered}
2 H(O)=2 \log 6 \approx 1.56 \quad \log 3+\frac{2}{6} \log 6+\frac{2}{3} \log 3 \\
H\left(O_{1}, O_{2}\right) \quad H\left(O_{2}, O_{3}\right)
\end{gathered}
$$

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}
$2 H(O)=2 \log 6 \approx 1.56$

$$
\begin{aligned}
& \log 3+\frac{2}{6} \log 6+\frac{2}{3} \log 3+\frac{2}{6} \log 6+\frac{2}{3} \log 3 \\
& H\left(O_{1}, O_{2}\right) \quad H\left(O_{2}, O_{3}\right) \quad H\left(O_{1}, O_{3}\right)
\end{aligned}
$$

Example

Triangle Query $\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)$
with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and output:

- Choose $\mathcal{J}=\mathcal{E}=\{\{1,2\},\{2,3\},\{1,3\}\}$
- Each $i \in[3]$ occurs in at least two members of \mathcal{J}
$2 H(O)=2 \log 6 \approx 1.56 \leq 1.63 \approx \log 3+\frac{2}{6} \log 6+\frac{2}{3} \log 3+\frac{2}{6} \log 6+\frac{2}{3} \log 3$

$$
H\left(O_{1}, O_{2}\right) \quad H\left(O_{2}, O_{3}\right) \quad H\left(O_{1}, O_{3}\right)
$$

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation } 1 \text { on chain rule for joint entropy }
\end{aligned}
$$

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation 1 on chain rule for joint entropy } \\
= & q \cdot H\left(X_{1}\right)+q \cdot H\left(X_{2} \mid X_{1}\right)+\ldots+q \cdot H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
\end{aligned}
$$

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation 1 on chain rule for joint entropy } \\
= & q \cdot H\left(X_{1}\right)+\quad q \cdot H\left(X_{2} \mid X_{1}\right)+\ldots+\quad q \cdot H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right) \\
& |\wedge \quad| \wedge \\
\leq & \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{1}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
\end{aligned}
$$

Since each i appears in at least q sets

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation 1 on chain rule for joint entropy } \\
= & q \cdot H\left(X_{1}\right)+\quad q \cdot H\left(X_{2} \mid X_{1}\right)+\ldots+\quad q \cdot H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right) \\
& |\wedge \quad| \wedge \\
\leq & \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{1}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
\end{aligned}
$$

Since each i appears in at least q sets

$$
\leq \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{\{1\} \cap J}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1] \cap J}\right)
$$

Observation 2: Conditioning on less variables does not decrease entropy

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation 1 on chain rule for joint entropy } \\
= & q \cdot H\left(X_{1}\right)+\quad q \cdot H\left(X_{2} \mid X_{1}\right)+\ldots+\quad q \cdot H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right) \\
& \quad|\wedge \quad| \wedge \\
\leq & \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{1}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
\end{aligned}
$$

Since each i appears in at least q sets

$$
\leq \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{\{1\} \cap J}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1] \cap J}\right)
$$

Observation 2: Conditioning on less variables does not decrease entropy

$$
=\sum_{J \in \mathcal{J}} \sum_{i \in J} H\left(X_{i} \mid \mathbf{X}_{[i-1] \cap J}\right)
$$

Proof of Shearer's Lemma

$$
\begin{aligned}
& q \cdot H\left(\mathbf{X}_{[n]}\right) \\
= & q \cdot \sum_{i \in[n]} H\left(X_{i} \mid \mathbf{X}_{[i-1]}\right) \quad \text { Observation 1 on chain rule for joint entropy } \\
= & q \cdot H\left(X_{1}\right)+\quad q \cdot H\left(X_{2} \mid X_{1}\right)+\ldots+\quad q \cdot H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right) \\
& \quad|\wedge \quad| \wedge \\
\leq & \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{1}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1]}\right)
\end{aligned}
$$

Since each i appears in at least q sets

$$
\leq \sum_{J \in \mathcal{J}: 1 \in J} H\left(X_{1}\right)+\sum_{J \in \mathcal{J}: 2 \in J} H\left(X_{2} \mid X_{\{1\} \cap J}\right)+\ldots+\sum_{J \in \mathcal{J}: n \in J} H\left(X_{n} \mid \mathbf{X}_{[n-1] \cap J}\right)
$$

Observation 2: Conditioning on less variables does not decrease entropy
$=\sum_{J \in \mathcal{J}} \sum_{i \in J} H\left(X_{i} \mid \mathbf{X}_{[i-1] \cap J}\right)=\sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) \quad$ Observation 1 on chain rule

Connection to Join Output Size

FAQ $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and factor sizes $\left(N_{S}\right)_{s \in \mathcal{E}}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}} N_{S}^{w_{s}}$

Why can we apply Shearer's lemma in our case?

Connection to Join Output Size

FAQ $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and factor sizes $\left(N_{S}\right)_{s \in \mathcal{E}}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}} N_{S}^{w_{s}}$

Why can we apply Shearer's lemma in our case?

- Each factor $\psi_{s}=$ joint distribution over the random variables in S
- Hyperedges $S \in \mathcal{E}=$ sets $J \in \mathcal{J}$ in Shearer's lemma; more precisely:
- Choose natural numbers q and $\left(p_{S}\right)_{S \in \mathcal{E}}$ such that $w_{S}=\frac{p_{S}}{q}$ for all $S \in \mathcal{E}$
- Let $\mathcal{J} \subseteq 2^{[n]}$ be a multiset that consists of p_{S} copies of each $S \in \mathcal{E}$
- We still need to hold: every $i \in[n]$ occurs in at least q sets in \mathcal{J}

Connection to Join Output Size

FAQ $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and factor sizes $\left(N_{S}\right)_{s \in \mathcal{E}}$

- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be any feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}} N_{s}^{w_{s}}$

Why can we apply Shearer's lemma in our case?

- Each factor $\psi_{s}=$ joint distribution over the random variables in S
- Hyperedges $S \in \mathcal{E}=$ sets $J \in \mathcal{J}$ in Shearer's lemma; more precisely:
- Choose natural numbers q and $\left(p_{S}\right)_{S \in \mathcal{E}}$ such that $w_{S}=\frac{p_{S}}{q}$ for all $S \in \mathcal{E}$
- Let $\mathcal{J} \subseteq 2^{[n]}$ be a multiset that consists of p_{S} copies of each $S \in \mathcal{E}$
- We still need to hold: every $i \in[n]$ occurs in at least q sets in \mathcal{J}

This holds because the number of sets containing i is:

$$
\sum_{S \in \mathcal{J}: i \in S} p_{S}=\sum_{S \in \mathcal{J}: i \in S} q \cdot w_{S}=q \cdot \sum_{\geq 1 \text { due to linear program }}^{\sum_{S \in \mathcal{J}: i \in S} w_{S} \geq q}
$$

Example Connecting Shearer Setup with Feasible Solution for ρ^{*}

Hypergraph \mathcal{H}

Example Connecting Shearer Setup with Feasible Solution for ρ^{*}

- Feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$:
$w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=0, w_{45}=1$

Example Connecting Shearer Setup with Feasible Solution for ρ^{*}

Hypergraph \mathcal{H}

- Feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$:
$w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=0, w_{45}=1$
- We can choose $q=2, p_{12}=p_{23}=p_{13}=1, p_{34}=p_{35}=0$, and $p_{45}=2$, since $w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=\frac{0}{2}$, and $w_{45}=\frac{2}{2}$

Example Connecting Shearer Setup with Feasible Solution for ρ^{*}

Hypergraph \mathcal{H}

- Feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$:
$w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=0, w_{45}=1$
- We can choose $q=2, p_{12}=p_{23}=p_{13}=1, p_{34}=p_{35}=0$, and $p_{45}=2$, since $w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=\frac{0}{2}$, and $w_{45}=\frac{2}{2}$
- Then, $\mathcal{J}=\{\{1,2\},\{2,3\},\{1,3\},\{4,5\},\{4,5\}\}$

Example Connecting Shearer Setup with Feasible Solution for ρ^{*}

Hypergraph \mathcal{H}

- Feasible solution to the linear program computing $\rho^{*}(\mathcal{H})$:
$w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=0, w_{45}=1$
- We can choose $q=2, p_{12}=p_{23}=p_{13}=1, p_{34}=p_{35}=0$, and $p_{45}=2$, since $w_{12}=w_{23}=w_{13}=\frac{1}{2}, w_{34}=w_{35}=\frac{0}{2}$, and $w_{45}=\frac{2}{2}$
- Then, $\mathcal{J}=\{\{1,2\},\{2,3\},\{1,3\},\{4,5\},\{4,5\}\}$
\Longrightarrow Every $i \in[5]$ occurs in 2 sets in \mathcal{J}.

Putting Things Together

W.I.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\log |\Phi|=H(X) \quad X \text { is uniformly distributed }
$$

Putting Things Together

W.I.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma }
\end{array}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) \quad X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) \quad \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E}
\end{array}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) & \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot H\left(\mathbf{X}_{S}\right) & w_{S}=\frac{p_{S}}{q}
\end{array}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) & \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot H\left(\mathbf{X}_{S}\right) & w_{s}=\frac{p_{S}}{q} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot \log N_{S} & H\left(\mathbf{X}_{S}\right) \leq \log N_{S}
\end{array}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) & \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot H\left(\mathbf{X}_{S}\right) & w_{S}=\frac{p_{S}}{q} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot \log N_{S} & H\left(\mathbf{X}_{S}\right) \leq \log N_{S}
\end{array}
$$

This implies:

$$
\log |\Phi| \leq \sum_{s \in \mathcal{E}} \log N_{s}^{w_{s}}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) & \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot H\left(\mathbf{X}_{S}\right) & w_{s}=\frac{p_{S}}{q} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot \log N_{S} & H\left(\mathbf{X}_{S}\right) \leq \log N_{S}
\end{array}
$$

This implies:

$$
\log |\Phi| \leq \sum_{s \in \mathcal{E}} \log N_{s}^{w_{s}} \Leftrightarrow \log |\Phi| \leq \log \prod_{S \in \mathcal{E}} N_{S}^{w_{s}}
$$

Putting Things Together

W.l.o.g assume $|\Phi| \neq 0$, otherwise the size bound trivially holds

Let $X=\left(\mathbf{X}_{[n]}\right)$ be uniformly distributed over the output Φ

$$
\begin{array}{rlr}
\log |\Phi| & =H(X) & X \text { is uniformly distributed } \\
& \leq \frac{1}{q} \cdot \sum_{J \in \mathcal{J}} H\left(\mathbf{X}_{J}\right) & \text { Shearer's Lemma } \\
& =\frac{1}{q} \cdot \sum_{S \in \mathcal{E}} p_{S} \cdot H\left(\mathbf{X}_{S}\right) & \mathcal{J} \text { consists of } p_{S} \text { copies of each } S \in \mathcal{E} \\
& \leq \sum_{S \in \mathcal{E}} w_{S} \cdot H\left(\mathbf{X}_{S}\right) & w_{s}=\frac{p_{S}}{q} \\
& \leq \sum_{S \in \mathcal{S}} w_{S} \cdot \log N_{S} & H\left(\mathbf{X}_{S}\right) \leq \log N_{S}
\end{array}
$$

This implies:

$$
\log |\Phi| \leq \sum_{s \in \mathcal{E}} \log N_{s}^{w_{s}} \Leftrightarrow \log |\Phi| \leq \log \prod_{s \in \mathcal{E}} N_{s}^{w_{s}} \Leftrightarrow|\Phi| \leq \prod_{s \in \mathcal{E}} N_{s}^{w_{s}}
$$

The Lower Bound Argument

Lower Bound for Join Output Size

Consider an FAQ join $\Phi(\mathbf{x})=\bigotimes_{s \in \mathcal{E}} \psi_{s}\left(\mathbf{x}_{s}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$
We have shown:

- If input factors ψ_{S} are of size N, then $|\Phi| \leq N^{\rho^{*}(\mathcal{H})}$

Lower Bound for Join Output Size

Consider an FAQ join $\Phi(\mathbf{x})=\bigotimes_{s \in \mathcal{E}} \psi_{s}\left(\mathbf{x}_{s}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$
We have shown:

- If input factors ψ_{s} are of size N, then $|\Phi| \leq N^{\rho^{*}(\mathcal{H})}$

What we would like to show in the ideal case:

- If input factors ψ_{S} are of size N, then $|\Phi| \geq N^{\rho^{*}(\mathcal{H})}$
- This is not always possible

Lower Bound for Join Output Size

Consider an FAQ join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$

We have shown:

- If input factors ψ_{S} are of size N, then $|\Phi| \leq N^{\rho^{*}(\mathcal{H})}$

What we would like to show in the ideal case:

- If input factors ψ_{S} are of size N, then $|\Phi| \geq N^{\rho^{*}(\mathcal{H})}$
- This is not always possible

We can however show:

- For every N_{0}, we construct factors of size $N \geq N_{0}$ such that $|\Phi| \geq N^{\rho^{*}(\mathcal{H})}$
- This lower bound extends to factors of different sizes

Warm-Up: Size Bound for Triangle Join

Lower Bound on Triangle Join Output Size (1/2)

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

Hypergraph \mathcal{H}

$$
\rho^{*}(\mathcal{H})=\frac{3}{2}
$$

Lower Bound on Triangle Join Output Size (2/2)

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

- We can construct input factors $\psi_{i j}$ of size 4 with $|\Phi|=4^{\frac{3}{2}}=8$.

input ψ_{12}	input ψ_{23}	input ψ_{13}	output Φ
$X_{1} \quad X_{2}$	$X_{2} \quad X_{3}$	$X_{1} \quad X_{3}$	$X_{1} X_{2} \quad X_{3}$
11	11	11	111
12	12	12	112
21	21	21	121
22	22	22	122
			211
$=[2] \times[2]$	$=[2] \times[2]$	$=[2] \times[2]$	212
			221
			222

Lower Bound on Triangle Join Output Size (2/2)

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

- We can construct input factors $\psi_{i j}$ of size 4 with $|\Phi|=4^{\frac{3}{2}}=8$.

input ψ_{12}	input ψ_{23}	input ψ_{13}	output Φ
$X_{1} \quad X_{2}$	$X_{2} \quad X_{3}$	$X_{1} \quad X_{3}$	$X_{1} X_{2} \quad X_{3}$
11	11	11	111
12	12	12	112
21	21	21	121
22	22	22	122
			211
$=[2] \times[2]$	$=[2] \times[2]$	$=[2] \times[2]$	212
			221
			222

- We next generalise the idea of this construction

Dual Linear Program

The dual of the linear program computing the fractional edge cover number ρ^{*}

LP for $\rho^{*}(\mathcal{H})$		Dual LP for $D(\mathcal{H})$		
minimise	$\sum_{S \in \mathcal{E}} w_{S}$	maximise	$\sum_{i \in[n]} v_{i}$	
subject to	$\sum_{S \in \mathcal{E}: v \in S} w_{S} \geq 1 \quad \forall v \in \mathcal{V}$,	subject to	$\sum_{i \in S} v_{i} \leq 1 \quad \forall S \in \mathcal{E}$,	
	$0 \leq w_{S} \leq 1$	$\forall S \in \mathcal{E}$		$0 \leq v_{i} \leq 1 \quad \forall i \in[n]$

- Left: Weights w_{s} assigned to hyperedges
- Right: Weights v_{i} assigned to nodes

Dual Linear Program

The dual of the linear program computing the fractional edge cover number ρ^{*}

LP for $\rho^{*}(\mathcal{H})$	Dual LP for $D(\mathcal{H})$		
minimise	$\sum_{S \in \mathcal{E}} w_{S}$		
subject to	$\sum_{S \in \mathcal{E}: v \in S} w_{S} \geq 1 \quad \forall v \in \mathcal{V}$,		
	$0 \leq w_{S} \leq 1$	$\forall S \in \mathcal{E}$	maximise $\sum_{i \in[n]} v_{i}$
subject to $\quad \sum_{i \in S} v_{i} \leq 1 \quad \forall S \in \mathcal{E}$,			
	$0 \leq v_{i} \leq 1 \quad \forall i \in[n]$		

- Left: Weights w_{S} assigned to hyperedges
- Right: Weights v_{i} assigned to nodes

$$
\text { By linear program duality: } \rho^{*}(\mathcal{H})=D(\mathcal{H})
$$

Dual LP for Triangle Join

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

Dual LP for Triangle Join

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

$$
\rho^{*}(\mathcal{H})=\frac{3}{2}
$$

Dual LP for Triangle Join

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

$$
\begin{aligned}
\rho^{*}(\mathcal{H}) & =\frac{3}{2} \\
D(\mathcal{H}) & =\frac{3}{2}
\end{aligned}
$$

Dual LP for Triangle Join

$$
\Phi\left(x_{1}, x_{2}, x_{3}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \otimes \psi_{23}\left(x_{2}, x_{3}\right) \otimes \psi_{13}\left(x_{1}, x_{3}\right)
$$

$$
\begin{aligned}
\rho^{*}(\mathcal{H}) & =\frac{3}{2} \\
D(\mathcal{H}) & =\frac{3}{2}
\end{aligned}
$$

For factors size N_{0}, take $N \geq N_{0}$ a power of 2 .
Choose $p, q \in \mathbb{N}$ such that $\frac{1}{2} \cdot \log N=\frac{p}{q}$.
We construct $\psi_{12}=\psi_{13}=\psi_{23}=\left[2^{p}\right] \times\left[2^{p}\right]$ and then

- $\left|\psi_{12}\right|=\left|\psi_{13}\right|=\left|\psi_{23}\right|=2^{2 p}=2^{q \log N}=\left(2^{\log N}\right)^{q}=N^{q}$
- $|\Phi|=2^{3 p}=2^{3 q \frac{1}{2} \log N}=\left(2^{\log N}\right)^{q \frac{3}{2}}=N^{q \frac{3}{2}}=\left(N^{q}\right)^{\frac{3}{2}}$

Size Lower Bound for Any Join

Construction of Input Factors

- Consider an optimal solution $\left(v_{i}\right)_{i \in[n]}$ to the linear program computing $D(\mathcal{H})$
- Choose natural numbers $q,\left(p_{i}\right)_{i \in[n]}$ such that $v_{i} \cdot \log N=\frac{p_{i}}{q}$
- This works if $N \geq N_{0}$ is a power of 2 , so $\log N$ is a natural number
- We construct in two steps input factors ψ_{s} of size N^{q} such that

$$
|\Phi| \geq\left(N^{q}\right)^{\rho^{*}(\mathcal{H})}
$$

Construction of Input Factors: Step 1

For each $S \in \mathcal{E}$, construct ψ_{S}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=\times_{i \in S}\left[2^{p_{i}}\right]
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[\left[^{p_{i}}\right]\right.
$$

This implies

$$
\left|\psi_{s}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}}=\prod_{i \in S} 2^{q \cdot v_{i} \log N} \quad p_{i}=q \cdot v_{i} \cdot \log N
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[2^{p_{i}}\right]
$$

This implies

$$
\begin{aligned}
\left|\psi_{s}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}} & =\prod_{i \in S} 2^{q \cdot v_{i} \cdot \log N} \quad p_{i}=q \cdot v_{i} \cdot \log N \\
& =\prod_{i \in S} 2^{\log N^{q \cdot v_{i}}}
\end{aligned}
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[\left[^{p_{i}}\right]\right.
$$

This implies

$$
\begin{aligned}
\left|\psi_{S}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}} & =\prod_{i \in S} 2^{q \cdot v_{i} \cdot \log N} \quad p_{i}=q \cdot v_{i} \cdot \log N \\
& =\prod_{i \in S} 2^{\log N^{q \cdot v_{i}}} \\
& =\prod_{i \in S} N^{q \cdot v_{i}}
\end{aligned}
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[\left[^{p_{i}}\right]\right.
$$

This implies

$$
\begin{aligned}
\left|\psi_{S}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}} & =\prod_{i \in S} 2^{q \cdot v_{i} \cdot \log N} \quad p_{i}=q \cdot v_{i} \cdot \log N \\
& =\prod_{i \in S} 2^{\log N^{q \cdot v_{i}}} \\
& =\prod_{i \in S} N^{q \cdot v_{i}} \\
& =\prod_{i \in S}\left(N^{q}\right)^{v_{i}}
\end{aligned}
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[\left[^{p_{i}}\right]\right.
$$

This implies

$$
\begin{aligned}
\left|\psi_{S}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}} & =\prod_{i \in S} 2^{q \cdot v_{i} \cdot \log N} \quad p_{i}=q \cdot v_{i} \cdot \log N \\
& =\prod_{i \in S} 2^{\log N^{q \cdot v_{i}}} \\
& =\prod_{i \in S} N^{q \cdot v_{i}} \\
& =\prod_{i \in S}\left(N^{q}\right)^{v_{i}} \\
& =\left(N^{q}\right)^{\sum_{i \in S} v_{i}}
\end{aligned}
$$

Construction of Input Factors: Step 1

For each $\mathcal{S} \in \mathcal{E}$, construct ψ_{s}^{\prime} as the Cartesian product

$$
\psi_{S}^{\prime}=x_{i \in S}\left[2^{p_{i}}\right]
$$

This implies

$$
\begin{array}{rlrl}
\left|\psi_{S}^{\prime}\right|=\prod_{i \in S} 2^{p_{i}} & =\prod_{i \in S} 2^{q \cdot v_{i} \cdot \log N} & p_{i}=q \cdot v_{i} \cdot \log N \\
& =\prod_{i \in S} 2^{\log N^{q \cdot v_{i}}} \\
& =\prod_{i \in S} N^{q \cdot v_{i}} \\
& =\prod_{i \in S}\left(N^{q}\right)^{v_{i}} \\
& =\left(N^{q}\right)^{\sum_{i \in S} v_{i}} \\
& \leq N^{q} & \sum_{i \in S} v_{i} \leq 1
\end{array}
$$

Construction of Input Factors: Step 2

For each $S \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{s} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

Construction of Input Factors: Step 2

For each $S \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{s} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

This implies

$$
\Phi \supseteq \times_{i \in[n]}\left[2^{p_{i}}\right]
$$

Construction of Input Factors: Step 2

For each $S \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{s} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

This implies

$$
\Phi \supseteq x_{i \in[n]}\left[2^{p_{i}}\right]
$$

Hence,

$$
\begin{aligned}
|\Phi| & \geq \prod_{i \in[n]} 2^{p_{i}} \\
& =\prod_{i \in[n]} 2^{q \cdot v_{i} \log N}
\end{aligned}
$$

$$
p_{i}=q \cdot v_{i} \cdot \log N
$$

Construction of Input Factors: Step 2

For each $S \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{s} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

This implies

$$
\Phi \supseteq \times_{i \in[n]}\left[2^{p_{i}}\right]
$$

Hence,

$$
\begin{aligned}
|\Phi| & \geq \prod_{i \in[n]} 2^{p_{i}} \\
& =\prod_{i \in[n]} 2^{q \cdot v_{i} \log N} \\
& =\left(N^{q}\right)^{\sum_{i \in[n]} v_{i}}
\end{aligned}
$$

$$
p_{i}=q \cdot v_{i} \cdot \log N
$$

analogous to previous slide

Construction of Input Factors: Step 2

For each $\mathcal{S} \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{s} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

This implies

$$
\Phi \supseteq \times_{i \in[n]}\left[2^{p_{i}}\right]
$$

Hence,

$$
\begin{aligned}
|\Phi| & \geq \prod_{i \in[n]} 2^{p_{i}} \\
& =\prod_{i \in[n]} 2^{q \cdot v_{i} \cdot \log N}
\end{aligned}
$$

$$
=\left(N^{q}\right)^{\sum_{i \in[n]} v_{i}} \quad \text { analogous to previous slide }
$$

$$
=\left(N^{q}\right)^{D(\mathcal{H})} \quad\left(v_{i}\right)_{i \in[n]} \text { is optimal solution to dual program }
$$

Construction of Input Factors: Step 2

For each $\mathcal{S} \in \mathcal{E}$, construct an arbitrary ψ_{s} with $\psi_{S} \supseteq \psi_{s}^{\prime}$ and $\left|\psi_{s}\right|=N^{q}$

This implies

$$
\Phi \supseteq x_{i \in[n]}\left[2^{p_{i}}\right]
$$

Hence,

$$
\begin{aligned}
|\Phi| & \geq \prod_{i \in[n]} 2^{p_{i}} \\
& =\prod_{i \in[n]} 2^{q \cdot v_{i} \cdot \log N} \\
& =\left(N^{q}\right)^{\sum_{i \in[n]} v_{i}} \\
& =\left(N^{q}\right)^{D(\mathcal{H})} \\
& =\left(N^{q}\right)^{\rho^{*}(\mathcal{H})}
\end{aligned}
$$

$$
=\left(N^{q}\right)^{\sum_{i \in[n]} v_{i}} \quad \text { analogous to previous slide }
$$

$$
=\left(N^{q}\right)^{D(\mathcal{H})} \quad\left(v_{i}\right)_{i \in[n]} \text { is optimal solution to dual program }
$$

linear program duality

Lower Bound in Case of Input Factors with Different Sizes

Given a join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes N_{S} for $S \in \mathcal{E}$, the dual linear program extends to

$$
\begin{array}{cll}
\operatorname{maximise} & \sum_{i \in[n]} v_{i} & \\
\text { subject to } & \sum_{i \in S} v_{i} \leq \log N_{S} & \forall S \in \mathcal{E}, \\
& v_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

Lower Bound in Case of Input Factors with Different Sizes

Given a join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes N_{S} for $S \in \mathcal{E}$, the dual linear program extends to

$$
\begin{array}{rll}
\operatorname{maximise} & \sum_{i \in[n]} v_{i} & \\
\text { subject to } & \sum_{i \in S} v_{i} \leq \log N_{S} & \forall S \in \mathcal{E}, \\
& v_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- Given an optimal solution $\left(v_{i}\right)_{i \in[n]}$ to the above program, we choose natural numbers $q,\left(p_{i}\right)_{i \in[n]}$ such that $v_{i}=\frac{p_{i}}{q}$

Lower Bound in Case of Input Factors with Different Sizes

Given a join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes N_{S} for $S \in \mathcal{E}$, the dual linear program extends to

$$
\begin{array}{cll}
\operatorname{maximise} & \sum_{i \in[n]} v_{i} & \\
\text { subject to } & \sum_{i \in S} v_{i} \leq \log N_{S} & \forall S \in \mathcal{E}, \\
& v_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- Given an optimal solution $\left(v_{i}\right)_{i \in[n]}$ to the above program, we choose natural numbers $q,\left(p_{i}\right)_{i \in[n]}$ such that $v_{i}=\frac{p_{i}}{q}$
- We construct input factors $\psi_{S} \supseteq \times_{i \in S}\left[2^{p_{i}}\right]$ of sizes N_{S}^{q}

Lower Bound in Case of Input Factors with Different Sizes

Given a join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes N_{S} for $S \in \mathcal{E}$, the dual linear program extends to

$$
\begin{array}{rll}
\operatorname{maximise} & \sum_{i \in[n]} v_{i} & \\
\text { subject to } & \sum_{i \in S} v_{i} \leq \log N_{S} & \forall S \in \mathcal{E}, \\
& v_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- Given an optimal solution $\left(v_{i}\right)_{i \in[n]}$ to the above program, we choose natural numbers $q,\left(p_{i}\right)_{i \in[n]}$ such that $v_{i}=\frac{p_{i}}{q}$
- We construct input factors $\psi_{S} \supseteq \times_{i \in S}\left[2^{p_{i}}\right]$ of sizes N_{S}^{q}
- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be an optimal solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}}\left(N_{S}^{q}\right)^{w_{s}}$

Lower Bound in Case of Input Factors with Different Sizes

Given a join $\Phi(\mathbf{x})=\bigotimes_{S \in \mathcal{E}} \psi_{S}\left(\mathbf{x}_{S}\right)$ with hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ and input factor sizes N_{S} for $S \in \mathcal{E}$, the dual linear program extends to

$$
\begin{array}{rll}
\operatorname{maximise} & \sum_{i \in[n]} v_{i} & \\
\text { subject to } & \sum_{i \in S} v_{i} \leq \log N_{S} & \forall S \in \mathcal{E}, \\
& v_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- Given an optimal solution $\left(v_{i}\right)_{i \in[n]}$ to the above program, we choose natural numbers $q,\left(p_{i}\right)_{i \in[n]}$ such that $v_{i}=\frac{p_{i}}{q}$
- We construct input factors $\psi_{S} \supseteq \times_{i \in S}\left[2^{p_{i}}\right]$ of sizes N_{S}^{q}
- Let $\left(w_{S}\right)_{s \in \mathcal{E}}$ be an optimal solution to the linear program computing $\rho^{*}(\mathcal{H})$ with minimisation objective $\prod_{s \in \mathcal{E}}\left(N_{S}^{q}\right)^{w_{s}}$
- We can show $|\Phi| \geq \prod_{S \in \mathcal{E}}\left(N_{S}^{q}\right)^{w_{s}}$

