
https://lms.uzh.ch/url/RepositoryEntry/17185308706

Efficient Algorithms for Frequently Asked Questions

7. Worst-Case Optimal Size Bounds for Joins

Prof. Dan Olteanu

May 2, 2022

https://lms.uzh.ch/url/RepositoryEntry/17185308706

Agenda for This Lecture

Worst-case optimal size bounds for joins

• Key parameter: The fractional edge cover number ρ∗

• Mentioned it several times in the previous lectures

Upper bound via an information-theoretic argument

• Warm-up: Triangle join

• General Case using Shearer’s Lemma

Lower bound

• Warm-up: Triangle join

• General case via dual linear program for fractional edge cover number

The effect of the size of input factors: Same size vs different sizes

The Upper Bound Argument

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

Φ(x) =
⊗
S∈E

ψS(xS)

with hypergraph H = (V, E) and input factor sizes |ψS| = NS for S ∈ E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

• We will show that the output size |Φ| is upper-bounded by
∏

S∈E NwS
S

• By choosing N = maxS∈E NS , this implies

|Φ| ≤
∏
S∈E

NwS
S ≤

∏
S∈E

NwS = N
∑

S∈E wS = Nρ∗(H)

• We will sketch a proof based on information theory

• Warm-up first: Triangle join with input factor sizes N

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

Φ(x) =
⊗
S∈E

ψS(xS)

with hypergraph H = (V, E) and input factor sizes |ψS| = NS for S ∈ E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

• We will show that the output size |Φ| is upper-bounded by
∏

S∈E NwS
S

• By choosing N = maxS∈E NS , this implies

|Φ| ≤
∏
S∈E

NwS
S ≤

∏
S∈E

NwS = N
∑

S∈E wS = Nρ∗(H)

• We will sketch a proof based on information theory

• Warm-up first: Triangle join with input factor sizes N

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

Φ(x) =
⊗
S∈E

ψS(xS)

with hypergraph H = (V, E) and input factor sizes |ψS| = NS for S ∈ E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

• We will show that the output size |Φ| is upper-bounded by
∏

S∈E NwS
S

• By choosing N = maxS∈E NS , this implies

|Φ| ≤
∏
S∈E

NwS
S ≤

∏
S∈E

NwS = N
∑

S∈E wS = Nρ∗(H)

• We will sketch a proof based on information theory

• Warm-up first: Triangle join with input factor sizes N

Upper Bound on Join Output Size

Consider the join (all variables free, no marginalisation)

Φ(x) =
⊗
S∈E

ψS(xS)

with hypergraph H = (V, E) and input factor sizes |ψS| = NS for S ∈ E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

• We will show that the output size |Φ| is upper-bounded by
∏

S∈E NwS
S

• By choosing N = maxS∈E NS , this implies

|Φ| ≤
∏
S∈E

NwS
S ≤

∏
S∈E

NwS = N
∑

S∈E wS = Nρ∗(H)

• We will sketch a proof based on information theory

• Warm-up first: Triangle join with input factor sizes N

Warm-Up: Size Bound for Triangle Join

Upper Bound on Triangle Join Output Size

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with input factor sizes |ψ12| = |ψ23| = |ψ13| = N

Hypergraph H

1

2 3

Linear program computing ρ∗(H)

minimise w12 + w23 + w13

subject to
1 : w12 + w23 ≥ 1
2 : w12 + w13 ≥ 1
3 : w23 + w13 ≥ 1

w12 ≥ 0 w23 ≥ 0 w13 ≥ 0

• The optimal solution to the above program is w12 = w23 = w13 = 1
2

• We will show that |Φ| ≤ N
3
2

Upper Bound on Triangle Join Output Size

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with input factor sizes |ψ12| = |ψ23| = |ψ13| = N

Hypergraph H

1

2 3

Linear program computing ρ∗(H)

minimise w12 + w23 + w13

subject to
1 : w12 + w23 ≥ 1
2 : w12 + w13 ≥ 1
3 : w23 + w13 ≥ 1

w12 ≥ 0 w23 ≥ 0 w13 ≥ 0

• The optimal solution to the above program is w12 = w23 = w13 = 1
2

• We will show that |Φ| ≤ N
3
2

Upper Bound on Triangle Join Output Size

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with input factor sizes |ψ12| = |ψ23| = |ψ13| = N

Hypergraph H

1

2 3

Linear program computing ρ∗(H)

minimise w12 + w23 + w13

subject to
1 : w12 + w23 ≥ 1
2 : w12 + w13 ≥ 1
3 : w23 + w13 ≥ 1

w12 ≥ 0 w23 ≥ 0 w13 ≥ 0

• The optimal solution to the above program is w12 = w23 = w13 = 1
2

• We will show that |Φ| ≤ N
3
2

A Two-Player Game

Consider a two-player game between Ahmet and Haozhe

• Both players know the output of the triangle query

• Ahmet picks an arbitrary tuple from the output and transmits it to Haozhe

Ahmet Haozhe

Ahmet transmits the tuple (x1, x2, x3)

output Φ

X1 X2 X3

· · ·
· · ·picked tuple

(x1, x2, x3)

sees sees
sees

• Assume that the players have agreed on a binary coding system

How many bits does Ahmet need on avg to inform Haozhe which tuple he picked?

A Two-Player Game

Consider a two-player game between Ahmet and Haozhe

• Both players know the output of the triangle query

• Ahmet picks an arbitrary tuple from the output and transmits it to Haozhe

Ahmet Haozhe

Ahmet transmits the tuple (x1, x2, x3)

output Φ

X1 X2 X3

· · ·
· · ·picked tuple

(x1, x2, x3)

sees sees
sees

• Assume that the players have agreed on a binary coding system

How many bits does Ahmet need on avg to inform Haozhe which tuple he picked?

Two-Player Game Example

Ahmet Haozhe

Ahmet transmits the tuple (1, 2, 1)

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

picked tuple
(1, 2, 1)

sees sees
sees

The best Ahmet and Haozhe can do is:

• Assign to each of the N tuples an index from 0 to N − 1
• Ahmet transmits to Haozhe the index of the picked tuple in binary

In the above example: log |Φ| = log 6 bits are needed

Two-Player Game Example

Ahmet Haozhe

Ahmet transmits the tuple (1, 2, 1)

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

picked tuple
(1, 2, 1)

sees sees
sees

The best Ahmet and Haozhe can do is:

• Assign to each of the N tuples an index from 0 to N − 1
• Ahmet transmits to Haozhe the index of the picked tuple in binary

In the above example: log |Φ| = log 6 bits are needed

Information Theoretic Perspective

• Ahmet picking an arbitrary tuple can be considered an experiment with
random variable O

• The values of O are the output tuples in Φ

• The avg number of bits needed to transmit tuples depends on the
uncertainty about O

Special cases:

• If O takes on a tuple with probability 1 (there is only one tuple), then there is
no uncertainty and the avg number of needed bits is 0

• If the tuples are uniformly distributed, then the uncertainty is maximal and
the avg number of needed bits is log |Φ|

The avg number of needed bits is the entropy H(O) of O

Information Theoretic Perspective

• Ahmet picking an arbitrary tuple can be considered an experiment with
random variable O

• The values of O are the output tuples in Φ

• The avg number of bits needed to transmit tuples depends on the
uncertainty about O

Special cases:

• If O takes on a tuple with probability 1 (there is only one tuple), then there is
no uncertainty and the avg number of needed bits is 0

• If the tuples are uniformly distributed, then the uncertainty is maximal and
the avg number of needed bits is log |Φ|

The avg number of needed bits is the entropy H(O) of O

Information Theoretic Perspective

• Ahmet picking an arbitrary tuple can be considered an experiment with
random variable O

• The values of O are the output tuples in Φ

• The avg number of bits needed to transmit tuples depends on the
uncertainty about O

Special cases:

• If O takes on a tuple with probability 1 (there is only one tuple), then there is
no uncertainty and the avg number of needed bits is 0

• If the tuples are uniformly distributed, then the uncertainty is maximal and
the avg number of needed bits is log |Φ|

The avg number of needed bits is the entropy H(O) of O

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v1, . . . , vn:

H(O) = −
∑
i∈[n]

P(vi) · log P(vi)

• Special case 1: If O takes on a tuple with probability 1 (there is only one
tuple), then there is no uncertainty and the avg number of needed bits is 0

Only one outcome means n = 1. Then,

H(O) = −P(v1) · log P(v1) = −1 · log 1 = 0

• Special case 2: If the tuples are uniformly distributed, then the uncertainty is
maximal and the avg number of needed bits is log |Φ|

Uniform distribution means P(vi) = 1
n ,∀i ∈ [n]. Then,

H(O) = −
∑
i∈[n]

P(vi)·log P(vi) = −n·(
1
n
·log

1
n

) = − log
1
n

= −(log 1−log n) = log n

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v1, . . . , vn:

H(O) = −
∑
i∈[n]

P(vi) · log P(vi)

• Special case 1: If O takes on a tuple with probability 1 (there is only one
tuple), then there is no uncertainty and the avg number of needed bits is 0

Only one outcome means n = 1. Then,

H(O) = −P(v1) · log P(v1) = −1 · log 1 = 0

• Special case 2: If the tuples are uniformly distributed, then the uncertainty is
maximal and the avg number of needed bits is log |Φ|

Uniform distribution means P(vi) = 1
n , ∀i ∈ [n]. Then,

H(O) = −
∑
i∈[n]

P(vi)·log P(vi) = −n·(
1
n
·log

1
n

) = − log
1
n

= −(log 1−log n) = log n

Quick Recap: Entropy

The entropy of a random variable O with n possible outcomes v1, . . . , vn:

H(O) = −
∑
i∈[n]

P(vi) · log P(vi)

• Special case 1: If O takes on a tuple with probability 1 (there is only one
tuple), then there is no uncertainty and the avg number of needed bits is 0

Only one outcome means n = 1. Then,

H(O) = −P(v1) · log P(v1) = −1 · log 1 = 0

• Special case 2: If the tuples are uniformly distributed, then the uncertainty is
maximal and the avg number of needed bits is log |Φ|

Uniform distribution means P(vi) = 1
n , ∀i ∈ [n]. Then,

H(O) = −
∑
i∈[n]

P(vi)·log P(vi) = −n·(
1
n
·log

1
n

) = − log
1
n

= −(log 1−log n) = log n

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Our Goal

• We assume that Ahmet picks a tuple from the output uniformly at random

=⇒ H(O) = log |Φ|

• Assume that I12, I23, and I13 are random variables where each Iij takes on a
tuple from ψij uniformly at random

=⇒ H(Iij) = log |ψij | = log N

Our goal is to show: 2H(O) ≤ H(I12) + H(I23) + H(I13)

This implies:
2 log |Φ| ≤ log N + log N + log N

=⇒ 2 log |Φ| ≤ 3 log N

=⇒ log |Φ| ≤ 3
2

log N

=⇒ log |Φ| ≤ log N
3
2

=⇒ |Φ| ≤ N
3
2

Next: a strategy for Ahmet that helps to express H(O) in terms of H(I12), H(I23),
and H(I13)

Alternative Strategy

Ahmet transmits the picked tuple in three steps

Ahmet Haozhe
transmit x1

transmit x2 given that x1 has been already transmitted

transmit x3 given that x1 and x2 have been already transmitted

output Φ

X1 X2 X3

· · ·
· · ·

picked tuple
(x1, x2, x3)

sees seessees

• In each step, Ahmet uses an optimal encoding given that Haozhe knows the
values transmitted before

How many bits does Ahmet need on avg at each step?

Alternative Strategy

Ahmet transmits the picked tuple in three steps

Ahmet Haozhe
transmit x1

transmit x2 given that x1 has been already transmitted

transmit x3 given that x1 and x2 have been already transmitted

output Φ

X1 X2 X3

· · ·
· · ·

picked tuple
(x1, x2, x3)

sees seessees

• In each step, Ahmet uses an optimal encoding given that Haozhe knows the
values transmitted before

How many bits does Ahmet need on avg at each step?

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1

transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1)

H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1

transmitting x3 given x1 and x2

H(O1) H(O2 | O1)

H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Information Theoretic Perspective

We write O as a triple O = (O1,O2,O3) where each Oi is a random variable that
takes on an Xi value

• O1, O2, and O3 are not uniformly distributed and are not independent!

transmitting x1 transmitting x2 given x1 transmitting x3 given x1 and x2

H(O1) H(O2 | O1) H(O3 | O1,O2)

H(O) = H(O1,O2,O3) = H(O1) + H(O2 | O1) + H(O3 | O1,O2)

• Conditional entropy H(O2 | O1) gives the avg number of bits needed to
transmit x2 given that x1 has been already transmitted

• Conditional entropy H(O3 | O1,O2) gives the avg number of bits needed to
transmit x3 given that x1 and x2 have been already transmitted

• We have H(Oi ,Oj) = H(Oi) + H(Oj | Oi)

Next, we look closer at the relationship between H(Oi ,Oj) and H(Iij)

Observation 1

Transmitting (x1, x2) such that there is an x3 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x1, x2) ∈ ψ12 chosen uniformly at random

H(O1) + H(O2 | O1) = H(O1,O2) ≤ H(I12)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ12

X1 X2

1 1 1/5
1 2 1/5
2 2 1/5
2 5 1/5
2 6 1/5

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

H(O1,O2) = log 3 ≤ log 5 = H(I12)

Observation 1

Transmitting (x1, x2) such that there is an x3 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x1, x2) ∈ ψ12 chosen uniformly at random

H(O1) + H(O2 | O1) = H(O1,O2) ≤ H(I12)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ12

X1 X2

1 1 1/5
1 2 1/5
2 2 1/5
2 5 1/5
2 6 1/5

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

H(O1,O2) = log 3 ≤ log 5 = H(I12)

Observation 1

Transmitting (x1, x2) such that there is an x3 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x1, x2) ∈ ψ12 chosen uniformly at random

H(O1) + H(O2 | O1) = H(O1,O2) ≤ H(I12)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ12

X1 X2

1 1 1/5
1 2 1/5
2 2 1/5
2 5 1/5
2 6 1/5

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

H(O1,O2) = log 3 ≤ log 5 = H(I12)

Observation 2

Transmitting (x2, x3) such that there is an x1 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x2, x3) ∈ ψ23 chosen uniformly at random

H(O2) + H(O3 | O2) = H(O2,O3) ≤ H(I23)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ23

X2 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
3 1 1/5

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

H(O2,O3) =
2
6

log 6 +
2
3

log 3 ≤ log 5 = H(I23)

Observation 2

Transmitting (x2, x3) such that there is an x1 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x2, x3) ∈ ψ23 chosen uniformly at random

H(O2) + H(O3 | O2) = H(O2,O3) ≤ H(I23)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ23

X2 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
3 1 1/5

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

H(O2,O3) =
2
6

log 6 +
2
3

log 3 ≤ log 5 = H(I23)

Observation 2

Transmitting (x2, x3) such that there is an x1 with (x1, x2, x3) ∈ Φ does not require
more bits than transmitting (x2, x3) ∈ ψ23 chosen uniformly at random

H(O2) + H(O3 | O2) = H(O2,O3) ≤ H(I23)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ23

X2 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
3 1 1/5

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

H(O2,O3) =
2
6

log 6 +
2
3

log 3 ≤ log 5 = H(I23)

Observation 3

Similar to the other Observations

H(O1) + H(O3 | O1) = H(O1,O3) ≤ H(I13)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

input ψ13

X1 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
1 5 1/5

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

H(O1,O3) =
2
3

log 3 +
2
6

log 6 ≤ log 5 = H(I13)

Observation 3

Similar to the other Observations

H(O1) + H(O3 | O1) = H(O1,O3) ≤ H(I13)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

input ψ13

X1 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
1 5 1/5

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

H(O1,O3) =
2
3

log 3 +
2
6

log 6 ≤ log 5 = H(I13)

Observation 3

Similar to the other Observations

H(O1) + H(O3 | O1) = H(O1,O3) ≤ H(I13)

Example

input ψ12

X1 X2

1 1
1 2
2 2
2 5
2 6

input ψ23

X2 X3

1 1
1 2
2 1
2 2
3 1

input ψ13

X1 X3

1 1
1 2
2 1
2 2
1 5

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 2 1
2 2 2

input ψ13

X1 X3

1 1 1/5
1 2 1/5
2 1 1/5
2 2 1/5
1 5 1/5

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

H(O1,O3) =
2
3

log 3 +
2
6

log 6 ≤ log 5 = H(I13)

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]

=
[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

Putting Things Together

2 log |Φ| = 2H(O) output tuples uniformly distributed

= 2
[
H(O1) + H(O2 | O1) + H(O3 | O1,O2)

]
=

[
H(O1) + H(O2 | O1)

]
+

[
H(O2 | O1) + H(O3 | O1,O2)

]
+[

H(O1) + H(O3 | O1,O2)
]

≤
[
H(O1) + H(O2 | O1)

]
+

[
H(O2) + H(O3 | O2)

]
+[

H(O1) + H(O3 | O1)
]

dropping information cannot decrease entropy

= H(O1,O2) + H(O2,O3) + H(O1,O3) conditional entropies

≤ H(I12) + H(I23) + H(I13) Observations 1, 2, and 3

= log N + log N + log N input tuples uniformly distributed

=⇒ |Φ| ≤ N
3
2 as explained before

We next generalise the approach taken in this example to arbitrary joins

General Case: Size Bound for Any Join

Quick Recap on Random Variables over Discrete Domains

• Dom(X) is the domain of variable X

• For each x ∈ Dom(X), we have a probability P(X = x)

• Joint Probability of random variables X and Y :

Let x ∈ Dom(X), y ∈ Dom(Y).

P(X = x ,Y = y) gives the joint probability of X = x and Y = y

• Marginalised probability:

P(X = x) =
∑

y

P(X = x ,Y = y)

• Conditional probability: Assuming P(Y = y) 6= 0,

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

Quick Recap on Random Variables over Discrete Domains

• Dom(X) is the domain of variable X

• For each x ∈ Dom(X), we have a probability P(X = x)

• Joint Probability of random variables X and Y :

Let x ∈ Dom(X), y ∈ Dom(Y).

P(X = x ,Y = y) gives the joint probability of X = x and Y = y

• Marginalised probability:

P(X = x) =
∑

y

P(X = x ,Y = y)

• Conditional probability: Assuming P(Y = y) 6= 0,

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

Entropy of Random Variable

• Entropy of a random variable X :

H(X) = −
∑

x

P(X = x) · log P(X = x)

Intuitively: H(X) measures the uncertainty about X

• Joint entropy:

H(X ,Y) = −
∑
x,y

P(X = x ,Y = y) · log P(X = x ,Y = y)

• Conditional entropy: Assuming P(Y = y) 6= 0,

H(X |Y = y) =−
∑

x

P(X = x |Y = y) · log P(X = x |Y = y)

H(X |Y) =
∑

y

P(Y = y) · H(X |Y = y)

Entropy of Random Variable

• Entropy of a random variable X :

H(X) = −
∑

x

P(X = x) · log P(X = x)

Intuitively: H(X) measures the uncertainty about X

• Joint entropy:

H(X ,Y) = −
∑
x,y

P(X = x ,Y = y) · log P(X = x ,Y = y)

• Conditional entropy: Assuming P(Y = y) 6= 0,

H(X |Y = y) =−
∑

x

P(X = x |Y = y) · log P(X = x |Y = y)

H(X |Y) =
∑

y

P(Y = y) · H(X |Y = y)

Observations

Observation 1: The joint entropy of X[n] = (X1, . . . ,Xn) can be expressed as the
sum of the entropies of each Xi conditioned on X[i−1] = (X1, . . . ,Xi−1)

H(X[n]) = H(X1) + H(X2|X1) + . . .+ H(Xn | X[n−1])

Observation 2: The entropy of X conditioned on X[n] = (X1, . . . ,Xn) is not larger
than the entropy of X conditioned on a subset XJ of X[n]

H(X | X[n]) ≤ H(X | XJ) for all J ⊆ [n]

Observations

Observation 1: The joint entropy of X[n] = (X1, . . . ,Xn) can be expressed as the
sum of the entropies of each Xi conditioned on X[i−1] = (X1, . . . ,Xi−1)

H(X[n]) = H(X1) + H(X2|X1) + . . .+ H(Xn | X[n−1])

Observation 2: The entropy of X conditioned on X[n] = (X1, . . . ,Xn) is not larger
than the entropy of X conditioned on a subset XJ of X[n]

H(X | X[n]) ≤ H(X | XJ) for all J ⊆ [n]

Shearer’s Lemma

Let

• X[n] = (X1, . . . ,Xn) are random variables

• J ⊆ 2[n] is multiset such that each i ∈ [n] is in at least q members of J

• 2[n] is the set of all possible subsets of [n] = {1, . . . , n}

• J is a subset of 2[n], but possibly with repetitions (hence, multiset)

• J is like the set of hyperedges of a multi-hypergraph whose set of nodes is [n]

Then,

q · H(X[n]) ≤
∑
J∈J

H(XJ)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1

1/6

1 1 2

1/6

1 2 1

1/6

1 2 2

1/6

2 2 1

1/6

2 2 2

1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56 ≤ 1.63 ≈ log 3 +
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3) H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1

1/6

1 1 2

1/6

1 2 1

1/6

1 2 2

1/6

2 2 1

1/6

2 2 2

1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56 ≤ 1.63 ≈ log 3 +
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3) H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56

≤ 1.63 ≈ log 3 +
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3) H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56

≤ 1.63 ≈

log 3

+
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2)

H(O2,O3) H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56

≤ 1.63 ≈

log 3 +
2
6

log 6 +
2
3

log 3

+
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3)

H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56

≤ 1.63 ≈

log 3 +
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3) H(O1,O3)

Example

Triangle Query Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

with hypergraph H = (V, E) and output:

output Φ

X1 X2 X3

1 1 1 1/6
1 1 2 1/6
1 2 1 1/6
1 2 2 1/6
2 2 1 1/6
2 2 2 1/6

marginalised
output

⊕
x3

Φ

X1 X2

1 1 1/3
1 2 1/3
2 2 1/3

marginalised
output

⊕
x1

Φ

X2 X3

1 1 1/6
1 2 1/6
2 1 1/3
2 2 1/3

marginalised
output

⊕
x2

Φ

X1 X3

1 1 1/3
1 2 1/3
2 1 1/6
2 2 1/6

• Choose J = E = {{1, 2}, {2, 3}, {1, 3}}

• Each i ∈ [3] occurs in at least two members of J

2H(O) = 2 log 6 ≈ 1.56 ≤ 1.63 ≈ log 3 +
2
6

log 6 +
2
3

log 3 +
2
6

log 6 +
2
3

log 3

H(O1,O2) H(O2,O3) H(O1,O3)

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J)

=
∑
J∈J

H(XJ) Observation 1 on chain rule

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J)

=
∑
J∈J

H(XJ) Observation 1 on chain rule

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J)

=
∑
J∈J

H(XJ) Observation 1 on chain rule

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J)

=
∑
J∈J

H(XJ) Observation 1 on chain rule

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J)

=
∑
J∈J

H(XJ) Observation 1 on chain rule

Proof of Shearer’s Lemma

q · H(X[n])

= q ·
∑
i∈[n]

H(Xi | X[i−1]) Observation 1 on chain rule for joint entropy

= q · H(X1) + q · H(X2 | X1) + . . .+ q · H(Xn | X[n−1])

≤ ≤ ≤

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X1) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1])

Since each i appears in at least q sets

≤
∑

J∈J :1∈J

H(X1) +
∑

J∈J :2∈J

H(X2 | X{1}∩J) + . . .+
∑

J∈J :n∈J

H(Xn | X[n−1]∩J)

Observation 2: Conditioning on less variables does not decrease entropy

=
∑
J∈J

∑
i∈J

H(Xi | X[i−1]∩J) =
∑
J∈J

H(XJ) Observation 1 on chain rule

Connection to Join Output Size

FAQ Φ(x) =
⊗

S∈E ψS(xS) with hypergraphH = (V, E) and factor sizes (NS)S∈E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

Why can we apply Shearer’s lemma in our case?

• Each factor ψS = joint distribution over the random variables in S

• Hyperedges S ∈ E = sets J ∈ J in Shearer’s lemma; more precisely:

• Choose natural numbers q and (pS)S∈E such that wS =
pS
q for all S ∈ E

• Let J ⊆ 2[n] be a multiset that consists of pS copies of each S ∈ E

• We still need to hold: every i ∈ [n] occurs in at least q sets in J

This holds because the number of sets containing i is:∑
S∈J :i∈S

pS =
∑

S∈J :i∈S

q · wS = q ·
∑

S∈J :i∈S

wS︸ ︷︷ ︸
≥1 due to linear program

≥ q

Connection to Join Output Size

FAQ Φ(x) =
⊗

S∈E ψS(xS) with hypergraphH = (V, E) and factor sizes (NS)S∈E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

Why can we apply Shearer’s lemma in our case?

• Each factor ψS = joint distribution over the random variables in S

• Hyperedges S ∈ E = sets J ∈ J in Shearer’s lemma; more precisely:

• Choose natural numbers q and (pS)S∈E such that wS =
pS
q for all S ∈ E

• Let J ⊆ 2[n] be a multiset that consists of pS copies of each S ∈ E

• We still need to hold: every i ∈ [n] occurs in at least q sets in J

This holds because the number of sets containing i is:∑
S∈J :i∈S

pS =
∑

S∈J :i∈S

q · wS = q ·
∑

S∈J :i∈S

wS︸ ︷︷ ︸
≥1 due to linear program

≥ q

Connection to Join Output Size

FAQ Φ(x) =
⊗

S∈E ψS(xS) with hypergraphH = (V, E) and factor sizes (NS)S∈E

• Let (wS)S∈E be any feasible solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E NwS
S

Why can we apply Shearer’s lemma in our case?

• Each factor ψS = joint distribution over the random variables in S

• Hyperedges S ∈ E = sets J ∈ J in Shearer’s lemma; more precisely:

• Choose natural numbers q and (pS)S∈E such that wS =
pS
q for all S ∈ E

• Let J ⊆ 2[n] be a multiset that consists of pS copies of each S ∈ E

• We still need to hold: every i ∈ [n] occurs in at least q sets in J

This holds because the number of sets containing i is:∑
S∈J :i∈S

pS =
∑

S∈J :i∈S

q · wS = q ·
∑

S∈J :i∈S

wS︸ ︷︷ ︸
≥1 due to linear program

≥ q

Example Connecting Shearer Setup with Feasible Solution for ρ∗

Hypergraph H
1

2

3

4

5

1/2

1/2

1/2

0

0

1

• Feasible solution to the linear program computing ρ∗(H):
w12 = w23 = w13 = 1

2 , w34 = w35 = 0, w45 = 1

• We can choose q = 2, p12 = p23 = p13 = 1, p34 = p35 = 0, and p45 = 2,
since w12 = w23 = w13 = 1

2 , w34 = w35 = 0
2 , and w45 = 2

2

• Then, J = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}}

=⇒ Every i ∈ [5] occurs in 2 sets in J .

Example Connecting Shearer Setup with Feasible Solution for ρ∗

Hypergraph H
1

2

3

4

5

1/2

1/2

1/2

0

0

1

• Feasible solution to the linear program computing ρ∗(H):
w12 = w23 = w13 = 1

2 , w34 = w35 = 0, w45 = 1

• We can choose q = 2, p12 = p23 = p13 = 1, p34 = p35 = 0, and p45 = 2,
since w12 = w23 = w13 = 1

2 , w34 = w35 = 0
2 , and w45 = 2

2

• Then, J = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}}

=⇒ Every i ∈ [5] occurs in 2 sets in J .

Example Connecting Shearer Setup with Feasible Solution for ρ∗

Hypergraph H
1

2

3

4

5

1/2

1/2

1/2

0

0

1

• Feasible solution to the linear program computing ρ∗(H):
w12 = w23 = w13 = 1

2 , w34 = w35 = 0, w45 = 1

• We can choose q = 2, p12 = p23 = p13 = 1, p34 = p35 = 0, and p45 = 2,
since w12 = w23 = w13 = 1

2 , w34 = w35 = 0
2 , and w45 = 2

2

• Then, J = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}}

=⇒ Every i ∈ [5] occurs in 2 sets in J .

Example Connecting Shearer Setup with Feasible Solution for ρ∗

Hypergraph H
1

2

3

4

5

1/2

1/2

1/2

0

0

1

• Feasible solution to the linear program computing ρ∗(H):
w12 = w23 = w13 = 1

2 , w34 = w35 = 0, w45 = 1

• We can choose q = 2, p12 = p23 = p13 = 1, p34 = p35 = 0, and p45 = 2,
since w12 = w23 = w13 = 1

2 , w34 = w35 = 0
2 , and w45 = 2

2

• Then, J = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}}

=⇒ Every i ∈ [5] occurs in 2 sets in J .

Example Connecting Shearer Setup with Feasible Solution for ρ∗

Hypergraph H
1

2

3

4

5

1/2

1/2

1/2

0

0

1

• Feasible solution to the linear program computing ρ∗(H):
w12 = w23 = w13 = 1

2 , w34 = w35 = 0, w45 = 1

• We can choose q = 2, p12 = p23 = p13 = 1, p34 = p35 = 0, and p45 = 2,
since w12 = w23 = w13 = 1

2 , w34 = w35 = 0
2 , and w45 = 2

2

• Then, J = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {4, 5}}

=⇒ Every i ∈ [5] occurs in 2 sets in J .

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S

⇔ log |Φ| ≤ log
∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S ⇔ log |Φ| ≤ log

∏
S∈E

NwS
S

⇔ |Φ| ≤
∏
S∈E

NwS
S

Putting Things Together

W.l.o.g assume |Φ| 6= 0, otherwise the size bound trivially holds

Let X = (X[n]) be uniformly distributed over the output Φ

log |Φ| = H(X) X is uniformly distributed

≤ 1
q
·
∑
J∈J

H(XJ) Shearer’s Lemma

=
1
q
·
∑
S∈E

pS · H(XS) J consists of pS copies of each S ∈ E

≤
∑
S∈E

wS · H(XS) ws =
pS

q

≤
∑
S∈E

wS · log NS H(XS) ≤ log NS

This implies:

log |Φ| ≤
∑
S∈E

log NwS
S ⇔ log |Φ| ≤ log

∏
S∈E

NwS
S ⇔ |Φ| ≤

∏
S∈E

NwS
S

The Lower Bound Argument

Lower Bound for Join Output Size

Consider an FAQ join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E)

We have shown:

• If input factors ψS are of size N, then |Φ| ≤ Nρ∗(H)

What we would like to show in the ideal case:

• If input factors ψS are of size N, then |Φ| ≥ Nρ∗(H)

• This is not always possible

We can however show:

• For every N0, we construct factors of size N ≥ N0 such that |Φ| ≥ Nρ∗(H)

• This lower bound extends to factors of different sizes

Lower Bound for Join Output Size

Consider an FAQ join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E)

We have shown:

• If input factors ψS are of size N, then |Φ| ≤ Nρ∗(H)

What we would like to show in the ideal case:

• If input factors ψS are of size N, then |Φ| ≥ Nρ∗(H)

• This is not always possible

We can however show:

• For every N0, we construct factors of size N ≥ N0 such that |Φ| ≥ Nρ∗(H)

• This lower bound extends to factors of different sizes

Lower Bound for Join Output Size

Consider an FAQ join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E)

We have shown:

• If input factors ψS are of size N, then |Φ| ≤ Nρ∗(H)

What we would like to show in the ideal case:

• If input factors ψS are of size N, then |Φ| ≥ Nρ∗(H)

• This is not always possible

We can however show:

• For every N0, we construct factors of size N ≥ N0 such that |Φ| ≥ Nρ∗(H)

• This lower bound extends to factors of different sizes

Warm-Up: Size Bound for Triangle Join

Lower Bound on Triangle Join Output Size (1/2)

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

Hypergraph H

1

2 3

1
2

1
2

1
2

ρ∗(H) = 3
2

Lower Bound on Triangle Join Output Size (2/2)

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

• We can construct input factors ψij of size 4 with |Φ| = 4
3
2 = 8.

input ψ12

X1 X2

1 1
1 2
2 1
2 2

= [2]× [2]

input ψ23

X2 X3

1 1
1 2
2 1
2 2

= [2]× [2]

input ψ13

X1 X3

1 1
1 2
2 1
2 2

= [2]× [2]

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

• We next generalise the idea of this construction

Lower Bound on Triangle Join Output Size (2/2)

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

• We can construct input factors ψij of size 4 with |Φ| = 4
3
2 = 8.

input ψ12

X1 X2

1 1
1 2
2 1
2 2

= [2]× [2]

input ψ23

X2 X3

1 1
1 2
2 1
2 2

= [2]× [2]

input ψ13

X1 X3

1 1
1 2
2 1
2 2

= [2]× [2]

output Φ

X1 X2 X3

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

• We next generalise the idea of this construction

Dual Linear Program

The dual of the linear program computing the fractional edge cover number ρ∗

LP for ρ∗(H)

minimise
∑

S∈E wS

subject to
∑

S∈E:v∈S wS ≥ 1 ∀v ∈ V,

0 ≤ wS ≤ 1 ∀S ∈ E

Dual LP for D(H)

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ 1 ∀S ∈ E ,

0 ≤ vi ≤ 1 ∀i ∈ [n]

• Left: Weights wS assigned to hyperedges

• Right: Weights vi assigned to nodes

By linear program duality: ρ∗(H) = D(H)

Dual Linear Program

The dual of the linear program computing the fractional edge cover number ρ∗

LP for ρ∗(H)

minimise
∑

S∈E wS

subject to
∑

S∈E:v∈S wS ≥ 1 ∀v ∈ V,

0 ≤ wS ≤ 1 ∀S ∈ E

Dual LP for D(H)

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ 1 ∀S ∈ E ,

0 ≤ vi ≤ 1 ∀i ∈ [n]

• Left: Weights wS assigned to hyperedges

• Right: Weights vi assigned to nodes

By linear program duality: ρ∗(H) = D(H)

Dual LP for Triangle Join

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

1
2

1
2

1
2

ρ∗(H) = 3
2

1
2

1
2

1
2

D(H) = 3
2

For factors size N0, take N ≥ N0 a power of 2.

Choose p, q ∈ N such that 1
2 · log N = p

q .

We construct ψ12 = ψ13 = ψ23 = [2p]× [2p] and then

• |ψ12| = |ψ13| = |ψ23| = 22p = 2q log N = (2log N)q = Nq

• |Φ| = 23p = 23q 1
2 log N = (2log N)q 3

2 = Nq 3
2 = (Nq)

3
2

Dual LP for Triangle Join

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

1
2

1
2

1
2

ρ∗(H) = 3
2

1
2

1
2

1
2

D(H) = 3
2

For factors size N0, take N ≥ N0 a power of 2.

Choose p, q ∈ N such that 1
2 · log N = p

q .

We construct ψ12 = ψ13 = ψ23 = [2p]× [2p] and then

• |ψ12| = |ψ13| = |ψ23| = 22p = 2q log N = (2log N)q = Nq

• |Φ| = 23p = 23q 1
2 log N = (2log N)q 3

2 = Nq 3
2 = (Nq)

3
2

Dual LP for Triangle Join

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

1
2

1
2

1
2

ρ∗(H) = 3
2

1
2

1
2

1
2

D(H) = 3
2

For factors size N0, take N ≥ N0 a power of 2.

Choose p, q ∈ N such that 1
2 · log N = p

q .

We construct ψ12 = ψ13 = ψ23 = [2p]× [2p] and then

• |ψ12| = |ψ13| = |ψ23| = 22p = 2q log N = (2log N)q = Nq

• |Φ| = 23p = 23q 1
2 log N = (2log N)q 3

2 = Nq 3
2 = (Nq)

3
2

Dual LP for Triangle Join

Φ(x1, x2, x3) = ψ12(x1, x2)⊗ ψ23(x2, x3)⊗ ψ13(x1, x3)

1

2 3

1
2

1
2

1
2

ρ∗(H) = 3
2

1
2

1
2

1
2

D(H) = 3
2

For factors size N0, take N ≥ N0 a power of 2.

Choose p, q ∈ N such that 1
2 · log N = p

q .

We construct ψ12 = ψ13 = ψ23 = [2p]× [2p] and then

• |ψ12| = |ψ13| = |ψ23| = 22p = 2q log N = (2log N)q = Nq

• |Φ| = 23p = 23q 1
2 log N = (2log N)q 3

2 = Nq 3
2 = (Nq)

3
2

Size Lower Bound for Any Join

Construction of Input Factors

• Consider an optimal solution (vi)i∈[n] to the linear program computing D(H)

• Choose natural numbers q, (pi)i∈[n] such that vi · log N = pi
q

• This works if N ≥ N0 is a power of 2, so log N is a natural number

• We construct in two steps input factors ψS of size Nq such that

|Φ| ≥ (Nq)ρ
∗(H)

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 1

For each S ∈ E , construct ψ′S as the Cartesian product

ψ′S = ×i∈S[2pi]

This implies

|ψ′S| =
∏
i∈S

2pi =
∏
i∈S

2q·vi ·log N pi = q · vi · log N

=
∏
i∈S

2log Nq·vi

=
∏
i∈S

Nq·vi

=
∏
i∈S

(Nq)vi

= (Nq)
∑

i∈S vi

≤ Nq
∑
i∈S

vi ≤ 1

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Construction of Input Factors: Step 2

For each S ∈ E , construct an arbitrary ψS with ψS ⊇ ψ′S and |ψS| = Nq

This implies

Φ ⊇ ×i∈[n][2
pi]

Hence,

|Φ| ≥
∏
i∈[n]

2pi

=
∏
i∈[n]

2q·vi ·log N pi = q · vi · log N

= (Nq)
∑

i∈[n] vi analogous to previous slide

= (Nq)D(H) (vi)i∈[n] is optimal solution to dual program

= (Nq)ρ
∗(H) linear program duality

Lower Bound in Case of Input Factors with Different Sizes

Given a join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E) and input factor
sizes NS for S ∈ E , the dual linear program extends to

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ log NS ∀S ∈ E ,

vi ≥ 0 ∀i ∈ [n]

• Given an optimal solution (vi)i∈[n] to the above program, we choose natural
numbers q, (pi)i∈[n] such that vi = pi

q

• We construct input factors ψS ⊇ ×i∈S[2pi] of sizes Nq
S

• Let (wS)S∈E be an optimal solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E(Nq
S)ws

• We can show |Φ| ≥
∏

S∈E(Nq
S)ws

Lower Bound in Case of Input Factors with Different Sizes

Given a join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E) and input factor
sizes NS for S ∈ E , the dual linear program extends to

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ log NS ∀S ∈ E ,

vi ≥ 0 ∀i ∈ [n]

• Given an optimal solution (vi)i∈[n] to the above program, we choose natural
numbers q, (pi)i∈[n] such that vi = pi

q

• We construct input factors ψS ⊇ ×i∈S[2pi] of sizes Nq
S

• Let (wS)S∈E be an optimal solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E(Nq
S)ws

• We can show |Φ| ≥
∏

S∈E(Nq
S)ws

Lower Bound in Case of Input Factors with Different Sizes

Given a join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E) and input factor
sizes NS for S ∈ E , the dual linear program extends to

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ log NS ∀S ∈ E ,

vi ≥ 0 ∀i ∈ [n]

• Given an optimal solution (vi)i∈[n] to the above program, we choose natural
numbers q, (pi)i∈[n] such that vi = pi

q

• We construct input factors ψS ⊇ ×i∈S[2pi] of sizes Nq
S

• Let (wS)S∈E be an optimal solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E(Nq
S)ws

• We can show |Φ| ≥
∏

S∈E(Nq
S)ws

Lower Bound in Case of Input Factors with Different Sizes

Given a join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E) and input factor
sizes NS for S ∈ E , the dual linear program extends to

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ log NS ∀S ∈ E ,

vi ≥ 0 ∀i ∈ [n]

• Given an optimal solution (vi)i∈[n] to the above program, we choose natural
numbers q, (pi)i∈[n] such that vi = pi

q

• We construct input factors ψS ⊇ ×i∈S[2pi] of sizes Nq
S

• Let (wS)S∈E be an optimal solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E(Nq
S)ws

• We can show |Φ| ≥
∏

S∈E(Nq
S)ws

Lower Bound in Case of Input Factors with Different Sizes

Given a join Φ(x) =
⊗

S∈E ψS(xS) with hypergraph H = (V, E) and input factor
sizes NS for S ∈ E , the dual linear program extends to

maximise
∑

i∈[n] vi

subject to
∑

i∈S vi ≤ log NS ∀S ∈ E ,

vi ≥ 0 ∀i ∈ [n]

• Given an optimal solution (vi)i∈[n] to the above program, we choose natural
numbers q, (pi)i∈[n] such that vi = pi

q

• We construct input factors ψS ⊇ ×i∈S[2pi] of sizes Nq
S

• Let (wS)S∈E be an optimal solution to the linear program computing ρ∗(H)

with minimisation objective
∏

S∈E(Nq
S)ws

• We can show |Φ| ≥
∏

S∈E(Nq
S)ws

