
https://lms.uzh.ch/url/RepositoryEntry/17185308706

Efficient Algorithms for Frequently Asked Questions

8. Solving SAT

Prof. Dan Olteanu

May 9, 2022

https://lms.uzh.ch/url/RepositoryEntry/17185308706


Agenda for This Lecture

We look at SATisfiability of CNF formulas through FAQ glasses

• Classical SAT solver: The DPLL procedure

• Logical Resolution

• Connection to solving FAQs over the Boolean semiring

SAT instances with acyclic hypergraphs

• Are α-acyclic SAT instances solvable efficiently?

• Solving β-acyclic SAT instances efficiently



SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, x2, x3, x4:

F = (x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3)

• F is a conjunction (∧) of clauses, each clause is a disjunction (∨) of literals

• Example of clause: (x1 ∨ ¬x2)

• Unit-clauses only consist of a single literal, e.g., (x3)

• Tautological clauses are always true, regardless of variable assignment, e.g.,
(x1 ∨ ¬x2 ∨ ¬x1)

• Each literal is an occurrence of a variable either positively or negatively

• Example of literals: x2 or ¬x2

• Single-phase variables occur either only positively or only negatively, e.g., ¬x4

• Possible satisfying assignment: x2 = 0, x3 = 1, anything else for x1, x4



SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, x2, x3, x4:

F = (x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3)

• F is a conjunction (∧) of clauses, each clause is a disjunction (∨) of literals

• Example of clause: (x1 ∨ ¬x2)

• Unit-clauses only consist of a single literal, e.g., (x3)

• Tautological clauses are always true, regardless of variable assignment, e.g.,
(x1 ∨ ¬x2 ∨ ¬x1)

• Each literal is an occurrence of a variable either positively or negatively

• Example of literals: x2 or ¬x2

• Single-phase variables occur either only positively or only negatively, e.g., ¬x4

• Possible satisfying assignment: x2 = 0, x3 = 1, anything else for x1, x4



SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, x2, x3, x4:

F = (x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3)

• F is a conjunction (∧) of clauses, each clause is a disjunction (∨) of literals

• Example of clause: (x1 ∨ ¬x2)

• Unit-clauses only consist of a single literal, e.g., (x3)

• Tautological clauses are always true, regardless of variable assignment, e.g.,
(x1 ∨ ¬x2 ∨ ¬x1)

• Each literal is an occurrence of a variable either positively or negatively

• Example of literals: x2 or ¬x2

• Single-phase variables occur either only positively or only negatively, e.g., ¬x4

• Possible satisfying assignment: x2 = 0, x3 = 1, anything else for x1, x4



SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, x2, x3, x4:

F = (x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3)

• F is a conjunction (∧) of clauses, each clause is a disjunction (∨) of literals

• Example of clause: (x1 ∨ ¬x2)

• Unit-clauses only consist of a single literal, e.g., (x3)

• Tautological clauses are always true, regardless of variable assignment, e.g.,
(x1 ∨ ¬x2 ∨ ¬x1)

• Each literal is an occurrence of a variable either positively or negatively

• Example of literals: x2 or ¬x2

• Single-phase variables occur either only positively or only negatively, e.g., ¬x4

• Possible satisfying assignment: x2 = 0, x3 = 1, anything else for x1, x4



SAT as FAQ

Any SAT instance can be immediately encoded in FAQ over the Boolean semiring

• Each variable in the CNF formula becomes a variable in the FAQ expression

• One factor per clause, mapping (non-)satisfying assignments to 1 (resp. 0)

F = (x1 ∨ ¬x2)︸ ︷︷ ︸
ψ12(x1,x2)

∧ (x2 ∨ x3 ∨ ¬x4)︸ ︷︷ ︸
ψ234(x2,x3,x4)

∧ (¬x2 ∨ ¬x3)︸ ︷︷ ︸
ψ23(x2,x3)

φ() =
∨

x1,x2,x3,x4

ψ12(x1, x2) ∧ ψ234(x2, x3, x4) ∧ ψ23(x2, x3)

• Hypergraph: One hyperedge per clause, one node per variable (disregard ¬)

2

3

4

1



Representation of Factors for Clauses (1/2)

Trivial representation: Truth table of variables in the clause

• The factor corresponding to a clause has one tuple per satisfying
assignment of the variables

• Example: The clause (x2 ∨ x3 ∨ ¬x4) is represented by the factor

x2 x3 x4 ψ234(x2, x3, x4)

0 0 0 1
0 1 0 1
1 0 0 1
1 1 0 1
0 1 1 1
1 0 1 1
1 1 1 1

The only assignment that is not satisfying: x2 = 0, x3 = 0, x4 = 1

Problems with this representation:

• For a clause with n variables, the factor can have up to 2n tuples

• Yannakakis/LFTJ take time proportional to factor sizes, so exponential in n



Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

• + Only takes O(n) size, where n is the number of variables

• – Cannot represent arbitrary relationships between the variables

• Cannot represent the result of semi-join reduction used by Yannakakis

• Cannot represent factors defined by marginalisation of variables over clauses

• Can only represent a disjunction of literals

We want a variable-marginalisation algorithm, much like LFTJ

• Marginalise out one variable at a time

• Special case: Single-phase variables

• General case: Resolution

• Special case for clauses: Conjunction of contradicting unit-clauses

• Special case for clauses: Tautological clauses



Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

• + Only takes O(n) size, where n is the number of variables

• – Cannot represent arbitrary relationships between the variables

• Cannot represent the result of semi-join reduction used by Yannakakis

• Cannot represent factors defined by marginalisation of variables over clauses

• Can only represent a disjunction of literals

We want a variable-marginalisation algorithm, much like LFTJ

• Marginalise out one variable at a time

• Special case: Single-phase variables

• General case: Resolution

• Special case for clauses: Conjunction of contradicting unit-clauses

• Special case for clauses: Tautological clauses



The DPLL Procedure



The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses

(¬x1∨¬x2∨¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1∨¬x2∨x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

Variable x2 only occurs negatively: Set ¬x2 = 1 and eliminate the clauses

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

This filtering done in time linear in the number of clauses and variables

• Simulated by plain variable marginalisation in FAQ:

ψ134(x1, x3, x4) ∧ ψ135(x1, x3, x5) ∧ ψ145(x1, x4, x5) ∧
∨
x2

ψ124(x1, x2, x4) ∧ ψ′
124(x1, x2, x4)︸ ︷︷ ︸

1



The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses

(¬x1∨¬x2∨¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1∨¬x2∨x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

Variable x2 only occurs negatively: Set ¬x2 = 1 and eliminate the clauses

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

This filtering done in time linear in the number of clauses and variables

• Simulated by plain variable marginalisation in FAQ:

ψ134(x1, x3, x4) ∧ ψ135(x1, x3, x5) ∧ ψ145(x1, x4, x5) ∧
∨
x2

ψ124(x1, x2, x4) ∧ ψ′
124(x1, x2, x4)︸ ︷︷ ︸

1



The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses

(¬x1∨¬x2∨¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1∨¬x2∨x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

Variable x2 only occurs negatively: Set ¬x2 = 1 and eliminate the clauses

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

(¬x1 ∨ ¬x2 ∨ ¬x4)∧(x1∨¬x3∨¬x4)∧(¬x1 ∨ ¬x2 ∨ x4)∧(¬x1∨¬x4∨¬x5)∧(¬x1∨x3∨x5)

This filtering done in time linear in the number of clauses and variables

• Simulated by plain variable marginalisation in FAQ:

ψ134(x1, x3, x4) ∧ ψ135(x1, x3, x5) ∧ ψ145(x1, x4, x5) ∧
∨
x2

ψ124(x1, x2, x4) ∧ ψ′
124(x1, x2, x4)︸ ︷︷ ︸

1



The Davis-Putnam (DP) Algorithm (1960): Building Block 2/4

2. Eliminate tautological clauses

The clause (¬x2 ∨ x2 ∨ x1 ∨ x3 ∨ x4) evaluates to 1 for any variable assignment

What does tautology correspond to in the general FAQ world?

• Corresponding factor does not filter out any possible values for its variables

• In DB: Factor is Cartesian product of the active domains of its variables



The Davis-Putnam (DP) Algorithm (1960): Building Block 3/4

3. Identify unit-clause contradictions

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

There are two contradicting unit clauses: (¬x3) and (x3).

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

The conjunction of (¬x3) and (x3), and the entire formula, always evaluates to 0.

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

= (¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ 0 = 0

This building block can be simulated using full reducers in Yannakakis

• Semi-join reduction of the factor for the clause (x3) using the factor for the
clause (¬x3) yields the factor representing the constant 0



The Davis-Putnam (DP) Algorithm (1960): Building Block 3/4

3. Identify unit-clause contradictions

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

There are two contradicting unit clauses: (¬x3) and (x3).

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

The conjunction of (¬x3) and (x3), and the entire formula, always evaluates to 0.

(¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x3)

= (¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ 0 = 0

This building block can be simulated using full reducers in Yannakakis

• Semi-join reduction of the factor for the clause (x3) using the factor for the
clause (¬x3) yields the factor representing the constant 0



The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate F = (x ∨α)∧ (¬x ∨ β), where α, β are disjunctions of literals without x .

A. Marginalisation: Marginalise x in F
(
(0 ∨ α) ∧ (1 ∨ β)

)︸ ︷︷ ︸
(x=0)∧α

∨
(
(1 ∨ α) ∧ (0 ∨ β)

)︸ ︷︷ ︸
(x=1)∧β

• We obtain the formula (¬x ∧ α) ∨ (x ∧ β) equivalent with F

• We proceed with the evaluation of α in case x = 0 and of β in case x = 1

B. Resolution: Replace F by equi-satisfiable resolvent clause (α ∨ β)

(x ∨ α) ∧ (¬x ∨ β) is satisfiable if and only if (α ∨ β) is satisfiable

x α β F (α ∨ β)
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1

x α β F (α ∨ β)
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1



The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate F = (x ∨α)∧ (¬x ∨ β), where α, β are disjunctions of literals without x .

A. Marginalisation: Marginalise x in F
(
(0 ∨ α) ∧ (1 ∨ β)

)︸ ︷︷ ︸
(x=0)∧α

∨
(
(1 ∨ α) ∧ (0 ∨ β)

)︸ ︷︷ ︸
(x=1)∧β

• We obtain the formula (¬x ∧ α) ∨ (x ∧ β) equivalent with F

• We proceed with the evaluation of α in case x = 0 and of β in case x = 1

B. Resolution: Replace F by equi-satisfiable resolvent clause (α ∨ β)

(x ∨ α) ∧ (¬x ∨ β) is satisfiable if and only if (α ∨ β) is satisfiable

x α β F (α ∨ β)
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1

x α β F (α ∨ β)
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1



More on Resolution

Replace (x ∨ α) ∧ (¬x ∨ β) by equi-satisfiable clause (α ∨ β)

General case: Formula has n clauses (x ∨ αi) and m clauses (¬x ∨ βj)

• ∀i ∈ [n], j ∈ [m]: Conjunction (x ∨ αi) ∧ (¬x ∨ βj) has resolvent (αi ∨ βj)

• We replace
∧

i∈[n](x ∨ αi) ∧
∧

j∈[m](¬x ∨ βj) by
∧

i∈[n],j∈[m](αi ∨ βj)

• The new and old formulas are equi-satisfiable

• Variable x does not occur anymore in the new formula

Complexity:

• For each variable x , we replace n + m clauses by n ·m resolvent clauses

• The complexity can be exponential in number of variables

• Exponential time unavoidable in worst case

• Polynomial time possible for 2SAT, β-acyclic SAT, Horn clauses, . . .



More on Resolution

Replace (x ∨ α) ∧ (¬x ∨ β) by equi-satisfiable clause (α ∨ β)

General case: Formula has n clauses (x ∨ αi) and m clauses (¬x ∨ βj)

• ∀i ∈ [n], j ∈ [m]: Conjunction (x ∨ αi) ∧ (¬x ∨ βj) has resolvent (αi ∨ βj)

• We replace
∧

i∈[n](x ∨ αi) ∧
∧

j∈[m](¬x ∨ βj) by
∧

i∈[n],j∈[m](αi ∨ βj)

• The new and old formulas are equi-satisfiable

• Variable x does not occur anymore in the new formula

Complexity:

• For each variable x , we replace n + m clauses by n ·m resolvent clauses

• The complexity can be exponential in number of variables

• Exponential time unavoidable in worst case

• Polynomial time possible for 2SAT, β-acyclic SAT, Horn clauses, . . .



The DP Algorithm: Putting the Building Blocks Together

Algorithm DP (CNF Formula F )

1. if F is empty (i.e., has no clause) then return 1 // Satisfiable

2. if F has a unit-clause contradiction then return 0 // Unsatisfiable

3. if F has single-phase variables then remove their clauses from F
// These clauses can be made true

// Next eliminate a variable and replace its clauses by resolvents

4. Pick a remaining variable x

5. F ′ = empty-set

6. for each pair of clauses (x ∨ αi) and (¬x ∨ βj) in F do

7. if (αi ∨ βj) is not tautological then add (αi ∨ βj) to F ′ // Resolution

8. Remove all clauses containing x or ¬x from F and add to F all clauses in F ′

9. return DP (F )



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)

No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable

Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)

Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1

Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables

There is no clause left
DP(∅)

return 1
return 1

return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left

DP(∅)
return 1

return 1
return 1



The DP Algorithm: Running Example

(¬x1 ∨ ¬x2 ∨ ¬x4)︸ ︷︷ ︸
c1

∧ (x1 ∨ ¬x3 ∨ ¬x4)︸ ︷︷ ︸
c2

∧ (¬x1 ∨ ¬x2 ∨ x4)︸ ︷︷ ︸
c3

∧ (¬x1 ∨ ¬x4 ∨ ¬x5)︸ ︷︷ ︸
c4

∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
c5

DP(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5)
No unit-clause contradiction, no single-phase variable
Pick x1

Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) for c2 ∧ c1

Resolvent: (¬x3 ∨ ¬x4 ∨ ¬x2 ∨ x4) for c2 ∧ c3 is tautological, not added
Add resolvent: (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5) for c2 ∧ c4

Resolvent: (¬x3 ∨ ¬x4 ∨ x2 ∨ x3 ∨ x5) for c2 ∧ c5 is tautological, not added

DP
(
(¬x3 ∨ ¬x4 ∨ ¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x4 ∨ ¬x5)

)
Single-phase variables: Set ¬x2 = ¬x3 = ¬x4 = ¬x5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(∅)

return 1
return 1

return 1



The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula

• Backtracking-based search using repeated variable marginalisation

• Single-phase variable elimination like for DP

• Unit propagation

• Unit clause (`): Literal ` has to be set to 1, no choice!

• Every clause that contains ` is removed (becomes 1)

• Every clause that contains ¬` is updated by removing ¬` (which is 0)

• This often leads to deterministic cascades of units

DPLL is a special case of LFTJ in the Boolean domain

• Backbone for both: variable marginalisation

• Single-phase variable elimination is a special case of marginalisation

• For a Boolean variable, we sum over two cases: 0 and 1

• For a single-phase variable, only one case is useful: its literal is 1

• Unit propagation is akin to Yannakakis (semi-join) reducer



The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula

• Backtracking-based search using repeated variable marginalisation

• Single-phase variable elimination like for DP

• Unit propagation

• Unit clause (`): Literal ` has to be set to 1, no choice!

• Every clause that contains ` is removed (becomes 1)

• Every clause that contains ¬` is updated by removing ¬` (which is 0)

• This often leads to deterministic cascades of units

DPLL is a special case of LFTJ in the Boolean domain

• Backbone for both: variable marginalisation

• Single-phase variable elimination is a special case of marginalisation

• For a Boolean variable, we sum over two cases: 0 and 1

• For a single-phase variable, only one case is useful: its literal is 1

• Unit propagation is akin to Yannakakis (semi-join) reducer



The DPLL Algorithm (1962)

Algorithm DPLL (CNF Formula F )

1. if F only has single-phase variables then return 1 // Satisfiable

2. if F has an empty clause then return 0 // Unsatisfiable

//Next replace every occurrence of literal ` with 1 and of ¬` to 0

3. for each unit clause (`) in F do F := unit-propagate(`,F)

4. for each single-phase variable ` in F do F := single-phase(`,F)

5. if F has no literal, i.e., it is constant, then return F

//Next choose a literal to marginalise

6. ` = choose-literal(F )

7. return DPLL (F ∧ (`)) | DPLL (F ∧ (¬`))



The DPLL Algorithm: Running Example

F = (¬x1 ∨¬x2 ∨¬x4)∧ (x1 ∨¬x3 ∨¬x4)∧ (¬x1 ∨¬x2 ∨ x4)∧ (¬x1 ∨¬x4 ∨¬x5)∧ (¬x1 ∨ x2 ∨ x3 ∨ x5)

DPLL (F )
Choose literal ` = ¬x1

DPLL (F ∧ (¬x1))
Propagate unit clause (¬x1) in F to obtain F := (¬x3 ∨ ¬x4)

Single-phase variables: Set ¬x3 = ¬x4 = 1, F becomes (1)
There is no literal left in F , return 1

return 1

In case we would first recurse with DPLL (F ∧ (x1)):
Propagate unit clause (x1) in F to obtain

F := (¬x2 ∨ ¬x4) ∧ (¬x2 ∨ x4) ∧ (¬x4 ∨ ¬x5) ∧ (x2 ∨ x3 ∨ x5)

Single-phase variable: Set x3 = 1 to obtain
F := (¬x2 ∨ ¬x4) ∧ (¬x2 ∨ x4) ∧ (¬x4 ∨ ¬x5)

Single-phase variables: Set ¬x2 = ¬x5 = 1, F becomes (1)
There is no literal left in F , return 1

return 1



Acyclic SAT



α- and β-Acyclic SAT

• Well-known: SAT is NP-hard (Cook’s Theorem)

• Bad news: α-acyclic SAT is still NP-hard

• Good News: β-acyclic SAT can be solved in polynomial time
using the DP algorithm



α- and β-Acyclic SAT

• Well-known: SAT is NP-hard (Cook’s Theorem)

• Bad news: α-acyclic SAT is still NP-hard

• Good News: β-acyclic SAT can be solved in polynomial time
using the DP algorithm



α- and β-Acyclic SAT

• Well-known: SAT is NP-hard (Cook’s Theorem)

• Bad news: α-acyclic SAT is still NP-hard

• Good News: β-acyclic SAT can be solved in polynomial time
using the DP algorithm



α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT

Given: Arbitrary CNF formula F

Construct: α-Acyclic CNF formula F ′ that is equi-satisfiable to F

• Let F = c1 ∧ . . . ∧ cm with variables x1, . . . , xn

• Set F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0) with fresh variable x0

F ′ is α-acyclic, since it has a join tree

1, . . . , n, 0

idx1 . . . idxm

where idxi is the index set of the variables in ci



α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT

Given: Arbitrary CNF formula F

Construct: α-Acyclic CNF formula F ′ that is equi-satisfiable to F

• Let F = c1 ∧ . . . ∧ cm with variables x1, . . . , xn

• Set F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0) with fresh variable x0

F ′ is α-acyclic, since it has a join tree

1, . . . , n, 0

idx1 . . . idxm

where idxi is the index set of the variables in ci



α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT

Given: Arbitrary CNF formula F

Construct: α-Acyclic CNF formula F ′ that is equi-satisfiable to F

• Let F = c1 ∧ . . . ∧ cm with variables x1, . . . , xn

• Set F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0) with fresh variable x0

F ′ is α-acyclic, since it has a join tree

1, . . . , n, 0

idx1 . . . idxm

where idxi is the index set of the variables in ci



α-acyclic SAT is NP-hard (2/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

Example

F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

F ′ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (x1 ∨ x2 ∨ x3 ∨ x0)

• {x1 = 1, x2 = 1, x3 = 0} satisfies F

{x1 = 1, x2 = 1, x3 = 0, x0 = 1} satisfies F ′

• {x1 = 0, x2 = 0, x3 = 1, x0 = 0} satisfies F ′

{x1 = 0, x2 = 0, x3 = 1} satisfies F



α-acyclic SAT is NP-hard (2/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

Example

F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

F ′ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (x1 ∨ x2 ∨ x3 ∨ x0)

• {x1 = 1, x2 = 1, x3 = 0} satisfies F

{x1 = 1, x2 = 1, x3 = 0, x0 = 1} satisfies F ′

• {x1 = 0, x2 = 0, x3 = 1, x0 = 0} satisfies F ′

{x1 = 0, x2 = 0, x3 = 1} satisfies F



α-acyclic SAT is NP-hard (2/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

Example

F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

F ′ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (x1 ∨ x2 ∨ x3 ∨ x0)

• {x1 = 1, x2 = 1, x3 = 0} satisfies F

{x1 = 1, x2 = 1, x3 = 0, x0 = 1} satisfies F ′

• {x1 = 0, x2 = 0, x3 = 1, x0 = 0} satisfies F ′

{x1 = 0, x2 = 0, x3 = 1} satisfies F



α-acyclic SAT is NP-hard (2/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

Example

F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

F ′ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (x1 ∨ x2 ∨ x3 ∨ x0)

• {x1 = 1, x2 = 1, x3 = 0} satisfies F

{x1 = 1, x2 = 1, x3 = 0, x0 = 1} satisfies F ′

• {x1 = 0, x2 = 0, x3 = 1, x0 = 0} satisfies F ′

{x1 = 0, x2 = 0, x3 = 1} satisfies F



α-acyclic SAT is NP-hard (3/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

General case:

F satisfiable⇒ F ′ satisfiable

• Consider satisfying assignment τ for F

• τ ∪ {x0 = 1} satisfies F ′

F ′ satisfiable⇒ F satisfiable

• Consider satisfying assignment τ ′ for F ′

• τ − {x0 = 1, x0 = 0} satisfies F



α-acyclic SAT is NP-hard (3/3)

F = c1 ∧ . . . ∧ cm

equi-satisfiable to

F ′ = c1 ∧ . . . ∧ cm ∧ (x1 ∨ . . . ∨ xn ∨ x0)

General case:

F satisfiable⇒ F ′ satisfiable

• Consider satisfying assignment τ for F

• τ ∪ {x0 = 1} satisfies F ′

F ′ satisfiable⇒ F satisfiable

• Consider satisfying assignment τ ′ for F ′

• τ − {x0 = 1, x0 = 0} satisfies F



Order of Variable Marginalisation Matters

F = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
c1

∧ (¬x1 ∨ x4)︸ ︷︷ ︸
c2

∧ (¬x2 ∨ x3)︸ ︷︷ ︸
c3

∧(x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

1

2

3

4

5

Start with the elimination of x3

Resolvent of c1 and c3 is c13 = (x1 ∨ ¬x2)

c13 is included in c1

=⇒ No increase in the number of clauses

β-acyclic CNF formulas admit marginalisation orders that avoid exponential
increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion



Order of Variable Marginalisation Matters

F = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
c1

∧ (¬x1 ∨ x4)︸ ︷︷ ︸
c2

∧ (¬x2 ∨ x3)︸ ︷︷ ︸
c3

∧(x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Start with the elimination of x1

Resolvent of c1 and c2 is c12 = (¬x2 ∨ ¬x3 ∨ x4)

c12 is not included in any clause of F

1

2

3

4

5

Start with the elimination of x3

Resolvent of c1 and c3 is c13 = (x1 ∨ ¬x2)

c13 is included in c1

=⇒ No increase in the number of clauses

β-acyclic CNF formulas admit marginalisation orders that avoid exponential
increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion



Order of Variable Marginalisation Matters

F = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
c1

∧ (¬x1 ∨ x4)︸ ︷︷ ︸
c2

∧ (¬x2 ∨ x3)︸ ︷︷ ︸
c3

∧(x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Start with the elimination of x1

Resolvent of c1 and c2 is c12 = (¬x2 ∨ ¬x3 ∨ x4)

c12 is not included in any clause of F

1

2

3

4

5

Start with the elimination of x3

Resolvent of c1 and c3 is c13 = (x1 ∨ ¬x2)

c13 is included in c1

=⇒ No increase in the number of clauses

β-acyclic CNF formulas admit marginalisation orders that avoid exponential
increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion



Order of Variable Marginalisation Matters

F = (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
c1

∧ (¬x1 ∨ x4)︸ ︷︷ ︸
c2

∧ (¬x2 ∨ x3)︸ ︷︷ ︸
c3

∧(x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Start with the elimination of x1

Resolvent of c1 and c2 is c12 = (¬x2 ∨ ¬x3 ∨ x4)

c12 is not included in any clause of F

1

2

3

4

5

Start with the elimination of x3

Resolvent of c1 and c3 is c13 = (x1 ∨ ¬x2)

c13 is included in c1

=⇒ No increase in the number of clauses

β-acyclic CNF formulas admit marginalisation orders that avoid exponential
increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion



Nested Inclusion Chain

A set {e1, . . . , ek} of sets forms a nested inclusion chain if ei1 ⊆ . . . ⊆ eik for
some ordering i1, . . . , ik ∈ [k ]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

For a hypergraph H = (V, E), let ∂(i) = {e ∈ E | i ∈ e}

Example

∂(4) = {{1, 4}, {4, 5}}
is not a nested inclusion chain

∂(3) = {{2, 3}, {1, 2, 3}}
is a nested inclusion chain

1

2

3

4

5



Nested Inclusion Chain

A set {e1, . . . , ek} of sets forms a nested inclusion chain if ei1 ⊆ . . . ⊆ eik for
some ordering i1, . . . , ik ∈ [k ]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

For a hypergraph H = (V, E), let ∂(i) = {e ∈ E | i ∈ e}

Example

∂(4) = {{1, 4}, {4, 5}}
is not a nested inclusion chain

∂(3) = {{2, 3}, {1, 2, 3}}
is a nested inclusion chain

1

2

3

4

5



Nested Inclusion Chain

A set {e1, . . . , ek} of sets forms a nested inclusion chain if ei1 ⊆ . . . ⊆ eik for
some ordering i1, . . . , ik ∈ [k ]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

For a hypergraph H = (V, E), let ∂(i) = {e ∈ E | i ∈ e}

Example

∂(4) = {{1, 4}, {4, 5}}
is not a nested inclusion chain

∂(3) = {{2, 3}, {1, 2, 3}}
is a nested inclusion chain

1

2

3

4

5



Nested Inclusion Chain

A set {e1, . . . , ek} of sets forms a nested inclusion chain if ei1 ⊆ . . . ⊆ eik for
some ordering i1, . . . , ik ∈ [k ]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

For a hypergraph H = (V, E), let ∂(i) = {e ∈ E | i ∈ e}

Example

∂(4) = {{1, 4}, {4, 5}}
is not a nested inclusion chain

∂(3) = {{2, 3}, {1, 2, 3}}
is a nested inclusion chain

1

2

3

4

5



Nested Inclusion Chain

A set {e1, . . . , ek} of sets forms a nested inclusion chain if ei1 ⊆ . . . ⊆ eik for
some ordering i1, . . . , ik ∈ [k ]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

For a hypergraph H = (V, E), let ∂(i) = {e ∈ E | i ∈ e}

Example

∂(4) = {{1, 4}, {4, 5}}
is not a nested inclusion chain

∂(3) = {{2, 3}, {1, 2, 3}}
is a nested inclusion chain

1

2

3

4

5



DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. ∂(i) forms a nested inclusion chain

Property 2
β-acyclicity is closed under removal of nodes and hyperedges

DP algorithm for β-acyclic SAT
Apply the resolution rule only for a variable xi such that ∂(i) forms a nested
inclusion chain



DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. ∂(i) forms a nested inclusion chain

Property 2
β-acyclicity is closed under removal of nodes and hyperedges

DP algorithm for β-acyclic SAT
Apply the resolution rule only for a variable xi such that ∂(i) forms a nested
inclusion chain



DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. ∂(i) forms a nested inclusion chain

Property 2
β-acyclicity is closed under removal of nodes and hyperedges

DP algorithm for β-acyclic SAT
Apply the resolution rule only for a variable xi such that ∂(i) forms a nested
inclusion chain



Example 1/4

F0 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Do resolution on 5

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4



Example 1/4

F0 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

1

2

3

4

5

Do resolution on 5

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4



Example 1/4

F0 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Nested inclusion chains
∂(5) = {{5}, {4, 5}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

5

Do resolution on 5

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4



Example 1/4

F0 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Nested inclusion chains
∂(5) = {{5}, {4, 5}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

5

Do resolution on 5

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4



Example 1/4

F0 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4 ∨ x5) ∧ (¬x5)

Nested inclusion chains
∂(5) = {{5}, {4, 5}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

5

Do resolution on 5

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4



Example 2/4

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

1

2

3

4

Do resolution on 4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

1

2

3



Example 2/4

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

Nested inclusion chains
∂(4) = {{4}, {1, 4}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

Do resolution on 4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

1

2

3



Example 2/4

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

Nested inclusion chains
∂(4) = {{4}, {1, 4}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

Do resolution on 4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

1

2

3



Example 2/4

F1 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x4)

Nested inclusion chains
∂(4) = {{4}, {1, 4}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

4

Do resolution on 4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

1

2

3



Example 3/4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

1

2

3

Do resolution on 1

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

2

3



Example 3/4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

Nested inclusion chains
∂(1) = {{1}, {1, 2}, {1, 2, 3}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

Do resolution on 1

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

2

3



Example 3/4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

Nested inclusion chains
∂(1) = {{1}, {1, 2}, {1, 2, 3}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

Do resolution on 1

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

2

3



Example 3/4

F2 = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x2)

Nested inclusion chains
∂(1) = {{1}, {1, 2}, {1, 2, 3}}, ∂(3) = {{2, 3}, {1, 2, 3}}

1

2

3

Do resolution on 1

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

2

3



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

Nested inclusion chains
∂(2) = {{2}, {2, 3}, {2, 3}}, ∂(3) = {{2, 3}, {2, 3}}

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

Nested inclusion chains
∂(2) = {{2}, {2, 3}, {2, 3}}, ∂(3) = {{2, 3}, {2, 3}}

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

Nested inclusion chains
∂(2) = {{2}, {2, 3}, {2, 3}}, ∂(3) = {{2, 3}, {2, 3}}

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

Nested inclusion chains
∂(2) = {{2}, {2, 3}, {2, 3}}, ∂(3) = {{2, 3}, {2, 3}}

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable



Example 4/4

F3 = (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (x2)

Nested inclusion chains
∂(2) = {{2}, {2, 3}, {2, 3}}, ∂(3) = {{2, 3}, {2, 3}}

2

3

Do resolution on 2

F4 = (¬x3) ∧ (x3) 3

Unit-clause contradiction

⇒ F not satisfiable


