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Agenda for This Lecture

We look at SATisfiability of CNF formulas through FAQ glasses

« Classical SAT solver: The DPLL procedure

 Logical Resolution

» Connection to solving FAQs over the Boolean semiring

SAT instances with acyclic hypergraphs

» Are a-acyclic SAT instances solvable efficiently?

» Solving -acyclic SAT instances efficiently



SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, X2, X3, Xa:

F=01V-x)A XV XV -xs)A(—xe V-xs)
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Example: Consider the Boolean formula F over variables x1, X2, X3, Xa:

F=01V-x)A XV XV -xs)A(—xe V-xs)

» F is a conjunction (A\) of clauses, each clause is a disjunction (V) of literals

-+ Example of clause: (x1 V —x2)
« Unit-clauses only consist of a single literal, e.g., (x3)

» Tautological clauses are always true, regardless of variable assignment, e.g.,
(X1 V =Xxo V —|X1)
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SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?

Example: Consider the Boolean formula F over variables x1, X2, X3, Xa:

F=01V-x)A XV XV -xs)A(—xe V-xs)

» F is a conjunction (A\) of clauses, each clause is a disjunction (V) of literals

-+ Example of clause: (x1 V —x2)
« Unit-clauses only consist of a single literal, e.g., (x3)

» Tautological clauses are always true, regardless of variable assignment, e.g.,
(X1 V =Xxo V —|X1)

» Each literal is an occurrence of a variable either positively or negatively

« Example of literals: xo or —xp

» Single-phase variables occur either only positively or only negatively, e.g., —xs

» Possible satisfying assignment: x» = 0, x3 = 1, anything else for x1, x4



SAT as FAQ

Any SAT instance can be immediately encoded in FAQ over the Boolean semiring

« Each variable in the CNF formula becomes a variable in the FAQ expression

» One factor per clause, mapping (non-)satisfying assignments to 1 (resp. 0)

F = (X1 Vv —‘Xg) A (X2 V X3 V —\X4) A (—‘Xg Vv —\X3)
SV —

h12(X1,%2) 234 (x2,%3,Xs) 23(X2,X3)

0=\ w0, x) Az, X, x) A (e, X)

X1,X2,X3,X4

» Hypergraph: One hyperedge per clause, one node per variable (disregard —)

R



Representation of Factors for Clauses (1/2)

Trivial representation: Truth table of variables in the clause

» The factor corresponding to a clause has one tuple per satisfying
assignment of the variables

« Example: The clause (x2 V X3 V —x4) is represented by the factor

X2 X3 Xa | o3a(Xe, X3, Xa)

_“ O 4 a4 0O = O
- =4 4 O O o o

—_ A a4 A a a4

The only assignment that is not satisfying: xo = 0,x3 = 0, x4 = 1
Problems with this representation:
« For a clause with n variables, the factor can have up to 2" tuples

* Yannakakis/LFTJ take time proportional to factor sizes, so exponential in n



Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

+ + Only takes O(n) size, where n is the number of variables
» — Cannot represent arbitrary relationships between the variables

» Cannot represent the result of semi-join reduction used by Yannakakis
» Cannot represent factors defined by marginalisation of variables over clauses

» Can only represent a disjunction of literals



Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

+ + Only takes O(n) size, where n is the number of variables
» — Cannot represent arbitrary relationships between the variables

» Cannot represent the result of semi-join reduction used by Yannakakis
» Cannot represent factors defined by marginalisation of variables over clauses

» Can only represent a disjunction of literals

We want a variable-marginalisation algorithm, much like LFTJ
» Marginalise out one variable at a time

» Special case: Single-phase variables

» General case: Resolution

» Special case for clauses: Conjunction of contradicting unit-clauses

» Special case for clauses: Tautological clauses



The DPLL Procedure



The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses

(=x1 V=XV =xg) A (X1 V=XV =xa ) A (=X V=xo Vxg ) A (—xq V=X V —xs ) A (—xq V Xa V Xs)

Variable x» only occurs negatively: Set —x, = 1 and eliminate the clauses

(=x1 V X2 V 2xg) A (X1 Voxa Voxg )A(—x1 V =Xz V Xa) A(—x1 Voxa Voxs ) A (—x1 VX3 Vxs)
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The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses

(=x1 V=XV =xg) A (X1 V=XV =xa ) A (=X V=xo Vxg ) A (—xq V=X V —xs ) A (—xq V Xa V Xs)

Variable x» only occurs negatively: Set —x, = 1 and eliminate the clauses

(‘\X1 V —=Xo V ﬁX4)/\(X1 VﬂX3V—|X4)/\(ﬁX1 V —=Xo V X4)/\(—\X1 \/ﬂX4\/—|X5)/\(ﬂX1 \/X3VX5)
(X1V—\X3\/—\X4)/\ (—\X1\/—\X4\/—|X5)/\(—\X1\/X3\/X5)

This filtering done in time linear in the number of clauses and variables

» Simulated by plain variable marginalisation in FAQ:

Praa (X1, X3, Xa) A th1as(X1, Xa, X5) A thras (X1, Xa, X5) A \/ th124(X1, X2, Xa) A ¥foq (X1, X2, Xa)
X2




The Davis-Putnam (DP) Algorithm (1960): Building Block 2/4

2. Eliminate tautological clauses
The clause (—x2 V X2 V X1 V X3 V Xx4) evaluates to 1 for any variable assignment

What does tautology correspond to in the general FAQ world?
» Corresponding factor does not filter out any possible values for its variables

» In DB: Factor is Cartesian product of the active domains of its variables



The Davis-Putnam (DP) Algorithm (1960): Building Block 3/4

3. Identify unit-clause contradictions

(=x1 V =x2 V =xg) A (=x3) A (mx1 V =xe V Xg) A (—x1 V=X V —xs) A (X3)
There are two contradicting unit clauses: (—x3) and (x3).

(=x1 VX2 V =xg) A (mx3) A (=X V —xe V Xg) A (—x1 V=X V —ixs) A (X3)

The conjunction of (—x3) and (xs), and the entire formula, always evaluates to 0.

(—\X1 V —xo V —\X4) A (—|X3) AN (—|X1 V =xo V X4) A (—\X1 V —Xq V —\X5) A (X3)
= (X1 Vx2Voxg) A(=x1Voxe Vxa) A(=xq1 VoxgVoxs) A0 =0
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3. Identify unit-clause contradictions

(=x1 V =x2 V =xg) A (=x3) A (mx1 V =xe V Xg) A (—x1 V=X V —xs) A (X3)
There are two contradicting unit clauses: (—x3) and (x3).

(=x1 VX2 V =xg) A (mx3) A (=X V —xe V Xg) A (—x1 V=X V —ixs) A (X3)

The conjunction of (—x3) and (xs), and the entire formula, always evaluates to 0.

(—\X1 V —xo V —\X4) A (—|X3) AN (—|X1 V =xo V X4) A (—\X1 V —Xq V —\X5) A (X3)

= (X1 Vx2Voxg) A(=x1Voxe Vxa) A(=xq1 VoxgVoxs) A0 =0

This building block can be simulated using full reducers in Yannakakis

« Semi-join reduction of the factor for the clause (xs) using the factor for the
clause (—x3) yields the factor representing the constant 0



The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate F = (x V a) A (—x V 3), where «, § are disjunctions of literals without x.

A. Marginalisation: Marginalise x in F ((0V a) A (1V B8)) vV ((1Va)A(0V 3))

(x=0)Aax (x=1)AB
+ We obtain the formula (—x A &) VV (x A ) equivalent with F

» We proceed with the evaluation of - in case x = 0 and of 3 in case x = 1



The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate F = (x V a) A (—x V 3), where «, § are disjunctions of literals without x.

A. Marginalisation: Marginalise x in F ((0V a) A (1V B8)) vV ((1Va)A(0V 3))

(x=0)Aax (x=1)AB

+ We obtain the formula (—x A &) VV (x A ) equivalent with F

» We proceed with the evaluation of - in case x = 0 and of 3 in case x = 1

B. Resolution: Replace F by equi-satisfiable resolvent clause (« V 3)

(x Va) A (—x V B) is satisfiable if and only if (o vV () is satisfiable
X « ﬁH F‘(oz\/ﬁ) X « 5“ F‘(a\/ﬂ)
0 0 O 0 0 i 0 0] O 0
0o o0 1 0 1 1 0 1 1 1
0 1 0 1 1 i 1 0 0 1
o 1 1 1 1 1 1 1 1 1



More on Resolution

Replace (x V ) A (—x V ) by equi-satisfiable clause (« V )

General case: Formula has n clauses (x V «;) and m clauses (—x V ;)
« Vi € [n],j € [m]: Conjunction (x V «;) A (—x V j3;) has resolvent («; V 5;)
* We replace A\;c;(x V i) A Njeim (5X V B)) BY Njgpjermi (i V B7)
» The new and old formulas are equi-satisfiable

 Variable x does not occur anymore in the new formula



More on Resolution

Replace (x V ) A (—x V ) by equi-satisfiable clause (« V )

General case: Formula has n clauses (x V «;) and m clauses (—x V ;)
« Vi € [n],j € [m]: Conjunction (x V «;) A (—x V j3;) has resolvent («; V 5;)
* We replace A\;c;(x V i) A Njeim (5X V B)) BY Njgpjermi (i V B7)
» The new and old formulas are equi-satisfiable

 Variable x does not occur anymore in the new formula

Complexity:
» For each variable x, we replace n + m clauses by n - m resolvent clauses
» The complexity can be exponential in number of variables
» Exponential time unavoidable in worst case

» Polynomial time possible for 2SAT, g-acyclic SAT, Horn clauses, . . .



The DP Algorithm: Putting the Building Blocks Together

Algorithm DP (CNF Formula F)

1. if F is empty (i.e., has no clause) then return 1 /I Satisfiable
2. if F has a unit-clause contradiction then return 0 // Unsatisfiable

3. if F has single-phase variables then remove their clauses from F
/I These clauses can be made true

/I Next eliminate a variable and replace its clauses by resolvents

4. Pick a remaining variable x

5. F' = empty-set

6. for each pair of clauses (x V «;) and (—x V ;) in F do

7. if (o \V B3j) is not tautological then add (a; V 3;) to F’ // Resolution
8. Remove all clauses containing x or —x from F and add to F all clauses in F’

9. return DP (F)



The DP Algorithm: Running Example

(‘!X1 V —xo V ‘\X4) A (X1 V —Xx3 V “X4) A (“X1 V =X V X4) AN (“X1 V =X V “Xs) A (‘\X1 V X2V X3 V X5)

Cj 2 <3 C4 C5

DP(c1 A ca A cs A cs N Cs)
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(‘!X1 V —xo V ‘\X4) A (X1 V —Xx3 V ‘\X4) A (“X1 V =X V X4) AN (“X1 V =X V “Xs) A (‘\X1 V X2V X3 V X5)

° o2 3 4 L3

DP(c1 A ca A cs A cs N Cs)
No unit-clause contradiction, no single-phase variable
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Add resolvent: (—x3 V =X V —x2 V —xa) for ¢ A ¢
Resolvent: (mxs V —xs V X2 V X4) for ¢z A cs is tautological, not added
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Resolvent: (=x3V —=xa V X2 V X3 V x5) for ¢z A cs is tautological, not added
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DP((—xs V —Xs V =Xz V —Xa) A (—X3 V =Xa V —1Xg V —1X5))
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Single-phase variables: Set —x; = —x3 = —x4 = X5 = 1



The DP Algorithm: Running Example

(‘!X1 V —xo V ‘\X4) A (X1 V —Xx3 V ‘\X4) A (“X1 V =X V X4) AN (“X1 V =X V “Xs) A (‘\X1 V X2V X3 V X5)
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No unit-clause contradiction, no single-phase variable
Pick xi
Add resolvent: (—x3 V =X V —x2 V —xa) for ¢ A ¢
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DP((—xs V —Xs V =Xz V —Xa) A (—X3 V =Xa V —1Xg V —1X5))
Single-phase variables: Set —x; = —x3 = —x4 = X5 = 1
Remove the clauses of single-phase variables



The DP Algorithm: Running Example

(‘!X1 V —xo V ‘\X4) A (X1 V —Xx3 V ‘\X4) A (“X1 V =X V X4) AN (“X1 V =X V “Xs) A (‘\X1 V X2V X3 V X5)

Cj 2 <3 C4 C5
DP(c1 A ca A cs A cs N Cs)
No unit-clause contradiction, no single-phase variable
Pick xi
Add resolvent: (—x3 V =X V —x2 V —xa) for ¢ A ¢
Resolvent: (mxs V —xs V X2 V X4) for ¢z A cs is tautological, not added
Add resolvent: (—x3 V —xs V —xs V —xs) for ¢ A cs
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Remove the clauses of single-phase variables
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The DP Algorithm: Running Example

(‘!X1 V —xo V ‘\X4) A (X1 V —Xx3 V ‘\X4) A (“X1 V =X V X4) AN (“X1 V =X V “Xs) A (‘\X1 V X2V X3 V X5)

Cj 2 <3 C4 C5
DP(c1 A ca A cs A cs N Cs)
No unit-clause contradiction, no single-phase variable
Pick xi
Add resolvent: (—x3 V =X V —x2 V —xa) for ¢ A ¢
Resolvent: (mxs V —xs V X2 V X4) for ¢z A cs is tautological, not added
Add resolvent: (—x3 V —xs V —xs V —xs) for ¢ A cs
Resolvent: (=x3V —=xa V X2 V X3 V x5) for ¢z A cs is tautological, not added

DP((—xs V —Xs V =Xz V —Xa) A (—X3 V =Xa V —1Xg V —1X5))
Single-phase variables: Set —x; = —x3 = —x4 = X5 = 1
Remove the clauses of single-phase variables
There is no clause left
DP(0)

return 1
return 1
return 1



The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula
» Backtracking-based search using repeated variable marginalisation

 Single-phase variable elimination like for DP
» Unit propagation
« Unit clause (¢): Literal £ has to be set to 1, no choice!
+ Every clause that contains ¢ is removed (becomes 1)
» Every clause that contains —/ is updated by removing —¢ (which is 0)

» This often leads to deterministic cascades of units



The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula
» Backtracking-based search using repeated variable marginalisation

 Single-phase variable elimination like for DP
» Unit propagation
« Unit clause (¢): Literal £ has to be set to 1, no choice!
+ Every clause that contains ¢ is removed (becomes 1)
» Every clause that contains —/ is updated by removing —¢ (which is 0)

» This often leads to deterministic cascades of units

DPLL is a special case of LFTJ in the Boolean domain
» Backbone for both: variable marginalisation
+ Single-phase variable elimination is a special case of marginalisation
+ For a Boolean variable, we sum over two cases: 0 and 1

» For a single-phase variable, only one case is useful: its literal is 1

« Unit propagation is akin to Yannakakis (semi-join) reducer



The DPLL Algorithm (1962)

Algorithm DPLL (CNF Formula F)

1. if F only has single-phase variables then return 1 /I Satisfiable

2. if F has an empty clause then return 0 /I Unsatisfiable

/INext replace every occurrence of literal £ with 1 and of =/ t0 0
3. for each unit clause (¢) in F do F := unit-propagate(?, F)

4. for each single-phase variable ¢ in F do F := single-phase(, F)

5. if F has no literal, i.e., it is constant, then return F
/INext choose a literal to marginalise
6. ¢ = choose-literal(F)

7. return DPLL (F A (£)) | DPLL (F A (=£))



The DPLL Algorithm: Running Example

[F= (“X1 V =X V "X4) A (X1 V —x3 V ‘|X4) A (‘\X1 V —xo V X4) AN (‘\X1 V —Xxg V ‘!Xs) A (‘!X1 VX2V X3V X5)

DPLL (F)
Choose literal £ = —xq
DPLL (F A (-x1))
Propagate unit clause (—xi) in F to obtain F := (—x3 V —Xs)
Single-phase variables: Set —x; = —xs = 1, F becomes (1)
There is no literal left in F, return 1
return 1

In case we would first recurse with DPLL (F A (x1)):
Propagate unit clause (x1) in F to obtain
F:= (=X V-X)A (X2 VX)) A(—Xs V —X5) A (X2 V X3 V X5)
Single-phase variable: Set x3 = 1 to obtain
Fi=(—xV-x)A(—x2 VX)) A (—Xs V —X5)
Single-phase variables: Set —-x, = —xs = 1, F becomes (1)
There is no literal left in F, return 1
return 1



Acyclic SAT
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» Well-known: SAT is NP-hard (Cook’s Theorem)
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a- and B-Acyclic SAT

» Well-known: SAT is NP-hard (Cook’s Theorem)
» Bad news: a-acyclic SAT is still NP-hard

» Good News: 3-acyclic SAT can be solved in polynomial time
using the DP algorithm



a-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to a-acyclic SAT
Given: Arbitrary CNF formula F

Construct: a-Acyclic CNF formula F’ that is equi-satisfiable to F
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e SetF '=ciA...Acm A (X1 V...V XaV Xo) with fresh variable xo



a-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to a-acyclic SAT
Given: Arbitrary CNF formula F

Construct: a-Acyclic CNF formula F’ that is equi-satisfiable to F

* Let F =c¢y A... A cmwith variables xy, ..., Xs

e SetF '=ciA...Acm A (X1 V...V XaV Xo) with fresh variable xo

F’ is a-acyclic, since it has a join tree

where idx; is the index set of the variables in ¢;



a-acyclic SAT is NP-hard (2/3)

F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)
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F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)

Example
[F= (X1 V —Xxo V Xs) A (—\X1 V Xo V —\Xs) A (—\X1 V —Xxo V —\Xg)

Fr=0x1V-x%Vx)A(ExVxeVaxs)A(=x Voxe Voxs) A(x Ve VsV x)



a-acyclic SAT is NP-hard (2/3)

F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)

Example
[F= (X1 V —Xxo V Xs) A (—\X1 V Xo V —\Xs) A (—\X1 V —Xxo V —\Xg)

F'=(xaV-xVx)A(xVxeV-axs)A(=xV-xeVoxs) AV xe VsV xo)
« {x1 =1,x = 1,x3 = 0} satisfies F

{X1 = 1,X2 = 1,X3 :O,Xo = 1}satisfies F’



a-acyclic SAT is NP-hard (2/3)

F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)

Example

F=0x1V-%VX3)A(xVxeV-oxs)A(—xV-oxe V-xs)

Fr=0x1V-x%Vx)A(ExVxeVaxs)A(=x Voxe Voxs) A(x Ve VsV x)
« {x1 =1,x2 = 1,x3 = 0} satisfies F

{X1 = 1,X2 = 1,X3 :O,Xo = 1}satisfies F’

« {xy =0,% =0,x =1,x = 0} satisfies F’

{x1 =0,% = 0,xs = 1} satisfies F



a-acyclic SAT is NP-hard (3/3)

F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)

General case:

F satisfiable = F’ satisfiable
+ Consider satisfying assignment 7 for F
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a-acyclic SAT is NP-hard (3/3)

F=cAN...NCm
equi-satisfiable to

Fr=ciA...ACa A(Xi V...V XV Xo)

General case:

F satisfiable = F’ satisfiable
+ Consider satisfying assignment 7 for F

o 7U{x = 1} satisfies F’

F' satisfiable = F satisfiable
« Consider satisfying assignment 7’ for F’

7 —{xo =1, X% = 0} satisfies F
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Order of Variable Marginalisation Matters

[F = (X1 VX2 V —\Xg) AN (—\X1 Vv X4) A (—\Xg \Y X3) /\(X1 Vv Xg) A (ﬂX4 V X5) A\ (—\Xs)
—_—— ——— N —

9] C2 C3

)
Start with the elimination of x; AV/A

Resolvent of ¢1 and ¢z is 12 = (X2 V =Xz V Xa)
c12 is not included in any clause of F

Start with the elimination of x3
Resolvent of ¢i and ¢z is ¢13 = (X1 V —X2)
¢cy3 is included in ¢

— No increase in the number of clauses

[3-acyclic CNF formulas admit marginalisation orders that avoid exponential
increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion
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Nested Inclusion Chain

A set {ey, ..., ex} of sets forms a nested inclusion chain if e, C ... C ¢, for
some ordering i, . . . , ix € [K]

We apply this property to the set of hyperedges of nodes in the SAT hypergraph
For a hypergraph H = (V,E),letd(i) = {e€ & | i € e}
Example

2
o(4) = {{1,4}, {4.5}} V/
is not a nested inclusion chain e 6

8(3) = {{27 3}7 {1 2 3}}

is a nested inclusion chain
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DP Solver for 3-Acyclicity SAT

Property 1
Every S-acyclic hypergraph has a node i s.th. 9(i) forms a nested inclusion chain

Property 2
[-acyclicity is closed under removal of nodes and hyperedges

DP algorithm for g-acyclic SAT
Apply the resolution rule only for a variable x; such that 9(i) forms a nested
inclusion chain
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Fo = (X1 V =X V —‘Xg) A (—‘X1 \Y X4) N (ﬂXg V X3) A (X1 \Y X2) AN (—\X4 V X5) A (—\X5)

,vﬂ
Nested inclusion chains eA
8(5) = {{5}7{475}}78(3) = {{273}7{17273}} &

Do resolution on 5

Fi = (X1 V =X V ﬂXs) AN (—\X1 Vv X4) A (ﬂXg Vv X3) A (X1 Vv X2) A (ﬁX4)

!
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F = (X1 V —Xo V —‘Xs) AN (—\X1 V X4) A (ﬂXg V X3) A (X1 Vv Xg) A (ﬂX4

Nested inclusion chains

)
0
8(4) = {{4}7 {174}}78(3) = {{273}7 {17273}} &e

Do resolution on 4

F, = (X1 V =X V ﬂXs) AN (ﬁX1) AN (—\Xz V X3) AN (X1 V Xg)

&eg
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Example 3/4

F = (X1 V =X V ﬂXg) AN (—\X1) N (—\Xz V X3) N (X1 V Xg)

Nested inclusion chains

8(1) = {{1}7 {172}7 {17273}}78(3) = {{273}7 {17273}} &e

Do resolution on 1

Fs = (% VX)) A (X V X3) A (X)
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Example 4/4

F = (—\Xz V —\Xs) A\ (—\Xz V Xs) N (Xg)

Nested inclusion chains

8(2) = {{2}» {2» 3}7 {2’ 3}}7 0(3) = {{27 3}7 {27 3}}
Do resolution on 2

Fa= (—x) A ()

Unit-clause contradiction

= F not satisfiable



