Efficient Algorithms for Frequently Asked Questions

8. Solving SAT

Prof. Dan Olteanu

Data•(Systems+Theory)

May 9, 2022

Agenda for This Lecture

We look at SATisfiability of CNF formulas through FAQ glasses

- Classical SAT solver: The DPLL procedure
- Logical Resolution
- Connection to solving FAQs over the Boolean semiring

SAT instances with acyclic hypergraphs

- Are α-acyclic SAT instances solvable efficiently?
- Solving β-acyclic SAT instances efficiently

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?
Example: Consider the Boolean formula F over variables $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
F=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)
$$

SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?
Example: Consider the Boolean formula F over variables $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
F=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)
$$

- F is a conjunction (\wedge) of clauses, each clause is a disjunction (\vee) of literals
- Example of clause: $\left(x_{1} \vee \neg x_{2}\right)$
- Unit-clauses only consist of a single literal, e.g., (x_{3})
- Tautological clauses are always true, regardless of variable assignment, e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{1}\right)$

SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?
Example: Consider the Boolean formula F over variables $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
F=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)
$$

- F is a conjunction (\wedge) of clauses, each clause is a disjunction (\vee) of literals
- Example of clause: $\left(x_{1} \vee \neg x_{2}\right)$
- Unit-clauses only consist of a single literal, e.g., (x_{3})
- Tautological clauses are always true, regardless of variable assignment, e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{1}\right)$
- Each literal is an occurrence of a variable either positively or negatively
- Example of literals: x_{2} or $\neg x_{2}$
- Single-phase variables occur either only positively or only negatively, e.g., $\neg x_{4}$

SAT

SATisfiability: Given a CNF formula F over Boolean variables, is F satisfiable?
Example: Consider the Boolean formula F over variables $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
F=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)
$$

- F is a conjunction (\wedge) of clauses, each clause is a disjunction (\vee) of literals
- Example of clause: $\left(x_{1} \vee \neg x_{2}\right)$
- Unit-clauses only consist of a single literal, e.g., (x_{3})
- Tautological clauses are always true, regardless of variable assignment, e.g., $\left(x_{1} \vee \neg x_{2} \vee \neg x_{1}\right)$
- Each literal is an occurrence of a variable either positively or negatively
- Example of literals: x_{2} or $\neg x_{2}$
- Single-phase variables occur either only positively or only negatively, e.g., $\neg x_{4}$
- Possible satisfying assignment: $x_{2}=0, x_{3}=1$, anything else for x_{1}, x_{4}

SAT as FAQ

Any SAT instance can be immediately encoded in FAQ over the Boolean semiring

- Each variable in the CNF formula becomes a variable in the FAQ expression
- One factor per clause, mapping (non-)satisfying assignments to 1 (resp. 0)

$$
\begin{aligned}
F & =\underbrace{\left(x_{1} \vee \neg x_{2}\right)}_{\psi_{12}\left(x_{1}, x_{2}\right)} \wedge \underbrace{\left(x_{2} \vee x_{3} \vee \neg x_{4}\right)}_{\psi_{234}\left(x_{2}, x_{3}, x_{4}\right)} \wedge \underbrace{\left(\neg x_{2} \vee \neg x_{3}\right)}_{\psi_{23}\left(x_{2}, x_{3}\right)} \\
\phi() & =\bigvee_{x_{1}, x_{2}, x_{3}, x_{4}} \psi_{12}\left(x_{1}, x_{2}\right) \wedge \psi_{234}\left(x_{2}, x_{3}, x_{4}\right) \wedge \psi_{23}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

- Hypergraph: One hyperedge per clause, one node per variable (disregard \neg)

Representation of Factors for Clauses (1/2)

Trivial representation: Truth table of variables in the clause

- The factor corresponding to a clause has one tuple per satisfying assignment of the variables
- Example: The clause $\left(x_{2} \vee x_{3} \vee \neg x_{4}\right)$ is represented by the factor

x_{2}	x_{3}	x_{4}	$\psi_{234}\left(x_{2}, x_{3}, x_{4}\right)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	1
0	1	1	1
1	0	1	1
1	1	1	1

The only assignment that is not satisfying: $x_{2}=0, x_{3}=0, x_{4}=1$
Problems with this representation:

- For a clause with n variables, the factor can have up to 2^{n} tuples
- Yannakakis/LFTJ take time proportional to factor sizes, so exponential in n

Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

- + Only takes $O(n)$ size, where n is the number of variables
- - Cannot represent arbitrary relationships between the variables
- Cannot represent the result of semi-join reduction used by Yannakakis
- Cannot represent factors defined by marginalisation of variables over clauses
- Can only represent a disjunction of literals

Representation of Factors for Clauses (2/2)

Compact, natural representation: The clause itself

- + Only takes $O(n)$ size, where n is the number of variables
- - Cannot represent arbitrary relationships between the variables
- Cannot represent the result of semi-join reduction used by Yannakakis
- Cannot represent factors defined by marginalisation of variables over clauses
- Can only represent a disjunction of literals

We want a variable-marginalisation algorithm, much like LFTJ

- Marginalise out one variable at a time
- Special case: Single-phase variables
- General case: Resolution
- Special case for clauses: Conjunction of contradicting unit-clauses
- Special case for clauses: Tautological clauses

The DPLL Procedure

The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

Variable x_{2} only occurs negatively: Set $\neg x_{2}=1$ and eliminate the clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

Variable x_{2} only occurs negatively: Set $\neg x_{2}=1$ and eliminate the clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

$$
\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge
$$

$$
\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)
$$

The Davis-Putnam (DP) Algorithm (1960): Building Block 1/4

1. Find every single-phase variable and eliminate its clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

Variable x_{2} only occurs negatively: Set $\neg x_{2}=1$ and eliminate the clauses
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)$

$$
\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge
$$

$$
\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{5}\right)
$$

This filtering done in time linear in the number of clauses and variables

- Simulated by plain variable marginalisation in FAQ:

$$
\psi_{134}\left(x_{1}, x_{3}, x_{4}\right) \wedge \psi_{135}\left(x_{1}, x_{3}, x_{5}\right) \wedge \psi_{145}\left(x_{1}, x_{4}, x_{5}\right) \wedge \underbrace{\bigvee_{x_{2}} \psi_{124}\left(x_{1}, x_{2}, x_{4}\right) \wedge \psi_{124}^{\prime}\left(x_{1}, x_{2}, x_{4}\right)}_{1}
$$

The Davis-Putnam (DP) Algorithm (1960): Building Block 2/4

2. Eliminate tautological clauses

The clause ($\neg x_{2} \vee x_{2} \vee x_{1} \vee x_{3} \vee x_{4}$) evaluates to 1 for any variable assignment

What does tautology correspond to in the general FAQ world?

- Corresponding factor does not filter out any possible values for its variables
- In DB: Factor is Cartesian product of the active domains of its variables

The Davis-Putnam (DP) Algorithm (1960): Building Block 3/4

3. Identify unit-clause contradictions
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right)$

There are two contradicting unit clauses: $\left(\neg x_{3}\right)$ and $\left(x_{3}\right)$.
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right)$

The conjunction of $\left(\neg x_{3}\right)$ and $\left(x_{3}\right)$, and the entire formula, always evaluates to 0 .

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right) \\
& =\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge 0=0
\end{aligned}
$$

The Davis-Putnam (DP) Algorithm (1960): Building Block 3/4

3. Identify unit-clause contradictions
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right)$

There are two contradicting unit clauses: $\left(\neg x_{3}\right)$ and $\left(x_{3}\right)$.
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right)$

The conjunction of $\left(\neg x_{3}\right)$ and $\left(x_{3}\right)$, and the entire formula, always evaluates to 0 .

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{3}\right) \\
& =\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge 0=0
\end{aligned}
$$

This building block can be simulated using full reducers in Yannakakis

- Semi-join reduction of the factor for the clause $\left(x_{3}\right)$ using the factor for the clause $\left(\neg x_{3}\right)$ yields the factor representing the constant 0

The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate $F=(x \vee \alpha) \wedge(\neg x \vee \beta)$, where α, β are disjunctions of literals without x.
A. Marginalisation: Marginalise x in $F \underbrace{((0 \vee \alpha) \wedge(1 \vee \beta))}_{(x=0) \wedge \alpha} \vee \underbrace{((1 \vee \alpha) \wedge(0 \vee \beta))}_{(x=1) \wedge \beta}$

- We obtain the formula $(\neg x \wedge \alpha) \vee(x \wedge \beta)$ equivalent with F
- We proceed with the evaluation of α in case $x=0$ and of β in case $x=1$

The Davis-Putnam (DP) Algorithm (1960): Building Block 4/4

4. Eliminate a non-single-phase variable by resolution

Evaluate $F=(x \vee \alpha) \wedge(\neg x \vee \beta)$, where α, β are disjunctions of literals without x.
A. Marginalisation: Marginalise x in $F \underbrace{((0 \vee \alpha) \wedge(1 \vee \beta))}_{(x=0) \wedge \alpha} \vee \underbrace{((1 \vee \alpha) \wedge(0 \vee \beta))}_{(x=1) \wedge \beta}$

- We obtain the formula $(\neg x \wedge \alpha) \vee(x \wedge \beta)$ equivalent with F
- We proceed with the evaluation of α in case $x=0$ and of β in case $x=1$
B. Resolution: Replace F by equi-satisfiable resolvent clause $(\alpha \vee \beta)$
$(x \vee \alpha) \wedge(\neg x \vee \beta)$ is satisfiable if and only if $(\alpha \vee \beta)$ is satisfiable

x	α	β	F	$(\alpha \vee \beta)$	x	α	β	F
$(\alpha \vee \beta)$								
0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1

More on Resolution

Replace $(x \vee \alpha) \wedge(\neg x \vee \beta)$ by equi-satisfiable clause $(\alpha \vee \beta)$

General case: Formula has n clauses $\left(x \vee \alpha_{i}\right)$ and m clauses $\left(\neg x \vee \beta_{j}\right)$

- $\forall i \in[n], j \in[m]:$ Conjunction $\left(x \vee \alpha_{i}\right) \wedge\left(\neg x \vee \beta_{j}\right)$ has resolvent $\left(\alpha_{i} \vee \beta_{j}\right)$
- We replace $\bigwedge_{i \in[n]}\left(x \vee \alpha_{i}\right) \wedge \bigwedge_{j \in[m]}\left(\neg x \vee \beta_{j}\right)$ by $\bigwedge_{i \in[n], j \in[m]}\left(\alpha_{i} \vee \beta_{j}\right)$
- The new and old formulas are equi-satisfiable
- Variable x does not occur anymore in the new formula

More on Resolution

Replace $(x \vee \alpha) \wedge(\neg x \vee \beta)$ by equi-satisfiable clause $(\alpha \vee \beta)$

General case: Formula has n clauses $\left(x \vee \alpha_{i}\right)$ and m clauses $\left(\neg x \vee \beta_{j}\right)$

- $\forall i \in[n], j \in[m]:$ Conjunction $\left(x \vee \alpha_{i}\right) \wedge\left(\neg x \vee \beta_{j}\right)$ has resolvent $\left(\alpha_{i} \vee \beta_{j}\right)$
- We replace $\bigwedge_{i \in[n]}\left(x \vee \alpha_{i}\right) \wedge \bigwedge_{j \in[m]}\left(\neg x \vee \beta_{j}\right)$ by $\bigwedge_{i \in[n], j \in[m]}\left(\alpha_{i} \vee \beta_{j}\right)$
- The new and old formulas are equi-satisfiable
- Variable x does not occur anymore in the new formula

Complexity:

- For each variable x, we replace $n+m$ clauses by $n \cdot m$ resolvent clauses
- The complexity can be exponential in number of variables
- Exponential time unavoidable in worst case
- Polynomial time possible for 2SAT, β-acyclic SAT, Horn clauses, . . .

The DP Algorithm: Putting the Building Blocks Together

Algorithm DP (CNF Formula F)

1. if F is empty (i.e., has no clause) then return 1
2. if F has a unit-clause contradiction then return 0
3. if F has single-phase variables then remove their clauses from F
// These clauses can be made true
// Next eliminate a variable and replace its clauses by resolvents
4. Pick a remaining variable x
5. $F^{\prime}=$ empty-set
6. for each pair of clauses $\left(x \vee \alpha_{i}\right)$ and $\left(\neg x \vee \beta_{j}\right)$ in F do
7. if $\left(\alpha_{i} \vee \beta_{j}\right)$ is not tautological then add $\left(\alpha_{i} \vee \beta_{j}\right)$ to $F^{\prime} \quad / /$ Resolution
8. Remove all clauses containing x or $\neg x$ from F and add to F all clauses in F^{\prime}
9. return DP (F)

The DP Algorithm: Running Example

$$
\begin{aligned}
& \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)}_{c_{1}} \wedge \underbrace{\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)}_{c_{3}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right)}_{c_{4}} \wedge \underbrace{\left(\neg x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right)}_{c_{5}} \\
& \underline{\mathrm{DP}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)}
\end{aligned}
$$

The DP Algorithm: Running Example

$$
\begin{aligned}
& \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)}_{c_{1}} \wedge \underbrace{\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)}_{c_{3}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right)}_{c_{5}} \wedge \underbrace{\left(\neg x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right)}_{c_{5}} \\
& \underline{\operatorname{DP}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)}
\end{aligned}
$$

No unit-clause contradiction, no single-phase variable

The DP Algorithm: Running Example

$$
\begin{aligned}
& \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)}_{c_{1}} \wedge \underbrace{\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right)}_{c_{3}} \wedge \underbrace{\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right)}_{c_{5}} \wedge \underbrace{\left(\neg x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right)}_{c_{5}} \\
& \underline{\operatorname{DP}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)}
\end{aligned}
$$

No unit-clause contradiction, no single-phase variable
Pick x_{1}

The DP Algorithm: Running Example

$\underline{\mathrm{DP}}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added

The DP Algorithm: Running Example

$\underline{\mathrm{DP}}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added
$\underline{\mathrm{DP}}\left(\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)\right)$

The DP Algorithm: Running Example

$\underline{\mathrm{DP}}\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added
$\underline{\mathrm{DP}}\left(\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)\right)$
Single-phase variables: Set $\neg x_{2}=\neg x_{3}=\neg x_{4}=\neg x_{5}=1$

The DP Algorithm: Running Example

DP $\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added
$\underline{\mathrm{DP}}\left(\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)\right)$
Single-phase variables: Set $\neg x_{2}=\neg x_{3}=\neg x_{4}=\neg x_{5}=1$
Remove the clauses of single-phase variables

The DP Algorithm: Running Example

DP $\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added
$\underline{\mathrm{DP}}\left(\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)\right)$
Single-phase variables: Set $\neg x_{2}=\neg x_{3}=\neg x_{4}=\neg x_{5}=1$
Remove the clauses of single-phase variables
There is no clause left

The DP Algorithm: Running Example

DP $\left(c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5}\right)$
No unit-clause contradiction, no single-phase variable
Pick x_{1}
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right)$ for $c_{2} \wedge c_{1}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee x_{4}\right)$ for $c_{2} \wedge c_{3}$ is tautological, not added
Add resolvent: $\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)$ for $c_{2} \wedge c_{4}$
Resolvent: $\quad\left(\neg x_{3} \vee \neg x_{4} \vee x_{2} \vee x_{3} \vee x_{5}\right)$ for $c_{2} \wedge c_{5}$ is tautological, not added
DP $\left(\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee \neg x_{4} \vee \neg x_{5}\right)\right)$
Single-phase variables: Set $\neg x_{2}=\neg x_{3}=\neg x_{4}=\neg x_{5}=1$
Remove the clauses of single-phase variables
There is no clause left
DP($($)
return 1
return 1
return 1

The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula

- Backtracking-based search using repeated variable marginalisation
- Single-phase variable elimination like for DP
- Unit propagation
- Unit clause (ℓ) : Literal ℓ has to be set to 1 , no choice!
- Every clause that contains ℓ is removed (becomes 1)
- Every clause that contains $\neg \ell$ is updated by removing $\neg \ell$ (which is 0)
- This often leads to deterministic cascades of units

The DPLL Algorithm (1962)

DPLL refines DP. They are both complete, i.e., decide SAT for any CNF formula

- Backtracking-based search using repeated variable marginalisation
- Single-phase variable elimination like for DP
- Unit propagation
- Unit clause (ℓ): Literal ℓ has to be set to 1 , no choice!
- Every clause that contains ℓ is removed (becomes 1)
- Every clause that contains $\neg \ell$ is updated by removing $\neg \ell$ (which is 0)
- This often leads to deterministic cascades of units

DPLL is a special case of LFTJ in the Boolean domain

- Backbone for both: variable marginalisation
- Single-phase variable elimination is a special case of marginalisation
- For a Boolean variable, we sum over two cases: 0 and 1
- For a single-phase variable, only one case is useful: its literal is 1
- Unit propagation is akin to Yannakakis (semi-join) reducer

The DPLL Algorithm (1962)

Algorithm DPLL (CNF Formula F)

1. if F only has single-phase variables then return 1 // Satisfiable
2. if F has an empty clause then return 0
// Unsatisfiable
//Next replace every occurrence of literal ℓ with 1 and of $\neg \ell$ to 0
3. for each unit clause (ℓ) in F do $F:=$ unit-propagate (ℓ, F)
4. for each single-phase variable ℓ in F do $F:=\operatorname{single-phase}(\ell, F)$
5. if F has no literal, i.e., it is constant, then return F
//Next choose a literal to marginalise
6. $\ell=$ choose-literal (F)
7. return DPLL $(F \wedge(\ell)) \mid \underline{\operatorname{DPLL}}(F \wedge(\neg \ell))$

The DPLL Algorithm: Running Example

$F=\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3} \vee x_{5}\right)$
DPLL (F)
Choose literal $\ell=\neg X_{1}$
DPLL $\left(F \wedge\left(\neg x_{1}\right)\right)$
Propagate unit clause $\left(\neg x_{1}\right)$ in F to obtain $F:=\left(\neg x_{3} \vee \neg x_{4}\right)$
Single-phase variables: Set $\neg x_{3}=\neg x_{4}=1, F$ becomes (1)
There is no literal left in F, return 1
return 1

In case we would first recurse with DPLL $\left(F \wedge\left(x_{1}\right)\right)$:
Propagate unit clause $\left(x_{1}\right)$ in F to obtain

$$
F:=\left(\neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{5}\right)
$$

Single-phase variable: Set $x_{3}=1$ to obtain

$$
F:=\left(\neg x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{4} \vee \neg x_{5}\right)
$$

Single-phase variables: Set $\neg x_{2}=\neg x_{5}=1, F$ becomes (1)
There is no literal left in F, return 1
return 1

Acyclic SAT

α - and β-Acyclic SAT

- Well-known: SAT is NP-hard
(Cook's Theorem)

α - and β-Acyclic SAT

- Well-known: SAT is NP-hard
(Cook's Theorem)
- Bad news: α-acyclic SAT is still NP-hard

α - and β-Acyclic SAT

- Well-known: SAT is NP-hard
(Cook's Theorem)
- Bad news: α-acyclic SAT is still NP-hard
- Good News: β-acyclic SAT can be solved in polynomial time using the DP algorithm

α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT
Given: Arbitrary CNF formula F
Construct: α-Acyclic CNF formula F^{\prime} that is equi-satisfiable to F

α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT
Given: Arbitrary CNF formula F
Construct: α-Acyclic CNF formula F^{\prime} that is equi-satisfiable to F

- Let $F=c_{1} \wedge \ldots \wedge c_{m}$ with variables x_{1}, \ldots, x_{n}
- Set $F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)$ with fresh variable x_{0}

α-acyclic SAT is NP-hard (1/3)

Polynomial reduction from arbitrary SAT to α-acyclic SAT
Given: Arbitrary CNF formula F
Construct: α-Acyclic CNF formula F^{\prime} that is equi-satisfiable to F

- Let $F=c_{1} \wedge \ldots \wedge c_{m}$ with variables x_{1}, \ldots, x_{n}
- Set $F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)$ with fresh variable x_{0}
F^{\prime} is α-acyclic, since it has a join tree

where idx x_{i} is the index set of the variables in c_{i}

α-acyclic SAT is NP-hard (2/3)

$$
\begin{gathered}
F=c_{1} \wedge \ldots \wedge c_{m} \\
\text { equi-satisfiable to } \\
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
\end{gathered}
$$

α-acyclic SAT is NP-hard (2/3)

$$
F=c_{1} \wedge \ldots \wedge c_{m}
$$

equi-satisfiable to

$$
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
$$

Example

$$
\begin{aligned}
& F=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& F^{\prime}=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{0}\right)
\end{aligned}
$$

α-acyclic SAT is NP-hard (2/3)

$$
F=c_{1} \wedge \ldots \wedge c_{m}
$$

equi-satisfiable to

$$
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
$$

Example

$$
\begin{aligned}
F= & \left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
F^{\prime}= & \left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{0}\right) \\
\cdot & \left\{x_{1}=1, x_{2}=1, x_{3}=0\right\} \text { satisfies } F \\
& \left\{x_{1}=1, x_{2}=1, x_{3}=0, x_{0}=1\right\} \text { satisfies } F^{\prime}
\end{aligned}
$$

α-acyclic SAT is NP-hard (2/3)

$$
F=c_{1} \wedge \ldots \wedge c_{m}
$$

equi-satisfiable to

$$
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
$$

Example

$$
\begin{aligned}
F= & \left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
F^{\prime}= & \left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{0}\right) \\
\cdot & \left\{x_{1}=1, x_{2}=1, x_{3}=0\right\} \text { satisfies } F \\
& \left\{x_{1}=1, x_{2}=1, x_{3}=0, x_{0}=1\right\} \text { satisfies } F^{\prime}
\end{aligned}
$$

- $\left\{x_{1}=0, x_{2}=0, x_{3}=1, x_{0}=0\right\}$ satisfies F^{\prime}

$$
\left\{x_{1}=0, x_{2}=0, x_{3}=1\right\} \text { satisfies } F
$$

α-acyclic SAT is NP-hard (3/3)

$$
\begin{gathered}
F=c_{1} \wedge \ldots \wedge c_{m} \\
\text { equi-satisfiable to } \\
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
\end{gathered}
$$

General case:
F satisfiable $\Rightarrow F^{\prime}$ satisfiable

- Consider satisfying assignment τ for F
- $\tau \cup\left\{x_{0}=1\right\}$ satisfies F^{\prime}

α-acyclic SAT is NP-hard (3/3)

$$
\begin{gathered}
F=c_{1} \wedge \ldots \wedge c_{m} \\
\text { equi-satisfiable to } \\
F^{\prime}=c_{1} \wedge \ldots \wedge c_{m} \wedge\left(x_{1} \vee \ldots \vee x_{n} \vee x_{0}\right)
\end{gathered}
$$

General case:
F satisfiable $\Rightarrow F^{\prime}$ satisfiable

- Consider satisfying assignment τ for F
- $\tau \cup\left\{x_{0}=1\right\}$ satisfies F^{\prime}
F^{\prime} satisfiable $\Rightarrow F$ satisfiable
- Consider satisfying assignment τ^{\prime} for F^{\prime}
- $\tau-\left\{x_{0}=1, x_{0}=0\right\}$ satisfies F

Order of Variable Marginalisation Matters

$$
F=\underbrace{\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\neg x_{1} \vee x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{2} \vee x_{3}\right)}_{c_{3}} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Order of Variable Marginalisation Matters

$$
F=\underbrace{\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\neg x_{1} \vee x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{2} \vee x_{3}\right)}_{c_{3}} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Start with the elimination of x_{1}
Resolvent of c_{1} and c_{2} is $c_{12}=\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$ c_{12} is not included in any clause of F

Order of Variable Marginalisation Matters

$$
F=\underbrace{\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\neg x_{1} \vee x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{2} \vee x_{3}\right)}_{c_{3}} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Start with the elimination of x_{1}
Resolvent of c_{1} and c_{2} is $c_{12}=\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$ c_{12} is not included in any clause of F

Start with the elimination of x_{3}
Resolvent of c_{1} and c_{3} is $c_{13}=\left(x_{1} \vee \neg x_{2}\right)$
c_{13} is included in c_{1}
\Longrightarrow No increase in the number of clauses

Order of Variable Marginalisation Matters

$$
F=\underbrace{\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\neg x_{1} \vee x_{4}\right)}_{c_{2}} \wedge \underbrace{\left(\neg x_{2} \vee x_{3}\right)}_{c_{3}} \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Start with the elimination of x_{1}
Resolvent of c_{1} and c_{2} is $c_{12}=\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)$
c_{12} is not included in any clause of F

Start with the elimination of x_{3}
Resolvent of c_{1} and c_{3} is $c_{13}=\left(x_{1} \vee \neg x_{2}\right)$
c_{13} is included in c_{1}
\Longrightarrow No increase in the number of clauses
β-acyclic CNF formulas admit marginalisation orders that avoid exponential increase in the number of clauses

This is thanks to a nice property of beta-acyclic hypergraphs: nested inclusion

Nested Inclusion Chain

A set $\left\{e_{1}, \ldots, e_{k}\right\}$ of sets forms a nested inclusion chain if $e_{i_{1}} \subseteq \ldots \subseteq e_{i_{k}}$ for some ordering $i_{1}, \ldots, i_{k} \in[k]$

Nested Inclusion Chain

A set $\left\{e_{1}, \ldots, e_{k}\right\}$ of sets forms a nested inclusion chain if $e_{i_{1}} \subseteq \ldots \subseteq e_{i_{k}}$ for some ordering $i_{1}, \ldots, i_{k} \in[k]$

We apply this property to the set of hyperedges of nodes in the SAT hypergraph

Nested Inclusion Chain

A set $\left\{e_{1}, \ldots, e_{k}\right\}$ of sets forms a nested inclusion chain if $e_{i_{1}} \subseteq \ldots \subseteq e_{i_{k}}$ for some ordering $i_{1}, \ldots, i_{k} \in[k]$

We apply this property to the set of hyperedges of nodes in the SAT hypergraph
For a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, let $\partial(i)=\{e \in \mathcal{E} \mid i \in e\}$

Nested Inclusion Chain

A set $\left\{e_{1}, \ldots, e_{k}\right\}$ of sets forms a nested inclusion chain if $e_{i_{1}} \subseteq \ldots \subseteq e_{i_{k}}$ for some ordering $i_{1}, \ldots, i_{k} \in[k]$

We apply this property to the set of hyperedges of nodes in the SAT hypergraph
For a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, let $\partial(i)=\{e \in \mathcal{E} \mid i \in e\}$

Example

$$
\partial(4)=\{\{1,4\},\{4,5\}\}
$$

is not a nested inclusion chain

Nested Inclusion Chain

A set $\left\{e_{1}, \ldots, e_{k}\right\}$ of sets forms a nested inclusion chain if $e_{i_{1}} \subseteq \ldots \subseteq e_{i_{k}}$ for some ordering $i_{1}, \ldots, i_{k} \in[k]$

We apply this property to the set of hyperedges of nodes in the SAT hypergraph
For a hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$, let $\partial(i)=\{e \in \mathcal{E} \mid i \in e\}$

Example
$\partial(4)=\{\{1,4\},\{4,5\}\}$
is not a nested inclusion chain
$\partial(3)=\{\{2,3\},\{1,2,3\}\}$
is a nested inclusion chain

DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. $\partial(i)$ forms a nested inclusion chain

DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. $\partial(i)$ forms a nested inclusion chain

Property 2
β-acyclicity is closed under removal of nodes and hyperedges

DP Solver for β-Acyclicity SAT

Property 1
Every β-acyclic hypergraph has a node i s.th. $\partial(i)$ forms a nested inclusion chain

Property 2
β-acyclicity is closed under removal of nodes and hyperedges

DP algorithm for β-acyclic SAT
Apply the resolution rule only for a variable x_{i} such that $\partial(i)$ forms a nested inclusion chain

Example 1/4

$$
F_{0}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Example 1/4

$$
F_{0}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Example 1/4

$$
F_{0}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Nested inclusion chains $\partial(5)=\{\{5\},\{4,5\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Example 1/4

$$
F_{0}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Nested inclusion chains $\partial(5)=\{\{5\},\{4,5\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Do resolution on 5

Example 1/4

$$
F_{0}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4} \vee x_{5}\right) \wedge\left(\neg x_{5}\right)
$$

Nested inclusion chains $\partial(5)=\{\{5\},\{4,5\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Do resolution on 5
$F_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4}\right)$

Example 2/4

$$
F_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4}\right)
$$

Example 2/4

$$
F_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4}\right)
$$

Nested inclusion chains

$$
\partial(4)=\{\{4\},\{1,4\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}
$$

Example 2/4

$$
F_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4}\right)
$$

Nested inclusion chains

$$
\partial(4)=\{\{4\},\{1,4\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}
$$

Do resolution on 4

Example 2/4

$$
F_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{4}\right)
$$

Nested inclusion chains

$$
\partial(4)=\{\{4\},\{1,4\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}
$$

Do resolution on 4
$F_{2}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)$

Example 3/4

$$
F_{2}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

Example 3/4

$$
F_{2}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

Nested inclusion chains $\partial(1)=\{\{1\},\{1,2\},\{1,2,3\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Example 3/4

$$
F_{2}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

Nested inclusion chains
$\partial(1)=\{\{1\},\{1,2\},\{1,2,3\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Do resolution on 1

Example 3/4

$$
F_{2}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)
$$

Nested inclusion chains $\partial(1)=\{\{1\},\{1,2\},\{1,2,3\}\}, \partial(3)=\{\{2,3\},\{1,2,3\}\}$

Do resolution on 1
$F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)$

Example 4/4

$$
F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)
$$

Example 4/4

$$
F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)
$$

Nested inclusion chains
$\partial(2)=\{\{2\},\{2,3\},\{2,3\}\}, \partial(3)=\{\{2,3\},\{2,3\}\}$

Example 4/4

$$
F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)
$$

Nested inclusion chains
$\partial(2)=\{\{2\},\{2,3\},\{2,3\}\}, \partial(3)=\{\{2,3\},\{2,3\}\}$

Do resolution on 2

Example 4/4

$$
F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)
$$

Nested inclusion chains
$\partial(2)=\{\{2\},\{2,3\},\{2,3\}\}, \partial(3)=\{\{2,3\},\{2,3\}\}$

Do resolution on 2

$$
F_{4}=\left(\neg x_{3}\right) \wedge\left(x_{3}\right)
$$

Example 4/4

$F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)$

Nested inclusion chains
$\partial(2)=\{\{2\},\{2,3\},\{2,3\}\}, \partial(3)=\{\{2,3\},\{2,3\}\}$

Do resolution on 2
$F_{4}=\left(\neg x_{3}\right) \wedge\left(x_{3}\right)$

Unit-clause contradiction

Example 4/4

$$
F_{3}=\left(\neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(x_{2}\right)
$$

Nested inclusion chains
$\partial(2)=\{\{2\},\{2,3\},\{2,3\}\}, \partial(3)=\{\{2,3\},\{2,3\}\}$

Do resolution on 2

$$
F_{4}=\left(\neg x_{3}\right) \wedge\left(x_{3}\right)
$$

Unit-clause contradiction
$\Rightarrow F$ not satisfiable

