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Databases use indexes to find records efficiently. Among these indexes, B-tree and KD-tree
are two successful indexes used for 1-dimensional and 2-dimensional data. In this project, we
first revisit the classic tree-based structure indexes. After that, we implement both the learned
index [1] for 1-D data and the learned index, named LISA [2] for 2-D data from scratch using
Python. Afterwards, we have conducted sanity check to ensure that our implementations are
correct. We then perform several experiments to compare the performance of learned indexes
and compare them with classic tree-based indexes.

In addition to the implementation and evaluation, we have theoretically analyse some prop-
erties that the learned indexes hold. Beyond that, we also explore and discuss some common
properties that the learned indexes should hold.

As an extension to the existing learned indexes, we explore the possibilities of using convo-
lution operation and convolutional neural network as learned indexes and report our results.
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1 Introduction

Over the years, indexes have been widely used in databases to improve the speed of data
retrieval. In the past decades, the database indexes generally fall into the hand-engineered
data structures, such as B-Tree, KD-Tree, etc. These indexes have played a crucial role in
databases and have been used widely in modern data management systems (DBMS) such as
PostgreSQL. Despite their huge success, a shortcoming of these data structures is the lack of
consideration of how the database records distributed. We use an example to demonstrate how
distributions can affect the efficiency of database indexes.

Example 1.1 For example, if the dataset contains integers from 1 to 1 million, then the
keys can be used directly as offsets. With the keys used as offsets, the value with a
given key can be retrieved in O(1) time complexity while B-Tree requires O(log n) time
complexity for the same query. From the perspective of space complexity, we do not need
any extra overhead by using the key as an offset directly, while the B-Tree needs extra
O(n) space complexity to save the tree.

From the above example, we found that there are two promising advantages of leveraging
the distribution of the data:

1. It may be faster when performing queries, especially when the number of entries in the
database are rather huge.

2. It may take less memory space, as we only need to save the model with constant size.

Nowadays, to learn the distribution and apply it to database indexes, Tim Kraska et al. pro-
posed learned indexes [1], [2], where machine learning techniques are applied to automatically
learn the distribution of the database entries and build the data-driven indexes. In this project,
we implemented both hand-engineered indexes and the learned index. After that, we explore
the possibilities of using convolutional neural networks as database indexes. This report is
organised into the following chapters:

1. Introduction. In this chapter, we illustrate the organisation of this report and introduce
the general information about database indexes.

2. Implementation. In this chapter, we present our implementation of the B-Tree for 1-D
data and KD-Tree for 2-D data. We also present our implementation of the learned index
for 1-D data [1] and 2-D data [2]. This includes a baseline learned index, a recursive
model and all components of LISA framework.
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3. Evaluation. In this chapter, we report evaluation of our implementation.

4. Insights and Findings. We demonstrate our findings in this chapter. Besides, we also
discuss the advantages and disadvantages of different indexes.

5. Convolution and CNN for Learned Indexes. In this chapter we explore the possibil-
ities of using convolution operation and convolutional neural network to build learned
indexes.

6. Conclusions.

1.1 Notations
In this report, we will use the following notations:

Sets and Spaces
R The set of real numbers
Rd The set of d dimensional real space
Random Variables
X A vector or matrix
x A single value in X
(x, y) A tuple that contains two values
Hyper-Parameters
N A pre-set hyper parameter
Functions
LR Linear Regression Function
P Polynomial Function
M Mapping Function Rn → R
O Big-O notation of complexity
SP Shard Prediction Function
Q(l,u) Range Query with the bounds (l,u)
K(x, y, k) KNN Query for kth nearest neighbours

around (x, y)

1.2 Terminologies
In the following chapters, we will use the following terminologies

Index model is a function that maps the index of a row of data into the location (e.g. page
index) of the data. For example, in one-dimensional case, the index models include B-Tree,
Linear Regression models, etc.

Key is a special attribute in the database that could identify a record. In our work, the key
could be a scalar in one-dimensional case, or a (x, y) pair in two-dimensional case.
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Order of a tree is the maximum number of children that a node can have.
Internal node is any node of a tree that has child nodes and is not a root node.
Leaf node is any node that does not have child nodes.
Level of a node is defined as the number of edges between this node and the root node.

1.3 Assumptions

Figure 1.1: The illustration of indexes as CDFs, originally from [1]

Formally, we define the index of each record as x and the corresponding location as y and
we represent the whole data as (X, Y ) pairs with the total number of pairs defined as N . We
could then normalise the Y into Ỹ ∈ [0, 1] so that the ỹ represents the portion of the y among
the whole Y . With these definitions, we can then define a function F : X → Ỹ that maps the
index into the portion of the y. We have y = F (x) ∗N . As the output of this function can be
considered as the probability of X ≤ x, we can regard this function F (x) as the cumulative
distribution function (CDF) of X , i.e. F (x) = P(X ≤ x). Now that N is determined by the
length of data, we only need to learn such CDF and we called the learned CDF function as
learned index model.

In Fig. 1.1, we illustrate the relationship between the key and its position. The raw keys
and their positions are illustrated in the zoomed-in view and the zoomed-out view presents a
shape of the relation. In this figure, we present why the position can be regarded as a CDF:
the position of a key is always the position of previous key plus 1, i.e. the position describes
how many keys are there before a certain key x. If we divide it by the total number of keys,
we will have the result as the possibility of how many keys are smaller than the certain key x,
i.e. P(X ≤ x). The result is therefore the CDF of X .

Example 1.2 From the perspective of the distribution of keys, our previous example (in
which we have one million integer keys from 1 to 1 million) can be rephrased as following.
Our data are key value pairs (X, Y ) (we call the pairs as data points) with a linear relation,
i.e. y = x, ∀y ∈ Y . We are looking for a function F such that y = x = F (x) ∗ N , and
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index into the portion of the y. We have y = F (x) ∗N . As the output of this function can be
considered as the probability of X ≤ x, we can regard this function F (x) as the cumulative
distribution function (CDF) of X , i.e. F (x) = P(X ≤ x). Now that N is determined by the
length of data, we only need to learn such CDF and we called the learned CDF function as
learned index model.

In Fig. 1.1, we illustrate the relationship between the key and its position. The raw keys
and their positions are illustrated in the zoomed-in view and the zoomed-out view presents a
shape of the relation. In this figure, we present why the position can be regarded as a CDF:
the position of a key is always the position of previous key plus 1, i.e. the position describes
how many keys are there before a certain key x. If we divide it by the total number of keys,
we will have the result as the possibility of how many keys are smaller than the certain key x,
i.e. P(X ≤ x). The result is therefore the CDF of X .

Example 1.2 From the perspective of the distribution of keys, our previous example (in
which we have one million integer keys from 1 to 1 million) can be rephrased as following.
Our data are key value pairs (X, Y ) (we call the pairs as data points) with a linear relation,
i.e. y = x, ∀y ∈ Y . We are looking for a function F such that y = x = F (x) ∗ N , and

6



hence we end up with F (x) = 1
N

∗ x. If we use this linear function F (x) as the index
model, then we could locate the data within O(1) time complexity and we only need to
store the total number of data points as the only parameter. Compared with B-Tree whose
query complexity is O(log n), the potential of using learned index to handle huge amount
of data is enormous.

In order to ensure the learned index model to be the desired CDF, we need to make the
following assumptions:

1. All data points are stored statically. Hence we do not take insertion and deletion into
consideration. If there is some insertion or deletion, then the total size of the data
records, N , will be different. Therefore, if insertion or deletion are involved, we cannot
calculate the position as we show above.

2. All data points are sorted according to theirs keys X . Only when the data records are
sorted according to the keys, we can regard the index model as CDF, i.e. F (x) = P(X ≤
x).

3. For simplicity, we assume that our data points are stored in a continuous memory space.
In other words, the indices of pages in this project is continuous integers and all the data
records are loaded into memory.

7

2 Implementation

Summary In this chapter, we describe the implementation details of classic tree-based in-
dexes and learned indexes.

1. In the Section 2.1, we present how to construct the B-Tree, Baseline model and Recur-
sive Model Index (RMI) for one-dimensional data.

2. In the Section 2.2, we present how to construct the KD-Tree, LISA baseline and LISA
model for two-dimensional data.

3. In the Section 2.3, we describe how to use these indexes to perform different queries. For
the one-dimensional data, we show how to perform point query with B-Tree, Baseline
model and RMI. For the two-dimensional data, we show how to perform point query,
range query and KNN query with KD-Tree, LISA baseline and LISA model.

2.1 One Dimensional Data

2.1.1 B-Tree
B-tree and its variants have been widely used as indexes in databases. B-trees can be consid-
ered as a generalisation of binary search tree: In binary search tree, there is only one key and
two children at most in the internal node. B-tree extends the nodes such that each node can
contain several keys and children. The keys in a node serve as dividing points and separate the
range of keys. With this structure, we make a multi-way decision based on comparisons with
the keys stored at the node x.

In this section, we introduce the construction process of B-trees and then analyse its prop-
erties.

Attributes and Properties

Each node x in a B-tree has the following attributes:

• x.n: the number of keys currently stored in the node x.

• x.keys: the stored keys of this node.

• x.leaf: a bool value that determines if current node is a leaf node.
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Figure 2.1: An example of B-tree with the minimum degree t = 2.

• x.children: a list of its children. If x is a leaf node who has no children at all, then
the list will be empty. We assume the children are x.c1,· · ·,x.cx.n+1, i.e. there will
be x.n+ 1 children at most.

With these attributes, a B-tree has the following properties:

• The number of children of a node is always 1 bigger than the number of keys in a node.

• Nodes in this tree have lower and upper bounds on the number of keys they can contain.
These two bounds can be expressed in terms of a fixed integer t, which we call the
minimum degree of this tree.

1. Each node, other than the root node, must contain at least t − 1 keys. The root of
the tree must have at least one key if the tree is not empty.

2. Each node can contain at most 2t − 1 keys. A node is called full if it contains
exactly 2t− 1 keys.

• Inside each node, the keys are sorted in the non-decreasing order, so that we have
x.keys1 ≤ x.keys2 ≤ · · · ≤ x.keysx.n.

• The keys x.keyi separate the ranges of keys stored in each subtree: if ki is any key
stored in the subtree with a root x.ci, then we have k1 ≤x.keys1 ≤k2 ≤x.keys2 ≤
· · · ≤ x.keysn ≤kx.n+1.

In Fig. 2.1, we demonstrate an example B-tree whose minimum degree is 2. In the following
section, we will illustrate how to construct and insert keys into a B-tree.

Insertion in a B-tree

With a B-tree, we cannot simply create a new leaf node and insert the new key as we do with
a binary search tree, because the resulting tree will fail to be a valid B-tree. Instead, we need
to insert the new key into an existing leaf node. If the node is not full, we can safely insert the
new key. Otherwise, we will need to split the node around the median of its keys into two new
nodes and promote the median key into its parent. In this process, we need to split the parent
if its parent is also full.
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In the insertion, we travel down the tree and search for the position where the key should be
inserted. During the traverse, we split each full node along the way. By doing so, whenever
we want to split a full node, we are assured that its parent is not full. The overall algorithm
is shown in Algo. 1, which contains methods splitChild and InsertNonFull as de-
scribed in Algo. 2 and Algo. 3 respectively.
Algorithm 1: Insert
input: T: The tree with the root T.root; k: The key to be inserted
Result: T: The tree with the inserted key k

1 r=T.root
2 if T.n==2t-1 then
3 s = NewNode()
4 T.root = s
5 s.leaf = False
6 s.n = 0
7 s.c1 = r
8 SplitChild(s, 1)
9 InsertNonFull(s, k)

10 else
11 InsertNonFull(r, k)

In the Algo. 1, we first check if the root node r is full. If it is full, then the root splits and
a new node s becomes the root. Then we insert the key k into the tree rooted at the non-full
root node, i.e. s or r.

In the Algo. 2, the node y originally has 2t children (i.e. 2t − 1 keys) and is full. We take
the following steps to split it:

1. We first (from line 1 to line 11) create a new node z and give it the largest t − 1 keys
and the corresponding t children of y.

2. Then we adjust the count of keys for y on line 12: after the split, y will have t− 1 keys.

3. After that, from line 13 to line 21, we insert z as a child of x, move the median key from
y up to x, and adjust the key count in x.
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Algorithm 2: SplitChild
input: x: The node whose children are being split; i: The index of x’s child who is

full originally
Result: x: The parent node whose children are not full

1 z = NewNode()
2 y = x.ci

3 z.leaf = y.leaf
4 z.n = t-1
5 for j ← 1 to t− 1 do
6 z.keysj = y.keysj+t

7 end
8 if not y.leaf then
9 for j ← 1to t do

10 z.cj = y.cj+t

11 end
12 y.n = t-1
13 for j ← x.n to i+ 1 do
14 x.cj+1 = x.cj

15 end
16 x.ci+1 = z
17 for j ← x.n to i do
18 x.keysj+1=x.keysj

19 end
20 x.keyi = y.keyt

21 x.n = x.n+1

The Algo. 3 works as follows:

1. From line 3 to line 6, We first check if x is a leaf. If it is a leaf, then we insert the key k
into x.

2. If x is not a leaf, then we must insert k into the appropriate leaf node in the subtree
rooted at internal node x. From line 8 to line 11, we traverse the subtree rooted at x and
determine the child of x to which the recursion descends. Then we check on line 12 if
the child where the recursion descends is a full node.

3. If the child is a full node, we then split the child on line 13 into two non-full children.
We then determine from line 14 to line 15 which of the two children is the appropriate
node to insert.

4. At the last, on line 16 we look into the ith children of x and recursively insert the key k
into it.

11

Algorithm 3: InsertNonFull
input: x: The node to be inserted; k: The key to be inserted
Result: x: The node with the inserted key k

1 i=x.n
2 if x.leaf then
3 while i ≥ 1 and k < x.keysi do
4 x.keyi+1=k
5 x.n = x.n+1
6 end
7 else
8 while i ≥ 1 and k < x.keysi do
9 i=i-1

10 end
11 i=i+1
12 if x.ci.n==2t-1 then
13 SplitChild(x,i)
14 if k>x.keyi then
15 i=i+1
16 InsertNonFull(x.ci, k)

2.1.2 Baseline Learned Index
Overview

The B-Tree can be regarded as a function F that maps the key x into its corresponding page
index y. It is known to us that the pages are allocated in a way that the every S entries
are allocated in a page where S is a pre-defined parameter. For example, if we set S to be 10
items per page, then the first page will contain the first 10 keys and their corresponding values.
Similarly, the second 10 keys and their corresponding values will be allocated to the second
page.

If we know the CDF of X as F (X ≤ x) and the total number of entries N , then the position
of x can be estimated as p = F (x) ∗ N and the page index where it should be allocated to is
given by

y = ⌊ p
S
⌋ = ⌊F (x) ∗N

S
⌋

Example 2.1 For example, if the keys are uniformly distributed from 0 to 1000, i.e. the
CDF of X is defined as F (X ≤ x) = x

1000
and we set S = 10, N = 1001. Then for any

key x, we immediately know it will be allocated into y = ⌊1000
10

∗ x
1000

⌋ = ⌊ x
10
⌋. Assume

that we have a key 698, then we can calculate y = ⌊698
10
⌋ = 69. By doing so, the page

index is calculated in constant time and space.
In this example, we see that the distribution of X is essential and our goal of learned
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Figure 2.2: The architecture of the fully connected neural network used as baseline learned
index. In this neural network, we use only 2 fully connected layers. The input of this neural
network is only one neuron such that it represents the given query key. The output of this
neural network is limited to 1 neuron such that it represents the predicted proportional
position of the key-value pair.

index in one-dimensional data is to learn such distribution. To do so, we apply two dif-
ferent techniques as the baseline, the polynomial regression and fully connected neural
network.

To train such a learned index, we first manually generate the X with respect to a certain
distribution. We then save the generated X into a dense array with the length N . Then we use
the proportional index, i.e. the index of each x divided by N as the expected output y.

Fully Connected Neural Network

After generating the training dataset X and its corresponding Y , we build a fully connected
neural network as the baseline learned index. The architecture of the fully connected neural
network is illustrated in Figure 2.2.

We apply the Rectified Linear Unit (ReLU) activation function at the end of Fi and Si. For-
mally, assume the output of Fi is a, then we define the output of ReLU(Fi) as y = max(a, 0)
where max returns the larger value between each entry of a and 0. Then we train this fully
connected neural network with standard stochastic gradient descent (SGD), and we set the
learning rate to be α = 0.001. We use the mean square error (MSE) ℓ = 1

n

!
(y − ŷ)2 as the

loss function.
Formally, we can induce the output of this fully connected neural network as following:

1. In the input layer, we have the input as a scalar value x.
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2. The first fully connected layer has m nodes, and the output is defined as y1 = w1x+b1
where w1 and b1 is a m × 1 matrix. Hence, the output of the first fully connected
layer is a m × 1 matrix. Then we apply the ReLU activation function to y1 and we get
z1 = max(y1, 0).

3. The second fully connected layer has n nodes, and the output is defined as y2 = w2z1+
b2. Similarly, after the ReLU operation, we get z2 = max(y2, 0).

4. For the output layer, in order to get a scalar as output, we apply a n node fully connected
layer here. The final output is defined as ŷ = w3z2 + b3 where w3 is a 1× n matrix.

In summary, the output of the fully connected neural network can be calculated as

ŷ = w3max(w2max(w1x+ b1, 0) + b2, 0) + b3 (2.1)

In the above fully connected neural network, there are 6 parameters to optimise: w1,w2,w3

and b1, b2, b3 and we apply the gradient descent and back propagation to optimise them.
Formally, the steps are illustrated below:

1. Initialisation. For wi and bi of the shape m × n, we randomly initialise the values of
each entry using a uniform distribution U(− 1√

n
, 1√

n
).

2. Forward Pass. With the initialised wi and bi, we calculate the output as formulated be
the equation 2.1. We then calculate the error as ℓ = 1

n

!
(y − ŷ)2.

3. Backward Pass. After getting the error, we start from the last layer to perform the
backward propagation operation. Formally, we do the following operations:

a) We first calculate the partial derivatives: ∂ℓ
∂w3

= z2
T , ∂ℓ

∂b3
= 1 and

∇3 =
∂ℓ
∂z2

= w3
T . Then we can update w3 and b3 as w3

new = w3 − α ∗ ∂ℓ
∂w3

and
b3

new = b3 − α ∗ ∂ℓ
∂b3

.

b) Then we pass the ∇3 to previous layer, and calculate the partial derivatives as
∂ℓ

∂w2
= z2

T∇3, ∂ℓ
∂b2

= ∇3 and ∇2 =
∂ℓ
∂z1

= ∇3w2
T . Then we update w2 and b2.

c) After that, we pass the ∇2 to the first layer, and calculate the partial derivatives as
∂ℓ

∂w1
= xT∇2, ∂ℓ

∂b1
= ∇2. Then we update w1 and b1.

4. Loop between 2 and 3. We perform the forward pass and the backward several times
until the loss is acceptable or a maximum number of loops reached.

We will discuss more findings and insights about the baseline model in the Chapter 4.
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2.1.3 Recursive Model Index
Motivation With a single well-trained baseline model, we can reduce the errors from several

millions to thousands. However, as the model is trained to minimise the overall error, it may
behave badly in some intervals. If we illustrate the predicted output from a baseline model and
the ground truth, as in Fig. 2.3, we will find that even though the baseline model has achieved
a rather low error, it does not fit the data almost everywhere. In order to solve this problem,
the recursive model index was proposed [1]. The idea is to split the large dataset into smaller
pieces and assign each piece an index model. By doing so, each model is only responsible for
a small range of keys.

Figure 2.3: The predicted output and the ground truth from the baseline model

Ideally, in each smaller range, the keys are distributed in a way that is easier to be learned by
our index models, such as polynomial model, fully connected model or even a B-Tree model.

As shown in Fig. 2.4, A recursive model is a tree structure, which contains a root model
that receives the full dataset for training. Then the root model will split the dataset into several
parts. Each sub-model will then receive one part of the full dataset. Then we train the sub-
models one by one with the partial training dataset.

Example 2.2 For example, in the Fig. 2.4, the full dataset will be split into three parts
and each sub-model receives one part. To train this recursive model, we first train the
root model with the whole dataset. Then the root model will split the dataset into 3 parts
according to the predicted value of each data point in the dataset. Then each sub-model
will receive one part and we train the sub-model accordingly.

Properties

Similar to a tree, we define the following terms in a recursive model:
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Figure 2.4: An example of recursive model index with one root model and three submodels.

1. Node Model. Every node is responsible for making decisions with given input data. In
one dimensional case, it can be regarded as a function f : R → R, x → y where x is
the input index and y is the corresponding page block. In principle, each node can be
implemented as any machine learning model, from linear regression to neural network,
or a traditional tree-based model, such as B-Tree. In the Fig. 2.4, the root model and
three submodels are all node models.

2. Internal Node Model. Internal nodes are all nodes except the leaf nodes. Every internal
node receives a certain part of training data from the full dataset, and train a model on
it.

3. Submodel Similar to the subtrees in tree structures, each internal node (i.e. except the
leaf node) has several submodels. For example, in Fig. 2.4, the root model has three
submodels.

In the following sections, we will use the notations defined below:

1. N
(i)
M is the number of models in the ith stage.

Training

In order to construct a recursive model, we need to have several parameters listed below:

1. The training dataset, notated as (X, Y ) with entries notated as (x, y).

2. The number of stages is notated as NS . It is an integer variable.

3. The number of models at each stage, notated as NM . It is a list of integer variable. N (i)
M

represents the number of models in the ith stage.

The training process of recursive model is an up-bottom process. There will be only one
root model that receives the whole training data. After the root model is trained, we iterate
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over all the training data and predict the page by the root model. After the iteration, we get a
new set of pairs (X, Y0). Then we map ∀y0 ∈ Y0 into the selected model index in next stage
by next = y0 ∗N (i+1)

M /max(Y).

Algorithm 4: Training of Recursive Model Index
input: NS: A scalar representing the number of stages;

NM: An array representing the number of models at
each stage;

x; y
1 trainset=[[(x,y)]]
2 stage← 0
3 model← 0
4 models← [[]]
5 while stage <NS do
6 while model <NM[stage] do
7 model.train(trainset[stage][model])
8 models[stage].append(model)
9 end

10 if stage<NS-1 then
11 for i ← 0 to len(x) do
12 next_model = 0
13 for j ← 0 to stage do
14 output = models[stage][next_model].predict(x)
15 next = output * NM[j+1]/max_y
16 end
17 trainset[stage+1][next].add((x[i],y[i]))
18 end
19 stage=stage+1
20 end

In the algorithm 4, we perform the following operations:

1. From the line 1 to 4, we prepare the training dataset to be a two-dimensional array
trainset such that trainset[i][j] represents the training dataset use by the
jth model at the ith stage. Hence, we first initialise the trainset[0][0] to be
the full dataset. Besides, we create an empty two dimensional list models such that
models[i][j] represents the jth model at the ith stage. We also let the current model
and stage to be 0 as initialisation.

2. From the line 5 to 20, we iterate from 0 to NS , i.e. the number of stages. At each stage,
we perform the following operations:

a) From the line 6 to 9, we iterate from 0 to NM at this stage. During the iteration,
we train all the models with the trainset[i][j], i.e. the prepared dataset for
the given model index at this stage. After that, we add the trained model into the
model list at line 8.
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b) From the line 10, we prepare the training dataset. If stage<NS-1, then the
current stage is not the last stage, i.e. we need to prepare the dataset for the next
stage. Hence, we iterate over all the training data from line 11 to 21.

c) From the line 13 to 16, we iterate over all stages that are previous to the current
stage (including the current stage). For each stage, we compute the prediction from
the model and map the prediction into the index of model at the next level. Finally,
we will get the index of the model that are supposed to handle the input data point
x.

d) On line 17, we add the data point x[i], y[i] into the corresponding trainset.

Other types of models inside RMI

One of the promising properties of recursive model is the support of multiple types of models.
If we have some prior knowledge of the data distribution, this property might help us train the
model faster and better.

Example 2.3 For example, if we know the data is linear in most local regions, then we
could use linear regression as internal models.

In addition, if we witnessed a huge error with RMI with learned models, we can replace
the internal models to be B-Tree models as they are more accurate and do not care about
the data distributions.

In thei project, we support the following types of models:

Type of models Formulas

Linear Regression wx+ b
Quadratic Regression ax2 + bx+ c
B-Tree N/A
Fully Connected Neural Network N/A

As linear regression and quadratic regression are special cases of polynomial models, they
are implemented in a same manner in this project. Here we demonstrate how to fit a polyno-
mial model. The polynomial regression model with degree m can be formalised as

ŷi = β0 + β1xi + β2x
2
i + · · ·+ βmx

m
i

and it can be expressed in a matrix form as below
"

###$

y1
y2
...
yn

%

&&&'
=

"

###$

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...
1 xn x2

n · · · xm
n

%

&&&'

"

###$

β0

β1
...
βm

%

&&&'
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which can be written as Y = Xβ.

Proof 2.1 Our goal is to find β such that the sum of squared error, i.e.

S(β) =
n(

i=1

(ŷ − y)2

is minimal. This optimisation problem can be resolved by ordinary least square estimation as
shown below.

First we have the error as

S(β) = ||y −Xβ|| = (y −Xβ)T (y −Xβ)

= yTy − βTXTy − yTXβ + βTXTXβ
(2.2)

Here we know that (βTXTy)T = yTXβ is a 1 × 1 matrix, i.e. a scalar. Hence it is equal
to its own transpose. As a result we could simplify the error as

S(β) = yTy − 2βTXTy + βTXTXβ (2.3)

In order to find the minimum of S(β), we differentiate it with respect to β as

∇βS = −2XTy + 2(XTX)β (2.4)

By let it to be zero, we end up with

−XTy + (XTX)β = 0

=⇒ β = (XTX)−1XTy
(2.5)

!
With the proof above, we showed that we can train the polynomial model with closed form.
Summary In this section we showed the theoretical induction of the baseline model and

the recursive model index. In the recursive model, we implemented four different types of
models: B-Tree, fully connected neural networks, linear regression and quadratic regression.

2.2 Two Dimensional Data

2.2.1 KD-Tree
KD-tree is a space partitioning structure that can be used to organise data points in k dimen-
sional space. In this project, we limit the dimension k to be 2. We implement the KD-tree as a
binary tree in which every node is a 2-dimensional point. Every non-leaf node is representing
a splitting line that divides the space into two parts. Then every points to the left (or down)
of this line are represented by the left subtree and points to the right (or up) of this line are
represented by the right subtree. In Fig. 2.5 we illustrate an example of KD-tree.
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S(β) =
n(

i=1

(ŷ − y)2

is minimal. This optimisation problem can be resolved by ordinary least square estimation as
shown below.
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S(β) = ||y −Xβ|| = (y −Xβ)T (y −Xβ)

= yTy − βTXTy − yTXβ + βTXTXβ
(2.2)

Here we know that (βTXTy)T = yTXβ is a 1 × 1 matrix, i.e. a scalar. Hence it is equal
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S(β) = yTy − 2βTXTy + βTXTXβ (2.3)

In order to find the minimum of S(β), we differentiate it with respect to β as

∇βS = −2XTy + 2(XTX)β (2.4)

By let it to be zero, we end up with

−XTy + (XTX)β = 0

=⇒ β = (XTX)−1XTy
(2.5)

!
With the proof above, we showed that we can train the polynomial model with closed form.
Summary In this section we showed the theoretical induction of the baseline model and

the recursive model index. In the recursive model, we implemented four different types of
models: B-Tree, fully connected neural networks, linear regression and quadratic regression.

2.2 Two Dimensional Data

2.2.1 KD-Tree
KD-tree is a space partitioning structure that can be used to organise data points in k dimen-
sional space. In this project, we limit the dimension k to be 2. We implement the KD-tree as a
binary tree in which every node is a 2-dimensional point. Every non-leaf node is representing
a splitting line that divides the space into two parts. Then every points to the left (or down)
of this line are represented by the left subtree and points to the right (or up) of this line are
represented by the right subtree. In Fig. 2.5 we illustrate an example of KD-tree.
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Figure 2.5: An example of KD-Tree

Insertion of KD-tree

Similar to a binary search tree, we need to traverse the tree when we need to insert a point
to the KD-tree. The only difference is that we need to switch the axes when inserting into a
KD-tree. For example, since the dimension is 2 in our case, we compare the x-coordinate at
the root level. Then in the root’s direct children, we compare the y-coordinate at that level.
Formally, the insertion algorithm is expressed as in Algo. 5.
Algorithm 5: KD-tree Insertion
input: t: The node to be inserted; k: The key to be inserted; cd: Current dimension
Result: t: The node with the inserted key k

1 DIM=2;
2 if t==NULL then
3 t = NewNode(k)
4 else if x[cd]<t.data[cd] then
5 t.left=insert(x, t.left, (cd+1) % DIM )
6 else
7 t.right=insert(x, t.right, (cd+1)% DIM)
8 return N

To insert a key k into the KD-tree with T as its node, we only need to apply this function
with the root node as insert(T, k, 0).

In the Algo. 5, the insertion of a key is performed in the following steps:

1. On line 1, we specify the dimension to be 2.

2. Then we first check if the node is NULL. If it is NULL, which means we should have a
new leaf node, then we create a new node and give it our key.
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3. Otherwise, from line 4 to 7, we check the data at current dimension. If it is smaller than
the data in the node t at current dimension, then we should insert into the left subtree.
Otherwise, we should insert into the right subtree.

4. When we moves down to the left or right subtree, we switch the current dimension by
calculating (cd+1)% DIM.

Example 2.4 In Fig. 2.5, we present an example of KD-tree. In this example, we will
illustrate how it is constructed. Assume our data points is

[(30, 40), (5, 25), (10, 12), (70, 70), (50, 30), (35, 45)]

The construction of the KD-tree follows the steps below:

1. We start with (30, 40) by creating a new node and give it the data point, which
results in the root node in the figure.

2. After that we insert (5, 25), since x[0]<t.data[0], we insert this node as the
left subtree to the root.

3. Then we insert (10, 12). First we compare the x-coordinate at the root level. As
10 < 30, we go to the left subtree. Then we compare at the root’s children level and
compare the y-coordinate. As 12 < 25, we go to the left subtree and create a new
node there.

4. Similarly, we insert other keys one-by-one.

2.2.2 Learned 2D Indexes Overview
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Motivated by the performance benefits of learned indices for one-dimensional data, this
section explores the application of learned index for spatial data. In this section, we present
the implementation of LISA [2], which extends the learned indexes into two dimensional data.

Motivation

For the one-dimensional data, we can learn the CDF by using a recursive model as shown in
the section 2.1.3. However, when the data is two-dimensional, the learned CDF (the marginal
CDF) through the recursive model cannot be applied directly to predict the position of the key.
Formally, we could learn the marginal CDF for each dimension by using the recursive model,
i.e. F (X) and F (Y ). However, to predict the position of a 2-dimensional key, we need the
joint CDF F (X, Y ), which cannot be induced from the marginal CDFs. We show an example
as below to illustrate this limitation.

Example 2.5 Assume that X and Y are distributed as shown in Fig. 2.6. In this example,
we have three points A,B and C. For simplicity, we assume the page size is 1. Hence, the
point A should be assigned into the first page and we have F (x ≤ A) = 1

3
. With learned

indexes in one-dimensional, then there comes the problem below:

1. There will be duplicate keys. In this example, if we only consider the X axis, we
will get an array [0.7, 0.7, 1.5] which contains duplicate keys.

2. If we remove the duplicate keys, then F (x ≤ A) = 1
2
, which is not what we expect.

3. If we do not remove the duplicate keys, then F (x ≤ A) = F (x ≤ B), which is still
not we expect.

Figure 2.6: An example demonstrating the limitations of one-dimensional learned index
in two-dimensional data. In this graph we have F (x ≤ A) = 1

3
but with learned index in

one-dimensional, we cannot learn such joint CDF.

22



Motivated by the performance benefits of learned indices for one-dimensional data, this
section explores the application of learned index for spatial data. In this section, we present
the implementation of LISA [2], which extends the learned indexes into two dimensional data.

Motivation

For the one-dimensional data, we can learn the CDF by using a recursive model as shown in
the section 2.1.3. However, when the data is two-dimensional, the learned CDF (the marginal
CDF) through the recursive model cannot be applied directly to predict the position of the key.
Formally, we could learn the marginal CDF for each dimension by using the recursive model,
i.e. F (X) and F (Y ). However, to predict the position of a 2-dimensional key, we need the
joint CDF F (X, Y ), which cannot be induced from the marginal CDFs. We show an example
as below to illustrate this limitation.

Example 2.5 Assume that X and Y are distributed as shown in Fig. 2.6. In this example,
we have three points A,B and C. For simplicity, we assume the page size is 1. Hence, the
point A should be assigned into the first page and we have F (x ≤ A) = 1

3
. With learned

indexes in one-dimensional, then there comes the problem below:

1. There will be duplicate keys. In this example, if we only consider the X axis, we
will get an array [0.7, 0.7, 1.5] which contains duplicate keys.

2. If we remove the duplicate keys, then F (x ≤ A) = 1
2
, which is not what we expect.

3. If we do not remove the duplicate keys, then F (x ≤ A) = F (x ≤ B), which is still
not we expect.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A(0.7, 0.5)

B(0.7, 1.5)

C(1.5, 0.5)

Figure 2.6: An example demonstrating the limitations of one-dimensional learned index
in two-dimensional data. In this graph we have F (x ≤ A) = 1

3
but with learned index in

one-dimensional, we cannot learn such joint CDF.

22



From the above discussion, we conclude that we cannot apply the one dimensional
learned indexes directly, as any solutions to the duplicate keys will result in unexpected
behaviour.

In order to extend the idea of learned indexes in one dimensional data but tackle the lim-
itations that we face, LISA maps the keys in two dimensional space into a one dimensional
sorted array and then apply piecewise linear function to learn the CDF.

In the following implementation of two dimensional learned indexes, we will use the fol-
lowing definitions.

1. Key. A key k is a unique identifier for a data record with k = (x0, x1) ∈ R2.

2. Cell. A grid cell is a rectangle whose lower and upper corners are points (l0, l1) and
(u0, u1). Formally, we present cell as [l0, u0)×[l1, u1). Every key in the two dimensional
space can be located in one cell. We use a ∈ Ci to denote a key a in the ith cell.

3. Mapping Function. A mapping function M is a function on the domain R2 to the
non-negative range in R, i.e M : [0, X0]× [0, X1] → [0,+∞).

The mapping function should not mess up the original order of the cells of keys. For-
mally, assume we have two cells i, j and i < j, then M(a) < M(b), ∀a ∈ Ci, ∀b ∈ Cj .
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2.2.3 Baseline Method
By using a mapping function, we can extend the learned index method on spatial data in the
following steps:

1. First of all, we use the mapping function to map all keys and get a one dimensional
array.

2. Then we sort all keys according to their mapped values and divide the mapped values
into small intervals. We divide them in a way that each interval (except the last one)
contains the same number of the keys. By doing so, we ensured that if the mapped value
of a key (x, y) is larger than those of the keys in the first i intervals, then this key will
be located in the (i+ 1)th interval.

Training of Baseline Method

The training dataset for the baseline model can be notated as (X, Y ) with entries notated as
(x, y). X represents the two dimensional key coordinates, and Y represents the corresponding
data item.
Algorithm 6: Training Algorithm for Lisa Baseline Method
input : N:number_of_cells;

trainset:[(x, y); x ∈ R2; y ∈ R]
Output: cell:Array containing cells’ metadata

1 for i ← 0 to len(x) do
2 x[i].mapped_value = x[i][0]+x[i][1]
3 end
4 K = len(x)/N // keys per cell
5 x = x[argsort(x.mapped_value)] //sort x based on mapped values
6 for i ← 0 to N do
7 cell[i].lower = x[i* K].mapped_value
8 cell[i].upper = x[(i+1)*K].mapped_value
9 end

10 return cell
In the Algo. 6, training of LISA baseline model is described in the following steps:

1. N , which represents the number of cells into which the key’s mapped value space will
be divided.

2. In lines 1 to 3, we calculate the mapped value of each item in the training set.

3. On line 4, we calculate the number of keys per cell.

4. On line 5, Sort train set according to keys’ mapped values.

5. In lines 6 to 9, we divide the keys into equal sized cells. Per cell we need to store meta
data for two keys, corresponding to first and last key in the cell
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Prediction of Baseline Method

For prediction, we find the cell corresponding to mapped value of the query point using binary
search, scan this cell sequentially and compare the values of keys in the cell against the query
point, until a match is found.
Algorithm 7: Prediction Algorithm for LISA Baseline Model
input : x_test:query_point;

cell:cell_metadata_array;
trainset:[(x, y); x ∈ R2; y ∈ R]

Output: x_test.value:query_point_value
1 cell_found = False
2 x_test.mapped_value = x_test[0]+x_test[1]
3 for i ← 0 to len(cell) do
4 if x_test.mapped_value∈ [cell[i].lower, cell[i].upper) then
5 cell_found = True
6 break
7 end
8 end
9 if cell_found==True then

10 K = cell.keys_per_page
11 cell_offset = K*i
12 for i ← cell_offset to K+cell_offset do
13 if (x_test[0] == x[i][0]) and (x_test[1] == x[i][1]) then
14 return x[i].value
15 end
16 end
17 end
18 return -1

Limitations of Baseline Method

The baseline method can be used to perform point query and range query, but suffers from
a severe problem. We demonstrate this problem with a range query in the following. In the
two dimensional case, a range query is defined as searching for all data points that fall into a
rectangle range in the two dimensional space.

For a range query, represented by the query rectangle qr = [l0, u0)× [l1, u1), we only need
to predict the indices of (l0, l1) and (u0, u1) namely i1 and i2 respectively. Then we scan the
keys in i2 − i1 + 1 cells, and find those keys that fall in the query rectangle qr.

Example 2.6 An example of range query with LISA baseline method is illustrated in Fig.
2.7. In this figure, the key space are divided into 3 cells with equal number of keys. With
the query range, we find the Cell 2 contains the query rectangle. After that, we need to
iterate over all the points that fall into the Cell 2 (all the red points in this figure).
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Figure 2.7: An Example of Range Query with LISA Baseline Method

During prediction, we need to find out the cell to which our query point belongs (the
2nd cell in our example).

1. The two dimensional key space is divided into 3 cells using the mapping function
M((x, y)) = x+ y. Each section in Fig. 2.7 represents one cell.

2. The query point is represented by the blue rectangle. It consists of only 1 key and
falls inside the second cell.

3. Identify the cell to which the query rectangle belongs by doing a binary search based
on query point mapped value.

4. Once the cell 2 is identified, we need to compare the two dimensional key value of
the query point, against all the possible keys in that cell 2 until a match is found.
This can results in maximum of 8 irrelevant points being accessed for the point
query.

In the Fig. 2.7, the dataset is partitioned into three cells. The query rectangle falls inside the
second cell and caused all the data points in the second cell to be checked if they are inside the
query rectangle. This results in many (8) irrelevant data points (the red points in the graph)
accessed for the query range that only contains 1 relevant key.

2.2.4 LISA Approach

Motivation LISA solves this problem by dividing the cells into smaller quadrilateral regions,
called shard. Based on the mapped value, LISA builds a shard prediction function and this
function will divide the whole space into different shards. Then we can predict the shard
where the query key should be located to perform the query.
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Figure 2.8: LISA Framework.

Given a spatial dataset, we generate the mapping function M and the shard prediction
function SP . Based on them, we build our index structure, LISA, to process point, range and
KNN queries. The LISA model consists of four parts: the representation of grid cells, the
mapping function M, the shard prediction function SP and the local models for all shards.
As illustrated in the Fig. 2.8, the procedure of building LISA is composed of four parts.

1. Grid cell partition.

2. Mapping spatial coordinates into scalars, i.e. Rd → R.

3. Build shard prediction function SP .

4. Build local models.

Definitions

This section presents the additional definition specific to LISA implementation.

4. Shard and Shard Prediction. The shard S is the pre-image of an interval [a, b) ⊆
[0,+1) under the mapping function M, i.e. S = M−1([a.b)). Shard can be regarded as
a quadrilateral region in the two dimensional space and a certain shard is mapped into a
certain range of mapped values with the mapping function. Given a mapped value, our
goal is to predict which shard it belongs to.

After getting the mapped values of all keys, we learn a monotonic shard prediction
function SP to partition the mapped values into different shards. Assume that mi =
inf SP−1([i, i + 1)) and mi+1 = inf SP−1([i + 1, i + 2)) for mapped values mi and
mi+1, i.e. mi is the smallest mapped value in the i to i+ 1 shard, then we define the ith
shard as Si := M−1([mi−1,mi)).

5. Local Model. Local model Li is a model that processes operations within a shard Si. It
keeps dynamic structures such as the addresses of pages contained by Si. Local models
are not relevant to our implementation as full data-set is loaded in the main memory.

In the following sections, we present the construction process of LISA model step by step.
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Figure 2.8: LISA Framework.
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Figure 2.9: Cell Partition Strategy.

Grid Cells Generation

The first task in LISA implementation is to partition the two dimensional key space into a
series of grid cells based on the data distribution along a sequence of axes. Then we number
the cells along these axes as well. The goal of this partition process is to evenly divide all the
data points into smaller cells.

Example 2.7 Consider the example shown in the figure 2.9.

1. Plot A shows distribution of 27 keys in the two dimensional space.

2. In plot B, we first sort Keys on 1st dimension and divide into 3 vertical columns
each containing 9 keys.

3. Then for each vertical column of 9 keys, we sort the keys again according to 2nd

dimension, and divide the keys in each vetical column into 3 new cells.

4. The total number of cells into which the keys space is divided, Ncells, is a hyper-
parameter and found empirically using grid search.

We need to sort the key space along the sequence of axis before we partition the keys value
along that axis to make sure that cells do not contain overlapping keys.
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Algorithm 8: Grid Cell Generation Algorithm for LISA Method
input: N:length_of_grid_cell;

trainset:[(x, y); x ∈ R2; y ∈ R]
1 K = len(x)/(N ∗N) // K: Keys per cell
2 x = x[argsort(x[0])] // Sort x based on 1st dimension
3 for i ← 0 to N do
4 for j ← 0 to N do
5 cell[i+j*N].lower[0] = x[i *K *N][0] // Store keys’s x

coordinate for first key in cell.
6 cell[i+j*N].upper[0] = x[(i+ 1) *K *N][0] // Store keys’s x

coordinate for last key in cell.
7 end
8 end
9 for i ← 0 to N do

10 x[i*K*N:(i+ 1)*K*N] = x[argsort(x[i*K*N:(i+ 1)*K

*N])+i*K*N][1] // Sort x based on 2nd dimension
11 end
12 for i ← 0 to N do
13 for j ← 0 to N do
14 cell[i+j*N].lower[1] = x[j *K *N][0] // Store keys’s y

coordinate for first key in cell.
15 cell[i+j*N].upper[1] = x[(j + 1) *K *N][0] // Store keys’s y

coordinate for last key in cell.
16 end
17 end

In the Algo. 8, segregation of key space into cells is performed in the following steps:

1. Row length of the grid cell N is passed as input. In our implementation, grid cell is
constrained to be a square and total number of cells is given by N*N .

2. Then we calculate number of keys per cell (K) and sort x based on 1st dimension.

3. In lines 3 to 8, we divide the key space into N vertical columns each containing K*N
keys. Since our cell grid is N*N , for each cell along x dimension, we store the same
values of keys’s x coordinates for N cells along y dimension, thereby creating a vertical
column of N cells for each cell along x dimension. Per cell we need to store meta data
for two keys, corresponding to first and last key in the cell.

4. In lines 9 to 11, for each vertical column of K*N keys, we sort the keys again according
to 2nd dimension.

5. In lines 12 to 17, we divide the keys in each vertical column into N new cells and store
the keys’s y coordinates.
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2 x = x[argsort(x[0])] // Sort x based on 1st dimension
3 for i ← 0 to N do
4 for j ← 0 to N do
5 cell[i+j*N].lower[0] = x[i *K *N][0] // Store keys’s x

coordinate for first key in cell.
6 cell[i+j*N].upper[0] = x[(i+ 1) *K *N][0] // Store keys’s x

coordinate for last key in cell.
7 end
8 end
9 for i ← 0 to N do

10 x[i*K*N:(i+ 1)*K*N] = x[argsort(x[i*K*N:(i+ 1)*K

*N])+i*K*N][1] // Sort x based on 2nd dimension
11 end
12 for i ← 0 to N do
13 for j ← 0 to N do
14 cell[i+j*N].lower[1] = x[j *K *N][0] // Store keys’s y

coordinate for first key in cell.
15 cell[i+j*N].upper[1] = x[(j + 1) *K *N][0] // Store keys’s y

coordinate for last key in cell.
16 end
17 end

In the Algo. 8, segregation of key space into cells is performed in the following steps:

1. Row length of the grid cell N is passed as input. In our implementation, grid cell is
constrained to be a square and total number of cells is given by N*N .

2. Then we calculate number of keys per cell (K) and sort x based on 1st dimension.

3. In lines 3 to 8, we divide the key space into N vertical columns each containing K*N
keys. Since our cell grid is N*N , for each cell along x dimension, we store the same
values of keys’s x coordinates for N cells along y dimension, thereby creating a vertical
column of N cells for each cell along x dimension. Per cell we need to store meta data
for two keys, corresponding to first and last key in the cell.

4. In lines 9 to 11, for each vertical column of K*N keys, we sort the keys again according
to 2nd dimension.

5. In lines 12 to 17, we divide the keys in each vertical column into N new cells and store
the keys’s y coordinates.
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Mapping Function

A mapping function M is a function on the domain R2 to the non-negative range, i.e M :
[0, X0]× [0, X1] → [0,+∞) such that M(xi) < M(xj) if i < j, where xi ∈ Ci and xj ∈ Cj .
That means the mapped value of a key in cell i will always be less than mapped values of a
key in cell j, if i < j.

Suppose x = (x0, x1) and x ∈ Ci = [θ
(0)
i0
, θ

(0)
i0+1)× [θ

(1)
i1
, θ

(1)
i1+1) then we define

M(x) = i+
µ(Hi)

µ(Ci)

where Hi = [θ
(0)
i0
, x0)× [θ

(1)
i1
, x1) and µ is the Lebesgue measure on R2.

In two dimensional cases, the Lebesgue measure is exactly the area. Hence, the above
formula can be interpreted as: the area of the point x divided by the area of the whole cell,
plus the index of the cell.

As shown in figure 2.10, in 2-dimensional case, µ(Hi)
µ(Ci)

represents the fraction of the area
covered by the key(x0, x1) to the total area of the cell. Since we are adding i, the index of
the cell, to this fraction, the mapped value of a key in cell i will always be less than mapped
values of a key in cell j, if i < j. After calculating the mapped values of the data set, we sort
the keys in each cell according to the mapped value. This results in the whole key space to be
sorted according to the mapped value. Figure 2.11 shows the mapping of 2 dimensional key
space to one dimensional CDF.

In the example below, we demonstrate the calculation of mapped values of two data points
that are located in different cells.

Figure 2.10: Lebesgue Measure Representation for 2 dimensional data.
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Figure 2.10: Lebesgue Measure Representation for 2 dimensional data.
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Example 2.8 In 2.10, we calculate the Lebesgue measure for the black and green points
as examples.

1. For the black point in the first cell, the Lebesgue measure will be ratio of area of red
rectangle divided by the total area of 1st cell, i.e. 50/100 = 0.5.

2. For the green point in the second cell, the Lebesgue measure will be ratio of area of
blue rectangle divided by the total area of 2nd cell, i.e. 20/100 = 0.2

Figure 2.11: Mapping 2 dimensional data points to one dimensional cdf.

Shard Prediction Function

After the mapping function, we get a dense array of mapped values. Then we partition them
evenly into U parts and let M p = [m1, · · · ,mU ]. We train linear regression functions Fi on
each interval and suppose V +1 is the number of mapped values that each Fi needs to process
and D is the number of shards per interval. Ψ =⌊V+1

D
⌋ is the number of keys falling in a shard.

Example 2.9 For example, assume we have a dense array of 9 mapped values as

[1, 1.2, 2, 2.2, 3, 3.3, 3.4, 4, 4.5]

and U and D are initialized as 3. So we have M p = [9] which is divided into 3 equal
intervals, M p = [m1,m2,m3], each containing 3 keys. In this case we have V +1 = 3 and
will train 3 linear regression functions, 1 for each interval. Each Fi generates D shards
and number of keys falling in a shard will be Ψ = ⌊V+1

D
⌋ = 1.

Then with a given x, the predicted shard is given by SP(x) = Fi(x) + i × D, where
i = binary-search(M p, x). More specifically, we first determine i by using binary search.
The result tells which interval this x should belong to. Then we find the corresponding linear
regression function Fi and calculate Fi(x), which is the predicted shard.
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Figure 2.12: Piecewise linear regression functions learnt by the piecewise linear function in
the shard prediction training algorithm, V + 1 is the number of keys per mapped interval.

Example 2.10 In the above example, given a key x = 1.2, we first perform binary search
in M p and we found i = 1. Then we find the first linear regression function F1 and
calculate F1(x). Since each linear regression function will yield D = 3 shards, the shards
that the first linear regression function generates will be from 0 to 2 and the shards that
the second linear regression function generates will be from 3 to 5. Hence, the predicted
shard index is given by

SP(x) = Fi(x) + i×D

Then the problem left is to train the linear regression functions Fi. Let x = (x0, · · · , xv)
be the keys’ mapped value that fall in [mi−1,mi). Suppose that x is sorted, i.e. xi ≤ xj, ∀0 ≤
i < j ≤ v. Let y = (0, · · · , V ). Then we build a piecewise linear regression function fi with
inputs x and ground truth y. For a given point with mapped value m ∈ [mi−1,mi), its shard
index is given by ⌈fi(m)

Ψ
⌉+ i×D, i.e. Fi(x) =

fi(m)
Ψ

.

Example 2.11 In our previous example, in the interval [0, 2], we have x = (1, 1.2, 2) and
y = (0, 1, 2). Then for a point with the mapped value m = 1.2, the expected output will
be fi(m) = 1 and the shard index is given by ⌈1

1
⌉ + 0 × 2 = 1. Hence, the point with

mapped value m = 1.2 will be allocated to the second shard with shard index 1. Then the
problem is to train a continuous piecewise linear regression function in each interval. We
constrain the piecewise linear regression function to be continuous so that it is guaranteed
be monotonic as shown in Figure 2.12.

Formally, a piecewise linear function can be described as

32



Mapped Value 

Po
si

tio
n 

In
de

x(
0,

 1
,..

..,
V+

1)

Figure 2.12: Piecewise linear regression functions learnt by the piecewise linear function in
the shard prediction training algorithm, V + 1 is the number of keys per mapped interval.
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f(x) =

)
****+

****,

b0 + α0(x− β0) β0 ≤ x < β1

b1 + α1(x− β1) β1 ≤ x < β2

...
bσ + ασ(x− βσ) βσ ≤ x

(2.6)

In order to make this piecewise linear function continuous, the slopes and intercepts of each
linear region depend on previous values. Formally, let ā = b0, then Eq. (2.6) reduces to

f(x) =

)
***+

***,

ᾱ + α0(x− β0) β0 ≤ x < β1

ᾱ + α0(x− β0) + α1(x− β1) β1 ≤ x < β2

· · ·
ᾱ + α0(x− β0) + α1(x− β1) + · · ·+ ασ(x− βσ) βσ ≤ x

(2.7)

Then to make Eq. (2.7) monotonically increasing, we only need to ensure that

η(

i=0

αi ≥ 0, ∀0 ≤ η ≤ σ

Let α = (ᾱ,α0, · · · ,ασ), the square loss function L(α,β) =
!V

i=1(f(xi)− yi)
2. We then

optimise α and β iteratively.
Assume that β = β̂ = (β̂0, β̂1, · · · , β̂σ) is fixed, then α can be regarded as the least square

solution of the linear equation Aα = y, where

A =

"

######$

1 x0 − β̂0

-
x0 − β̂1

.
1x0≥β̂1

. . .
-
x0 − β̂σ

.
1x0≥β̂σ

1 x1 − β̂0

-
x1 − β̂1

.
1x1≥β̂1

. . .
-
x1 − β̂σ

.
1x1≥β̂σ

...
...

... . . . ...

1 xV − β̂0

-
xV − β̂1

.
1xV ≥β̂2

· · ·
-
xV − β̂σ

.
1xV ≥β̂σ

%

&&&&&&'

where 1x0≥β̂1
equals to 1 if x0 ≥ β̂1, otherwise it equals to 0.

We have

L(α,β) = (y − Aα)T (y − Aα) = yTy −αTATy − yTAα+αTATAα

= yTy − 2αTATy +αTATAα
(2.8)

and if we let

∂L(α,β)

α
= 2ATAα− 2ATy = 0

=⇒ α = (ATA)−1Ay
(2.9)
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we get the α with the given fixed β. Clearly, different β give rise to different optimal
parameters. Let α"(β) be the optimal α for a particular β, then we want to find β such that

L(α"(β"),β") = min{L(α"(β),β)|β ∈ Rσ+1} (2.10)

For β, we define r = Aα − y and

K = diag(ᾱ,α0, · · · ,ασ),G =

"

#####$

−1 −1 · · · −1

p
(0)
0 p

(1)
0 · · · p

(V )
0

p
(0)
1 p

(1)
1 · · · p

(V )
1

...
... . . . ...

p
(0)
σ p

(1)
σ · · · p

(V )
σ

%

&&&&&'

where p
(l)
i = −1xl≥βi

. Then

KG =

"

###$

−ᾱ −ᾱ · · · −ᾱ

0 α0p
(1)
0 · · · 0

...
... . . . ...

0 0 · · · ασp
(V )
σ

%

&&&'

then we have

g =
∂L(α,β)

∂β
= 2KGr, Y =

∂g

∂β
= 2KGGTKT (2.11)

As g = ∇βL, −g specifies the steepest descent direction of β for L. However, the conver-
gence rate of −g is low as it does not consider the second order derivative of L. Hence, we use
Newton’s method to perform the update along the direction of second derivative, s = −Y −1g.
Newton’s method assumes that the loss L is twice differentiable and uses the approximation
with Hessian The geometric interpretation of Newton’s method is that at each iteration, it
amounts to the fitting of a paraboloid to the surface of L(α,β) at the trial value βk, having the
same slopes and curvature as the surface at that point, and then proceeding to the maximum or
minimum of that paraboloid. Hessian matrix, Y in our case is positive semidefinite and hence
can be inverted.

Y =
∂g

∂β
= 2KGGTKT = 2(KG)(GTKT ) = 2(GTKT )T (GTKT ) = 2(MTM)

(2.12)
Y is a full rank matrix as columns of Y are linearly independent (all keys are independent

of each other). To prove that Y is positive definite, we need to show that xTY x > 0, ∀x ∕= 0.
xTY x = xTMTMx = (Mx)T (Mx) = ‖Mx‖22 ≥ 0, ∀x ∕= 0

In the beginning, we set β(0) = x0 and β
(0)
i = x⌊i×V

Ψ
⌋, ∀i ∈ [1, σ]. Then we can obtain α by

solving Eq. (2.9). Then at each step, we perform a grid search to find the step lr(k) such that
the loss L is minimal. Then at the next iteration, we increase k by one and set

β(k+1) = β(k) + lr(k)s(k)
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As described in Algorithm 9, we perform following operations during shard training, :

1. Divide the sorted mapped values into equal sized U intervals. We found empirically
that training algorithm generalizes better if mapped intervals are aligned with grid cell
boundaries. U is initialized to numbers of grid cells.

2. Suppose V + 1 is the number of mapped values in each interval and D is the number of
shards learned per mapped interval.

3. For each interval, we want to build a monotonic regression model Fi whose domain is
[mi−1,mi]

4. Each Fi generates D shards and every such shard contains Ψ = ⌊V+1
D

⌋ number of keys

5. x = [x0, · · · , xV ] specifies the keys’ mapped values in interval i, [mi−1,mi]

6. Given V + 1 sorted mapped values x = [x0, · · · , xV ] and their indices y = [0, · · · , V ],
each Fi is built and trained with the procedure mentioned in the algorithm 9.

Algorithm 9: Shard Training Algorithm
input: Mp:sorted mapped value array,U: number of mapped intervals, D:number of

shards per interval
1 Partition Mp into equal length U intervals M p = [m1, · · · ,mU ]

for i ← 0 to U do
2 x = [x0, · · · , xV ] be the keys’ mapped values in interval i
3 y = [0, · · · , V ]

4 Initialize β(0) as β(0) = x0 and β
(0)
i = x⌊i×D⌋, ∀i ∈ [1, σ]

5 while k <iter do
6 Initialize A(k) according to (2.7)
7 α(k) = ((A(k))TA(k))−1(A(k))Ty

8 Calculate g(k), Y (k)

9 sk = −(Y (k))−1g(k),

10 Find update step lr(k) such that
L(α&(βk + lr(k)sk), βk + lr(k)sk) = min{L(α&(βk + lr(k)sk), βk + lr(k)sk)}

11 βk+1 = βk + lr(k)sk

12 end
13 end

Local Models for Shards

Local models are not relevant to our implementation as full data-set is loaded in the main
memory.
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2.3 Queries

2.3.1 Point Query
A point query is a database operation that finds the records that exactly match our query
conditions. In this project, we perform point query on 1-dimensional data and 2 dimensional
data. We assign the database records into pages, predict the page index with the index models
and then perform sequential search on the predicted page. In order to evaluate the errors that
different index models are making, we focus on predicting the page indices and ignore the
sequential search operation on a specific page.

Example 2.12 For example, assume we have an 1-dimensional array [1, 2, 3, 4] and two
pages such that [1, 2] ∈ P0 and [3, 4] ∈ P1. A point query for x = 2 is expected to return
0 as the page index.

Point Query with B-Tree

Searching in a B-tree is similar to searching in a binary search tree. In a binary search tree, we
traverse the tree and make a binary decision at each node. Similarly in order to perform point
query with a B-tree, we traverse the tree and make a multi-way decision at each node.

In our implementation, the point query method with B-tree takes the root node x of a subtree
and a key k to be searched for in that subtree. If k is in that subtree, the method returns the
node y that contains the key k and an index i such that y.keyi=k. Otherwise the method
will return -1. The point query algorithm for a B-tree is illustrated in Algo. 10.

Algorithm 10: B-tree Point Query
input: x: The node of the subtree to be searched; k: The key to be searched
Result: y: The node that contains the query key in its keys; i: the index of the query

key
1 i=1
2 while i ≤ x.n and k>x.keysi do
3 i=i+1
4 if i ≤ x.n and k==x.keysi then
5 return x, i
6 else if x.leaf then
7 return NULL, -1
8 else
9 return BTreeSearch(x.ci, k)

10 end

In the point query algorithm of B-tree as illustrated in 10, the search is performed with the
following steps:
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1. From line 1 to 3, we use linear search to find the smallest index i such that k≤x.keyi.
If there is no such i, we set i to be x.n+1.

2. Then we check whether we have found the key in this node on line 4 to 5. If we have,
then the method returns current node and the index of the query key.

3. Otherwise, we check if current node is a leaf node. If it is a leaf node, then we know
there is no such query key in this subtree. Hence, this method returns a null node and
−1 to indicate there is no such key.

4. If current node is not a leaf node, we then recursively search the appropriate subtree of
x.

Example 2.13 For example if we were to search for 41 in the Fig. 2.1, we would first
compare query key 41 and the keys in root node, which is 31. Hence we go to the second
subtree, whose root node contains two values 51 and 71. By comparison, we should go
the first subtree of this node. Then we reach the leaf node, which contains our query key
41 and hence the query will return this leaf node and the index 1 as output. If there is no
such key, then the method will return NULL and −1.

Point Query with KD-Tree

Similar to search with binary search tree, we also need to traverse the tree in order to perform
point query. However, we need to switch the dimensions when we compare the values between
the query key and the values in the nodes.
Algorithm 11: Point Query with KD-Tree
Input : t: The node being searched; x: The query key; cd: Current dimension
Output: n: the node that contains the query key

1 DIM=2
2 if t==NULL then
3 return NULL
4 if x[0]==t.data[0] and x[1]==t.data[1] then
5 return t
6 else if x[cd]<t.data then
7 return pointSearch(t.left, x, (cd+1) % DIM)
8 else if x[cd]>t.data then
9 return pointSearch(t.right, x, (cd+1) % DIM)

The point query works in the following steps:

1. From line 2 to 3, we first check if current node is NULL. If so, that means that we have
already traversed all the possible nodes and found nothing. In this case, the query returns
NULL.
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1. From line 1 to 3, we use linear search to find the smallest index i such that k≤x.keyi.
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2. From line 4 to 5, we check if the current node contains the same key as the query key.
If so, the current node is the node that we are looking for. Hence, we return the current
node in this case.

3. Otherwise, from line 6 to 9, we check if the current dimension of the query key is
smaller, larger or equal to the current dimension of the data in the node.

a) If it is smaller, then we search on the left subtree of current node, with the same
query key and switched dimension.

b) If it is larger, then we search on the right subtree of current node, with the same
query key and switched dimension.

Example 2.14 In the previous figure 2.5, we showed an example KD-tree. If we want to
search for (50, 30) in this tree, we would follow the following steps:

1. We first check the root node and compares the x-coordinate. As 50 > 30, we go to
the right subtree of the root node.

2. Then in the subtree, we compare the y-coordinate. As 50 < 70, we go to the left
subtree of this node.

3. Then in the left subtree, the termination condition is reached, hence we return this
node as result.

Point Query with Baseline Index Model

The point query with baseline model is the same with forward pass in the training process.
As the baseline model is a two-layer fully connected neural network with ReLU activation
functions, we calculate the output of a given input x with the equation below:

ŷ = w3max(w2max(w1x+ b1, 0) + b2, 0) + b3 (2.13)

As we assumed, the baseline model is approximating the CDF of X . Hence, for a certain x,
the output is the probability that F (X ≤ x). Since we are working with a static array without
insertion and deletion, we can assume that we know the total number of records as N . We also
define the page size to be S as a parameter. Then we can calculate the position of this key as
p̂ = ⌊ŷ ∗N⌋.

After knowing the position of the key in the static array, we then calculate the page where
it should be allocated to as below

ô = ⌊ p̂
S
⌋ = ⌊ ŷ ∗N

S
⌋ (2.14)

Complexity Analysis
For any key, the computation complexities of ô are the same, as there are only fixed number

of computations needed. Hence, the time complexity of query with the baseline model is
O(1), i.e. constant for any training data size.
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Point Query with Recursive Model Index

The point query of recursive model is a top-down process. With a given x, the root model will
first predict an output that represents the probability that F (X ≤ x). Then we map this output
into the index of models in the next stage. Afterwards, we use that model to predict an output
with the given x. We iterate these steps until the last stage in which we use the output as the
final output. The above process is described in Algorithm. 12
Algorithm 12: Point Query With Recursive Model Index
input: x; models; num_of_stages

1 stage← 0
2 next_model← 0
3 while stage <num_of_stages do
4 model=models[stage][next_model]
5 output = model.predict(x)
6 if stage==num_of_stages-1 then
7 y = output
8 else
9 next_model=output*len(models[stage+1])

10 stage = stage+1
11 end
12 end
13 return y

In the query algorithm, we have three inputs: x as the query key, trained models and the
number of stages.

On line 1-2, we first initialise the stage and next_model to be 0, so that we use the root
model at the very beginning. Then on line 3, we iterate over all stages. In each stage, we
perform the following actions:

1. On line 4, we access the model at stage whose index is next_model.

2. On line 5, we perform the prediction with the query key x and the model selected by
the previous step.

3. On line 6, we check if current stage is the last stage.

a) If it is, then we get the final output, which equals to the output from line 5.

b) If it is not the last stage, then we map the output from previous step into the index
of the model in the next stage. As there are len(models[stage+1]) models
in the next stage and the output represents some probability (hence, output ∈
[0, 1]), we multiply them and find the next_model. In the meanwhile, we add 1
to the stage.

4. At the end, we return the final output, which is the output from the model in the last
stage.
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Point Query with Recursive Model Index

The point query of recursive model is a top-down process. With a given x, the root model will
first predict an output that represents the probability that F (X ≤ x). Then we map this output
into the index of models in the next stage. Afterwards, we use that model to predict an output
with the given x. We iterate these steps until the last stage in which we use the output as the
final output. The above process is described in Algorithm. 12
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6 if stage==num_of_stages-1 then
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8 else
9 next_model=output*len(models[stage+1])

10 stage = stage+1
11 end
12 end
13 return y

In the query algorithm, we have three inputs: x as the query key, trained models and the
number of stages.

On line 1-2, we first initialise the stage and next_model to be 0, so that we use the root
model at the very beginning. Then on line 3, we iterate over all stages. In each stage, we
perform the following actions:

1. On line 4, we access the model at stage whose index is next_model.

2. On line 5, we perform the prediction with the query key x and the model selected by
the previous step.

3. On line 6, we check if current stage is the last stage.

a) If it is, then we get the final output, which equals to the output from line 5.

b) If it is not the last stage, then we map the output from previous step into the index
of the model in the next stage. As there are len(models[stage+1]) models
in the next stage and the output represents some probability (hence, output ∈
[0, 1]), we multiply them and find the next_model. In the meanwhile, we add 1
to the stage.

4. At the end, we return the final output, which is the output from the model in the last
stage.
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After calculating the output as described in the Algorithm. 12, we calculate the page index
in a same way as we described in the baseline model.

Point Query with LISA

Algorithm 13: Prediction Algorithm for LISA Point Query
input : q:query_point;

D:number_of_shards_per_mapped_interval;
cell :cell_metadata_array;
x :training_database_array

Output: q.value:point_query_value
1 cell_found = False
2 for i ← 0 to len(cell) do
3 if q[0] ∈ [cell[i].lower[0], cell[i].upper[0]) then
4 if q[1]∈ [cell[i].lower[1], cell[i].upper[1]) then
5 cell_found = True
6 break
7 end
8 end
9 end

10 if cell_found==True then
11 q.map_v=cell[i].id +(q.area/cell[i].area)
12 q.map_i=binary_search(cell.map_v_array, q.map_v)
13 shard_id = q.map_i*D + cell.shard_prediction(q.map_v)
14 K=cell.keys_per_shard
15 shard_offset=shard_id*K
16 for i ← shard_offset to shard_offset +K do
17 if (q[0] == x[i][0]) and (q[1] == x[i][1]) then
18 return x[i].value
19 end
20 end
21 return -1
22 end
23 return -1

In the Algo. 13, Point query search is performed in following steps:

1. In lines 2 to 8, find the cell to which point query belongs by comparing the query key
value with first and last key in each cell. First key in the cell represents the lower corner
of the cell, whereas last key in the cell represents the upper corner. This search will be
linear in the number of cells.

2. On line 11, calculate the mapped value of query point, as mentioned in the Section
Mapping Function 17.
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After calculating the output as described in the Algorithm. 12, we calculate the page index
in a same way as we described in the baseline model.

Point Query with LISA

Algorithm 13: Prediction Algorithm for LISA Point Query
input : q:query_point;

D:number_of_shards_per_mapped_interval;
cell :cell_metadata_array;
x :training_database_array

Output: q.value:point_query_value
1 cell_found = False
2 for i ← 0 to len(cell) do
3 if q[0] ∈ [cell[i].lower[0], cell[i].upper[0]) then
4 if q[1]∈ [cell[i].lower[1], cell[i].upper[1]) then
5 cell_found = True
6 break
7 end
8 end
9 end

10 if cell_found==True then
11 q.map_v=cell[i].id +(q.area/cell[i].area)
12 q.map_i=binary_search(cell.map_v_array, q.map_v)
13 shard_id = q.map_i*D + cell.shard_prediction(q.map_v)
14 K=cell.keys_per_shard
15 shard_offset=shard_id*K
16 for i ← shard_offset to shard_offset +K do
17 if (q[0] == x[i][0]) and (q[1] == x[i][1]) then
18 return x[i].value
19 end
20 end
21 return -1
22 end
23 return -1

In the Algo. 13, Point query search is performed in following steps:

1. In lines 2 to 8, find the cell to which point query belongs by comparing the query key
value with first and last key in each cell. First key in the cell represents the lower corner
of the cell, whereas last key in the cell represents the upper corner. This search will be
linear in the number of cells.

2. On line 11, calculate the mapped value of query point, as mentioned in the Section
Mapping Function 17.
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3. During model training, 2-D key space is mapped into a sorted one dimensional array.
On line 12, find the mapped interval to which query point’s mapped value belongs using
binary search on this array.

4. On line 14, predict the shard index for calculated mapped interval. It is found empiri-
cally that predicted shard index can differ from ground-truth value by 1 for keys falling
near the shard boundaries.

5. In lines 16 to 20, search for the query key in the predicted shard by sequentially com-
paring against all the keys in the shard until a match is found.

6. In case of no match, repeat the previous step in adjacent left and right shards as predicted
shard index can have an error of 1.

2.3.2 Range Query
A range query is a database operation that retrieves all the records that lies in a range. In this
project, we perform range query on 2-dimensional data only. In addition, we only consider a
range query where the range is defined as a rectangle. Under these assumptions, a range query
can be formalised as a query Q(l,u) where l, u ∈ R2.

Example 2.15 For example, assume we have the points [(1, 2), (3, 4), (3.5, 4), (5, 6)] and
the range query Q((2, 3), (5, 5)), as shown below:

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Q((2, 3), (5, 5))

Figure 2.13: A Range Query Example where Q(l,u) = Q((2, 3), (5, 5))

In this example, the range query should return the points that lies inside the red rectan-
gle, i.e. ((3, 4), (3.5, 4)).
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Range Query with KD-Tree

Performing range query in a KD-tree needs to traverse the whole tree, but we can apply some
pruning strategy to avoid useless searching for some nodes. We first present the bounding
box of subtree in a KD-tree.

(a) The 2D space and the partition of KD-tree

(30,40)

(5,25)

(10,12)

(4,10)

(70,70)

(50,30)

(35,45)

(b) The tree structure of the KD-tree

Figure 2.14: An example of KD-Tree

Bounding Box
When we are traversing the KD-tree along the way, we are assured that a node is bounded in
a rectangle region. Assume that a node t has k ancestors, then the node t is bounded in a
rectangle in the following way:

1. We traverse from the root node whose coordinate is (xr, yr). If we go to the right
subtree, then the node t is bounded in the right side of the root node. That means, the
right subtree of the root node is bounded in a rectangle region determined by the lower
bound l = (xr, 0)

1 and the upper bound u = (∞,∞). Similarly, we can determine the
bounds of the left subtree as l = (0, 0) and u = (xr, 0). We call the bounding box at
this level as Br

0 and Bl
0 for the right subtree and left subtree respectively.

2. We then traverse into the next level and determine the bounding box Br
1 and Bl

1 of the
subtrees rooted at the root’s child node. At this time, we will need to switch the axis
into the y-axis. If the child node is in the left subtree of the root node, the final bounding
box is the intersection between the bounding box at this level and the bounding box of
left subtree at the root level, i.e. Bl

0 ∩Br
1 and Bl

0 ∩Bl
1. Similarly, if the child node is in

the right subtree of the root node, the final bounding box are Br
0 ∩Br

1 and Br
0 ∩Bl

1.

3. We traverse until the left node and determine the bounding box of each subtree and save
this property into the root node of each subtree.

1For simplicity and clarity, we assume our keys are starting from (0, 0) and are positive in both dimensions
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Range Query with KD-Tree

Performing range query in a KD-tree needs to traverse the whole tree, but we can apply some
pruning strategy to avoid useless searching for some nodes. We first present the bounding
box of subtree in a KD-tree.

(30, 40)

(5, 25)

(10, 12)

(70, 70)

(50, 30)

(35, 45)

(4, 10)

Q((25, 0), (100, 80))

Bounding Box of (35,45)

(a) The 2D space and the partition of KD-tree

(30,40)

(5,25)

(10,12)

(4,10)

(70,70)

(50,30)

(35,45)

(b) The tree structure of the KD-tree

Figure 2.14: An example of KD-Tree

Bounding Box
When we are traversing the KD-tree along the way, we are assured that a node is bounded in
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subtree, then the node t is bounded in the right side of the root node. That means, the
right subtree of the root node is bounded in a rectangle region determined by the lower
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1 and the upper bound u = (∞,∞). Similarly, we can determine the
bounds of the left subtree as l = (0, 0) and u = (xr, 0). We call the bounding box at
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3. We traverse until the left node and determine the bounding box of each subtree and save
this property into the root node of each subtree.

1For simplicity and clarity, we assume our keys are starting from (0, 0) and are positive in both dimensions
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Example 2.16 In the Fig. 2.14, we present the bounding box of the leaf node (35, 45) as
the hatched area. In this example we will demonstrate how we calculate this.

1. We first start with the root node and we go to the right subtree. Hence the bounding
box of (70, 70) will be l = (30, 0) and u = (∞,∞).

2. Then we traverse to the (70, 70) and we go to the left subtree. Hence the bounding
box of (50, 30) will be l = (0, 0) and u = (0, 70). By intersecting with the bounding
box from the first step, we get the final bounding box as l = (30, 0) and u = (0, 70),
which refers to the right bottom area in the figure.

3. We then go to the left subtree and calculate the bounding box and get l = (0, 30),
u = (50, 70), i.e. the hatched region in the figure.

With the bounding box, there are three conditions in our pruning strategy while traversing
the tree:

• If the bounding box does not overlap with the query rectangle, we stop the recursion
and traverse the subtree.

• If the bounding box is a subset of a query box, then we report all the points in current
subtree.

• If the bounding box overlaps query box, then we recurse the left and right subtrees.

Formally, the algorithm for range query is illustrated as in Algo. 14.
Algorithm 14: KD-tree Range Query
input: Q: The query rectangle; T: The root node of a subtree to be range searched
Result: S: The set of all nodes that are in the query range

1 S=φ
2 if T==NULL then
3 return φ
4 if T.range ∩ Q==φ then
5 return NULL
6 if T.range ⊂ Q then
7 return AllNodesUnder(T)
8 if T.data ∈ Q then
9 S = S.union({T.data})

10 S = S.union(RangeQuery(Q, T.left))
11 S = S.union(RangeQuery(Q, T.right))
12 return S

In the above algorithm, we perform the range query with the following steps:

1. First we check if the node is NULL, if so, we simply return an empty set.
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2. On line 4-5, we check if the bounding box is overlapping with the query rectangle, by
comparing the bounds of the query rectangle and the bounding box.

3. On line 6-7, we check if the bounding box is a subset of the query rectangle. If it is,
then we will traverse the subtree of T and simply return all nodes that are contained in
the subtree.

4. On line 8-11, we cannot apply any pruning strategy. Hence, we first check if the data is
inside the query rectangle by comparing the coordinates with the query rectangle. If it
is inside, then we put the point into our result set. Then we recurse to the left and right
subtree and append the results into our result set S.

Example 2.17 In Fig. 2.14, we present an example query rectangle Q((25, 0), (80, 80)).
In this example, we show how we perform range query with this rectangle. We assume
that our space is from 0 to 100 on both dimension so that there is no ∞ bounds.

1. First we start with the root node, whose bounding box is the whole space. Hence we
check if (30, 40) ∈ Q. Since it is inside, we add it to the result set S = {(30, 40)}.

2. We then look at the left subtree, whose bounding box is (l) = (0, 0), u = (30, 100).
As there is some overlapping with the query rectangle, we check if (5, 25) is inside
the query rectangle. Since it is not in the rectangle, we do not put it in the result set.

3. Then we go to (10, 12) whose bounding box is (l) = (0, 0), u = (30, 25), which
is overlapping with the query rectangle. Hence, we need to check if it is inside the
query rectangle. Since it is not in the rectangle, we do not put it in the result set.

4. No Overlapping We then move to (4, 10) whose bounding box is l = (0, 0), u =
(10, 25) which is not overlapping with the query rectangle. Hence, we prune the
whole subtree rooted at (4, 10).

5. We then move to the right subtree of the root node, whose bounding box is (l) =
(30, 0), u = (100, 100). As there is overlapping between the query rectangle and
the bounding box, we then check if (70, 70) is inside the query rectangle. We then
put it in the result list as it is inside the query rectangle. S = {(30, 40), (70, 70)}.

6. Subset Then we go to the left subtree whose bounding box is (l) = (30, 0), u =
(100, 70). The bounding box is fully inside the query rectangle, and hence we add
all the results under (70, 70) in to the result list. Finally we have

S = {(30, 40), (70, 70), (50, 30), (35, 45)}

Range Query with LISA

For a range query Q(l,u), we first find the cells that overlap with Q. Then we decompose
Q into the union of smaller query rectangles

/
Qi such that each smaller query rectangles
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2. On line 4-5, we check if the bounding box is overlapping with the query rectangle, by
comparing the bounds of the query rectangle and the bounding box.

3. On line 6-7, we check if the bounding box is a subset of the query rectangle. If it is,
then we will traverse the subtree of T and simply return all nodes that are contained in
the subtree.

4. On line 8-11, we cannot apply any pruning strategy. Hence, we first check if the data is
inside the query rectangle by comparing the coordinates with the query rectangle. If it
is inside, then we put the point into our result set. Then we recurse to the left and right
subtree and append the results into our result set S.

Example 2.17 In Fig. 2.14, we present an example query rectangle Q((25, 0), (80, 80)).
In this example, we show how we perform range query with this rectangle. We assume
that our space is from 0 to 100 on both dimension so that there is no ∞ bounds.

1. First we start with the root node, whose bounding box is the whole space. Hence we
check if (30, 40) ∈ Q. Since it is inside, we add it to the result set S = {(30, 40)}.

2. We then look at the left subtree, whose bounding box is (l) = (0, 0), u = (30, 100).
As there is some overlapping with the query rectangle, we check if (5, 25) is inside
the query rectangle. Since it is not in the rectangle, we do not put it in the result set.

3. Then we go to (10, 12) whose bounding box is (l) = (0, 0), u = (30, 25), which
is overlapping with the query rectangle. Hence, we need to check if it is inside the
query rectangle. Since it is not in the rectangle, we do not put it in the result set.

4. No Overlapping We then move to (4, 10) whose bounding box is l = (0, 0), u =
(10, 25) which is not overlapping with the query rectangle. Hence, we prune the
whole subtree rooted at (4, 10).

5. We then move to the right subtree of the root node, whose bounding box is (l) =
(30, 0), u = (100, 100). As there is overlapping between the query rectangle and
the bounding box, we then check if (70, 70) is inside the query rectangle. We then
put it in the result list as it is inside the query rectangle. S = {(30, 40), (70, 70)}.

6. Subset Then we go to the left subtree whose bounding box is (l) = (30, 0), u =
(100, 70). The bounding box is fully inside the query rectangle, and hence we add
all the results under (70, 70) in to the result list. Finally we have

S = {(30, 40), (70, 70), (50, 30), (35, 45)}

Range Query with LISA

For a range query Q(l,u), we first find the cells that overlap with Q. Then we decompose
Q into the union of smaller query rectangles

/
Qi such that each smaller query rectangles
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intersects only one cell, as shown in the Fig. 2.15.
Suppose that Q =

/
Qi where Qi = [li0 , uio) × [li1 , ui1), i.e. we have Qi representing the

ith smaller query rectangles of one cell Cj .
Then we can calculate the mapped values of Qi, i.e. M(li0 , li1) and M(ui0 , ui1). For

simplicity, we use m
(i)
l and m

(i)
u to denote M(li0 , li1) and M(ui0 , ui1) respectively.

After creating corresponding mapped values, we then apply the shard prediction function
SP(mi

l) and SP(mi
u) to predict the shard that could possibly contain keys that lie in the query

rectangle Qi. Then in each shard, we perform a sequential search to find the desired keys.

Figure 2.15: Range Query Search in LISA

Example 2.18 In Fig. 2.15, we present a range query example. Following steps show how
we perform range query represented by the red rectangle.

1. Find the cells that overlap with query rectangle qr. In our example, 3 cells are
overlapping with the query rectangle.

2. Decompose qr into the unions of smaller query rectangles, each of which intersect
one only one cell as represented by qr

′
0, qr′

1 and qr
′
2 in Fig. 2.15.

3. Calculate mapped values of qr′
0, qr′

1 and qr
′
2 vertices represented by

m0
l ,m

0
u,m

1
l ,m

1
u,m

2
l ,m

2
u.

4. Find shards corresponding to lower and upper coordinates for each smaller query
rectangle represented by SP(m0

l ),SP(m0
u),SP(m1

l ),SP(m1
u),SP(m2

l ),SP(m2
u)

5. Do a sequential search for each shard and collect the keys that fall in the query
rectangle.
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2.3.3 KNN Query
K-Nearest Neighbours (KNN), as the name suggests, is the process of finding K nearest
neighbours to a given query point. In this project, KNN query is only performed on 2-
dimensional data. We use ℓ2 norm as the distance metric. A KNN query will be formalised as
K(X) where X ∈ R2.

KNN query with KD-Tree

In range query with KD-tree, we traverse the whole tree with a pruning strategy. Similarly,
to perform KNN query with KD-tree, we also need to traverse the whole tree with a pruning
strategy. We first present how to perform the nearest neighbour query (i.e. a KNN query with
K = 1), and then extend it into general KNN query.

(a) The 2D space and the partition of KD-tree

(30,40)

(5,25)

(10,12)

(4,10)

(70,70)

(50,30)

(35,45)

(b) The tree structure of the KD-tree

Figure 2.16: An example of KNN Query with KD-Tree

Nearest Neighbours
During the query for the nearest neighbour, we use two global variables best and best_dist

to store the nearest node and the nearest distance. During the traversing of the tree, we update
the best points and the best distance if we find a closer node to the query point.

Similar to the pruning strategy in the range query with KD-tree, we can calculate the dis-
tance between the query point to a bounding box of a node. If the query point is inside the
bounding box, then the distance will be 0. If the current shortest distance is larger than or
equal to the distance between the query point and the bounding box, then there will not be any
points that are closer to the query point than the current closes point. Therefore, we can avoid
searching the subtree that will not contain any closer points.

With the pruning strategy, we traverse the tree in an order that maximises the change for
pruning. We always start with the subtree that are closer to the query point. In other words,
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2.3.3 KNN Query
K-Nearest Neighbours (KNN), as the name suggests, is the process of finding K nearest
neighbours to a given query point. In this project, KNN query is only performed on 2-
dimensional data. We use ℓ2 norm as the distance metric. A KNN query will be formalised as
K(X) where X ∈ R2.

KNN query with KD-Tree

In range query with KD-tree, we traverse the whole tree with a pruning strategy. Similarly,
to perform KNN query with KD-tree, we also need to traverse the whole tree with a pruning
strategy. We first present how to perform the nearest neighbour query (i.e. a KNN query with
K = 1), and then extend it into general KNN query.

(30, 40)

(5, 25)

(10, 12)

(70, 70)

(50, 30)

(35, 45)

(4, 10)
Bounding Box of (50,30)

K(5, 35, k)

(a) The 2D space and the partition of KD-tree

(30,40)

(5,25)

(10,12)

(4,10)

(70,70)

(50,30)

(35,45)

(b) The tree structure of the KD-tree

Figure 2.16: An example of KNN Query with KD-Tree

Nearest Neighbours
During the query for the nearest neighbour, we use two global variables best and best_dist

to store the nearest node and the nearest distance. During the traversing of the tree, we update
the best points and the best distance if we find a closer node to the query point.

Similar to the pruning strategy in the range query with KD-tree, we can calculate the dis-
tance between the query point to a bounding box of a node. If the query point is inside the
bounding box, then the distance will be 0. If the current shortest distance is larger than or
equal to the distance between the query point and the bounding box, then there will not be any
points that are closer to the query point than the current closes point. Therefore, we can avoid
searching the subtree that will not contain any closer points.

With the pruning strategy, we traverse the tree in an order that maximises the change for
pruning. We always start with the subtree that are closer to the query point. In other words,

46

we search the subtree that would contain the query point if we want to insert the query point
below the root of a subtree.

Example 2.19 For example, we demonstrate an example KNN query K(5, 35, k) whose
query point is (5, 35) in Fig. 2.16. We perform the nearest neighbour search in the fol-
lowing order.

1. First we start with the root node, which is (30, 40). The bounding box of the root
node is the whole space, and we cannot apply the pruning strategy. If we want to
insert the query point (5, 35) into the subtree rooted at the root node, we will insert it
into the left subtree by comparing the x-coordinate. Hence, we go to the left subtree
in the next step. At the root level, the best distance is

0
(30− 5)2 + (40− 35)2 =

25.5 and the closet point is (30, 40).

2. Then we traverse to the left subtree and calculate the distance. The bounding box
of this node is l = (0, 0) and u = (30, 100). The distance between the query point
and the bounding box will be 0 as it contains the query point. Hence we cannot
apply the pruning strategy. The distance is 10 and it is smaller than the old distance.
Hence at this level, the best distance is 10 and the closest point is (5, 25). Then if
we want to insert the query point into the subtree under (5, 25), we will compare the
y-coordinate and then we need to first traverse the right subtree.

3. As there is no right subtree, we still go to the left subtree. The bounding box of this
node is l = (0, 0),u = (30, 25) and the distance between the bounding box and the
query point is 10. The distance is the same with the best distance so far. Therefore
we apply the pruning strategy and do not need to traverse the subtree.

4. Similarly, for the right subtree of the root node, (70, 70) whose bounding box is l =
(30, 0),u = (100, 70), the distance between the query point and the bounding box
is
0

(30− 5)2 + (40− 35)2 = 25.5, which is larger than the current best distance.
Therefore we apply the pruning strategy and do not traverse the right subtree of the
root.

K-Nearest Neighbours
For general KNN query, we follow the same traversal and pruning strategy. The only

difference is that we use a max heap of size k to store the best K distance we have.
A max heap is a special binary tree that satisfies a property: if P is a parent node of C, then

the data in P is greater than or equal to the data in C. We store the max heap as a binary tree
and use a function heapify to make it a max heap.

Then we follow the steps below to construct and fill the max heap:

1. First we construct an empty binary tree.

2. We traverse the KD-tree with the pruning strategy as described in the nearest neighbour
query. For each element, we decide if we need to push it into the max heap in the
following way:
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• For the first K elements, they will be added to the binary tree no matter how close
it is to the query point. We call the heapify function to ensure the resulting
binary tree is a max heap.

• After the Kth element, we compare the distance between the element and the query
point with the root of the binary tree. Since we have used heapify and the root
is the largest distance so far.

– If the distance is smaller than the root, then we make it root and call heapify.

– Otherwise, we ignore it.

3. Finally the max heap has K smallest elements and the root of the heap is the Kth
smallest element.

Formally, we use the algorithms as illustrated in Algo. 15 to perform KNN query with
KD-tree.
Algorithm 15: KD-tree KNN Query
input: P: The query point; T: The root node of a subtree to be searched; K: The

number of nearest neighbours H: the binary tree that store the result;
cd: Current dimension

Result: H: The binary tree that store the result
1 DIM = 2
2 H = empty max heap
3 if T==NULL then
4 return;
5 if H.size()<K then
6 H.insert(T)
7 H.heapify()
8 return;
9 else if dist(P, T.range) > H.root.data then

10 return
11 else
12 if dist(P, T.data) < H.root.data then
13 N=NewBinaryTreeNode(dist(P, T.data))
14 H.root=N
15 H.heapify()
16 if P[cd]<T.data[cd] then
17 KNN(P, T.left, K, H, (cd+1)%DIM)
18 KNN(P, T.right, K, H, (cd+1)%DIM)
19 else
20 KNN(P, T.right, K, H, (cd+1)%DIM)
21 KNN(P, T.left, K, H, (cd+1)%DIM)

In the above algorithm, we perform the following operations:

1. From the line 1 to 2, we first initialise the H to be an empty max-heap and the maximal
dimension is set to be 2.
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2. From the line 3 to 4, we check if the current node is already the leaf node. If so, we do
nothing and end the traverse process.

3. From the line 5 to 8, we insert the first K elements into the max heap. As the max
heap is implemented as a binary tree, the insertion process is the same with the insertion
into a binary tree. After the insertion of each item, we apply the heapify function
and transform the tree into a max heap. In the heap H, the root contains the maximal
distance that we found so far.

4. From the line 9 to 10, we compute the distance between the query point and the bounding
box of current node. If the distance is larger than the root of the heap, then we stop the
recursion.

5. From the line 12 to 15, we find the distance that we computed in the last step is smaller
than the maximal distance. Hence it should be inserted into the max heap. In this case,
we create a new node that contains the current distance, make it the new root of current
max heap and perform heapify with the new max heap.

6. From the line 16 to 21, we recursively traverse the left and right subtree of current node.
If the value of the query point is smaller than the current node at the current dimension,
we traverse the left subtree first and then the right subtree. Otherwise, we traverse the
right subtree first and then the left subtree.

7.

KNN Query with LISA

Motivation As there is no tree-structure in LISA model, we cannot perform the traversal and
pruning operations as we do in the KD-tree. In order to perform KNN query, LISA model
converts it into a range query and gradually adapts the size of the range, until the query is
finished.

In the Fig. 2.17, we assume a KNN query at the point (x0, x1) and we want to find 3 nearest
neighbours. We follow the following steps to complete this query.

1. We start with a query distance δ0, then we perform range query within the circle of sky
blue. As we do not have range query defined with a circular range, we then approximate
it by converting the range into a square, which is shown in the same colour.

2. With the range query, only two points are reported, which is less than the given K = 3.
To handle this case, we increase the query bound from δ0 to δ1, which results in the
green circle in the figure. Similarly, we convert this circle into a square for performing
the range query. After this query, we find 4 data points, which is more than what we
need.

3. Then we take the average of δ0 and δ1 and get the new query distance δ = 1
2
(δ0 + δ1).

At this time we get the black dashed circle and its corresponding query range. We can
iterate this process for many times to determine the proper query range.
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green circle in the figure. Similarly, we convert this circle into a square for performing
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3. Then we take the average of δ0 and δ1 and get the new query distance δ = 1
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At this time we get the black dashed circle and its corresponding query range. We can
iterate this process for many times to determine the proper query range.
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Figure 2.17: KNN Query Implementation in LISA (K=3). In this figure, qknn represents the
query point. Q(x, δ) ≜ [x0 − δ, x0 + δ)× [x1 − δ, x1 + δ) represents query rectangle and
B(x, δ) represents the key space at distance δ containing K nearest keys.

Formally, for a query point qknn = (x0, x1), let x′ ∈ V be the Kth nearest key to x in
database at a distance value δ = ‖x′ − qknn‖2. Lets define Q(qknn, δ) ≜ [x0 − δ, x0 + δ) ×
[x1− δ, x1+ δ) and B(qknn, δ) ≜ {p ∈ V | ‖qknn− p‖2 ≤ δ}. We can create a query rectangle
qr = Q(qknn, δ + ε) where ε → 0. As shown in Fig. 2.17, K nearest keys to qknn are all in
B(qknn, δ) and thus in Q. KNN query can be solved using the range query if we can estimate
an appropriate distance bound δ for every query point.

In our experiments, we find the initial δ empirically. We try with different values of the
initial δ and choose the one for which we get the best results.

2.4 Summary
In this chapter, we illustrate the construction of classic tree-based structures and learned in-
dexes for both one and two dimensional data. Based on these indexes, we also show how to
perform queries with these indexes.

For one dimensional data, we have three different indexes:
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• B-Tree. As a classic tree-based index, it can be constructed in O(n log n) time com-
plexity and cost O(n) space. With B-Tree, we can perform point query in O(log n) time
complexity and always get an exact position.

• Baseline Learned Index. The baseline learned index is a simple fully connected neural
network with a constant space usage. It can be used to perform point query with constant
time complexity, but we are not assured that we can get an exact position.

• Recursive Model Index. It is a composition of several indexes and each internal model
is responsible for a certain part of the whole data. It can also perform point query within
constant time complexity. We are not assured that we can get an exact position with
recursive model as well.

For two dimensional data, we showed two different indexes:

• KD-Tree. As a classic tree-based index, we can construct the KD-tree and perform
point, range and KNN queries with it. The time complexity for construction, store and
queries are all correlated to the number of data points.

• LISA model. It extends the idea of learned index from one dimensional to two dimen-
sional by mapping the two dimensional keys into one dimensional scalars. We showed
that it could also support three different types of queries.
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3 Evaluation

Summary In this chapter, we describe how we evaluate the database indexes that we have
implemented in previous chapter. For both one and two dimensional data, we use manually
synthesised dataset that are generated from a certain distribution as our dataset. This chap-
ter is organised into two sections, where the first section describes the experiment settings
and results for one-dimensional data and indexes and the second section describes the two-
dimensional data.

3.1 One Dimensional Data and Indexes
For one dimensional data, the evaluation covers the following tasks:

• Find a structure for recursive model index empirically.

• Compares the performance between baseline model, recursive model and traditional B-
Tree.

3.1.1 Dataset
For one dimensional case, we manually generate two columns of the data:

• The first column contains the keys X , which is randomly sampled from a given distri-
bution.

• Then we assign the keys into different pages according to a preset parameter Npage for
page size. Specifically, the first Npage keys will be assigned to the first page, the second
Npage keys will be assigned to the second page and so on so forth. After the assignments,
we set the second column Y to be the page index of the corresponding x.

3.1.2 Hyper-parameters Search
We first generate 10, 000 data points where X is from a lognormal distribution Lognormal(0, 4).
In the Fig. 3.1, we illustrate the x−y relations where X is randomly sampled from a uniform,
normal or lognormal distribution.

We use three groups to find the best recursive model for lognormal data.
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(a) Uniform (b) Normal (c) Lognormal

Figure 3.1: The x-y graph where x is randomly sampled from a certain distribution

• All models are fully connected neural networks. The numbers of second-level models
are 200, 400, and 600 respectively. The numbers of third-level models are 2000, 4000
and 6000 for each number of second-level models.

• All models are linear regression models. The number of second-level models are 200, 400,
and 600 respectively. The number of third-level models are 2000, 4000 and 6000 for
each number of second-level models.

• Models are combinations of fully connected neural networks and linear regression mod-
els. The numbers of second-level and third-level models are determined by the best
settings in the previous two group.

From the experiment results, we found that the second setting in group 1 (1 FCN model as
root, 200 FCN models as second-level models and 4000 FCN models as third-level models) is
the best regarding the mean square error. We also have the following findings in this searching
process.

• Generally, the average error in the group 1, where all models are fully connected neural
networks, is less than the error in the group 2. We conclude that the fully connected
neural networks have the potential to be more accurate, i.e. it could achieve a small
error if we tuned the parameters properly.

• Tuning a model is tedious and can be costly. There are lots of hyper-parameters to
choose from, such as the number of models in each level, types of models in each level,
number of levels, and the internal hyper-parameters in each model. Using grid search,
as we did in this experiment, can be costly and time-consuming.

3.1.3 Comparisons across Models
After the search process for a recursive model, we then conduct experiments on several differ-
ent distributions and sizes datasets. During this process, we use the following settings:

• The X is generated from uniform, normal and lognormal distribution.
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(c) Recursive Model

Figure 3.2: The relations between the number of data points, average query time and the
memory usage among three different indexes. The blue line represents the average query
time and the red line represents the memory usage

• For each distribution, we generate 1 thousand, 10 thousand, 100 thousand and 1 million
data points. We then assign the generated data points into pages where Npage = 10.

• We use a B-Tree with degree t = 20 (i.e., at least 19 keys and at most 39 keys), a fully
connected neural network with two layers and 32 nodes per layer, and a recursive model
with 200 second-layer models and 4000 third-layer models.

We compare the following performance metrics:

• The query time per key and the memory usage among three index models.

• The mean square error caused by the fully connected network and the recursive model
across different distributions.

• The construction time among three index models.

Conclusion 3.1 From Fig. 3.2, we analyse the time complexities for query and the space
complexity for storing three different index models.

1. From Fig. 3.2a, we verified that the average query time per key for a B-Tree is
growing as the number of data points is increasing. It grows with a complexity of
O(log n), i.e. it grows slower when there are more data points.

2. From Fig. 3.2b, we found that the memory usage of a fully connected neural net-
work is significantly less than the memory usage of B-Tree. Meanwhile, the fully
connected neural network takes constant memory usage, as there is a fixed number
of nodes in the neural network. Similarly, the average query time is also a constant
in theory. In the experiments, the average query time is changing but likely caused
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Figure 3.3: The relations between the number of data points and the mean square error in
three different distributions. The blue line represents the fully connected network and the red
line represents the recursive model

by turbulence.

3. From Fig. 3.2c, we found that the memory usage of a recursive model is signifi-
cantly higher than the memory usage of a fully connected neural network, but still
less than a B-Tree, which is because the recursive model consists of thousands fully
connected network. The memory usage of a recursive model is fluctuating, as the ac-
tually used number of the fully connected network varies. The query time is higher
than B-Tree and single fully connected network, but still a constant in theory, as
there is only a fixed number of computations.

Conclusion 3.2 From Fig. 3.3, we analyse the errors of fully connected network and
recursive model on several different distributed datasets.

1. From Fig. 3.3a, we found that both fully connected neural network and recursive
model are capable of modelling uniformly distributed dataset with a rather low error.
The fully connected neural network could achieve relatively less error, especially
when there is a large amount of data.

2. From Fig. 3.3b, we found that the error is increasing exponentially as the number
of data points is increasing. The error in the fully connected neural network is
significantly higher than the recursive model.

3. From Fig. 3.3c, we found that the error from the recursive model is significantly
less than the error in the fully connected neural network. Combined with 3.3b and
3.3a, we conclude that the recursive model could surpass fully connected network
when the data is not uniformly distributed. That means the fully connected network
is suitable for uniformly distributed data. We will analyse this property in more
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Figure 3.4: The relations between the number of data points and the construction time
among three different index models.

detail in the chapter Insights and Findings.

Conclusion 3.3 In 3.4, we analyse the construction time of different models.

1. As shown in 3.4a and 3.4b, the construction time of both B-Tree and fully con-
nected neural network is increasing almost linearly as the number of data points is
increasing. Theoretically, the construction time for B-Tree is O(n log n) and O(n)
for fully connected neural network.

2. In 3.4c, we found that the construction time of recursive model is increasing as well.
The time in construction varies by two factors:

• The number of data points will affect the construction time.

• As we need to iterate over all possible models in each layer to assign training
set, the number of models in each layer will affect the construction time as
well.

3.1.4 Comparisons on Large Dataset
The last and largest dataset that we used is a large dataset that contains 190 million key-value
pairs that are distributed under lognormal distribution. There are two challenges in this task:

1. The training set is too large to be trained and tuned. As our implementation only sup-
ports a single process, it would take a tediously long time to train the recursive model.

2. It takes a super long time (several days in our settings) to evaluate on the very large
dataset, as only one CPU thread will be used.
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To tackle these challenges, we take the following strategies:
Training on Sampled Dataset We first randomly and uniformed sample from the whole

training dataset. By sampling uniformly, we could keep the shape of the distribution un-
changed. Assume we sampled S data pairs from the whole training dataset of size N , then we
define the sampling ratio as R = S

N
. We then map the output ỹ from our index model to its

approximate position by ŷ = ỹ
R

. We illustrate an example in Example 3.1.

Example 3.1 Assume the X in training set is exponentially distributed as

[1, 2, 4, 8, 16, 32, 64, 128]

and we use a sample size S = 4. As we know the size of the fully training dataset is
N = 8, we have R = S

N
= 0.5. We uniformly sample from the training set and we will

get [1, 4, 16, 64]. Then we train an index model based on

[(1, 0), (4, 1), (16, 2), (64, 3)]

For the key 32 as an example, ideally, we want our index model F to have an output
such that ỹ = F(32) = 2.5. Then the original index of the key 32 can be calculated as
ŷ = ỹ

R
= 2.5

0.5
= 5, which is the index of 32 in the original full training dataset.

Evaluation with Multiple Processes To evaluate our models on the full training set would
take several days to complete because there is only one process working on it. As the query is
independent of each other, we utilise multiple processes to work on it by taking the following
steps:

1. We first train our model on the sampled dataset with S = 100, 000.

2. Then we split the full training set into 10 pieces such that each piece contains only 19
million pairs.

3. Afterwards, we perform the point query with the trained model on each piece in parallel.

4. Finally, we collect the query time from 10 pieces and sum them to get the total query
time of the full training set. Then we divide it by the number of pairs in total, i.e. 19
million and get the average query time per key. For the mean square error, we take the
average of errors from each piece.

With these two approaches, we achieved the results as shown below:

1The memory usage of each node is slightly larger than previous experiments. It is because the tools for
measuring memory usage (pympler) requires extra memory, and caused the program to be killed when
there is not enough memory. Hence we use a different tool (top) to measure an approximate memory usage.
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Model Construction Time (s) Avery Query Time (ms) Memory Usage (MB)
B-Tree (degree=20) 26356 (1.00x) 0.3489 (1.00x) 96912 1

Recursive Model 334 (0.013x) 2.6505 (7.60x) 8.836

Table 3.1: The construction time, average query time and memory usage of a B-Tree (with a
degree=20) and a recursive model.

Conclusion 3.4 From Table 3.1, we have the following conclusions:

1. The construction time of recursive model can be significantly less than the construc-
tion of B-Tree, for two reasons:

• We sample from the training dataset and avoid iterating over all the data points.
In contrast, B-Tree has to iterate all the data points and insert them one by one.

• The recursive model trains relatively fast as it can converge in one to a few
passes over the data points.

2. Then average query time for the recursive model is higher than B-Tree, but not
significantly higher. The computation costs are mainly on the calculation in fully
connected neural networks. The query time for the recursive model can be improved
by either using a well-established library, such as PyTorch, that provides faster ma-
trix computation or using faster hardware such as the GPU to improve the query
speed.

3. The memory usage of B-Tree is significantly higher than the recursive model. As
we showed above, the memory usage of B-Tree is O(n) and hence growing linearly.
For the recursive model, the memory usage mainly depends on how many models in
each layer. Therefore, the memory usage of a recursive model has an upper bound
(if all models are used), and then will not grow as the number of data points is
growing.

3.2 Two Dimensional Data and Indexes
For two dimensional data, the evaluation covers the following tasks:

• Find hyper-parameters for the LISA Baseline model empirically.

• Find hyper-parameters for the LISA model empirically.

• Compares the performance between KD-tree, LISA Baseline and LISA models for the
point query.

• Compare the performance between KD-tree, LISA Baseline and LISA models for the
range query.
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To tackle these challenges, we take the following strategies:
Training on Sampled Dataset We first randomly and uniformed sample from the whole

training dataset. By sampling uniformly, we could keep the shape of the distribution un-
changed. Assume we sampled S data pairs from the whole training dataset of size N , then we
define the sampling ratio as R = S
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. We then map the output ỹ from our index model to its
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For the key 32 as an example, ideally, we want our index model F to have an output
such that ỹ = F(32) = 2.5. Then the original index of the key 32 can be calculated as
ŷ = ỹ
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= 2.5

0.5
= 5, which is the index of 32 in the original full training dataset.

Evaluation with Multiple Processes To evaluate our models on the full training set would
take several days to complete because there is only one process working on it. As the query is
independent of each other, we utilise multiple processes to work on it by taking the following
steps:

1. We first train our model on the sampled dataset with S = 100, 000.

2. Then we split the full training set into 10 pieces such that each piece contains only 19
million pairs.

3. Afterwards, we perform the point query with the trained model on each piece in parallel.

4. Finally, we collect the query time from 10 pieces and sum them to get the total query
time of the full training set. Then we divide it by the number of pairs in total, i.e. 19
million and get the average query time per key. For the mean square error, we take the
average of errors from each piece.

With these two approaches, we achieved the results as shown below:

1The memory usage of each node is slightly larger than previous experiments. It is because the tools for
measuring memory usage (pympler) requires extra memory, and caused the program to be killed when
there is not enough memory. Hence we use a different tool (top) to measure an approximate memory usage.

58

Model Construction Time (s) Avery Query Time (ms) Memory Usage (MB)
B-Tree (degree=20) 26356 (1.00x) 0.3489 (1.00x) 96912 1

Recursive Model 334 (0.013x) 2.6505 (7.60x) 8.836

Table 3.1: The construction time, average query time and memory usage of a B-Tree (with a
degree=20) and a recursive model.

Conclusion 3.4 From Table 3.1, we have the following conclusions:

1. The construction time of recursive model can be significantly less than the construc-
tion of B-Tree, for two reasons:

• We sample from the training dataset and avoid iterating over all the data points.
In contrast, B-Tree has to iterate all the data points and insert them one by one.

• The recursive model trains relatively fast as it can converge in one to a few
passes over the data points.

2. Then average query time for the recursive model is higher than B-Tree, but not
significantly higher. The computation costs are mainly on the calculation in fully
connected neural networks. The query time for the recursive model can be improved
by either using a well-established library, such as PyTorch, that provides faster ma-
trix computation or using faster hardware such as the GPU to improve the query
speed.

3. The memory usage of B-Tree is significantly higher than the recursive model. As
we showed above, the memory usage of B-Tree is O(n) and hence growing linearly.
For the recursive model, the memory usage mainly depends on how many models in
each layer. Therefore, the memory usage of a recursive model has an upper bound
(if all models are used), and then will not grow as the number of data points is
growing.

3.2 Two Dimensional Data and Indexes
For two dimensional data, the evaluation covers the following tasks:

• Find hyper-parameters for the LISA Baseline model empirically.

• Find hyper-parameters for the LISA model empirically.

• Compares the performance between KD-tree, LISA Baseline and LISA models for the
point query.

• Compare the performance between KD-tree, LISA Baseline and LISA models for the
range query.
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• Compare the performance between KD-tree and LISA models for KNN query. KNN
Query has not been implemented for LISA Baseline as there is no description of KNN
Query for Baseline model in the paper.

3.2.1 Dataset
For two dimensional case, we manually generate three columns of the data:

• The first two columns contain the 2-dimensional keys X ∈ R2, which are independently
sampled from a lognormal Distribution. The dataset contains 190 million key-value
pairs.

• Then we assign the keys into different pages according to a preset parameter Npage

for page size. Specifically, the first Npage keys will be assigned to the first page, the
second Npage keys will be assigned into the second page and so on so forth. After the
assignments, we set the second column Y to be the page index of the corresponding x.

Our final data-set consists of 190 million key-value pairs that are distributed under lognor-
mal distribution.

As discussed in previous section, there are multiple challenges in using the complete dataset
for training and hyper-parameters tuning. Even on google cloud server, running experiments
with the full data take considerable long times (LISA model took 26 hours to build), we had
limited cloud server budget and a large number of experiments to run. Therefore, for two
dimensional indexes evaluation, we have used sampling to generate smaller training datasets.

3.2.2 Hyper-parameters Search
After generating dataset as mentioned in previous section, we sample a smaller subset from it.
We repeat our experiments for 3 different sample sizes of 10000, 100000 and 1000000 points.
Test data is a copy of training data for all our experiments. For Baseline and LISA models,
final prediction is given by linear search through a range of values (identified as a Cell for
Baseline and Shard for LISA model) and mean square error (MSE) is zero as test points are
already learned during training. This is where Learned Index models differ from traditional
machine learning models where model performance is evaluated on unseen data.

Hyper-parameter search for the LISA baseline

Baseline model has one hyper-parameter: N (Number of cells specifying the number of equal
length intervals into which mapped values are divided). The point query search consists of
two parts, first is binary search to locate the cell into which the query key is located, followed
by sequentially comparison of the query key value with keys in the found cell until a match is
found. The time complexity of first search is log2N1, where N1 is the number of cells. The
time complexity of second search is ⌈N2/2⌉, where N2 is the number of keys per cell.
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Figure 3.5: Hyper-parameter search in LISA Baseline for training sizes 10K, 100K and 1M .

Conclusion 3.5 Following conclusions can be drawn from experimental results shown in
table A.2 and Fig. 3.5

1. Optimum value of hyper-parameter N will be equal to number of points in the
training data-set, resulting in 1 key per cell and search query time of O(log2N ).

2. Average Query Time: Average Query Time decreases with increase in value of N
as number of keys per cell decreases.

3. Build time: Build time increases with increase in value of N, as metadata for addi-
tional cells needs to be calculated.

4. Memory Size: Memory requirements of the model increases with increase in value
of N, as metadata for additional cells needs to be stored. Increase in memory size is
not significant with increase in N as we maintain only two values per cell, mapped
value of first key in the cell and mapped value of last key in the cell.

Hyper-parameter search for the LISA implementation

For LISA model, we have 3 hyper parameters:

1. G: The size of the grid cell. Number of grid cells into which the key space is divided.
In our implementation, we use a square grid cell, and total number of cells is given by
G ×G.

2. N : Number of equal length intervals into which mapped value range is divided. During
our experiments, we found that shard prediction algorithm gives better performance if
mapped interval boundaries are aligned to grid cell boundaries. Therefore this parameter
is always initialised to N=G ×G.

3. S: Number of shards to learn per mapped interval.
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Conclusion 3.6 Following conclusions can be drawn from experiments results shown in
tables A.4, A.5 and A.6.

1. For a particular value of G, average query time decreases and memory size increases
with increase in value of S. This is expected as increasing S, will result in lesser
number of keys per shard, thereby reducing the sequential search cost of scanning
the query key through the Shard.

2. Average query time decreases and memory size increases with increase in values of
G and S.

3. We found emprically that value of S should be choosen such that there are at least
45 keys per shard. We see mean square errors(mse) if number of keys per shard are
less than 45 for following reasons.

a) For point query search, we first predict a shard and then sequentially compare
the query point key values with all the keys in the predicted shard until a match
is found.

b) For query points near the shard boundaries, there can be a mismatch in the true
index of the shard and predicted index. If the query point is not found in the
predicted shard, we continue our search in adjacent left and right shards in an
empirically found range.

During test experiments, we found that if shard size is less than 45 keys, sometimes
shard prediction error can be greater than 1 and point query search can fail resulting
in MSE errors.

3.2.3 Comparisons across Models
During following experiments, for each training data size, we have used hyper-parameters
optimized for that particular data set size.

Point Query Comparison

Table A.7 and Fig. 3.6 shows the performance evaluation for KD-Tree, LISA-Baseline and
LISA Models for different training data sizes. For a given training set, we perform point query
evaluation for every point in the data-set and take the average.

Conclusion 3.7 The following conclusions can be concluded:

1. LISA outperforms KD-tree in terms of average query time. Search complexity
of KD-Tree and LISA baseline( configured to keep 1 key per cell) is O(N), and
O(log2 N) respectively where N is the number of points in the training data-set.
On the other hand point query search cost in LISA is a combination of 4 costs.
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Figure 3.6: Point Query experimental results for KD-Tree, Baseline and LISA models.

a) Search cost to find the grid cell to which point query belongs. Search com-
plexity of this cost is O(log2 Nc)), where Nc is equal to number of grid cells.

b) Search cost to find the mapped interval to which point query belongs. Search
complexity of this cost is O(log2 U)), where U is the number of intervals into
which sorted mapped array is divided.

c) Find the index of the shard to which point query belongs. Search complexity
of this cost is O(∞) as shard prediction function weights are already learned
during the build process.

d) Once the index of the shard is found, search sequentially in the shard interval
by comparing query point key value with all the keys in the shard until a match
is found. Search complexity of this cost is O(log2 Nk)), where Nk is equal to
number of keys per shard.

2. LISA outperforms KD-tree in terms of memory size requirements. The storage
consumption of LISA is considerably smaller than KD-Tree that has to construct a
tree with all nodes and entries based on MBRs (minimum bounding rectangle) and
parent-children relationships. In contrast, LISA only keeps the parameters of M
and SP . Specifically,M’s parameters contain several numbers and a small list only,
and SP is composed of a series of piecewise linear functions whose parameters are
a number of coefficients.

3. LISA’s build time is significantly higher than KD-Tree and LISA Baseline. The
higher build time is caused by Shard Training Algorithm.

Range Query Experiments

Table A.8 shows evaluation results for LISA,Baseline and KD-tree models for range sizes of
10, 100, 1000 for different training sizes. For a given range query size, we perform 20 trials
and take the average. For each trial, we sample a random point from the test set and find the
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Figure 3.7: Range Query experimental results for KD-Tree, Baseline and LISA models

range from sampled point to the range query size.
As shown in the Fig. 3.7, LISA outperforms KD-tree for range query size of 10000 for all

training sizes, however its range query time for smaller range sizes is significantly higher than
KD-Tree

1. Plot A shows average range query time for a fixed training size of 1M points. LISA
outperforms KD-Tree for larger range queries

2. Plot B shows average range query time for a fixed range query of size 10000 for various
training sizes. LISA outperforms KD-Tree for all training data sizes for range queries
of size 10000.

KNN Query Experiments

Table A.9 shows evaluation results for LISA and KD-tree models for KNN Queries for var-
ious value of K and training sizes. For a given K value, we perform 20 trials and take the
average of query time. For each trial, we sample a random point from the test set and find K
neighbours around that point.

In Fig. 3.8, we present the comparison of LISA and KD-tree models for KNN Queries.

1. Plot A shows average KNN query time (over 20 trials) for a fixed training size of 1M
points and different values of K. LISA outperforms KD-Tree for all values of K.

2. Plot B shows average KNN query time for various training sizes with K = 10. LISA
outperforms KD-Tree for all training data sizes.
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Figure 3.6: Point Query experimental results for KD-Tree, Baseline and LISA models.

a) Search cost to find the grid cell to which point query belongs. Search com-
plexity of this cost is O(log2 Nc)), where Nc is equal to number of grid cells.

b) Search cost to find the mapped interval to which point query belongs. Search
complexity of this cost is O(log2 U)), where U is the number of intervals into
which sorted mapped array is divided.

c) Find the index of the shard to which point query belongs. Search complexity
of this cost is O(∞) as shard prediction function weights are already learned
during the build process.

d) Once the index of the shard is found, search sequentially in the shard interval
by comparing query point key value with all the keys in the shard until a match
is found. Search complexity of this cost is O(log2 Nk)), where Nk is equal to
number of keys per shard.

2. LISA outperforms KD-tree in terms of memory size requirements. The storage
consumption of LISA is considerably smaller than KD-Tree that has to construct a
tree with all nodes and entries based on MBRs (minimum bounding rectangle) and
parent-children relationships. In contrast, LISA only keeps the parameters of M
and SP . Specifically,M’s parameters contain several numbers and a small list only,
and SP is composed of a series of piecewise linear functions whose parameters are
a number of coefficients.

3. LISA’s build time is significantly higher than KD-Tree and LISA Baseline. The
higher build time is caused by Shard Training Algorithm.

Range Query Experiments

Table A.8 shows evaluation results for LISA,Baseline and KD-tree models for range sizes of
10, 100, 1000 for different training sizes. For a given range query size, we perform 20 trials
and take the average. For each trial, we sample a random point from the test set and find the
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Figure 3.7: Range Query experimental results for KD-Tree, Baseline and LISA models

range from sampled point to the range query size.
As shown in the Fig. 3.7, LISA outperforms KD-tree for range query size of 10000 for all

training sizes, however its range query time for smaller range sizes is significantly higher than
KD-Tree

1. Plot A shows average range query time for a fixed training size of 1M points. LISA
outperforms KD-Tree for larger range queries

2. Plot B shows average range query time for a fixed range query of size 10000 for various
training sizes. LISA outperforms KD-Tree for all training data sizes for range queries
of size 10000.

KNN Query Experiments

Table A.9 shows evaluation results for LISA and KD-tree models for KNN Queries for var-
ious value of K and training sizes. For a given K value, we perform 20 trials and take the
average of query time. For each trial, we sample a random point from the test set and find K
neighbours around that point.

In Fig. 3.8, we present the comparison of LISA and KD-tree models for KNN Queries.

1. Plot A shows average KNN query time (over 20 trials) for a fixed training size of 1M
points and different values of K. LISA outperforms KD-Tree for all values of K.

2. Plot B shows average KNN query time for various training sizes with K = 10. LISA
outperforms KD-Tree for all training data sizes.
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Figure 3.8: KNN Query experimental results for KD-Tree and LISA models
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4 Insights and Findings

4.1 General Discussions
Common Ideas

In both one and two dimensional learned indexes, we need to fit a cumulative distribution
function.

1. With one dimensional data, the learned CDF describes how the data is distributed. We
use the learned CDF to estimate the position of keys directly.

2. With two dimensional data, we first map the data into one dimensional space with the
so called mapping function. After that, we learned a CDF of the mapped value and
divide the data points into different shards. When a query is needed, we map the two
dimensional key into the one dimensional mapped value and use the CDF to estimate
which shard it belongs to.

Though we are trying to learn the CDF, it may not be necessary to apply the constraints
of CDF to our learning process. In fact, from our observation, the recursive model does not
maintain the CDF constraints but could achieve less error. The CDF constraints include the
following:

• Every CDF FX is non-decreasing.

• limx→−∞ FX = 0.

• limx→∞ FX = 1.

In the Fig. 4.1, we present the fitting result of recursive model and fully connected neural
network. On the left we found there are some intervals where the learned CDF is decreasing,
which violates the CDF constraints. On the right we found that the result from fully connected
neural network is non-decreasing. However, The error rate from the recursive model is less
than the fully connected neural network. Therefore, we conclude that even though we try to
fit the CDF, it may not be necessary to apply the constraints to force the learned models to be
CDF.

In summary, the key idea of both one dimensional and two dimensional learned indexes is
to fit a CDF such that the error is minimal, without any hard constraints.
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(a) Recursive Model Index (b) Fully Connected Neural Network

Figure 4.1: The result from recursive model and the fully connected neural network

Limitations

Though the learned index model, especially the recursive model has a potential to greatly
reduce the memory usage and cost less time in making the query. It is still limited in several
perspective.

• Read-only Database. Current recursive model index assumes that the data is a static,
read-only array. Only when this assumption is hold, we can regard the database index as
the CDF. However, in reality, we usually need to insert and delete the data in the array
and violates this assumption.

• Sorted Keys. The recursive model and baseline model assume that the keys are sorted
in ascending order, so that the CDF assumption applies.

• In-Memory Database. In our implementations, we only consider the case where all the
keys are stored in the memory.

To apply the learned indexes into a general-purpose database, we will need to overcome
these limitations. For example, the model needs to be trained again in order to support the
read-and-write database.

4.2 One Dimensional Learned Index

4.2.1 Baseline Learned Index
Activation Functions

From our observations, activation functions determines the shape of the fully connected neural
network. With the one-dimensional data, the input and output of a neural network is always

67



a scalar, which reveals interesting relations between the activation function and the output of
neural network. We use two different activations functions to describe this relation.

(a) Identity Activation (b) ReLU Activation

Figure 4.2: The predictions of neural networks with different activation functions. The blue
line represents the ground truth and the orange line represents the predicted output.

• If we use identity activation function, i.e.z(i)(x) = x, then no matter how many layers
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o(1) = z(1)(w(1)x + b(1)) = max(w(1)x + b(1), 0). There will be two cases for this
function:

o(1) =

1
w(1)x+ b(1) w(1)x+ b(1) > 0

0 otherwise
(4.1)

The output of the first layer will be the input of the second layer, which uses the same
ReLU activation function. Hence the output will be o(2) = z(2)(w(2)o(1) + b(2)) =
z(2)(w(2)max(w(1)x+ b(1), 0) + b(2)). If w(2)(max(w(1)x+ b(1), 0)) + b(2) < 0, then the
output will be 0. Otherwise, as the o(1) is a vector, we have to perform the multiplication

68

element by element. Assume that o(1) = [max(w(1)
1 x+b

(1)
1 , 0), · · · ,max(w(1)

n x+b
(1)
n , 0)].

By multiplying with w(2), we get

o(2) = w
(2)
1 max(w(1)

1 x+ b
(1)
1 , 0) + · · ·+ w(2)

n max(w(1)
n x+ b(1)n , 0) + b2

For each term in the equation above, there are two possibilities: 0 when w
(1)
i x+ b1 < 0

or w(2)
i w

(1)
i x+w

(2)
i b

(1)
i . Without loss of generality, we consider a case where all of them

are non-zero. In this case, we will have

o(2) =
(

i

w
(2)
i w

(1)
i x+

(

i

w
(2)
i b

(1)
i + b2

From the above induction, we find out that it is still a linear function when all values are
positive. If there are some values to be zeros, then the function is still a linear function,
but with different slope and intercept. Hence we conclude that the neural networks with
ReLU activation function will become a piecewise linear function.

4.3 Two Dimensional Learned Index
Limitation of LISA Baseline model

Prediction cost in baseline method consists of following two parts.

1. Search cost for the cell which contains the key. This cost will be equal to log2N1, where
N1 is the number of cells into which mapped values are divided.

2. Cost associated with sequentially comparing the query point key value against keys
inside the cell found in previous search. On average this cost will be equal to N2/2,
where N2 is the number of keys in a cell.

If cell size is large, number of cells will be smaller, number of keys per cell will be
higher, resulting in higher cost of sequential scan with in the cell.

Consider the example in Fig. 4.3. Dataset is divided into 3 sections based on the mapped
values. Any point or range query in the second triangle(page) will result into a sequential scan
through all 9 keys in the cells.

LISA Baseline model search optimization for smaller values of N

In case of high dimensional key values, key with in a cell can not be searched with mapped
value, as a large number of keys can have the same mapped value. However for the 2 dimen-
sional scenario, we can get considerable savings in search cost by replacing sequential scan
based on keys values to binary search based on mapped value. As in the original method,
search process will consist of two parts.

1. Find the cell which contains the query key based on mapped value using binary search.
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2. With in the cell, replace sequential search based on query key value with the binary
search based on query key mapped value. Once mapped value is found, do a lookup in
the neighbourhood of the found key based on query key 2 dimensional value.

As shown in Fig. 4.4, we get significant savings in the query time with this approach for
smaller values of N . As the value of N increases, number of Keys per cell decreases, and
savings in avoiding sequential search gets normalized.
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Figure 4.4: Point query results comparison between LISA Baseline and Optimized Model
for different training sizes.
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4.4 Future Work
Future work

In current work, we have implemented RMI and LISA, two novel learned index structures for
one and two dimensional data respectively. This work opens up several directions for future
research on learned indexes for database systems. We are listing some of them here.

1. Read only and in-memory database are two major constraints applicable to our LISA
implementation that are supported by the original paper. Adding support for insertion,
deletion and disk resident training data can be taken in next phase for both one dimen-
sional and spatial databases.

2. LISA paper suggests Lattice Regression model to learn an appropriate distance bound
from underlying training data for every query point and specific value of K. This dis-
tance bound is used to convert the KNN query to range query. It will be interesting
to try different learning models like Lattice Regression, Neural Network and Bayesian
Neural Network to learn this distance bound from underlying data.

3. It will be interesting to study other query types (e.g., spatial joins and closest pairs)
using LISA

4. Our results show that learned index models outperform traditional databases by utiliz-
ing the distribution of data being indexed.. It will be interesting to develop functional
databases using learned index models and investigate their performance on real data

Conclusion

In this work, we have implemented RMI and LISA, two novel learned index structures and
B-Tree and KD-Tree two traditional database indexes for one and two dimensional data re-
spectively. We have conducted a number of experiments using real and synthetic datasets. The
experimental results demonstrate that learned index models outperforms traditional indexes in
terms of storage and IO costs for point, range and KNN queries. Some of our learnings are
listed below:

1. The key idea in our work has been to map the key space into a sorted one dimen-
sional array and use learned models to approximate the cumulative distribution function
(CDF).While RMI uses a hierarchy of linear regression models, LISA makes use of
piecewise linear models to learn the cdf.
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5 Convolution and CNN for Learned
Indexes

From the previous discussion, we summarise that both one-dimensional and two-dimensional
indexes require to learn a function from a one-dimensional array.

1. In one dimensional data, the learned function is used directly as an approximation to
the CDF. We use a fully connected neural network or a recursive model to learn such
function.

2. In two dimensional data, the learned function is used to predict the corresponding shard.
We use a piecewise linear function to achieve this task.

These models in our previous chapters have their shortcomings:

1. The fully connected neural network (with ReLU as activation functions) is essentially
a continuous piecewise linear function. The training of such neural network is unstable
and highly dependent on the initial values, well-tuned hyper-parameters, etc. Mean-
while, it requires more work if we want to ensure the monotonicity.

2. The recursive model takes more memory than a single neural network, and there are
many more parameters to tune than neural network.

3. The training method for a piecewise linear function is an iteration-based method. If we
choose a large number of break points, then the training time will be long.

In fact, in order to train the piecewise linear function, we only need to know either the slope
of each segments or the position of the breakpoints. If we know any one of them, we can learn
the other in a closed form, as we shown in the shard prediction section. In this chapter, we
present a method to learn the position of breakpoints.

Learning the position of breakpoints can be regarded as a binary point-wise classification
problem. That means, for each point in our X , we want to learn to classify it to be 1 if it
is a breakpoint, otherwise we want it to be 0. Then we classify all the points in our X and
each point is classified to be 1 with a confidence. Afterwards, we only need to filter the top-K
points to be the breakpoints.

This task is similar to the image segmentation in computer vision, which essentially tries to
classify every pixel in the image. One successful technique in image segmentation is by using
the convolution and convolution transpose network [3]. Inspired by this, we propose a similar
network to perform binary point-wise classification. In this chapter, we describe the steps of
using convolutional neural network to find breakpoints in a one-dimensional array.
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5.1 Problem Formation
With convolutional neural network, we expect to classify each point with their key into two
categories: a break point or not. After the classification, we train a linear function between
two adjacent break points, which we have a closed-form solution.

Example 5.1 For example, assume that we have a page size Npage = 1 and we have the
keys as X = [1, 2, 3, 5, 6, 7]. Hence they will be allocated to the pages Y = [1, 2, 3, 4, 5, 6].
The relation between X and Y can be illustrated in the figure below.
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Figure 5.1: The relation between X and Y

In this example, we expect to have a binary classification result as B = [0, 0, 1, 1, 0, 0].
Then we train three linear functions illustrated as the green, red and blue lines in the
figure.

Assume that we have the keys X and their corresponding pages Y , the problem can be
formulated and divided into the following subproblems:

1. How do we prepare the training labels L that represents the break points?

2. What kind of neural networks is capable of classifying each points in the training input
X and Y ?

3. After predicting the break points, how do we proceed to train linear function on each
segment?
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5.2 Training

5.2.1 Dataset
The dataset we used in the convolutional neural network is manually synthesised as well. We
use the following steps to generate the training dataset:

1. Similar to the dataset we used in recursive model, we first generate X by randomly sam-
pling from a certain distribution. Then we assign the keys into different pages according
to a preset parameter Npage. We call the generated pages as Y . After this step, we get a
two-dimensional matrix.

2. Then we calculate the positions of breakpoints by the iteration-based approach described
in the Shard Prediction section.

3. Afterwards, we iterate over all the calculated breakpoints and find the closest point to it
in X . We call the set of closest points as B and we can generate the training labels as

l =

1
1 x ∈ B

0 otherwise
(5.1)

In addition to the above steps, we could also generate several dataset from several different
distributions, and then concatenate them such that the training dataset contains samples from
different distributions.

After these steps, we get the training input as [X, Y ] and the training label as L. Assume
there are N keys in total, then the training input is a N × 2 matrix and the training label is a
N × 1 vector.

5.2.2 Fully Convolutional Network
Convolution is an operation that makes the input smaller, which makes it impossible to per-
form point-wise classification. Hence, we use the convolution transpose (also called deconvo-
lution) to make the input larger. We manually set up the hyper-parameters (e.g. the kernel size
of convolution operation) in the neural network such that the output has a shape of N × 1. In
our experiments, we use the neural network illustrated as Fig. 5.2.

With this neural network, we can get an output of the shape N × 1. The expected output
represents the probability that this position is a breakpoint.

We can train the neural network with standard gradient descent approach. During the train-
ing process, we try to minimise the mean square distance between the predicted output L̂ and
the labels L.

5.2.3 Training of Linear Functions
After getting the predicted output, we then find the largest K +1 positions from the predicted
output L̂. We call these K elements as β = (β0, β1, · · · , βK). Then we want to train a
piecewise linear function described as
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Figure 5.2: Illustration of the structure of fully convolutional network, in which the yellow
rectangle represents the activation function and other grey rectangles represents convolution
and convolution transpose operations. The (10, 2) and (10, 1) represent the kernel size of the
convolution operation
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(5.2)

Since β is fixed, we only need to calculate α = (α,α1,α2, · · · ,αK), which can be consid-
ered as the solution of the linear equation Aα = y, where

A =

"

###$

1 x0 − β0 (x0 − β1) 1x0≥β1 . . . (x0 − βK) 1x0≥βK
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%

&&&'
(5.3)

where 1xi≥βj
equals to 1 if xi ≥ βj . Otherwise it equals to 0.

The by applying least square method, we get

α = (ATA)−1Ay (5.4)

The calculated α and β are what we need to define the piecewise linear functions. With
these steps, we could calculate them within a fixed number of computations.

5.3 Experiment
We first present the break points that we found with the fully convolutional network as in
Fig. 5.3. We found that it works better with normally distributed data, especially after 0.4.
However, the current model cannot be applied directly to lognormal distributed data.

Then we perform an evaluation on 10 thousands normal distributed keys. The results are
shown in Table 5.1. From the table, we have the following analysis.
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Conclusion 5.1

1. The convolutional model outperformed other models in the construction time, which
is due to the fact that we only train linear models on the predicted break points. As
we can reuse the pre-trained convolutional models to find the break points, the time
for training convolutional models is not included in this construction time.

2. The query time for convolutional model is slightly larger than B-Tree and baseline
model.

Model Build (s) Query (ms) MSE Memory (KB)
B-Tree (degree=20) 1.0311 0.1395 0 4056.05

Baseline 1045.25 0.3136 3.8825 11.0859
Recursive Model 503.72 0.7066 2.1483 15531.7

Convolution (breaks=32) 0.01811 0.48522 0.6762 240.484

Table 5.1: The construction time, average query time (Lookup), mean square error and
memory usage of a B-Tree (with degree=20), a baseline model, a recursive model and a fully
convolutional model (with 32 breakpoints). The experiment is performed on 10 thousand
normally distributed keys.

(a) Normal Distribution (b) Lognormal Distribution

Figure 5.3: The break points found by the fully convolutional neural network

5.4 Applications and Future Work
The approach we described above can be used in both one-dimensional and two-dimensional
data. In one-dimensional case, the learned piecewise function can be used directly as the
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5.4 Applications and Future Work
The approach we described above can be used in both one-dimensional and two-dimensional
data. In one-dimensional case, the learned piecewise function can be used directly as the
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approximation for the CDF. In the two-dimensional case, this approach can be used to improve
the training speed of shard prediction function.

In future, there might be some possibilities in exploring in the following directions:

1. Concatenate more distributions and explore if the convolutional model has actually
learned the patterns for break points.

2. Investigate the hyper-parameters in the fully convolutional neural network.

3. We can find the break points not only for linear piecewise functions, but also polynomi-
als etc. It might be possible for the convolutional neural network to learn the patterns of
break points under different functions for each segment. That means, we may extend the
binary classification task into a multi-categories classification task where each category
represents a type of functions.
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6 Conclusion

In this project, we reviewed and implemented two classic tree structures, B-Tree and KD-
Tree, used as database indexes. The tree structures are capable of finding elements precisely
as they will traverse all possible nodes. The shortcomings of these tree structures also come
from this property: the tree needs to save and traverse the possible nodes, which yields a space
complexity that is proportional to the number of records. In the meanwhile, it yields a query
time complexity that has a positive correlation with the number of records. As the volume of
data is increasing rapidly, the time and space complexity becomes huge and the tree structures
become a bottleneck of applications.

We then implement two kinds of learned indexes: the recursive model index for one-
dimensional data and the LISA model for two-dimensional data. We conclude that the re-
cursive model and its baseline model have bounded time and space complexities.

6.1 Use Cases of Learned Index
From the aspect of the data volume, learned index is suitable for very large dataset. As we have
seen, the most promising advantage of learned index is its constant time and space complexity,
it could achieve less query time and occupies significantly less memory space when the data
size is huge.

From the aspect of the data distribution, learned index is suitable for dataset that we have
some prior knowledge about its distribution. Ideally, if we know the exact distribution of the
data (e.g. normal, uniform or lognormal distribution), then we can use maximum likelihood
estimation to fit the dataset use the estimator as an index.

However, in most cases, the data is not distributed in a certain distribution, i.e. we cannot
use a single formula to fit the dataset. In this case, we can use the recursive model to split the
dataset into smaller pieces and apply different models in different pieces.

From the aspect of applications, the learned indexes implemented in this project do not
support write operation. Even though we can construct the model again once there is a new
data point coming, it would take a much longer time to complete the write operation compared
with classic tree-based indexes. Therefore, the learned indexes are not suitable for write-
intensive applications. From the database perspective, learned indexes are more suitable for
online analytical processing (OLAP) but not online transactional processing (OLTP).

6.2 Shortcomings of Learned Index
Having said these advantages of learned indexes, they all have their shortcomings.
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1. Even though the learned indexes have a constant time complexity for queries, the con-
stant is relatively large. Therefore, if the number of records is not huge, the learned
indexes will not outperform classic tree structures.

2. The recursive model, baseline model and the convolutional model are prone to error. It
may not be a big issue with the in-memory databases, but it will cost much more time
when searching between different disk pages is needed, especially with the traditional
hard disk drive (HDD).
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Training/Test
Data Size

Model N Build Time
(ms)

Avg Query
Time (ms)

Memory Size
(KB)

10,000 LISA Baseline 10 11.17 4.3426 313
10,000 LISA Baseline 100 11.25 0.7189 315
10,000 LISA Baseline 1000 13.54 0.3283 336
10,000 LISA Baseline 10000 26.83 0.2415 547
100,000 LISA Baseline 10 109.28 46.7173 3126
100,000 LISA Baseline 100 111.59 4.8086 3128
100,000 LISA Baseline 1000 111.97 0.7271 3149
100,000 LISA Baseline 10000 128.49 0.3301 3360
100,000 LISA Baseline 100000 272.93 0.2381 5469

1,000,000 LISA Baseline 10 1094.85 347.5613 31251
1,000,000 LISA Baseline 100 1099.38 40.1451 31253
1,000,000 LISA Baseline 1000 1104.65 4.4732 31274
1,000,000 LISA Baseline 10000 1143.65 0.6697 31485
1,000,000 LISA Baseline 100000 1273.56 0.2944 33594
1,000,000 LISA Baseline 1000000 2717.65 0.2436 54688

Table A.2: Hyper-parameters Search LISA Baseline Model for training sizes 10K, 100K
and 1M
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Training/Test
Data Size
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Time (ms)
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Training/Test
Data Size

Model N Build
Time(ms)

Avg Query
Time(ms)

Memory
Size(KB)

10,000 LISA Baseline
Optimized

10 11.1208 0.2841 313

10,000 LISA Baseline
Optimized

100 12.0108 0.2779 315

10,000 LISA Baseline
Optimized

1000 12.7589 0.2765 336

10,000 LISA Baseline
Optimized

10000 25.8732 0.2752 547

100,000 LISA Baseline
Optimized

10 112.973 0.2855 3126

100,000 LISA Baseline
Optimized

100 114.318 0.2823 3128

100,000 LISA Baseline
Optimized

1000 116.699 0.2806 3149

100,000 LISA Baseline
Optimized

10000 129.514 0.2794 3360

1,000,000 LISA Baseline
Optimized

10 1116.51 0.2905 31251

1,000,000 LISA Baseline
Optimized

100 1118.85 0.2858 31253

1,000,000 LISA Baseline
Optimized

1000 1134.88 0.2844 31274

1,000,000 LISA Baseline
Optimized

10000 1134.88 0.2831 31485

Table A.3: Experimental results for LISA Baseline model with search optimization

Training/Test
Data Size

Model G S Build
Time(s)

Avg Query
Time(ms)

Memory
Size(KB)

mse

10,000 LISA 4*4=16 5 4.335 1.13135 324.72 0
10,000 LISA 4*4=16 10 3.370 0.96036 329.07 0
10,000 LISA 4*4=16 20 1.127 0.86184 337.85 0
10,000 LISA 4*4=16 30 3.478 0.74339 346.63 5729

Table A.4: Hyper-parameters Search LISA Model: Training Size:10,000 Points.
a) For the last row, Numbers of keys= 10000
b) Keys per cell= 10000 \ (4× 4) = 625
c) Keys per shard = 625 \ 30 = 20 keys per shard, resulting in mse errors
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Training/Test
Data Size

Model GridCellSize No of
Shards

Build
Time(s)

Avg Query
Time(ms)

Memory
Size(KB)

mse

100,000 LISA 4*4=16 50 122.64 1.51173 3176.6 0
100,000 LISA 4*4=16 100 30.211 1.44084 3220.3 0
100,000 LISA 4*4=16 150 142.13 1.15491 3264.1 297234
100,000 LISA 6*6=36 50 66.375 1.55903 3238.1 0
100,000 LISA 6*6=36 75 72.491 1.43043 3287.2 0
100,000 LISA 6*6=36 100 60.929 1.64881 3336.4 5.6e+07
100,000 LISA 8*8=64 20 35.638 1.54029 3218.7 0
100,000 LISA 8*8=64 50 45.014 1.52117 3323.6 0

Table A.5: Hyper-parameters Search LISA Model: Training Size:100,000 Points

Training/Test
Data Size

Model GridCellSize No of
Shards

Build
Time(s)

Avg Query
Time(ms)

Memory
Size(KB)

mse

1,000,000 LISA 10*10=100 50 743.29 1.77751 31558.9 0
1,000,000 LISA 10*10=100 100 1077.89 1.63397 31832.3 0
1,000,000 LISA 20*20=400 25 365.49 2.53317 31930.8 0
1,000,000 LISA 20*20=400 50 609.32 1.44526 32477.6 0
1,000,000 LISA 25*25=625 25 240.22 1.56227 32779.8 0
1,000,000 LISA 30*30=900 25 205.18 1.79839 33010.3 0

Table A.6: Hyper-parameters Search LISA Model: Training Size:1,000,000 Points

Training/Test Data
Size

Model Build Time (s) Avg Query Time
(ms)

Memory Size (KB)

10,000 KD-Tree 0.023 4.363 2890
10,000 Baseline 0.026 0.198 547
10,000 LISA 1.127 0.861 337

100,000 KD-Tree 0.340 6.176 28906
100,000 Baseline 0.324 0.241 5469
100,000 LISA 22.491 1.43 3169

1,000,000 KD-Tree 4.124 9.254 289062
1,000,000 Baseline 2.718 0.343 54688
1,000,000 LISA 445.324 1.445 32477

Table A.7: Point Query experimental results for KDTree, Baseline and LISA models
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Training/Test
Data Size

Range Query
Size

Avg Query Time
(ms) (KD-tree)

Avg Query Time (ms)
(Baseline)

Avg Query Time
(ms) (LISA)

10,000 10 1.361 1.113 8.204
10,000 100 5.331 4.518 12.01
10,000 1000 43.88 39.92 29.45
10,000 10000 648.8 382.3 61.94
100,000 10 1.392 1.298 27.92
100,000 100 5.392 5.055 28.96
100,000 1000 43.97 42.83 56.38
100,000 10000 718.1 392.6 129.9

1,000,000 10 2.238 2.661 35.18
1,000,000 100 9.222 6.174 62.63
1,000,000 1000 74.46 43.78 93.97
1,000,000 10000 735.8 412.2 186.9

Table A.8: Range Query experimental results for KD-tree, Baseline and LISA models

Training/Test
Data Size

K Avg Query
Time(ms)(KD-tree)

Avg Query
Time(ms)(LISA)

10,000 3 4.2207 0.6020
10,000 5 4.3765 0.6084
10,000 7 4.4331 0.6129
10,000 10 4.3682 0.6493
100,000 3 6.0021 1.7601
100,000 5 6.0975 1.7745
100,000 7 6.1684 1.9453
100,000 10 6.6183 2.1617

1,000,000 3 8.3595 3.6549
1,000,000 5 8.5362 4.7073
1,000,000 7 9.2785 5.3767
1,000,000 10 9.1726 5.7799

Table A.9: KNN Query experimental results for KD-tree and LISA model
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