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Abstract
Open-set classification is a problem in machine learning, where models are required to perform
classification of known classes, while simultaneously identifying unknown samples, i.e. inputs
that are not part of any class the model has been trained on. This project aims to improve and
extend an open-source package that allows the experimentation and comparison of different ap-
proaches for open-set classification. To do this, the project refactors the package to make it more
intuitive to understand its structure and functionality, as well as simplifying potential future mod-
ifications and extensions. Additionally, the package first is extended with the EMNIST dataset,
as an alternative to the already implemented ImageNet dataset. Second, it is expanded with two
additional neural network architectures, LeNet and AlexNet.
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Chapter 1

Introduction

1.1 Motivation and Definition of Goals
The field of deep learning for image classification has seen great improvement over the past
decade. The breakthroughs regarding deep neural networks delivered in 2012 and 2015 (Krizhevsky
et al., 2012; He et al., 2015), and the introduction of the ImageNet dataset (Deng et al., 2009) to the
International Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) ac-
celerated the development in this field dramatically. Nevertheless, the advances also highlighted
some limitations of current approaches. A crucial limitation is the issues that classifiers have,
when faced with samples of previously unseen classes, often confidently misjudging them for
seen classes (Dhamija et al., 2018, 2020; Palechor et al., 2023).

Since then, researchers have dedicated their efforts to understand and tackle the problem of
network agnostophobia (Dhamija et al., 2018), called open-set classification, and provided differ-
ent ways to prepare a classifier to detect and reject unknown samples. For example, thresholding
the softmax probabilities, or the logits that are given to the softmax function (Hendrycks and
Gimpel, 2017; Hendrycks et al., 2022). Other methods focus on estimating the likelihood of un-
known classes by modeling deep feature representations derived by known classes and providing
a probability for the rejection of a sample (Bendale and Boult, 2016a; Rudd et al., 2017a; Lyu et al.,
2023). Alternatively, the network can be prepared for open-set classification by training it with
an additional output for unknown classes or incorporating different loss functions to enhance the
thresholding effectiveness of outputs (Dhamija et al., 2018).

Palechor et al. (2023) have developed an open-source package that allows the comparison of
approaches for open-set classification based on ImageNet. This project focuses on restructuring
and developing this open source package. It does so by implementing clean design choices, en-
capsulating functionality and promoting an intuitive understanding of the code and its structure.
Finally it allows the simplified extension of the code by integrating new components, such as
new network architectures or datasets. To demonstrate that, new such parts have been added
to extend the current implementation: The Emnist (Cohen et al., 2017) dataset was added as an
alternative to the ImageNet dataset. Furthermore, a customized LeNet (LeCun et al., 1998) and
AlexNet (Krizhevsky et al., 2012) backbone were integrated alongside the already existing ResNet
(He et al., 2016) architecture. In the following, the report will briefly discuss some theoretical con-
cepts related to open-set image classification, before jumping into the documentation of the new
codebase. The repository can be found on GitHub1.

1Repository of the refactored codebase: https://github.com/AIML-IfI/osei

https://github.com/AIML-IfI/osei
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1.2 A Primer in Open-Set Classification
Techniques such as Decision Trees, Support Vector Machines and Neural Networks have achieved
great success in areas such as image classification and image recognition (Varghese, 2018). While
the breakthroughs in deep neural networks (Krizhevsky et al., 2012; He et al., 2015) accelerated
the development in this field dramatically, it is important to consider that the performance of
classifiers depend on whether they operate in a closed- or open-set environment:

Closed-Set Classification: When conducting closed-set classification, one generally follows
the closed-set assumption, which states that all testing classes are encountered at training time
(Scheirer et al., 2012; Ryota Yoshihashi, 2019). As such, a closed-set classification model only
needs to classify at test time what it has previously seen at train time (Geng et al., 2021; Sun and
Dong, 2023). Thanks to this simplification, closed-set models are efficient at detecting classes from
a finite amount of known classes that remain unchanged between training and testing (Vaze et al.,
2022). However, such closed-set models encounter limitations when faced with data outside their
training distribution (Sun and Dong, 2023).

Open-Set Classification: To deal with data that lies outside the training distribution Scheirer
et al. (2012) defined and formalized the task of open-set classification. They state that open-set
classification is a more realistic scenario, given that not everything is known at training time.
Hence an algorithm has to be able to deal with classes that it has not seen during training. There-
fore, the goal of open-set classification is to maximize closed and open-set recognition capabili-
ties by not only accurately classifying and identifying known classes but also unseen/unknown
classes (Bisgin et al., 2023). In other terms, the main purpose of Open-set classification is to clas-
sify known instances and identify unknown instances (Geng et al., 2021).

1.2.1 How to approach Open-Set Image Classification
There already exists a plethora of open-set image classification approaches. At this point, the
report will refrain from providing a complete list of approaches and instead focus on those that
are provided by the repository while eventually mentioning some notable other contributions.

Threshold: This approach defines a confidence threshold, and follows the assumption that the
probability for an unknown input would be low (Matan et al., 1990). As such, if the probability of
an input is below this threshold, it gets classified as unknown. However, misclassification, even
with high confidence, is frequent (Dhamija et al., 2018)! Therefore, other techniques have been
investigated. Thresholding has been implemented in this project. An explanation can be found in
subsection 3.3.2.

Garbage: In open-set image classification, it is possible to integrate negative classes (sometimes
also simply referred to as unknown classes (Bisgin et al., 2023)), in the training set. These classes
are unrelated to the target classes and thus help to increase the classifier’s robustness when en-
countering unknown classes at test time (Geng et al., 2021). Such negative classes can either
be added or generated by modifying or combining known samples (Bisgin et al., 2023). The
project implements this idea and generally refers to it as the Garbage method. When applying
the Garbage method, a model is trained with additional "unknown" or "garbage" classes. While
the model sees the garbage classes at train time, they are removed during validation and testing
to decrease overfitting (Palechor et al., 2023). This approach allows the model to better learn to
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differentiate between known classes and possible outliers. More information about the Garbage
method and how it is implemented can be found in the subsection 3.3.2.

Proser: With the "Placeholders for Open-Set Recognition" (Proser) approach, introduced by
Zhou et al. (2021), placeholders are learned for the data and the classifier during training. Proser
enables the generation of new classes through the manifold mixup technique. At the same time, it
is able to adjust the parameters of the classifier during the training process. Eventually, it allows
the model to better separate known and unknown classes during inference. The implementation
of Proser is relatively complex, please see the subsection 3.3.2 for details about Proser itself and
its implementation in this project.

Extreme Value Machine (EVM): The Extreme Value Machine (EVM), formulated by Rudd et al.
(2017b), models the decision limit for each class using extreme vectors and is great for recognizing
outliers. It is inspired by the statistical extreme value theory (EVT), which helps to understand
the likelihood of a data point belonging to a certain class, based on its distance from the class’s
defining points (Rudd et al., 2017b). It is possible to construct a probabilistic outline of each class’s
boundaries by selecting specific points and their distributions that most represent each class. As a
result, it can minimize overlap. Extreme vectors (EVs) limit the risk associated with new, unseen
data categories. The EVM can adapt to new information by updating these EVs, and can be
considered an efficient nonlinear classifier. (Rudd et al., 2017b). EVM is covered by this project.
Further information is available in section 3.4 and in the in subsection 3.6.4.

OpenMax: OpenMax, introduced by Bendale and Boult (2016b), adjusts the outputs and re-
computes softmax probabilities to take unknown classes into consideration. Openmax is used to
estimate the probability of an unknown class input based on the distance of its features from the
features of known classes in the feature space (Bendale and Boult, 2016b). Openmax is part of this
project, more information can be found in the worker section 3.4 and in the in subsection 3.6.4.

General Adversarial Networks Neal et al. (2018) used the image generation capability of Gen-
erative Adversarial Networks (GAN) to generate "unknown" images similar to those in the train-
ing set. Ge et al. (2017) followed a similar approach, by extending OpenMax and creating what
they call Generative OpenMax (G-OpenMax). While this project does not support GANs at the
moment, they could be added in the future.

Autoencoders While Autoencoders are typically used for tasks such as image denoising and
compression, they have also found their way into the realm of open-set image classification (Oza
and Patel, 2019; Ryota Yoshihashi, 2019). For instance, Oza and Patel (2019) propose an open-
set classification algorithm that uses class-conditioned auto-encoders. They divide the training
procedure into two sub-tasks: Closed-set classification (Encoder) and open-set identification (De-
coder). Their encoder learns to do closed-set classification, while the decoder learns to reconstruct
the image. To decide whether or not an image belongs to a known class, they model the recon-
struction error. If said error is below or above a certain threshold, the image gets classified as
either belonging to a known or unknown class (Oza and Patel, 2019). Autoencoders are currently
not supported by this project.





Chapter 2

Evolution of Architecture
High Level Overview

This chapter describes the state of the project’s code at the start of the project in comparison to its
final version. The focus is to provide a very high level overview of how separate parts of the code
are encapsulated and how the different parts interact with each other. The goal is to highlight
the advantages of the new implementation regarding the encapsulation of system components
and the adherence to the Single Responsibility Principle of these components, compared to the
previous implementation.

2.1 Initial Implementation
As it can be seen in Figure 2.1, the original state of the package was comprised of three main
components:

• Config Directory: Contained YAML files for each distinct approach. The files held the con-
figuration data for the training process and the dataset.

• Script Directory: Contained the scripts for training, evaluation, plotting, etc. that would be
executed on command. They executed the code using the parameters given by the indicated
YAML file.

• Openset_ImageNet Directory: Contained all the classes and functions necessary for the
executable processes.

While the initial organization provided clarity and efficiency in effectively differentiating between
the configurations, scripts, and the third directory that contained core functionalities and complex
logic, it also raised concerns about scalability. As the package is expected to be extended in the
future, it became necessary to develop a more sophisticated structure that adheres to general
Object Oriented Programming Principles. This is essential not only to provide a more intuitive
overview of the code but also to ensure smooth encapsulation of functionality and tasks within
and across the various components.

2.2 Final Implementation
The final version, after all the refactoring has been done, keeps some core ideas of the initial im-
plementation. The configurations are kept in their own directory and the script directory contains
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High Level Overview

Figure 2.1: The initial state of the package containing three major components; Config, Script and
Openset_Imagenet.

the files to execute the rest of the package. The final composition of the package is defined by the
following components:

• Config Directory: Contains YAML files for each distinct approach. In comparison to the old
implementation, there are now three subdirectories. One for configurations regarding the
algorithm, one for the dataset configurations, and one for the test/evaluation process. More
information about the Config Directory are provided in 3.1.

• Datasets: The Datasets are now made up of a base dataset class and specific dataset imple-
mentations such as ImageNet and EMNIST with their specific logic, that inherit from the
base dataset class. As this refactoring is especially extensive, there is a specific section for it
in this paper, namely section 3.2.

• Networks: Handles everything related to Backbones and Models. Similar to the Datasets,
this refactoring is extensive, as such please see section 3.3 for more details.

• Workers: Contains the worker functions that train models with different approaches and is
described in section 3.4.

• Script Directory: While the functionality remains the same, the containing files were heavily
restructured and reshuffled. See section 3.5 for more information.

• Evaluation: Contains services needed for the evaluation process. See subsection 3.6.1.

• Losses: Contains classes to initialize different losses as well as helper functions. See subsec-
tion 3.6.2.

• Metrics: Contains metrics required for plotting and evaluation. See subsection 3.6.3.

• OSR_algorithms: Contains two classes, one for OpenMax and one for EVM. See subsection
3.6.4.
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• Parameter_selection: Contains services for the parameter selection process. See subsection
3.6.5.

• Plotting: Contains classes and services for plotting. See subsection 3.6.6.

• Util: Contains services used over the whole package. See subsection 3.6.7.

Figure 2.2 shows the overview and dependencies of the components in the new architecture.
In the final implementation, the structure is more sophisticated and enhances the encapsulation
of functionality and single responsibility (For a simplified overview, check out figure B.1). Even
though the previous version was efficient, it was limited in terms of scalability and extensibility.
However, with the introduction of new subdirectories such as Datasets, Networks, Workers, and
more, each aspect of the package is separated in its own space, each being responsible for its
tasks in the specific processes. This ensures that changes in one part of the system have no to
minimal impact on other components, making it much easier to not only modify the code but also
understand it more intuitively. Additionally, adding new components or extending existing ones
by e.g. a new dataset or network architecture, can be done with none or very little consideration
about the rest of the package.
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High Level Overview

Figure 2.2: The final state of the package, after refacturing the initial three parts into many.



Chapter 3

Documentation of new
Implementation

Chapter 3 documents and explains the new project architecture as of February 2024. The refac-
tored codebase can be found on GitHub1.

3.1 Configuration Files
Configuration files carry information about how a process should be run. They define settings
like the dataset, model type, protocols, loss function, etc. As such, there are three categories of
configuration files: Protocol files contain general, as well as loss, optimizer, and algorithm param-
eters. The dataset configurations hold information about the used dataset and the test configura-
tion files carry parameters for the evaluation process. When executing commands, these files are
then passed as parameters for the execution. For instance, a training process can be triggered as
follows: train.py protocols/threshold.yaml dataset/imagenet.yaml. More infor-
mation about how the individual processes, in combination with their respective configuration
files, can be triggered, is documented in the README A.

3.1.1 Protocol Config Files
Protocol files are structured to provide a flexible way to easily change the parameters of experi-
ments. The general structure is as follows:

• General parameters: Non-technical details such as the output directory, the GPU index, and
others.

• Common parameters: Common machine learning parameters such as batch size, number
of epochs, etc.

• Loss parameters: Settings concerning the loss function. At the moment the following losses
are supported: Entropic Openset Loss, SoftMax, Garbage Class Loss.

• Optimizer parameter: Settings for the optimizer.

• Algorithm type: Indicates which algorithm the config file revolves around.

1Repository of the refactored codebase: https://github.com/AIML-IfI/osei

https://github.com/AIML-IfI/osei
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• Network: Defines which backbone architecture shall be used. At the moment three back-
bone types are supported: LeNet, AlexNet and Resnet50. More information about the spe-
cific backbones can be found in 3.3.

3.1.2 Dataset Configuration Files
For each specific dataset, there is a configuration file. The specified attributes differ from dataset
to dataset and depend on the implementation. For more information about the datasets, please
see section 3.2. In general, only two parameters are mandatory in all dataset configurations:

• dataset: Name of the dataset as a string in lowercase.

• image_size: Size of an image of the dataset in pixels.

3.1.3 Test File
Any parameters necessary for the evaluation process are defined here. Some important ones
include:

• model_path: Structure of the path where the algorithm expects to find the models to eval-
uate. The path is then dynamically composed at runtime.

• output_directory: Output folder defining where the algorithm saves the results.

• network: It is necessary to define which network architecture is used in the model to be
evaluated.

3.2 Datasets
As of writing this report, two datasets are supported. ImageNet, which was part of the original
codebase, and EMNIST. While ImageNet is fully supported, EMNIST is still considered to be in an
experimental state. Generally speaking, EMNIST is smaller and is great for testing code changes
fast and locally, while ImageNet fully supports the use of different protocols. In this section, the
new inheritance-based architecture of the dataset implementation will be discussed.

3.2.1 General Architecture
At the top of the hierarchy is the Dataset class of the torch.utils library2. The parent class Base-
_Dataset, inherits from it, while the classes EMNIST_Dataset and Imagenet_Dataset, in
turn, inherit from the Base_Dataset class. The Base_Dataset class contains some class vari-
ables as well as the functionality to create and return PyTorch data loaders.

The classes EMNIST_Dataset and Imagenet_Dataset then extend the inherited properties
with dataset-specific properties. They use lazy initialization for almost all instance variables;
this means that at the first initialization, these instance variables are set to None and are only
initialized upon the first call and stored as instance variables. This becomes especially important
for the training, validation, and test data.

The overarching principle for generating the training, validation, and test sub-datasets, as well
as accessing them, is the same for both datasets. A specific dataset instance, e.g., of Imagenet-
_Dataset, let’s call it imagenet_container, serves as an initially empty container for the subsets.

2Information about the torch.utils library can be found here: https://pypi.org/project/torch-utils/

https://pypi.org/project/torch-utils/
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Figure 3.1: Inheritence of dataset classes and type of train, validation and test datasets.

The imagenet_container has its instance variables test_data, validation_data, and test_data, all
set to None.

To get the training data, the classes getter function is invoked: imagenet_train_data

= imagenet_container.get_train_data(). The imagenet_container will now create the
training dataset, assign it to itself as instance variables, and then return it. If the function get-

_train_data() of the imagenet_container is called in the future, the training dataset will be
returned immediately, since it is stored as instance variable of the imagenet_container. Figure 3.1
shows the inheritance of the dataset classes and the principle of having a dataset subclass as a
container, which has instances of itself assigned as train, validation and test data.

It becomes clear how well this works when evaluating a trained model. For this process, an
empty container instance e.g. imagenet_container is created again. For the validation process,
only the test dataset is needed, but not the training and validation data. This time around the
test data subdataset is initialized and accessed with the function imagenet_container.get-

_test_data(). The test dataset is created and assigned to the imagenet_container as an in-
stance variable for later retrieval. However, training and validation datasets are not created.

3.2.2 Dataset Specific Documentation
A major distinction between the two datasets, EMNIST and Imagenet, in the current implemen-
tation, is that it is assumed that the dataset is already present on the hard drive while EMNIST
needs to be downloaded. For EMNIST, this means that an initialized EMNIST_Datset instance
must download the data first, for each subset train, validation, and test. However, these subsets
are stored locally and are directly accessible afterward.

Imagenet
The class Imagenet_Dataset consists of a getter function for each sub-dataset: train, valida-
tion, and test. The getter first checks whether the Imagenet_Dataset (container)-instance, from
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which it is called, already has the desired sub-dataset saved as an instance variable.
If not, the getter function first calls the corresponding class function, for example the function

get_train_file(). This function returns the CSV file from the protocols folder, according to
the protocol specified in the command-line input. The CSV file, for example, p1_train.csv,
contains the path of each image and its corresponding label to be used for creating the dataset.

The getter for the sub-dataset continues execution and creates a variable with image transfor-
mations. It creates an Imagenet_Dataset instance based on the information from the CSV file
and the parameters for image transformation.

Next, the getter checks whether adjustments need to be made due to the employed loss func-
tion:

Train data preprocessing:

• Garbage loss:

– Proser algorithm: Removes all negative labels from the dataset.
– Other algorithms: Replace all negative labels in the dataset with the highest existing

label plus one.

• Softmax loss: Removes all negative labels from the dataset.

After the initial preprocessing based on loss type and algorithm, the following operations are
applied:

• Update the label count and unique classes in the dataset.

• Entropic loss: The total label count is decreased by one.

• Only for the combination of the Proser algorithm with garbage loss: The label count is
increased by one.

Validation data:

• Garbage loss: Replaces all negative labels in dataset with highest label.

Test data

• Garbage loss: Replaces all negative labels in dataset with highest label.

Finally, the sub-dataset instance is assigned the number of labels and unique labels as instance
variables before being assigned as instance variable to the Imagenet_Dataset instance, which
serves as container.

EMNIST
Similar to the Imagenet_Dataset class, the EMNIST_Dataset class contains getter functions
for training and validating sub-datasets. The getter first checks whether the Imagenet_Dataset
instance, from which it is called, already has the desired sub-dataset saved as an instance variable.
During the initial initialization, all variables are set to None.

If not, the dataset is downloaded, which can be easily done using the torch.datasets-

.EMNIST class. Before that, the get_data_depending_on_loss() function is called, which
determines whether it is training or validation data and what parameters need to be set based on
the loss function. The same parameters apply to both training and validation data.
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• Softmax loss: Does not include unknown class, hence remove all negative labels from the
dataset. The label count is currently hard-coded to 11.

• Garbage: Includes unknown classes and adds an additional garbage class.

• Proser algorithm: Only for validation data and in case of entropic and softmax loss, the
label counts is increased by 1.

Then either the training or validation set is downloaded through the torch.datasets.EMNIST
class, and an EMNIST_Dataset instance is created along with the other parameters. For example:

{which_set = "train", has_garbage_class = True, include_unknown = False}.
During the initialization of an EMNIST_Dataset instance, the constructor checks if a value

for ’which_set’ has been passed. If yes, it automatically loads the dataset and calculates other
variables like letters, unique_labels, and labels_count. Then, the black and white im-
ages (1 channel) are converted to RGB (3 channels). This step is necessary to ensure that the data
has the correct dimensions for the input layers of the defined neural networks. Finally, the created
train or validation EMNIST_Dataset instance is added as an instance variable to the overarching
EMNIST_Dataset instance.

3.3 Networks
In Computer Vision, Convolutional Neural Networks (CNNs) are used to extract low and high-
level features from raw image data (Elharrouss et al., 2022) and are commonly referred to as
backbones. On top of the backbone lay the “Neck” and the “Head”, which use these learned
features for various subsequent tasks, such as Image Classification or Object Detection (Li et al.,
2022). Since Open Set Image Recognition is a subset of Computer Vision the design philosophy
also applies. The backbone can be a simple network like LeNet or more advanced like Resnet50.
Regardless of the chosen backbone, there will be a head on top of it, that acts as a classifier which
decides whether a given input belongs to a class or is unknown.

Following this general design philosophy, this project uses backbones too. These backbones
are then used by the models, which add/adapt layers and define train/evaluation loops as well
as other model specifics. This separation allows to easily mix and match backbones with models
as needed. To prove this modularity, the existing Resnet50 network was adapted and two addi-
tional backbones have been added, namely, Alexnet and a customized LeNet variant. Thanks to
the modular design these backbones can now be paired with the new Threshold, Garbage and
Proser model. In the following, the report provides a closer look at the general network archi-
tecture depicted in Figure 3.2. To do this, it will explain how these backbones and models are
implemented and how new backbones and models can be added in the future.

3.3.1 Backbone
One goal of the project was to make adding new backbones easy. As such, a modular design
with a great emphasis on Object Oriented Programming, especially with regards to Polymor-
phism and Inheritance, has been chosen for the backbones. Hence a general parent Class, simply
named Backbone, and various Child classes, that represent the specific network architectures,
are defined.

The Backbone class defines two abstract methods: first_blocks() and last_blocks().
These two functions are implemented by the respective child classes. first_blocks() should
pass the input through the first few blocks of the network while last_blocks() passes it
through the last few layers and returns the features. Additionally, there is a concrete function
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Figure 3.2: Network Architecture

forward(), which calls first_blocks() and last_blocks() sequentially. The differen-
tiation into first_blocks() and last_blocks() is essential, as it enables Manifold MixUp
required by Proser (Zhou et al., 2021). Lastly, there is also a calculate_out_feature_size()
function that can be used by child classes to calculate the output size. During initialization, the
backbone expects a base and out_features. The base contains the layers of a specific backbone
network architecture, for instance, Resnet50, while the out_features defines the dimensional-
ity of the last backbone layer. As these two variables are specific to the chosen backbone network
architecture they are defined in their respective subclasses and passed to the Backbone class dur-
ing initialization. This approach ensures a common setup regardless of the underlying backbone
network architecture.

As of writing this paper, three different specific backbone network architectures are supported:
Resnet50, AlexNet, and a customized LeNet variant. For adding Resnet50 and AlexNet the base
torchvision implementation was used. While for the customized LeNet variant the layers have
been defined "manually". Figure 3.3 visualizes the architecture as an UML Diagram.

LeNet

LeNet, was first introduced in 1989 by LeCun et al. (1989). Thus, it is a well-known and simple
architecture that has been proven to work well with the EMNIST dataset (Schaub and Hotaling,
2023). It is simple and training with it is usually very fast. Thanks to its lightweight nature,
it’s a great network for this project as it allows to quickly test code changes. As part of this
project, LeNet consists of two layers, where each layer uses 2d Convolution, followed by a RELU
activation function and Maxpooling. As input, three channels (RGB) are expected. This allows to
easily apply it to the ImageNet dataset. The concrete first_blocks() and last_blocks()

functions, run the first and last layer respectively.
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Figure 3.3: Backbone Architecture

AlexNet
Alexnet is another well-established network and has been used for ImageNet classification in
the past (Krizhevsky et al., 2012). Like LeNet, Alexnet is a CNN, however it is more complex
and has more layers. For this project the non-pretrained Alexnet from Pytorch3 is used. Using
a torchvision model makes it easy to use a pretrained model in a future step. While the Alexnet
implementation also possesses first_blocks() and last_blocks(), it has two additional
functions: image_size_checker() and transform_image(). The reason being, that the
standard Alexnet implementation does not work on datasets with small images, like EMNIST.
That is because, typically, each convolution and pooling layer reduces the dimension of the input,
which can eventually result in a zero or even negative dimension. As such the implementa-
tion first checks whether the input size is too small. If it is, it asks the user whether or not the
images should be automatically resized. ImageNet is not affected as its standard image size is
224px*224px compared to EMNIST’s 28px*28px.

Resnet50
Resnet50 (He et al., 2016) is another popular CNN. Like Alexnet, the torchvision Resnet504 is
used, and the first_blocks() and last_blocks() are defined.

How to add a new Backbone
The current implementation can easily be extended with additional backbones. For this, one has
to simply take a backbone from pytorch or create a custom one and place it in the respective
folder. Generally speaking, the required steps are as follows:

1. The new file must be added to either /networks/backbone/custom or
/networks/backbone/torchvision.

2. The new backbone class must inherit from the Backbone class and add first_blocks()

and last_blocks() functions to make it compatible with Proser.

3. Adapting the imports within the backkbone.__innit__.py file.

4. Adapting the get_backbone() function in network_services.py.
3The AlexNet Model from Pytorch can be found here: https://pytorch.org/vision/main/models/

generated/torchvision.models.alexnet.html

4The Resnet50 Model from Pytorch can be found here: https://pytorch.org/vision/main/models/resnet.
html

https://pytorch.org/vision/main/models/generated/torchvision.models.alexnet.html
https://pytorch.org/vision/main/models/generated/torchvision.models.alexnet.html
https://pytorch.org/vision/main/models/resnet.html
https://pytorch.org/vision/main/models/resnet.html
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Figure 3.4: Model Architecture

3.3.2 Models
As previously introduced, a model takes a backbone, adds/adapts specific layers, and defines the
train/validation loops as well as other model specifics. At the moment, there are three different
models, each with its own approach as to how the problem of open-set image classification shall
be tackled. The models are the Threshold Model, The Garbage Model which inherits from the
Threshold Model, and the Proser Model. Figure 3.4 shows how these models relate to each other
and which variables and methods they carry. Please note that, while all three approaches already
existed in the base implementation, they have been adapted to bring them in-line with the general
model architecture. As such, these models, and how they are implemented, will be introduced in
more detail.

Threshold Model
As part of this project, the Threshold model can be considered the base approach. The idea is to
train the model on known classes only and then classify whether the class belongs to a known
class or an outlier (Sun and Dong, 2023). These class probabilities are then predicted via an ap-
propriate loss function like Softmax. If the probability is below a certain threshold the image is
rated to be unknown (Sun and Dong, 2023).

In the current implementation the Threshold model expects a backbone, the number of output
features of the fully connected layer (fc_out_features), the number of output features of the
logits (logits_out_features) and whether or not a logit_bias shall be used. During the
initialization, the deep_feature_layer as well as the logits_layer are defined by calling
their respective "define" methods: define_deep_feature_layer() and define_logits-

_layer(). This setup allows a potential child class of Threshold to simply override these "define"
methods with its own specification. The forward() function, called from within the train-

_loop(), validation_loop() and get_arrays() methods, first calls the forward() func-
tion of the backbone. It then passes the resulting backbone_features into the deep_feature-
_layers(). Afterwards, it takes these deep_features and passes them through the logits-
_layer() to get the logits. Finally, the logits, along with the deep_features are returned.
The report will not go into detail about how the train_loop(), validation_loop() and
get_arrays() are defined, as there were little changes made to them, compared to the original
codebase. However, there is one additional function that has not been discussed so far, the get-
_known_class_logits_for_proser(), which will be covered in detail as part of the Proser
model.
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Garbage Model
The general idea of the Garbage model is to train with so-called unknown/garbage classes. These
unknown/garbage classes are then removed at test time to prevent overfitting (Palechor et al.,
2023). With this technique the presence of unknown classes during train time is simulated, ef-
fectively allowing the model to better account for them. Since the Threshold model can already
handle unknown classes at train time, the Garbage model inherits from it. While the train-

_loop() can stay the same, garbage specific code is needed for the validate_loop() and
get_arrays() functions. Hence these functions are overridden. Lastly
get_known_class_logits_for_proser() is also overridden, but as previously mentioned,
more details on that will follow when the Proser model is described.

Proser Model
Proser (PlaceholdeRs for Open-Set Recognition) is a specific method to improve open-set recog-
nition and was introduced by Zhou et al. (2021). Proser introduces placeholders for data and clas-
sifiers and tries to learn invariant information between target and non-target classes. It does so
by using Manifold Mixup to create new classes during runtime and trying to balance the classifi-
cation of known classes and the detection (i.e. not-classification) of unknowns. For more detailed
information please see the paper by Zhou et al. (2021).

However, it is worth noting that, to facilitate this, Proser calls the first_blocks() and
last_blocks() functions separately in the main train_loop(). This is the reason, why these
two functions have to be present in the specific Backbones. During its initialization, the Proser
Model expects a base model (Threshold or Garbage), as well as the loss_type and dummy-

_count in order to create the dummy_classifier. The forward() function gets the logits and
features by calling base_model.forward(), i.e. the forward() method of the base model.
It then uses the retrieved features to acquire the dummy. Eventually the forward() function
returns the logits, features and dummy.

However, if Proser is paired with a Garbage base model, it has to be ensured that only the
known class logits are retrieved, i.e. the logits without the unknown class. As such, in the
get_arrays() and the validate_loop() methods, the forward() function is triggered to
retrieve the logits, features and dummy. The logits and features are then passed to the base-

_model.get_known_class_logits_for_proser() method, which eventually returns the
known class logits. Thanks to the Object Oriented Programming concept of Method Overriding,
accounting for whether or not the base model is Threshold or Garbage, is trivial. As the get-
_known_class_logits_for_proser() function is defined twice, once as Identity Function
in the Threshold model and once in the Garbage model, where the unknown class logits are
removed.

For more details on how Proser is implemented, it is recommended to study the code, as going
into the full detail could, and is, a paper on its own (Zhou et al., 2021).

How to add a new Model
Adding a completely new model is more complex than just simply adding a new backbone. How-
ever, the main procedure can be broken down into four steps:

1. Adding the new model to /models.

2. Adapting the __init__.py /models.

3. Adapting the network_services.py as needed.

4. Potentially creating specific worker classes etc.
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3.3.3 Services related to Networks
Network Services
The purpose of the network_services is to provide a central point to handle model creation
and retrieval. As such network_services is inspired by the Mediator Design Pattern 5. By
applying this design pattern, loose coupling is achieved, which is essential for streamlining the
future addition of new Backbones and Models. The two main functions that are made accessible
by the network_services are the get_model() and extract_arrays(). The extract-
_arrays() function simply calls the get_arrays() function of a specific model and returns
the result, while the get_model() function is concerned about the instantiation and retrieval
of the model architectures. This model instantiation is important for the workers as well as for
the post-processing. To do this, the get_model() function takes a Configuration file and the
amount of classes. It then checks whether, based on the Configuration, a Proser model is needed
or a Threshold/Garbage model is enough. Following this assessment, it then calls the appro-
priate private _get_base_model() function, and depending on the result of the assessment,
the _get_proser() function as well. In order to simplify the retrieval of Backbones, there is
also the _get_backbone() function, which is used by the aforementioned private _get_base-
_model() function.

Snaphsot Services
The snapshot_services is concerned about the saving and loading of model checkpoints. For
this it offers a save_checkpoint() and a load_checkpoint()function. In addition it also
has a helper function that manage checkpoint naming. The get_output_model_checkpoint-
_name() produces the correct checkpoint name, given the Configuration. Let’s assume the pro-
vided Configuration specifies a Threshold Algorithm, a Softmax Loss, a LeNet Network and Ima-
genet as dataset. Then the generated name would look as follows: imagenet_lenet_softmax-
_threshold_best.pth. While this is a very long name, its expressiveness allows for no ambi-
guity, making it clear which parameters were used during model training. Eventually, the model
will be saved in the appropriate directory. For instance, if it used Protocol 1 it will be saved in
/experiments/imagenet/protocol_1.

3.4 Workers
The worker is one of the core feature of our implementation. One worker function is used for
one or more algorithms (EVM / OpenMax / Proser / Threshold). The OSEI project’s root direc-
tory contains a "workers" folder where three files regarding the workers are located: worker-
_services.py, worker_openmax_evm.py and worker_threshold_proser.py.

The worker_services.py file contains functions used by both, the worker_openmax-

_evm.py and the worker_threshold_proser.py. The worker_openmax_evm.py file con-
tains the worker for OpenMax and EVM, while the worker_threshold_proser.py file holds
the worker function for Threshold and Proser. The worker functions organize the training pro-
cess, which consists of six different main steps:

1. Initialization and configuration loading

• SnapshotManager: Manages model checkpoints for the training phase.

5An Explanation of the Mediator Design Pattern can be found here: https://www.patterns.dev/vanilla/

mediator-pattern/

https://www.patterns.dev/vanilla/mediator-pattern/
https://www.patterns.dev/vanilla/mediator-pattern/
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• Configuration: Cfg contains settings like the type of loss, the type of model, the num-
ber of workers, the number of epochs, the batch size as well as the number of batches
for EVM, OpenMax, Proser or Threshold.

• Logger setup: Documents the training progress.
• Device configuration: Configures the training device (CPU/GPU) as specified in the

settings.

2. Data preparation

• Data loading: Uses dataset_services.py to obtain the training and the validation
datasets, and to create data loaders for model feeding during training and validation.

3. Model preparation

• Model initialization: Initializes a model with the correct number of classes and selects
an appropriate loss function based on the model.

• Optimizer and scheduler: Sets up objects like early_stopping to prematurely stop the
worker function. Furthermore, StepLR can adjust the learning rate during the training
process.

4. Training loop

• Each Epoch involves a:

– training loop, which trains the model on the training set to optimize the loss.
– performance tracking step, which logs a score corresponding to best metrics for an

epoch after a certain point in time.

5. Model saving

• Checkpoints: Saves the current model state at the end of each epoch. For each epoch
the state of the model is saved in a pth file.

6. Clean-up

• After completing the training process (after completing all epochs or before due to
early stopping), the script performs a resource clean-up and removes the current model
from memory.

While overall, The worker_openmax_evm.py and worker_threshold_proser.py have a
similar "architecture" they still hold a few differences:

• They manipulate different objects.

• The clean-up step is not done in worker_openmax_evm.py.

• There is no early_stopping in worker_openmax_evm.py.

• There are more logs in worker_threshold_proser.py.

• The custom scheduler is only present in worker_threshold_proser.py.
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3.5 Scripts
The package provides four base capabilities that form a pipeline of processes from training a
model to plotting its performance on open-set tasks. These processes, in short, involve:

1. The training of the base model as well as the application of an algorithm on top of that base.

2. (Optional for EVM and OpenMax) Parameter optimization.

3. Evaluation to extract performance statistics.

4. Plotting using extracted statistics.

When the user interacts with the command line, the Entry Points defined in the setup.py trigger
the run method in the specified script. As such the scripts can be considered the start and endpoint
of code executions, triggered by a user. All scripts located in the script folder share the same struc-
ture. They all possess only two static methods, a method called command_line_options() and
a method called run(). The command_line_options() function is responsible for argument
parsing, while the run() method prepares the configuration files and kickstarts the actual train-
ing, plotting etc.

For all Scripts discussed in this section, additional information, including example commands,
can be found in the README, either on the repository or in chapter A. In addition, at time of
submission, some combinations of commands with specific losses/algorithms/datasets fail. For
more information about which command and combinations work, see section 5.1 or the excel in
the repository.

3.5.1 Train and Train All
With the train and train_all commands a model (or multiple models) can be trained. This
training is influenced by parameters specified in both the dataset and the algorithm configura-
tion files. Selecting these configuration files is achieved through command line inputs, which is
done by specifying the configuration file’s name, for example, datasets/imagenet.yaml or
algorithms/threshold.yaml. Adjustments to specific training parameters, such as the loss
function, step size, or network architecture, are made by modifying the corresponding values in
the algorithm configuration file located in configs/algorithms. While the train command
requires choosing a protocol, the train_all command allows the training with multiple pro-
tocols, as well as with multiple algorithms and loss functions. When training a model it is also
important to keep in mind that training a Proser, EVM or OpenMax model requires a Threshold
Model that has been trained on the same protocol, loss function and network architecture. As
some combinations models/losses/algorithms/datasets might fail, it is generally advised to only
train what is actually needed.

3.5.2 Evaluate
The evaluate script is executed by the the evaluate.py command. If executed without any spec-
ified parameters, the evaluation script will, by default, assess all valid trained models it detects.
Alternatively, there is the option to narrow down the evaluation to a specific subset of models
trained with specific algorithms, loss functions, and protocols by providing the corresponding
parameters in the command. There it is also possible to configure the process to evaluate the
current model or the best performing.
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When initiated, the script first checks if it has to load current models, or the best performing
ones. It then iterates through all the open-set classification algorithms and all loss functions it
should consider. For each combination it calls the process_model_evaluate function from
the evaluation directory. It is always necessary to provide the dataset parameter via a configura-
tion file. During that, the evaluation process will extract features, logits and scores from the test
dataset and store the results in the osei/experiments directory. Furthermore, the evaluation
script takes into account a configuration file, which is, by default, set to configs/tests/test-
.yaml. This configuration file contains additional parameters, including network architecture
specifications and optimized parameters for validation, specific to each individual algorithm.

3.5.3 Select Parameters
Some of the algorithms necessitate adjustments to their parameters to align with various loss
functions and protocols. In particular, the EVM and OpenMax algorithms come with a predefined
set of parameters that require optimization. Prerequisite for parameter optimization, is that a
model has already been trained and is available in the directory (just as for evaluation).

The select_parameters script first initializes a dictionary to store all maximum values re-
lated to the evaluation. It considers parameters and iterates over all required combinations of al-
gorithms, protocols and loss functions. It then calls process_model_parameter_selection()
from the parameter_selection directory for each combination. The results are stored in a
LaTeX table.

Finally, the code generates a summary table of maximum values for each combination of al-
gorithms, losses, and protocols. It prints the best results for each algorithm, protocol, and loss
combination, including detailed information about the selected parameters and their values.

3.5.4 Plot All
The plot command uses the evaluation data (scores and ground truths) generated by the eval-
uate command for the creation of plots and tables. Note that this process makes use of the
configs/test/test.yaml file! As such it should be ensured that the appropriate network
architecture is specified in the configuration file. For retrieving the scores and for plotting itself
the PlotScoring class, the PlotGraph class and the PlotReporting class are used. These
classes are all located in files within the plotting directory. Eventually, the results are compiled
into a PDF file, named Results_last.pdf. This PDF contains multiple pages. The first page
focuses on presenting the OSCR plots for all algorithms applied to networks trained with all loss
functions, where both negative and unknown samples are evaluated for all protocols. The second
and following pages show the score distribution plots for each algorithm, but page wise separated
for each loss function.

At this point it is worth noting that the current implementation of the plotting mechanism is
buggy. See section 5.1 and the excel provided in the repository, for more details.

3.6 Other Code Directories
In this section, the remaining directories will be introduced. These directories do not warrant
their own section, as they either just provide some functionalities to parts of the code that has al-
ready been discussed, or are simply not as complicated or extensive. Hence, they are all grouped
together here as part of the "Other Code Directories". As always more details about the imple-
mentation can be found in the code itself as well as in the accompanying docstrings.
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3.6.1 Evaluation Directory
The evaluation_services.py file in the evaluation directory, contains all the code that
was previously located in the evaluate.py script, except the command_line_options() and
run()method. This was done to keep all the script files consistent with regards to their structure,
as each of them only offers the command_line_options() and run() method. While the
write_scores(), load_scores(), process_model_evaluate() and _post_process-

_evaluate() methods are now named differently and were moved to the evaluation_ser-
vices.py file, their functionality are, for the most part, unchanged. Hence please see the code
itself for more details.

3.6.2 Losses Directory
In the losses folder, loss_services.py defines two functions that create and return loss func-
tions when using threshold or proser. These loss functions measure the difference between the
predicted outputs and the true targets. Furthermore, these two functions guide the training pro-
cess by updating the model’s weights.

The loss_threshold function is chosen based on configuration settings. The settings can be
the entropic loss for open-set classification, the standard cross-entropy loss for multi-class classi-
fication, or a version of cross-entropy with balanced class weights to address class imbalance. The
loss_proser function returns the standard cross-entropy loss. loss_threshold and loss-

_proser are useful for different types of classification problems.
The class loss_early_stopping.py is used to stop the training process if there is no im-

provement in the validation loss or other specified metric after a certain number of epochs. The
patience parameter indicates the number of epochs to wait before there is an improvement and
the delta parameter indicates the minimum change to consider as an improvement. These two
parameters help to define the moment to stop the process.

The class loss_average_meter.py is used to track the average and current values of a
metric (e.g. loss) over time. It is often used in training loops to monitor performance.

The class entropic_openset_loss.py creates a custom loss function designed for open-
set learning. The entropic part of the loss function incites the model to have a uniform distribution
over classes for unknown samples. As a result, overconfident predictions are less likely.

An Overview of the three different losses can be seen in Figure B.2.

3.6.3 Metrics Directory
Within the metrics folder there are two files that define a ValidationMetrics class and a
EvaluationMetrics class each. The EvaluationMetrics class is used for tasks related to
plotting and parameter selection and offers two functions: calculate_oscr() and ccr_at-

_fpr(). The validation_metrics.py file contains the ValidationMetrics class, which
has two functions too, as well as method called confidence which is used by the Models
(Threshold, Garbage and Proser) to get their respective confidence values. The two methods of the
ValidationMetrics class, namely auc_score_binary.py and auc_score_multiclass-

.py are currently not used in the project! It was decided against removing them as they might be
beneficial in fixing bugs related to plotting in the future.

For the validation part, confidence levels are used in the whole project. the main confidence’s
properties are:

• kn-conf: confidence of known samples.

• kn-count: count of known samples.
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• neg-conf: confidence of negative samples.

• neg-count count of negative samples.

3.6.4 OSR Algorithms Directory
The osr_algorithms (Open Set Recognition Algorithms) folder contains three files: evm.py,
openmax.py and postprocessing.py, which all are needed by the worker_openmax_evm-
.py file. The evm.py and openmax.py both define their respective classes EVM and OpenMax

while inheriting from the PostProcessing class defined in postprocessing.py. This in-
heritance is motivated by the fact that both, the EVM and OpenMax classes make use of the
postprocess_train_data() and compose_dicts() methods, defined within the Post-

Processing class. As the saving of EVM and OpenMax depends on different hyperparameter
combinations, a save_models() method has been added. For more details about the methods
within postprocessing.py, evm.py and openmax.py, please see the Docstrings and code
itself.

3.6.5 Parameter Selection
The parameter_selection directory consists of one file, named parameter_selection-

_services.py. It basically contains the code that previously was located within the select-
_parameter script, placed in the script folder. This was done to keep the style consistent
between the select_parameter script and the other entry point scripts. As such, in the current
implementation the parameter_selection_services.py only contains code that is needed
by the select_parameter script. The methods provided are: result_table(), summary-
_table(), process_model_parameter_selection() and post_process_model_para-
meter_selection(). For more details about what these functions do, please see the Docstrings
in the code.

3.6.6 Plotting Directory
The plotting folder, includes three files: The plot_export.py file focuses on generating LaTeX
tables, showing the Correct Classification Rate (CCR) across various False Positive Rates (FPRs).
Additionally, the plot_graph.py file is designed to plot Open Set Classification Rate (OSCR)
graphs for different protocols, creating figures with subplots for each protocol and displaying
OSCR for ’Negative’ and ’Unknown’ classifications using a semilog scale for FPR. Lastly, the
plot_scoring.py file with the PlotScoring class, focuses on outputting protocol scores di-
rectly in the console.

3.6.7 Util Directory
The Util directory contains files which are accessed from many different locations within the
codebase, or where its generally ambigious as to where to place them. For instance, one could
make the argument for putting the plot_service() method into the plotting folder. However,
it is also needed in the parameter_selection_service() method, located in the paramet-
er_selection folder. Similar arguments can be made about the hyperparameters.py, load-
_post_process_model.py and the config_services.py files.

The last file deserves some special attention as it is responsible for managing the configuration
files. It offers the find_configs() method which is concerned about retrieving configs. In
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addition, it also provides the combine_yamls() function, which calls the yamlparser 6 and
combines two yaml dictionaries. The find_configs() and the combine_yamls() methods
are both used by the prepare_config() function. This function is called at the beginning of the
run() methods within the train.py, select_parameters.py and evaluate.py scripts to
find and combine the required configuration files.

6The YamlParser can be found here: https://github.com/AIML-IfI/yamlparser

https://github.com/AIML-IfI/yamlparser
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Process

4.1 Collaboration
We followed an agile working approach, with two- to three-week sprints. During the sprint, we
held several team meetings to align, define the tasks, split the workload, and discuss success
moments and problems. At the end of each sprint, we held a meeting with Professor Manuel
Günther. We presented our progress and answered open questions. Finally, we set the goals for
the next spring. At a certain stage, we started documenting our process in this report. We used
GitHub as platform for version control. Initially, we worked in a separate repository until we felt
comfortable enough to push the first version to the AIML-IfI repository. This is the reason why,
for the first changes in the project, the commits are not visible in the current repository.

4.2 Challenges faced during the project
One major challenge of the project was the inherent complexity of the topic and algorithms in-
volved. This made it difficult to understand and modify code without the risk of breaking func-
tionalities. In Addition, there were also challenges related to the University server Rolf. Rolf
was used to test and run code with the ImageNet dataset. However, getting access to Rolf took
longer than anticipated, so the team decided to implement the EMNIST dataset. This dataset,
allowed quick testing on local machines. Once access was granted, new challenges arose. When
testing on the Rolf server, one shares the resources with other students. As such, depending on
the time of day, the "CUDA out of Memory" error was thrown, especially when training Resnet50
in combination with ImageNet.

4.3 Contributions
The following section provides a brief list of team members and their respective contributions
to the package. It’s important to note that there may be overlaps, and multiple team members
may have contributed to certain parts. As such this is not a complete list of tasks done. It simply
highlights the main/focus contributions of the team members. For a more detailed overview, the
commit history on Github1. can be examined.

1Repository of the refactored codebase: https://github.com/AIML-IfI/osei

https://github.com/AIML-IfI/osei
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Nicolas Kohler

• Designed and Implemented the modular and extensible model-backbone architecture as de-
scribed in section 3.3. To prove the modularity, Nicolas also added two alternative backbone
architectures, namely Alexnet and LeNet, which are described in the subsection 3.3.1.

• Developed a dynamic way of writing and retrieving checkpoint locations and filenames for
model and evaluation files. In Addition, Nicolas also handled platform dependent issues
and completed a final code-refactor in January, which touched many parts of the project
again.

• Tested the training, evaluation, parameter selection and plotting implementations on the
university server "Rolf" and collected the results as seen in Figure 5.1 of subsection 5.1.

• Main Writing contributions:

– Primer 1.2

– Network section 3.3, incl. all subsections

– The subsections 3.5.1 and 3.5.4 in the Scripts section 3.5

– The subsections 3.6.1, 3.6.3, 3.6.4, 3.6.5 and 3.6.7 in the section Other Code Directories
3.6

– Overview of the current execution status section 5.1

Dean Heizmann

• Overhauled and developed the new Dataset architecture and implemented EMNIST as a
new alternative for a dataset. The new dataset architecture is elaborated on in the subsection
3.2.

• Refactored code related to the configuration files, as described in 3.1.

• Refactored the train.py and train_all.py scripts. They had to be transformed to work
with all the new implementations of other parts.

• Main Writing contributions:

– Abstract and Motivation 1.1

– Evolution of architecture 2

– The sections about configuration files 3.1 and datasets 3.2

– The subsections 3.5.2, 3.5.3, 3.5.4,

– The collaboration process 4.1

– The Readme A

– The conclusion 5

David Lebrec

• Adapted workers functions to EVM, OpenMax, Proser, Threshold. More information about
the workers can be found in the section 3.4.

• Refactored the losses part as described in 3.6.2.
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• In Addition, David also conducted various refactorings throughout the project. These in-
clude parts of the script 3.5, metrics 3.6.3, util 3.6.7, plotting 3.6.6, parameter-
_selection 3.6.5 and osr_algorithms 3.6.4 folders.

• Main Writing contributions:

– Parts of the Introduction 1.2.1
– Losses 3.6.2
– Workers 3.4
– Challenges faced during the project 4.2
– Next Steps 5.2
– Diagrams
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Conclusion

5.1 Overview of current execution status
As was hinted at during previous sections (especially in the script section 3.5), not all user com-
mands that trigger the execution of a script and corresponding processes work. Figure 5.1 pro-
vides a general overview of commands in combinations with different Losses and Algorithms. In
order to save on computing resources and time, it was decided to only train with the small LeNet
backbone for one epoch. All the experiments were done on the ImageNet dataset and training was
done solely by using the train command (i.e. the train_all command was not used). To indicate
what works and what does not work, three different colors were used:

• Green indicates that the command is working and runs through without errors.

• Orange means that the command is not working. In Addition, testing the command on the
baseline implementation also yielded errors. As such, the command might have already
been broken when starting the project.

• Similar to Orange, Red also means that the command is not working. However, for these
commands we were not able verify whether or not they previously worked on the baseline
implementation. As such their functionality might have been broken by the refactoring
conducted as part of this project.

While it was tried to get everything to work, achieving a fully working implementation was not
possible. This is partly due to the fact that it was not manageable to fully verify, whether or not
all parts of the baseline worked as intended. Also, for verifying whether or not the recent changes
introduced bugs, it would have been required to test on the University server. This often was not
possible, due to lack of available server resources. Another reason is the complexity of the code
and algorithms involved, as properly integrating them could be a thesis on its own. However,
training seems to work for all combinations (using the standard train command). That is key, as
this was our focus and since testing, evaluation and plotting errors might be easier to address.

Given the complexity of certain parts of the code, it is recommended that the specific bugs
are addressed by people who have an in-depth knowledge about how the approach should work
and how it should be implemented. This way it can be ensured that the fixes deliver results
that make sense and not simply make the code run. If efforts are undertaken to further fix and
improve the code, it is highly recommended to take the more detailed version of Figure 5.1 into
account. It describes exactly which commands where used and which errors occurred. It is named
command_line_inputs_status.xlsx and can be found on the Github repository1.

1Repository of the refactored codebase: https://github.com/AIML-IfI/osei

https://github.com/AIML-IfI/osei
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Figure 5.1: Status of Commands

5.2 Next Steps
The following three subsections lay out potential steps for further improvements to the repository.
They are divided into open tasks that should be tackled in the short-, medium- and long term.

5.2.1 Short Term
Validation Metrics The ValidationMetrics class, is currently not used by the implementa-
tion. It is not exactly clear why that is the case. It is strongly suspected that the methods auc-
_score_binary() and auc_score_multiclass() are important for the plotting step. As
such, these parts require further investigation.

Minor Naming Conventions: After freezing the code some minor naming errors popped up:

• Filename: plot_all.py - Command: plot.py

• Filename: select_parameters.py - ClassName: ParameterSelection

• Filename: plot_services.py - ClassName: PlotHelper

• Filename: plot_exporting.py - ClassName: PlotReporting

Pathing and Checkpoint Naming At the moment, model checkpoints are saved based on
a dynamically created path (if use_dynamic_output_directory in the config file is set to
true, which is the default). As such a potential model checkpoint might be saved as follows:
experiment/imagenet/protocol_1/imagenet_lenet_softmax_threshold_best.pth.
While the snapshot_services.py, currently acts the "Naming" Manager, the config_serv-
ices.py is handling the file location. It would be nicer, to have all things related to pathing and
the naming of generated files in one point. By doing so, one could also incorporated the naming
for results and plots.

Investigating Util As elaborated on in the util section 3.6.7, the directory currently holds files
that can not be attributed to one specific task. In general, they do not fit properly into the project
structure. As such, it might make sense to investigate these files in the future.
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5.2.2 Medium Term
Datasets: Encapsulating the logic that adapts datasets according to loss functions and open-set
classification algorithms would significantly improve the simplicity of adding new datasets. At
the same time, however, it is also difficult to implement this conceptually and practically, since
the appearance, structure, and finally, implementation of each dataset heavily differs from one to
another. Because of these difficulties, the issue fell out of scope for the project.

EMNIST: In the current implementation, the usage of the EMNIST dataset has not proven useful
in all cases. This would have to be investigated.

Workers: Currently, two worker functions carry out the training of the models. In the future,
this could be either combined into one worker function that handles every training, or the worker
function for training base models is separated from the worker that trains with open-set classi-
fication algorithms. This would especially be important to extend the code with new open-set
classification methods.

Bugs: There are bugs related to the evaluation and plotting of trained models with certain com-
binations of algorithms and loss functions. While some of the issues might have been transferred
from the initial state of the package, others might have been introduced by the refactoring itself.
Fixing these issues was out of the scope of the project and also not part of the main objectives. For
an overview of all detected bugs, consider Figure 5.1.

5.2.3 Long Term
Automated Testing and Logging: At the moment the project does not contain any test cases.
This can obviously lead to untested code which can break functionality. As such, one might
introduce automated test cases and in-depth logging information in the future. One might also
consider to make use of Github Actions2. This would allow to automatically run tests and conduct
formatting/linting when pushing code to the main branch.

Introduction of new Networks, Datasets and Algorithms: In the future, more datasets and
neural network architectures (for instance: EfficientNet (Tan and Le, 2019)) can easily be added,
as discussed throughout this report. Additionally, new open-set classification approaches can be
introduced. However, this would eventually need further modifications to the codebase. In the
same manner, new loss functions can be added.

5.3 Conclusion
The primary objective of this project was to restructure the codebase to make it more intuitive,
user-friendly and easy to update, while also simplifying future modifications and extensions.
This was achieved by moving different parts into their own directories based on functionality. To
accomplish this, the previously rather concentrated and simply structured codebase was trans-
formed. This involved breaking down the code into well-defined classes, functions, and helper
services. Each component was organized into its own directory, ensuring encapsulation, and as-
suring single responsibility. To achieve this, some parts of the code were partly or completely

2Github Actions: https://github.com/features/actions

https://github.com/features/actions
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rewritten or extended. As a result, the reorganization not only enhanced code clarity but also
facilitated easier maintenance and scalability.

The secondary objective was to extend the code by a new dataset and two new neural net-
work architectures. The EMNIST dataset is now available for training, alongside the refactored
ImageNet dataset implementation. EMNIST is much smaller, allowing for test runs and experi-
ments without having access to the much larger ImageNet dataset.

Additionally, customized LeNet and pytorch AlexNet backbones are now supported as well.
They offer a less time- and resource-consuming option compared to the existing ResNet50 net-
work, allowing for faster more diverse experiments in the future. However, it is important to
mention that specific model/loss/algorithm combinations result in execution failures, as dis-
cussed throughout the report and especially in 5.1.

In conclusion, the project was successful in taking the codebase to a state where it is ready
for future commitments and improvements. However, there is still room to further streamline
expansion efforts, which is unsurprising given the current package’s size. In addition, future
work should also focus on resolving bugs concerning specific model / loss / algorithms. The
current state of the implementation can be found on Github3.

3Repository of the refactored codebase: https://github.com/AIML-IfI/osei

https://github.com/AIML-IfI/osei


Appendix A

README - Open-Set Image
Classification Comparison

Please Note:

The following README can also be found in the Github Repository on: https://github.com/AIML-IfI/osei

A.1 README

This open source package allows the investigation and comparison of various approaches for
open-set image classification, as introduced in the paper "Large-Scale Open-Set Classification Pro-
tocols for ImageNet" presented in WCAV 2023 (Palechor et al., 2023).

The implementation currently supports training models on ImageNet with three different
protocols. Additionally, an experimental EMNIST Dataset is included. This smaller dataset al-
lows for the quick testing of code changes on local machines, without having to access the huge
ImageNet dataset. The available algorithms are EVM, Garbage, OpenMax and Proser. Appli-
cable loss functions are Softmax, Entropic Open-Set Loss and Garbage Loss. Further-
more, Resnet50, Alexnet and a customized LeNet are supported network architectures. The
package structure provides an easy way to extend it with additional datasets, algorithms, loss
functions or neural network architectures in the future. If this package, or any of the evaluation
protocols provided by it, are used, please cite as follows:

@inproceedingspalechor2023openset,
author = Palechor, Andres and Bhoumik, Annesha and Günther, Manuel,
booktitle = Winter Conference on Applications of Computer Vision (WACV),
title = Large-Scale Open-Set Classification Protocols for ImageNet,
year = 2023,
organization = IEEE/CVF

More information about the aforementioned Algorithms, such as OpenMax, EVM and PROSER can
be found in the following paper:
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@articlebisgin2023large,
title = Large-Scale Evaluation of Open-Set Image Classification Techniques,
author = Bisgin, Halil and Palechor, Andres and Suter, Mike and Günther, Manuel,
journal = under submission,
year = 2023

A.1.1 LICENSE
This code package is open-source based on the BSD license. Please see LICENSE A.1.1 for details.

A.1.2 Disclaimer
As of Early 2024, not all script commands work for all dataset/networks/losses etc. combinations.
Please find an overview of the current state in the current_functionality.xlsx.

A.1.3 Setup
Version Requirements

• Python Version: Python 3.8.4

• Conda Version: Conda 23.11

Setup Steps
The environment.yaml file contains a conda installation script to install all dependencies. The
creation and activation commands are as follows:

• conda env create -f environment.yaml

• conda activate osc_comparison

Also make sure unzip the protocols. More Information about protocols can be found in the corre-
sponding section of this README.

• unzip protocols.zip

Setup Pitfalls
• Osc_comparison initialization failure: Make sure to add a pytorch version installed that is

compatible with the GPU drivers.

• FileNotFoundError, "Train File not found!": Make sure to unzip the protocols. ‘unzip proto-
cols.zip‘

• ModuleNotFoundError, No module named osc.datasets: Can be fixed by running ‘pip in-
stall -e‘

• Local Cuda drivers too old Error: Make sure to have the latest version of conda.1

1The latest cuda version can be downloaded here: https://docs.conda.io/projects/miniconda/en/

latest/

https://docs.conda.io/projects/miniconda/en/latest/
https://docs.conda.io/projects/miniconda/en/latest/
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A.1.4 Data
The current implementation supports two datasets – ImageNet ILSVRC 2012 (full support) and
Emnist (partial support). ImageNet needs to be downloaded separately and must be accessible
by specifying its location in the data_path argument of the imagenet.yaml file. EMNIST will
automatically be downloaded once at runtime. Further datasets can be added, as described later
in this README.

ImageNet
The ImageNet used in this package relies on the ILSVRC 2012 data and can be downloaded from
Kaggle 2. In this implementation, the ImageNet dataset class is constructed using a CSV file. The
file lists all the paths to the images, as well as the corresponding label. E.g.:

• val/n02100583/ILSVRC2012_val_00013430.JPEG, 0

The CSV files are included in the package. The actual images need to be downloaded and made
accessible by the code. Look at the protocol section further below for more information.

EMNIST
The EMNIST dataset is downloaded directly from the torchvision.datasets library and is
saved into a folder in the project directory. The implementation uses lazy initialization, which
means the dataset is downloaded only when asked for specific training, validation or test data
of the EMNIST dataset. The Dataset uses MNIST as known samples and EMNIST letters as un-
knowns. EMNIST is a rather experimental dataset for now. Its benefit is its small size compared
to ImageNet, which allows to test training approaches quickly.

Adding a new Dataset
To add a new dataset, a new config file has to be created, in which the path to the dataset is
specified. This new config should then be added to the configs/datasets folder. Additionally,
one has to create a new class for the new dataset and let it inherit from the Base_Dataset class.
The new class must contain certain modifications according to the algorithm and loss functions
used.

Caution
Some deep network architectures like AlexNet might not perform well on small image sizes (like
the ones from EMNIST). That is because typically, each convolution and pooling layer is reducing
the dimension of the input, which can eventually result in a zero or even negative dimension.
These issues are addressed in the Backbone implementation.

A.1.5 Protocols
There are three protocols implemented3, which are designed to create artificial open spaces with
different levels of similarity between known and unknown classes in ILSVRC 2012. They also

2ImageNet ILSVRC 2012 can be downloaded here: https://www.kaggle.com/competitions/

imagenet-object-localization-challenge/overview)

3More Information about the Protocols can be found here: https://openaccess.thecvf.com/content/

WACV2023/html/Palechor_Large-Scale_Open-Set_Classification_Protocols_for_ImageNet_WACV_

2023_paper.html

https://www.kaggle.com/competitions/imagenet-object-localization-challenge/overview)
https://www.kaggle.com/competitions/imagenet-object-localization-challenge/overview)
https://openaccess.thecvf.com/content/WACV2023/html/Palechor_Large-Scale_Open-Set_Classification_Protocols_for_ImageNet_WACV_2023_paper.html
https://openaccess.thecvf.com/content/WACV2023/html/Palechor_Large-Scale_Open-Set_Classification_Protocols_for_ImageNet_WACV_2023_paper.html
https://openaccess.thecvf.com/content/WACV2023/html/Palechor_Large-Scale_Open-Set_Classification_Protocols_for_ImageNet_WACV_2023_paper.html
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contain negative classes for algorithm comparison, creating three levels of difficulty for the open-
set classifier. In practice, this results in three sets of CSV files, where each set contains a CSV file
for the training, the test and the validation data. The CSV files themselves contain the paths to
the ImageNet images, as well as their corresponding label.

• Protocol 1: Focuses on semantically unsimilar known (dogs) and unknown classes (non-
animals).

• Protocol 2: Focuses on animal classes in both known (hunting dogs) and unknown classes
(Four-legged, fury animals).

• Protocol 3: Focuses on semantically similar known and unknown classes. Involves ancestors
of classes as both, known and unknown.

The protocols rely on the robustness library which themselves relies on some files that have been
dispensed in the context of the ImageNet dataset. These files are not available anymore and given
the considerable time that has passed since, it might prove to be difficult to locate them. The files
are:

• imagenet_class_index.json

• wordnet.is_a.txt

• words.txt

If the files can not be found, pre-computed protocol files are provided in the protocols.zip folder
and can be extracted via:

• unzip protocols.zip

Caution
In the current implementation, only the ImageNet dataset supports the usage of protocols. Train-
ing with EMNIST requires a protocol as an input, however it has no practical impact.

A.1.6 Networks
The project currently supports three different Backbone Model Topologies: Resnet50, Alexnet
and a customized LeNet variant. They can be found in /networks/backbone/custom and
/networks/backbone/torchvision respectively. These backbones can be paired with the
Threshold Model, the Garbage Model or the Proser Model. As part of handling the networks, the
network_services are provided, which shall be used to create and retrieve models, enabling
loose coupling. In Addition, we also provide snapshot_services. They main task of these
services is to save and load models.

Adding new Backbone
Adding a new Backbone is straight forward and only requires the following few steps:

• Adding the backbone either to networks/backbone/custom or /networks/backbone-
/torchvision.

• Letting the new backbone inherit from the Backbone class and add first_blocks() and
last_blocks() functions to make it compatible with Proser.

• Adapting the __init__.py in /backbone

• Adapting the _get_backbone()function in network_services.py
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Adding new Model
Adding a new Model is a bit more complex but in theory, should only require the following:

• Adding the new model to /models.

• Adapting the __init__.py in /models.

• Adapting the network_services.py as needed.

• Potentially creating specific worker classes etc.

A.1.7 Scripts
The package provides four base capabilities that form a pipeline of processes from training a
model to plotting its performance on open-set tasks. These processes, in short, involve:

1. The training of the base model as well as the application of an algorithm on top of that base
model.

2. Only for EVM and OpenMax: Parameter optimization.

3. Evaluation to extract performance statistics.

4. Plotting using extracted statistics.

All processes are executed via command line inputs. The script files that are run and orches-
trate the processes lie in the osc/script directory and are automatically installed and runnable.
The entry points for the command line inputs are defined in setup.py. For more information
about input parameters for each individual command, check the according subsections in the
following parts.

Train
In order to run an experiment with an algorithm, a threshold model has to be trained first. In a
second step, an OSR algorithm can be executed on top of the trained threshold model. Make sure
to use the protocol, loss function, and network architecture in the threshold model, that you also
want to use later on.

The training process relies on the parameters given in the dataset and the algorithm configu-
ration files. The choice between datasets and algorithms is straightforward and done via the com-
mand line input by indicating the name of the config file to use, e.g. datasets/imagenet.yaml,
algorithms/threshold.yaml. Specific parameters about the training process, such as the loss
function, the step size, or the network architecture can be set by changing the respective value in
the algorithm config file under configs/algorithms. The train command is as follows:

train.py [algorithm] [dataset] [protocol]

Please note that the parameters are order-dependent and can not be left out or re-arranged.
Once a base model is trained, other algorithms, such as EVM or OpenMax, can be executed in
the same way. The base model does not have to be selected, it will automatically be found. As
already mentioned, the network architecture, protocol, and loss function have to match between
base model and algorithm configuration.

For an overview of all possible parameters use:
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train.py -help

Caution It is advised to specify a GPU using -g to pass a GPU index. If not provided, the
training will use CPU only and the process might take very long.

Usage examples:

• Train a base model on the imagenet dataset with protocol 1 on GPU index 5:

train.py algorithm/threshold.yaml dataset/imagenet.yaml 1 -g 5

• Apply the EVM algorithm on top of the base model on the imagenet dataset with protocol
1 on GPU index 5:

train.py algorithm/evm.yaml dataset/imagenet.yaml 1 -g 5

• Train a base model on the EMNIST dataset with protocol 1 on GPU index 7:

train.py algorithm/threshold.yaml dataset/emnist.yaml 1 -g 7

Train all

Alternatively to the train.py script, the train_all.py script provides the option to train
models with multiple loss functions on different protocols for any algorithms given. The script
will access the config file for each given algorithm and execute a training process for each possible
value of the loss function parameter (Softmax, Garbage, Entropic) and possible protocol (1,
2, 3) as default. Currently, it is not implemented to train on various datasets simultaneously,
which means it is necessary to indicate on which dataset to train:

train_all.py [dataset] -algorithms [algorithms]

If no algorithm is specified, it will default to all available algorithms (Threshold, Openmax,
Evm, and Proser). If only a subset of available loss functions or protocols should be used for
processes, it is done by indicating which ones to use in the command line input:

train_all.py [dataset] -algorithms [algorithms] -losses [losses]

-protocols [protocols]

For an overview of all possible parameters use:

train_all.py -help

Caution - Training several models needs a lot of computation power. If you don’t have several
GPUs at hand, expect to wait about a week for results. Running this script on CPU only is practi-
cally useless. - As for training single instances, always make sure to train an applicable threshold
model first!
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Usage example:

• Train base models for all loss functions and all protocols on the imagenet dataset on the
GPU on index 7:

Train_all.py -algorithms threshold -dataset dataset/imagenet.yaml -g

7

• Train EVM and OpenMax models on the imagenet dataset with loss functions softmax and
entropic, on protocols 1 and 3, on the GPU on index 7:

Train_all.py -losses softmax entropic -algorithms evm openmax

-protocols 1 3 -dataset dataset/imagenet.yaml -g 7

Parameter Selection
Some of the algorithms will require adapting the parameters to the different loss functions and
protocols. Particularly, EVM and OpenMax have a set of parameters that should be optimized.
Due to the nature of the algorithms, the train_all.py script has already trained and saved all
parameter combinations as provided in the configuration files of these two algorithms. Now the
task is only to evaluate the algorithms on unseen data. Naturally, the known and the negative
samples of the validation set are used to perform the parameter optimization.

The parameter optimization will be done via the select_parameters.py script. It will
read the configuration files of the EVM and OpenMax algorithms, load the images from the vali-
dation set, extract features with all trained base networks (as given by the -losses parameter),
and evaluate the different parameter settings of the algorithms. Particularly, the CCR values at
various FPR thresholds will be computed. Depending on the protocol, this might require several
minutes to hours. Finally, it will write a separate LaTeX table file per protocol/algorithm/loss
combination, and summarize LaTeX tables including the best parameters for each algorithm.

Caution Note that also the Proser algorithm has parameters that we might want to optimize.
However, since this would require a complete network finetuning for each parameter/proto-
col/algorithm combination, we do not include Proser in this script.

At the moment some combinations of losses and algorithms fail during parameter selection.
Check Figure XYZ for more information.

Usage example:

• Run the parameter selection for the EVM algorithm on the imagenet dataset using the Soft-
Max loss function, protocol 1, and GPU index 1. In this case different directory for config
files was given. The default is the config directory of this package:

select_parameters.py -dataset imagenet -protocols 1 -algorithms evm

-losses softmax -configuration-directory some_directory -g 1

Evaluation
Evaluation is done using the evaluate.py command. Like the train_all.py command, if no
parameters are given, per default the evaluation script will evaluate every valid trained model it
finds. It is always necessary to provide the dataset in the form of datasets/[datasetname]-
.yaml.

evaluate.py [dataset]
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Alternatively, this can be restricted to a subset of models trained with given algorithms, loss
functions, and protocols using the according parameters in the command.

evaluate.py [dataset] -algorithms [algorithms] -losses [losses]

-protocols [protocols]

The script will extract the features, logits, and scores for the test dataset and save the results
in the osei/experiments directory. Additionally, the evaluation script considers a configura-
tion file, per default the configs/tests/test.yaml file. This file contains more parameters,
including the network architecture and optimized parameters for validation for each individual
algorithm. For an overview of all possible parameters use:

evaluate.py -help

Caution At the moment some combinations of losses and algorithms fail during evaluation,
so it is recommended to only evaluate what is needed. Check Figure XYZ for more information.

As for training, it is optimal to run the evaluation process on a GPU, even though the task is
eventually not as heavy as the training is.

If the error: “Invalid device string: ’cuda:None’”, shows up, please select a GPU.

Usage example:

• Evaluate threshold models trained on ImageNet with softmax loss and protocol 1. Only use
the best models:
evaluate.py -losses softmax -algorithms threshold -dataset

datasets/imagenet.yaml -use-best -protocols 1

Plotting
Finally, the plot.py command makes use of the evaluation data extracted by the evaluate.py
command to create plots and tables. It will use the information from the same configs/tests-
/test.yaml file for the process. The results are plotted into a PDF file, Results_last.pdf,
made of several pages:

• Page 1: Contains all OSCR plots for all algorithms applied to networks trained with all loss
functions, where both negative and unknown samples are evaluated for all protocols.

• Page 2+: Contain the score distribution plots for each algorithm, but page wise separated
for each loss function.

Again, per default the script will search for any possible combination of algorithm, loss function,
and protocol and plot the evaluation data of each combination. If the combination is not found,
it will simply be skipped. It is necessary to provide the dataset in form datasets/[dataset-

name].yaml.

plot.py [dataset]

To have the script only consider a subset of combinations, it can again be done using the
according parameters in the command line input:

plot.py [dataset] -algorithms [algorithms] -losses [losses]

-protocols [protocols]
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For an overview of all possible parameters use:

plot.py -help

Caution

• Plotting always requires an evaluation file.

• At the moment some combinations of losses and algorithms fail during plotting. Check
current_functionality.xlsx for more information.

Usage example:

• Run the plotting for threshold models trained on imagenet dataset using the softmax loss
function, and on GPU index 1. Use the best models only for each combination: plot.py
-protocols 1 -losses softmax -configuration configs/tests/test.yaml

-data imagenet -use-best -algorithms threshold -g 1





Appendix B

Diagram



44 Appendix B. Diagram

Figure B.1: High-level interaction of scripts, algorithms, networks, losses and dataset compo-
nents.
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Figure B.2: Provides an overview of the different losses.
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